1
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
2
|
He Y, Long K, Du B, Liao W, Zou R, Su J, Luo J, Shi Z, Wang L. The cellular senescence score (CSS) is a comprehensive biomarker to predict prognosis and assess senescence and immune characteristics in hepatocellular carcinoma (HCC). Biochem Biophys Res Commun 2024; 739:150576. [PMID: 39178796 DOI: 10.1016/j.bbrc.2024.150576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, an emerging hallmark of cancer, has garnered increasing attention in recent years. However, its role in hepatocellular carcinoma (HCC) is still not well understood. Furthermore, there is a lack of comprehensive biomarkers to predict prognosis and assess senescence and immune characteristics in HCC patients. To address these gaps, we conducted functional studies on bleomycin-induced senescent Hepa1-6 cells and developed the Cellular Senescence Score (CSS) based on four core cellular senescence-related genes. We found that the cellular senescence signaling pathway was enriched among the risk genes associated with unfavorable prognosis in HCC patients. The senescence associated secretory phenotype (SASP) derived from senescent Hepa1-6 cells induced an increase in CD3+ CD8+ CD279+ T cells. The senescent Huh7 cells expressed higher levels of pro-angiogenic genes compared to their immortal counterparts. The CSS was constructed on the basis of BMI1, EZH2, NPM1, and ME1. HCC Patients in the high-CSS group had significantly shorter overall survival compared to those in the low-CSS group. In contrast to the low-CSS group, the high-CSS group exhibited more senescence characteristics at both the overall tumor microenvironment and single-cell levels. Three distinct senescence patterns were identified in hepatoma cells: oxidative stress related senescence, metabolism related senescence, and immune related senescence. The high-CSS group showed elevated TP53 mutation rate, diminished immune cell infiltration, and enhanced expression levels of immune checkpoint molecules compared to the low-CSS group. Moreover, the high-CSS group displayed a greater proportion of patients responsive to immune checkpoint therapy compared to the low-CSS group. In summary, the impacts of cellular senescence on HCC are multifaceted, and the tumor-promoting effects may be caused by SASP remodeling the HCC microenvironment rather than by the senescent hepatoma cells themselves. The CSS is a promising biomarker capable of predicting prognosis and assessing senescence and immune characteristics in HCC.
Collapse
Affiliation(s)
- Yutao He
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Kui Long
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Bin Du
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Weiran Liao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Renchao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Jifeng Su
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Jiong Luo
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Zhitian Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China.
| | - Lin Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China.
| |
Collapse
|
3
|
Rahman MM, Tollefsbol TO. dCas9-HDAC8-EGFP fusion enables epigenetic editing of breast cancer cells by H3K9 deacetylation. Eur J Cell Biol 2024; 103:151463. [PMID: 39437453 DOI: 10.1016/j.ejcb.2024.151463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic editing is thriving as a robust tool for manipulating transcriptional regulation and cell fate. Despite its regulatory role in gene downregulation, epigenetic editing with histone deacetylation has been sparsely studied, especially in the context of cancer. In this current study, we have reconstructed a dCas9-HDAC8-EGFP fusion to perform histone deacetylation on the promoter of the ESR1, TERT and CDKN1C genes for the first time in breast cancer cell lines MCF-7 and MDA-MB-231 as well as in HEK293T cells. Our results demonstrated that dCas9-HDAC8-EGFP in combination with appropriate gRNAs were able to downregulate the expression of the ESR1, TERT and CDKN1C genes transcriptionally by specifically depleting the H3K9ac level on the recruitment loci. The addition of histone deacetylase inhibitors was found to neutralize the outcomes of dCas9-HDAC8-EGFP-induced epigenetic editing. Furthermore, we observed a significant downregulation of full length ERα expression in epigenetically edited MCF-7 cells with consequential alteration in cellular response toward estradiol and tamoxifen treatment due to dCas9-HDAC8-EGFP mediated epigenetic editing of the ESR1 gene. Overall, dCas9-HDAC8-EGFP is a novel circuit that enabled downregulation of crucial genes with cellular outcome in breast cancer cells by preferentially inducing H3K9 deacetylation of specific promoter regions.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street South, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Leung CWB, Wall J, Esashi F. From rest to repair: Safeguarding genomic integrity in quiescent cells. DNA Repair (Amst) 2024; 142:103752. [PMID: 39167890 DOI: 10.1016/j.dnarep.2024.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Quiescence is an important non-pathological state in which cells pause cell cycle progression temporarily, sometimes for decades, until they receive appropriate proliferative stimuli. Quiescent cells make up a significant proportion of the body, and maintaining genomic integrity during quiescence is crucial for tissue structure and function. While cells in quiescence are spared from DNA damage associated with DNA replication or mitosis, they are still exposed to various sources of endogenous DNA damage, including those induced by normal transcription and metabolism. As such, it is vital that cells retain their capacity to effectively repair lesions that may occur and return to the cell cycle without losing their cellular properties. Notably, while DNA repair pathways are often found to be downregulated in quiescent cells, emerging evidence suggests the presence of active or differentially regulated repair mechanisms. This review aims to provide a current understanding of DNA repair processes during quiescence in mammalian systems and sheds light on the potential pathological consequences of inefficient or inaccurate repair in quiescent cells.
Collapse
Affiliation(s)
| | - Jacob Wall
- Sir William Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, South Parks Road, Oxford, UK.
| |
Collapse
|
5
|
O'Sullivan EA, Wallis R, Mossa F, Bishop CL. The paradox of senescent-marker positive cancer cells: challenges and opportunities. NPJ AGING 2024; 10:41. [PMID: 39277623 PMCID: PMC11401916 DOI: 10.1038/s41514-024-00168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Senescence is an anti-tumour mechanism and hallmark of cancer. Loss or mutation of key senescence effectors, such as p16INK4A, are frequently observed in cancer. Intriguingly, some human tumours are both proliferative and senescent-marker positive (Sen-Mark+). Here, we explore this paradox, focusing on the prognostic consequences and the current challenges in classifying these cells. We discuss future strategies for Sen-Mark+ cell detection together with emerging opportunities to exploit senescence for cancer.
Collapse
Affiliation(s)
- Emily A O'Sullivan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Federica Mossa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. PLoS Genet 2024; 20:e1011387. [PMID: 39226333 PMCID: PMC11398662 DOI: 10.1371/journal.pgen.1011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/13/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogaster wing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Lauren L Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Brian R Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
7
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
8
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
9
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. Engineering principles for rationally design therapeutic strategies against hepatocellular carcinoma. Front Mol Biosci 2024; 11:1404319. [PMID: 38939509 PMCID: PMC11208463 DOI: 10.3389/fmolb.2024.1404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico
| | | | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
10
|
Luo R, Liu J, Wen J, Zhou X. Single-cell Landscape of Malignant Transition: Unraveling Cancer Cell-of-Origin and Heterogeneous Tissue Microenvironment. RESEARCH SQUARE 2024:rs.3.rs-4085185. [PMID: 38645221 PMCID: PMC11030487 DOI: 10.21203/rs.3.rs-4085185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
| | - Jiajia Liu
- The University of Texas Health Science Center at Houston
| | - Jianguo Wen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
11
|
Zingoni A, Antonangeli F, Sozzani S, Santoni A, Cippitelli M, Soriani A. The senescence journey in cancer immunoediting. Mol Cancer 2024; 23:68. [PMID: 38561826 PMCID: PMC10983694 DOI: 10.1186/s12943-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, 00185, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
- IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
12
|
McGrath MK, Abolhassani A, Guy L, Elshazly AM, Barrett JT, Mivechi NF, Gewirtz DA, Schoenlein PV. Autophagy and senescence facilitate the development of antiestrogen resistance in ER positive breast cancer. Front Endocrinol (Lausanne) 2024; 15:1298423. [PMID: 38567308 PMCID: PMC10986181 DOI: 10.3389/fendo.2024.1298423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Michael K. McGrath
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ali Abolhassani
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Luke Guy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ahmed M. Elshazly
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - John T. Barrett
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Patricia V. Schoenlein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
13
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585098. [PMID: 38559130 PMCID: PMC10980049 DOI: 10.1101/2024.03.14.585098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogasterwing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| | - Lauren L. Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| | - Brian R. Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| |
Collapse
|
14
|
Mijajlović V, Miler M, Ilić R, Rašić D, Dunđerović D, Raičević S, Soldatović I, De Luka S, Manojlović-Gačić E. Oncogene-induced senescence in meningiomas-an immunohistochemical study. J Neurooncol 2024; 166:143-153. [PMID: 38117375 DOI: 10.1007/s11060-023-04532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Meningiomas are tumours originating from meningothelial cells, the majority belonging to grade 1 according to the World Health Organization classification of the tumours of the Central Nervous System. Factors contributing to the progression to the higher grades (grades 2 and 3) have not been elucidated yet. Senescence has been proposed as a potential mechanism constraining the malignant transformation of tumours. Senescence-associated beta-galactosidase (SA-β-GAL) and inhibitors of cyclin-dependent kinases p16 and p21 have been suggested as senescence markers. METHODS We analysed 318 meningiomas of total 343 (178 grade 1, 133 grade 2 and 7 grade 3). Tissue microarrays were constructed and stained immunohistochemically, using antibodies for SA-β-GAL, p16 and p21. RESULTS The positive correlation of the tumour grade with the expression of p16 (p = 0.016) and SA-β-GAL (p = 0.002) was observed. The expression of p16 and SA-β-GAL was significantly higher in meningiomas grade 2 compared to meningiomas grade 1 (p = 0.006 and p = 0.004, respectively). SA-β-GAL positivity positively correlated with p16 and p21 in the whole cohort. In grade 2 meningiomas, a positive correlation was only between SA-β-GAL and p16. Correlations of senescence markers in meningiomas grade 2 were not present. CONCLUSION Our findings suggest the senescence activation in meningiomas grade 2 as a potential mechanism for the restraining of tumour growth and give hope for applying of promising senolytic therapy.
Collapse
Affiliation(s)
- Vladimir Mijajlović
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Rosanda Ilić
- Clinic for Neurosurgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Dejan Rašić
- Clinic for Ophthalmology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Savo Raičević
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvio De Luka
- Institute for Pathophysiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
15
|
Soleimani M, Cheraqpour K, Koganti R, Djalilian AR. Cellular senescence and ophthalmic diseases: narrative review. Graefes Arch Clin Exp Ophthalmol 2023; 261:3067-3082. [PMID: 37079093 DOI: 10.1007/s00417-023-06070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE Cellular senescence is a state of permanent growth arrest whereby a cell reaches its replicative limit. However, senescence can also be triggered prematurely in certain stressors including radiation, oxidative stress, and chemotherapy. This stress-induced senescence has been studied in the context of promoting inflammation, tumor development, and several chronic degenerative diseases of aging. Emerging research has elucidated the role of senescence in various ocular diseases. METHODS The literature search was performed using PubMed with using the query (senescence OR aging) AND (eye disease OR ocular disease OR ophthalmic disease OR cornea OR glaucoma OR cataract OR retina) on October 20th, 2022. No time restriction was proposed. Articles were excluded if they were not referenced in English. RESULTS Overall, 51 articles regarding senescence and ocular diseases were found and summarized in this study. Several signaling pathways have been implicated in the development of senescence. Currently, senescence has been linked to various corneal and retinal pathologies, as well as cataract and glaucoma. Given the number of pathologies, senolytics, which are small molecules with the ability to selective targeting of senescent cells, can be used as therapeutic or prophylactic agents. CONCLUSIONS Senescence has been shown to underlie the pathogenesis of numerous ocular diseases. The overall literature on senescence and ocular disease is growing rapidly. There is an ongoing debate whether or not cellular senescence detected in experiments contributes in a significant way to diseases. Research on understanding the mechanism of senescence from ocular cells and tissues is just beginning. Multiple animal models are required to test potential senolytics. Currently, no studies exist to date which have demonstrated the benefits of senolytic therapies in human studies.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Rubin de Celis MF, Bonner-Weir S. Reversing and modulating cellular senescence in beta cells, a new field of opportunities to treat diabetes. Front Endocrinol (Lausanne) 2023; 14:1217729. [PMID: 37822597 PMCID: PMC10562723 DOI: 10.3389/fendo.2023.1217729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetes constitutes a world-wide pandemic that requires searching for new treatments to halt its progression. Cellular senescence of pancreatic beta cells has been described as a major contributor to development and worsening of diabetes. The concept of reversibility of cellular senescence is critical as is the timing to take actions against this "dormant" senescent state. The reversal of cellular senescence can be considered as rejuvenation of the specific cell if it returns to the original "healthy state" and doesn't behave aberrantly as seen in some cancer cells. In rodents, treatment with senolytics and senomorphics blunted or prevented disease progression, however their use carry drawbacks. Modulators of cellular senescence is a new area of research that seeks to reverse the senescence. More research in each of these modalities should lead to new treatments to stop diabetes development and progression.
Collapse
Affiliation(s)
- Maria F. Rubin de Celis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Susan Bonner-Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Billimoria R, Bhatt P. Senescence in cancer: Advances in detection and treatment modalities. Biochem Pharmacol 2023; 215:115739. [PMID: 37562510 DOI: 10.1016/j.bcp.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Senescence is a form of irreversible cell cycle arrest. Senescence plays a dual role in cancer, as both a tumor suppressor by preventing the growth of damaged cells and a cancer promoter by creating an inflammatory milieu. Stress-induced premature senescence (SIPS) and replicative senescence are the two major sub-types of senescence. Senescence plays a dual role in cancer, depending on the context and kind of senescence involved. SIPS can cause cancer by nurturing an inflammatory environment, whereas replicative senescence may prevent cancer. Major pathways that are involved in senescence are the p53-p21, p16INK4A-Rb pathway along with mTOR, MAPK, and PI3K pathways. The lack of universal senescence markers makes it difficult to identify senescent cells in vivo. A combination of reliable detection methods of senescent cells in vivo is of utmost importance and will help in early detection and open new avenues for future treatment. New strategies that are being developed in order to tackle these shortcomings are in the field of fluorescent probes, nanoparticles, positron emission tomography probes, biosensors, and the detection of cell-free DNA from liquid biopsies. Along with detection, eradication of these senescent cells is also important to prevent cancer reoccurrence. Recently, the field of nano-senolytic and immunotherapy has also been emerging. This review provides up-to-date information on the various types of advancements made in the field of detection and treatment modalities for senescent cells that hold promise for the future treatment and prognosis of cancer, as well as their limitations and potential solutions.
Collapse
Affiliation(s)
- Rezina Billimoria
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Purvi Bhatt
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India.
| |
Collapse
|
18
|
Papaspyropoulos A, Hazapis O, Altulea A, Polyzou A, Verginis P, Evangelou K, Fousteri M, Papantonis A, Demaria M, Gorgoulis V. Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence. Aging Cell 2023; 22:e13893. [PMID: 37547972 PMCID: PMC10497830 DOI: 10.1111/acel.13893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
| | - Orsalia Hazapis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center GroningenGroningenThe Netherlands
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | | | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Maria Fousteri
- Institute for Fundamental Biomedical ResearchBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center GroningenGroningenThe Netherlands
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
- Clinical Molecular PathologyMedical School, University of DundeeDundeeUK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
- Center for New Biotechnologies and Precision MedicineMedical School, National and Kapodistrian University of AthensAthensGreece
- Faculty of Health and Medical SciencesUniversity of SurreySurreyUK
| |
Collapse
|
19
|
Evangelou K, Belogiannis K, Papaspyropoulos A, Petty R, Gorgoulis VG. Escape from senescence: molecular basis and therapeutic ramifications. J Pathol 2023; 260:649-665. [PMID: 37550877 DOI: 10.1002/path.6164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
Cellular senescence constitutes a stress response mechanism in reaction to a plethora of stimuli. Senescent cells exhibit cell-cycle arrest and altered function. While cell-cycle withdrawal has been perceived as permanent, recent evidence in cancer research introduced the so-called escape-from-senescence concept. In particular, under certain conditions, senescent cells may resume proliferation, acquiring highly aggressive features. As such, they have been associated with tumour relapse, rendering senescence less effective in inhibiting cancer progression. Thus, conventional cancer treatments, incapable of eliminating senescence, may benefit if revisited to include senolytic agents. To this end, it is anticipated that the assessment of the senescence burden in everyday clinical material by pathologists will play a crucial role in the near future, laying the foundation for more personalised approaches. Here, we provide an overview of the investigations that introduced the escape-from-senescence phenomenon, the identified mechanisms, as well as the major implications for pathology and therapy. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
20
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
21
|
Martínez-Zamudio RI, Stefa A, Nabuco Leva Ferreira Freitas JA, Vasilopoulos T, Simpson M, Doré G, Roux PF, Galan MA, Chokshi RJ, Bischof O, Herbig U. Escape from oncogene-induced senescence is controlled by POU2F2 and memorized by chromatin scars. CELL GENOMICS 2023; 3:100293. [PMID: 37082139 PMCID: PMC10112333 DOI: 10.1016/j.xgen.2023.100293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/22/2023]
Abstract
Although oncogene-induced senescence (OIS) is a potent tumor-suppressor mechanism, recent studies revealed that cells could escape from OIS with features of transformed cells. However, the mechanisms that promote OIS escape remain unclear, and evidence of post-senescent cells in human cancers is missing. Here, we unravel the regulatory mechanisms underlying OIS escape using dynamic multidimensional profiling. We demonstrate a critical role for AP1 and POU2F2 transcription factors in escape from OIS and identify senescence-associated chromatin scars (SACSs) as an epigenetic memory of OIS detectable during colorectal cancer progression. POU2F2 levels are already elevated in precancerous lesions and as cells escape from OIS, and its expression and binding activity to cis-regulatory elements are associated with decreased patient survival. Our results support a model in which POU2F2 exploits a precoded enhancer landscape necessary for senescence escape and reveal POU2F2 and SACS gene signatures as valuable biomarkers with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Ricardo Iván Martínez-Zamudio
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Alketa Stefa
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - José Américo Nabuco Leva Ferreira Freitas
- Sorbonne Université, UMR 8256, Biological Adaptation and Ageing – IBPS, 75005 Paris, France
- INSERM U1164, 75005 Paris, France
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Themistoklis Vasilopoulos
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - Mark Simpson
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Gregory Doré
- Institut Pasteur, Plasmodium RNA Biology Unit, 25 Rue du Docteur Roux, 75724 Cedex 15 Paris, France
| | - Pierre-François Roux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Mark A. Galan
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ravi J. Chokshi
- Department of Surgery, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Utz Herbig
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
23
|
Pavani M, Chiroli E, Cancrini C, Gross F, Bonaiuti P, Villa S, Giavazzi F, Matafora V, Bachi A, Fava LL, Lischetti T, Ciliberto A. Triap1 upregulation promotes escape from mitotic-slippage-induced G1 arrest. Cell Rep 2023; 42:112215. [PMID: 36917609 DOI: 10.1016/j.celrep.2023.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Drugs targeting microtubules rely on the mitotic checkpoint to arrest cell proliferation. The prolonged mitotic arrest induced by such drugs is followed by a G1 arrest. Here, we follow for several weeks the fate of G1-arrested human cells after treatment with nocodazole. We find that a small fraction of cells escapes from the arrest and resumes proliferation. These escaping cells experience reduced DNA damage and p21 activation. Cells surviving treatment are enriched for anti-apoptotic proteins, including Triap1. Increasing Triap1 levels allows cells to survive the first treatment with reduced DNA damage and lower levels of p21; accordingly, decreasing Triap1 re-sensitizes cells to nocodazole. We show that Triap1 upregulation leads to the retention of cytochrome c in the mitochondria, opposing the partial activation of caspases caused by nocodazole. In summary, our results point to a potential role of Triap1 upregulation in the emergence of resistance to drugs that induce prolonged mitotic arrest.
Collapse
Affiliation(s)
- Mattia Pavani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Elena Chiroli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Camilla Cancrini
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Fridolin Gross
- ImmunoConcEpT, CNRS UMR5164, Université de Bordeaux, 33076 Bordeaux, France
| | - Paolo Bonaiuti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Stefano Villa
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, 20090 Segrate, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universitá degli Studi di Milano, 20090 Segrate, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Tiziana Lischetti
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Andrea Ciliberto
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, 1083 Budapest, Hungary.
| |
Collapse
|
24
|
Collin G, Foy JP, Aznar N, Rama N, Wierinckx A, Saintigny P, Puisieux A, Ansieau S. Intestinal Epithelial Cells Adapt to Chronic Inflammation through Partial Genetic Reprogramming. Cancers (Basel) 2023; 15:cancers15030973. [PMID: 36765930 PMCID: PMC9913703 DOI: 10.3390/cancers15030973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel disease. We investigated whether this permanent insult compels intestinal stem cells to develop strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation. We submitted immortalized human colonic epithelial cells to either a mimic of chronic inflammation or to a chemical peroxide, analyzed how they adapted to stress, and addressed the biological relevance of these observations in databases. We demonstrated that cells adapt to chronic-inflammation-associated oxidative stress in vitro through a partial genetic reprogramming. Through a gene set enrichment analysis, we showed that this program is recurrently active in the intestinal mucosae of Crohn's and ulcerative colitis disease patients and evolves alongside disease progression. Based on a previously reported characterization of intestinal stem and precursor cells using tracing experiments, we lastly confirmed the activation of the program in intestinal precursor cells during murine colorectal cancer development. This adaptive process is thus likely to play a role in the progression of Crohn's and ulcerative disease, and potentially in the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Guillaume Collin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Jean-Philippe Foy
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | | | - Pierre Saintigny
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Alain Puisieux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
| | - Stéphane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008 Lyon, France
- Correspondence: ; Tel.: +33-(0)469-166-680
| |
Collapse
|
25
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
26
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
27
|
Xie L, Yin W, Tang F, He M. Pan-Cancer analysis of TERT and Validation in Osteosarcoma Cell Lines. Biochem Biophys Res Commun 2023; 639:106-116. [PMID: 36476950 DOI: 10.1016/j.bbrc.2022.11.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the possible functions of TERT in pan-cancer and OS. METHODS First, differential TERT gene expression analysis was conducted using multi-omics data integrative analyses, including differential expression, prognosis, the correlation between infiltrating inflammatory immune cells, and mutation in pan-cancer. Furthermore, differential TERT gene expression analysis was conducted using mRNA expression profiles related to OS based on the GEO Datasets. Various differentially expressed genes were chosen based on a fitness threshold for further investigations. Finally, the function of the TERT gene was assessed in OS cells, including cellular proliferation, migration, and metastasis. RESULTS Pan-cancer research demonstrated that variable expression of TERT was not only associated with numerous types of human cancer but was also intimately linked to DNA methylation. Bioinformatic investigation revealed a link between the differential expression of TERT with immune cell infiltration in the tumor microenvironment (TME). In vitro studies indicated that inhibition of TERT decreased OS cell proliferation, motility, and metastasis. CONCLUSION TERT may serve as a useful genomic biomarker for the diagnosis and prediction of pan-cancer and as a prospective therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Long Xie
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China; Trauma Department of Orthopaedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Wenhua Yin
- Trauma Department of Orthopaedics, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Fuxing Tang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
28
|
Domen A, Deben C, Verswyvel J, Flieswasser T, Prenen H, Peeters M, Lardon F, Wouters A. Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res 2022; 41:360. [PMID: 36575462 PMCID: PMC9793681 DOI: 10.1186/s13046-022-02555-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence is a state of stable cell-cycle arrest with secretory features in response to cellular stress. Historically, it has been considered as an endogenous evolutionary homeostatic mechanism to eliminate damaged cells, including damaged cells which are at risk of malignant transformation, thereby protecting against cancer. However, accumulation of senescent cells can cause long-term detrimental effects, mainly through the senescence-associated secretory phenotype, and paradoxically contribute to age-related diseases including cancer. Besides its role as tumor suppressor, cellular senescence is increasingly being recognized as an in vivo response in cancer patients to various anticancer therapies. Its role in cancer is ambiguous and even controversial, and senescence has recently been promoted as an emerging hallmark of cancer because of its hallmark-promoting capabilities. In addition, the prognostic implications of cellular senescence have been underappreciated due to the challenging detection and sparse in and ex vivo evidence of cellular senescence in cancer patients, which is only now catching up. In this review, we highlight the approaches and current challenges of in and ex vivo detection of cellular senescence in cancer patients, and we discuss the prognostic implications of cellular senescence based on in and ex vivo evidence in cancer patients.
Collapse
Affiliation(s)
- Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium.
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium.
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Jasper Verswyvel
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
- Department of Oncology, Antwerp University Hospital (UZA), 2650, Edegem (Antwerp), Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Wilrijk (Antwerp), Belgium
| |
Collapse
|
29
|
Piskorz WM, Cechowska-Pasko M. Senescence of Tumor Cells in Anticancer Therapy—Beneficial and Detrimental Effects. Int J Mol Sci 2022; 23:ijms231911082. [PMID: 36232388 PMCID: PMC9570404 DOI: 10.3390/ijms231911082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence process results in stable cell cycle arrest, which prevents cell proliferation. It can be induced by a variety of stimuli including metabolic stress, DNA damage, telomeres shortening, and oncogenes activation. Senescence is generally considered as a process of tumor suppression, both by preventing cancer cells proliferation and inhibiting cancer progression. It can also be a key effector mechanism for many types of anticancer therapies such as chemotherapy and radiotherapy, both directly and through bioactive molecules released by senescent cells that can stimulate an immune response. Senescence is characterized by a senescence-associated secretory phenotype (SASP) that can have both beneficial and detrimental impact on cancer progression. Despite the negatives, attempts are still being made to use senescence to fight cancer, especially when it comes to senolytics. There is a possibility that a combination of prosenescence therapy—which targets tumor cells and causes their senescence—with senotherapy—which targets senescent cells, can be promising in cancer treatment. This review provides information on cellular senescence, its connection with carcinogenesis and therapeutic possibilities linked to this process.
Collapse
|
30
|
Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19:619-636. [PMID: 36045302 PMCID: PMC9428886 DOI: 10.1038/s41571-022-00668-4] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer. The entry of cells into senescence can act as a barrier to tumorigenesis; however, in certain contexts senescent malignant and non-malignant cells can acquire pro-tumorigenic properties. The authors of this Review discuss the cell-intrinsic and cell-extrinsic mechanisms involved in both the antitumorigenic and tumour-promoting roles of senescent cells, and describe the potential of various senolytic and senomorphic therapeutic approaches in oncology. Cellular senescence is a natural barrier to tumorigenesis; senescent cells are widely detected in premalignant lesions from patients with cancer. Cellular senescence is induced by anticancer therapy and can contribute to some treatment-related adverse events (TRAEs). Senescent cells exert both protumorigenic and antitumorigenic effects via cell-autonomous and paracrine mechanisms. Pharmacological modulation of senescence-associated phenotypes has the potential to improve therapy efficacy and reduce the incidence of TRAEs.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Johannes Kepler University, Linz, Austria.,Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.,Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
31
|
Lee S, Chang TC, Schreiner P, Fan Y, Agarwal N, Owens C, Dummer R, Kirkwood JM, Barnhill RL, Theodorescu D, Wu G, Bahrami A. Targeted Long-Read Bisulfite Sequencing Identifies Differences in the TERT Promoter Methylation Profiles between TERT Wild-Type and TERT Mutant Cancer Cells. Cancers (Basel) 2022; 14:4018. [PMID: 36011010 PMCID: PMC9406525 DOI: 10.3390/cancers14164018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: TERT promoter methylation, located several hundred base pairs upstream of the transcriptional start site, is cancer specific and correlates with increased TERT mRNA expression and poorer patient outcome. Promoter methylation, however, is not mutually exclusive to TERT activating genetic alterations, as predicted for functionally redundant mechanisms. To annotate the altered patterns of TERT promoter methylation and their relationship with gene expression, we applied a Pacific Biosciences-based, long-read, bisulfite-sequencing technology and compared the differences in the methylation marks between wild-type and mutant cancers in an allele-specific manner. Results: We cataloged TERT genetic alterations (i.e., promoter point mutations or structural variations), allele-specific promoter methylation patterns, and allele-specific expression levels in a cohort of 54 cancer cell lines. In heterozygous mutant cell lines, the mutant alleles were significantly less methylated than their silent, mutation-free alleles (p < 0.05). In wild-type cell lines, by contrast, both epialleles were equally methylated to high levels at the TERT distal promoter, but differentially methylated in the proximal regions. ChIP analysis showed that epialleles with the hypomethylated proximal and core promoter were enriched in the active histone mark H3K4me2/3, whereas epialleles that were methylated in those regions were enriched in the repressive histone mark H3K27me3. Decitabine therapy induced biallelic expression in the wild-type cancer cells, whereas the mutant cell lines were unaffected. Conclusions: Long-read bisulfite sequencing analysis revealed differences in the methylation profiles and responses to demethylating agents between TERT wild-type and genetically altered cancer cell lines. The causal relation between TERT promoter methylation and gene expression remains to be established.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - John M. Kirkwood
- Department of Pathology, University of Pittsburgh Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| |
Collapse
|
32
|
Batsios G, Taglang C, Tran M, Stevers N, Barger C, Gillespie AM, Ronen SM, Costello JF, Viswanath P. Deuterium Metabolic Imaging Reports on TERT Expression and Early Response to Therapy in Cancer. Clin Cancer Res 2022; 28:3526-3536. [PMID: 35679032 PMCID: PMC9378519 DOI: 10.1158/1078-0432.ccr-21-4418] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Telomere maintenance is a hallmark of cancer. Most tumors maintain telomere length via reactivation of telomerase reverse transcriptase (TERT) expression. Identifying clinically translatable imaging biomarkers of TERT can enable noninvasive assessment of tumor proliferation and response to therapy. EXPERIMENTAL DESIGN We used RNAi, doxycycline-inducible expression systems, and pharmacologic inhibitors to mechanistically delineate the association between TERT and metabolism in preclinical patient-derived tumor models. Deuterium magnetic resonance spectroscopy (2H-MRS), which is a novel, translational metabolic imaging modality, was used for imaging TERT in cells and tumor-bearing mice in vivo. RESULTS Our results indicate that TERT expression is associated with elevated NADH in multiple cancers, including glioblastoma, oligodendroglioma, melanoma, neuroblastoma, and hepatocellular carcinoma. Mechanistically, TERT acts via the metabolic regulator FOXO1 to upregulate nicotinamide phosphoribosyl transferase, which is the key enzyme for NAD+ biosynthesis, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which converts NAD+ to NADH. Because NADH is essential for pyruvate flux to lactate, we show that 2H-MRS-based assessment of lactate production from [U-2H]-pyruvate reports on TERT expression in preclinical tumor models in vivo, including at clinical field strength (3T). Importantly, [U-2H]-pyruvate reports on early response to therapy in mice bearing orthotopic patient-derived gliomas at early timepoints before radiographic alterations can be visualized by MRI. CONCLUSIONS Elevated NADH is a metabolic consequence of TERT expression in cancer. Importantly, [U-2H]-pyruvate reports on early response to therapy, prior to anatomic alterations, thereby providing clinicians with a novel tool for assessment of tumor burden and treatment response in cancer.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Meryssa Tran
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carter Barger
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
33
|
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, He J. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther 2022; 236:108054. [PMID: 34915055 DOI: 10.1016/j.pharmthera.2021.108054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common solid tumor in children and a leading cause of cancer death in children. Neuroblastoma exhibits genetic, morphological, and clinical heterogeneity that limits the efficacy of current monotherapies. With further research on neuroblastoma, the pathogenesis of neuroblastoma is found to be complex, and more and more treatment therapies are needed. The importance of personalized therapy is growing. Currently, various molecular features, including RAS mutations, are being used as targets for the development of new therapies for patients with neuroblastoma. A recent study found that RAS mutations are frequently present in recurrent neuroblastoma. RAS mutations have been shown to activate the MAPK pathway and play an important role in neuroblastoma. Treating RAS mutated neuroblastoma is a difficult challenge, but many preclinical studies have yielded effective results. At the same time, many of the therapies used to treat RAS mutated tumors also have good reference values for treating RAS mutated neuroblastoma. The success of KRAS-G12C inhibitors has greatly stimulated confidence in the direct suppression of RAS. This review describes the biological role of RAS and the frequency of RAS mutations in neuroblastoma. This paper focuses on the strategies, preclinical, and clinical progress of targeting carcinogenic RAS in neuroblastoma, and proposes possible prospects and challenges in the future.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
34
|
Wang M, Wu Y, He Y, Liu J, Chen Y, Huang J, Qi G, Li P. SIRT1 upregulation promotes epithelial-mesenchymal transition by inducing senescence escape in endometriosis. Sci Rep 2022; 12:12302. [PMID: 35853978 PMCID: PMC9296487 DOI: 10.1038/s41598-022-16629-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Endometrial epithelial cells carry distinct cancer-associated alterations that may be more susceptible to endometriosis. Mouse models have shown that overexpression of SIRT1 associated with oncogene activation contributes to the pathogenesis of endometriosis, but the underlying reason remains elusive. Here, we used integrated systems biology analysis and found that enrichment of endometrial stromal fibroblasts in endometriosis and their cellular abundance correlated negatively with epithelial cells in clinical specimens. Furthermore, endometrial epithelial cells were characterized by significant overexpression of SIRT1, which is involved in triggering the EMT switch by escaping damage or oncogene-induced induced senescence in clinical specimens and in vitro human cell line models. This observation supports that genetic and epigenetic incident favors endometrial epithelia cells escape from senescence and fuel EMT process in endometriosis, what could be overcome by downregulation of SIRT1.
Collapse
Affiliation(s)
- Minghua Wang
- Department of Pathology, Longgang District People's Hospital, Shenzhen, 518172, China.,Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yongqi Wu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yunbiao He
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Jing Liu
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Yingxing Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jieqiong Huang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China
| | - Guolong Qi
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, 510632, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, 510632, China.
| |
Collapse
|
35
|
Abstract
Senescence is a cellular response to a variety of stress signals that is characterized by a stable withdrawal from the cell cycle and major changes in cell morphology and physiology. While most research on senescence has been performed on non-cancer cells, it is evident that cancer cells can also mount a senescence response. In this Review, we discuss how senescence can be induced in cancer cells. We describe the distinctive features of senescent cancer cells and how these changes in cellular physiology might be exploited for the selective eradication of these cells (senolysis). We discuss activation of the host immune system as a particularly attractive way to clear senescent cancer cells. Finally, we consider the challenges and opportunities provided by a 'one-two punch' sequential treatment of cancer with pro-senescence therapy followed by senolytic therapy.
Collapse
Affiliation(s)
- Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lina Lankhorst
- Cancer, Stem Cells & Developmental Biology programme, Utrecht University, Utrecht, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Kudlova N, De Sanctis JB, Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int J Mol Sci 2022; 23:ijms23084168. [PMID: 35456986 PMCID: PMC9028163 DOI: 10.3390/ijms23084168] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is defined as irreversible cell cycle arrest caused by various processes that render viable cells non-functional, hampering normal tissue homeostasis. It has many endogenous and exogenous inducers, and is closely connected with age, age-related pathologies, DNA damage, degenerative disorders, tumor suppression and activation, wound healing, and tissue repair. However, the literature is replete with contradictory findings concerning its triggering mechanisms, specific biomarkers, and detection protocols. This may be partly due to the wide range of cellular and in vivo animal or human models of accelerated aging that have been used to study senescence and test senolytic drugs. This review summarizes recent findings concerning senescence, presents some widely used cellular and animal senescence models, and briefly describes the best-known senolytic agents.
Collapse
Affiliation(s)
- Natalie Kudlova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77147 Olomouc, Czech Republic; (N.K.); (J.B.D.S.)
- Institute of Molecular and Translational Medicine Czech Advanced Technologies and Research Institute, Palacky University, 77147 Olomouc, Czech Republic
- Correspondence: ; Tel.: +42-0-585632082
| |
Collapse
|
37
|
Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene 2022; 41:2719-2733. [PMID: 35393546 PMCID: PMC9076537 DOI: 10.1038/s41388-022-02291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells often experience high basal levels of DNA replication stress (RS), for example due to hyperactivation of oncoproteins like MYC or RAS. Therefore, cancer cells are considered to be sensitive to drugs that exacerbate the level of RS or block the intra S-phase checkpoint. Consequently, RS-inducing drugs including ATR and CHK1 inhibitors are used or evaluated as anti-cancer therapies. However, drug resistance and lack of biomarkers predicting therapeutic efficacy limit efficient use. This raises the question what determines sensitivity of individual cancer cells to RS. Here, we report that oncogenic RAS does not only enhance the sensitivity to ATR/CHK1 inhibitors by directly causing RS. Instead, we observed that HRASG12V dampens the activation of the P53-dependent transcriptional response to drug-induced RS, which in turn confers sensitivity to RS. We demonstrate that inducible expression of HRASG12V sensitized cells to ATR and CHK1 inhibitors. Using RNA-sequencing of FACS-sorted cells we discovered that P53 signaling is the sole transcriptional response to RS. However, oncogenic RAS attenuates the transcription of P53 and TGF-β pathway components which consequently dampens P53 target gene expression. Accordingly, live cell imaging showed that HRASG12V exacerbates RS in S/G2-phase, which could be rescued by stabilization of P53. Thus, our results demonstrate that transcriptional control of P53 target genes is the prime determinant in the response to ATR/CHK1 inhibitors and show that hyperactivation of the MAPK pathway impedes this response. Our findings suggest that the level of oncogenic MAPK signaling could predict sensitivity to intra-S-phase checkpoint inhibition in cancers with intact P53.
Collapse
|
38
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
39
|
Parkinson EK, Prime SS. Oral Senescence: From Molecular Biology to Clinical Research. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.822397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular senescence is an irreversible cell cycle arrest occurring following multiple rounds of cell division (replicative senescence) or in response to cellular stresses such as ionizing radiation, signaling imbalances and oxidative damage (stress-induced premature senescence). Even very small numbers of senescent cells can be deleterious and there is evidence that senescent cells are instrumental in a number of oral pathologies including cancer, oral sub mucous fibrosis and the side effects of cancer therapy. In addition, senescent cells are present and possibly important in periodontal disease and other chronic inflammatory conditions of the oral cavity. However, senescence is a double-edged sword because although it operates as a suppressor of malignancy in pre-malignant epithelia, senescent cells in the neoplastic environment promote tumor growth and progression. Many of the effects of senescent cells are dependent on the secretion of an array of diverse therapeutically targetable proteins known as the senescence-associated secretory phenotype. However, as senescence may have beneficial roles in wound repair, preventing fibrosis and stem cell activation the clinical exploitation of senescent cells is not straightforward. Here, we discuss biological mechanisms of senescence and we review the current approaches to target senescent cells therapeutically, including senostatics and senolytics which are entering clinical trials.
Collapse
|
40
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
41
|
Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:5969536. [PMID: 35342397 PMCID: PMC8956409 DOI: 10.1155/2022/5969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Damian Ciunowicz
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| |
Collapse
|
42
|
Hong X, Wang L, Zhang K, Liu J, Liu JP. Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells 2022; 11:877. [PMID: 35269498 PMCID: PMC8909789 DOI: 10.3390/cells11050877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary senescence is accelerated by unresolved DNA damage response, underpinning susceptibility to pulmonary fibrosis. Recently it was reported that the SARS-Cov-2 viral infection induces acute pulmonary epithelial senescence followed by fibrosis, although the mechanism remains unclear. Here, we examine roles of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis, exploring the mechanisms mediating and preventing pulmonary fibrogenic crisis. Notably, the TGF-β signalling pathway mediates alveolar epithelial stem cell senescence by mechanisms involving suppression of the telomerase reverse transcriptase gene in pulmonary fibrosis. Alternatively, telomere uncapping caused by stress-induced telomeric shelterin protein TPP1 degradation mediates DNA damage response, pulmonary senescence and fibrosis. However, targeted intervention of cellular senescence disrupts pulmonary remodelling and fibrosis by clearing senescent cells using senolytics or preventing senescence using telomere dysfunction inhibitor (TELODIN). Studies indicate that the development of senescence-associated differentiation disorders is reprogrammable and reversible by inhibiting stem cell replicative senescence in pulmonary fibrosis, providing a framework for targeted intervention of the molecular mechanisms of alveolar stem cell senescence and pulmonary fibrosis. Abbreviations: DPS, developmental programmed senescence; IPF, idiopathic pulmonary fibrosis; OIS, oncogene-induced replicative senescence; SADD, senescence-associated differentiation disorder; SALI, senescence-associated low-grade inflammation; SIPS, stress-induced premature senescence; TERC, telomerase RNA component; TERT, telomerase reverse transcriptase; TIFs, telomere dysfunction-induced foci; TIS, therapy-induced senescence; VIS, virus-induced senescence.
Collapse
Affiliation(s)
- Xiaojing Hong
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Kexiong Zhang
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China; (X.H.); (L.W.); (K.Z.); (J.L.)
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, VIC 3181, Australia
- Hudson Institute of Medical Research, Monash University Department of Molecular and Translational Science, Clayton, VIC 3168, Australia
| |
Collapse
|
43
|
Long W, Zheng BX, Li Y, Huang XH, Lin DM, Chen CC, Hou JQ, Ou TM, Wong WL, Zhang K, Lu YJ. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res 2022; 50:1829-1848. [PMID: 35166828 PMCID: PMC8887543 DOI: 10.1093/nar/gkac090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand–G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan-Min Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cui-Cui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Tian-Miao Ou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P.R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
44
|
Hammer L, Levin‐Salomon V, Yaeli‐Slonim N, Weiss M, Dekel‐Bird NP, Olender T, Porat Z, Winograd‐Katz S, Savidor A, Levin Y, Bialik S, Geiger B, Kimchi A. A new function for the serine protease HtrA2 in controlling radiation‐induced senescence in cancer cells. Mol Oncol 2022; 16:1365-1383. [PMID: 35122388 PMCID: PMC8936513 DOI: 10.1002/1878-0261.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/08/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Liat Hammer
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vered Levin‐Salomon
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Naama Yaeli‐Slonim
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Moria Weiss
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Naama P. Dekel‐Bird
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Tsviya Olender
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ziv Porat
- Dept. Life Sciences Core Facilities Weizmann Institute of Science Rehovot 7610001 Israel
| | | | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G‐INCPM) Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G‐INCPM) Weizmann Institute of Science Rehovot 7610001 Israel
| | - Shani Bialik
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| | - Benjamin Geiger
- Dept. Immunology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Adi Kimchi
- Dept. Molecular Genetics Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
45
|
Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (B Aires) 2021; 58:medicina58010061. [PMID: 35056369 PMCID: PMC8779043 DOI: 10.3390/medicina58010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.
Collapse
|
46
|
Zampetidis CP, Galanos P, Angelopoulou A, Zhu Y, Polyzou A, Karamitros T, Kotsinas A, Lagopati N, Mourkioti I, Mirzazadeh R, Polyzos A, Garnerone S, Mizi A, Gusmao EG, Sofiadis K, Gál Z, Larsen DH, Pefani DE, Demaria M, Tsirigos A, Crosetto N, Maya-Mendoza A, Papaspyropoulos A, Evangelou K, Bartek J, Papantonis A, Gorgoulis VG. A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol Cell 2021; 81:4907-4923.e8. [PMID: 34793711 DOI: 10.1016/j.molcel.2021.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/14/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022]
Abstract
Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.
Collapse
Affiliation(s)
- Christos P Zampetidis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Yajie Zhu
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timokratis Karamitros
- Unit of Bioinformatics and Applied Genomics, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Reza Mirzazadeh
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Alexandros Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvano Garnerone
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Athanasia Mizi
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eduardo G Gusmao
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Konstantinos Sofiadis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | | | - Marco Demaria
- University of Groningen (RUG), European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), 9713 AV Groningen, the Netherlands
| | | | - Nicola Crosetto
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Stockholm, Sweden.
| | - Argyris Papantonis
- Translational Epigenetics Group, Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, M20 4GJ Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK.
| |
Collapse
|
47
|
As Sobeai HM, Alohaydib M, Alhoshani AR, Alhazzani K, Almutairi MM, Saleh T, Gewirtz DA, Alotiabi MR. Sorafenib, rapamycin, and venetoclax attenuate doxorubicin-induced senescence and promote apoptosis in HCT116 cells. Saudi Pharm J 2021; 30:91-101. [PMID: 35145348 PMCID: PMC8802130 DOI: 10.1016/j.jsps.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence has shown that the therapy-induced senescent growth arrest in cancer cells is of durable nature whereby a subset of cells can reinstate proliferative capacity. Promising new drugs named senolytics selectively target senescent cells and commit them into apoptosis. Accordingly, senolytics have been proposed as adjuvant cancer treatment to cull senescent tumor cells, and thus, screening for agents that exhibit senolytic properties is highly warranted. Our study aimed to investigate three agents, sorafenib, rapamycin, and venetoclax for their senolytic potential in doxorubicin-induced senescence in HCT116 cells. HCT116 cells were treated with one of the three agents, sorafenib (5 µM), rapamycin (100 nM), or venetoclax (10 µM), in the absence or presence of doxorubicin (1 µM). Senescence was evaluated using microscopy-based and flow cytometry-based Senescence-associated-β-galactosidase staining (SA-β-gal), while apoptosis was assessed using annexin V-FITC/PI, and Muse caspase-3/-7 activity assays. We screened for potential genes through which the three drugs exerted senolytic-like action using the Human Cancer Pathway Finder PCR array. The three agents reduced doxorubicin-induced senescent cell subpopulations and significantly enhanced the apoptotic effect of doxorubicin compared with those treated only with doxorubicin. The senescence genes IGFBP5 and BMI1 and the apoptosis genes CASP7 and CASP9 emerged as candidate genes through which the three drugs exhibited senolytic-like properties. These results suggest that the attenuation of doxorubicin-induced senescence might have shifted HCT116 cells to apoptosis by exposure to the tested pharmacological agents. Our work argues for the use of senolytics to reduce senescence-mediated resistance in tumor cells and to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Homood M. As Sobeai
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Munirah Alohaydib
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali R. Alhoshani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashal M. Almutairi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Moureq R. Alotiabi
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author.
| |
Collapse
|
48
|
Carpenter V, Saleh T, Min Lee S, Murray G, Reed J, Souers A, Faber AC, Harada H, Gewirtz DA. Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochem Pharmacol 2021; 193:114765. [PMID: 34536356 DOI: 10.1016/j.bcp.2021.114765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 01/26/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths in men. Although androgen deprivation therapies (ADT) and antiandrogens confer increased survival rates, most patients eventually develop castration resistant disease (CRPC). Previous studies have shown that these treatments have limited cytotoxicity, and instead, promote tumor cell growth arrest. We show here that PCa cells grown in either charcoal-stripped serum or exposed to the antiandrogen, bicalutamide, undergo a senescent growth arrest marked by morphological changes, upregulated senescence-associated-β-galactosidase (SA-β-Gal), cathepsin D accumulation, and expression of the senescence-associated secretory phenotype (SASP). The senescent growth arrest is, however, transient, as cells can resume proliferation upon restoration of normo-androgenic conditions. Intriguingly, enrichment for senescent cells confirmed that ADT-induced senescent cells recover their proliferative capacity, even under prolonged androgen deprivation, and form androgen-independent outgrowths. Transplantation of the enriched senescent population into castrated, syngeneic mice confirmed that senescent cells escape the growth arrest and form castration-resistant tumors in vivo. Outgrowth from senescence was associated with increased expression of constitutively active androgen receptor splice variants, a common mechanism of resistance to ADT. Finally, the selective elimination of senescent PCa cells following ADT in vitro by the senolytic navitoclax (ABT-263) interfered with the development of androgen-independent outgrowth. Taken together, these data support the premise that ADT-induced senescence is a transient cell state from which CRPC populations can emerge, identifying senescence as a potential driver of disease progression. Furthermore, it is feasible that senolytic therapy to eliminate senescent PCa cells could delay disease recurrence and/or progression to androgen independence.
Collapse
Affiliation(s)
- Valerie Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - So Min Lee
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Graeme Murray
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Reed
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Souers
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | - Anthony C Faber
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
49
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
50
|
The Power of Stress: The Telo-Hormesis Hypothesis. Cells 2021; 10:cells10051156. [PMID: 34064566 PMCID: PMC8151059 DOI: 10.3390/cells10051156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.
Collapse
|