1
|
Choi N, Mathevon N, Hebets EA, Beauchaud M. Influence of ambient water coloration on habitat and conspecific choice in the female Lake Malawi cichlid, Metriaclima zebra. Curr Zool 2024; 70:214-224. [PMID: 38726246 PMCID: PMC11078059 DOI: 10.1093/cz/zoad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2024] Open
Abstract
Female cichlid fish living in African great lakes are known to have sensory systems that are adapted to ambient light environments. These sensory system adaptations are hypothesized to have influenced the evolution of the diverse male nuptial coloration. In rock-dwelling Lake Malawi mbuna cichlids, however, the extent to which ambient light environments influence female sensory systems and potentially associated male nuptial coloration remains unknown. Yet, the ubiquitous blue flank coloration and UV reflection of male mbuna cichlids suggest the potential impacts of the blue-shifted ambient light environment on these cichlid's visual perception and male nuptial coloration in the shallow water depth in Lake Malawi. In the present study, we explored whether and how the sensory bias of females influences intersexual communication in the mbuna cichlid, Metriaclima zebra. A series of choice experiments in various light environments showed that M. zebra females 1) have a preference for the blue-shifted light environment, 2) prefer to interact with males in blue-shifted light environments, 3) do not show a preference between dominant and subordinate males in full-spectrum, long-wavelength filtered, and short-wavelength filtered light environments, and 4) show a "reversed" preference for subordinate males in the UV-filtered light environment. These results suggest that the visual perception of M. zebra females may be biased to the ambient light spectra in their natural habitat by local adaptation and that this sensory bias may influence the evolution of blue and UV reflective patterns in male nuptial coloration.
Collapse
Affiliation(s)
- Noori Choi
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, Université de Saint-Etienne, Saint-Etienne, France
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Nicolas Mathevon
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, Université de Saint-Etienne, Saint-Etienne, France
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marilyn Beauchaud
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, Université de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
2
|
Kundu S, De Alwis PS, Kim AR, Lee SR, Kang HE, Go Y, Gietbong FZ, Wibowo A, Kim HW. Mitogenomic Characterization of Cameroonian Endemic Coptodon camerunensis (Cichliformes: Cichlidae) and Matrilineal Phylogeny of Old-World Cichlids. Genes (Basel) 2023; 14:1591. [PMID: 37628642 PMCID: PMC10454717 DOI: 10.3390/genes14081591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The mitogenomic evolution of old-world cichlids is still largely incomplete in Western Africa. In this present study, the complete mitogenome of the Cameroon endemic cichlid, Coptodon camerunensis, was determined by next-generation sequencing. The mitogenome was 16,557 bp long and encoded with 37 genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region). The C. camerunensis mitogenome is AT-biased (52.63%), as exhibited in its congener, Coptodon zillii (52.76% and 53.04%). The majority of PCGs start with an ATG initiation codon, except COI, which starts with a GTG codon and five PCGs and ends with the TAA termination codon and except seven PCGs with an incomplete termination codon. In C. camerunensis mitogenome, most tRNAs showed classical cloverleaf secondary structures, except tRNA-serine with a lack of DHU stem. Comparative analyses of the conserved blocks of two Coptodonini species control regions revealed that the CSB-II block was longer than other blocks and contained highly variable sites. Using 13 concatenated PCGs, the mitogenome-based Bayesian phylogeny easily distinguished all the examined old-world cichlids. Except for Oreochromini and Coptodinini tribe members, the majority of the taxa exhibited monophyletic clustering within their respective lineages. C. camerunensis clustered closely with Heterotilapia buttikoferi (tribe Heterotilapiini) and had paraphyletic clustering with its congener, C. zillii. The Oreochromini species also displayed paraphyletic grouping, and the genus Oreochromis showed a close relationship with Coptodinini and Heterotilapiini species. In addition, illustrating the known distribution patterns of old-world cichlids, the present study is congruent with the previous hypothesis and proclaims that prehistoric geological evolution plays a key role in the hydroclimate of the African continent during Mesozoic, which simultaneously disperses and/or colonizes cichlids in different ichthyological provinces and Rift Lake systems in Africa. The present study suggests that further mitogenomes of cichlid species are required, especially from western Africa, to understand their unique evolution and adaptation.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Piyumi S. De Alwis
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | | | - Arif Wibowo
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| |
Collapse
|
3
|
Urban S, Gerwin J, Hulsey CD, Meyer A, Kratochwil CF. The repeated evolution of stripe patterns is correlated with body morphology in the adaptive radiations of East African cichlid fishes. Ecol Evol 2022; 12:e8568. [PMID: 35154652 PMCID: PMC8820146 DOI: 10.1002/ece3.8568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Color patterns are often linked to the behavioral and morphological characteristics of an animal, contributing to the effectiveness of such patterns as antipredatory strategies. Species-rich adaptive radiations, such as the freshwater fish family Cichlidae, provide an exciting opportunity to study trait correlations at a macroevolutionary scale. Cichlids are also well known for their diversity and repeated evolution of color patterns and body morphology. To study the evolutionary dynamics between color patterns and body morphology, we used an extensive dataset of 461 species. A phylogenetic supertree of these species shows that stripe patterns evolved ~70 times independently and were lost again ~30 times. Moreover, stripe patterns show strong signs of correlated evolution with body elongation, suggesting that the stripes' effectiveness as antipredatory strategy might differ depending on the body shape. Using pedigree-based analyses, we show that stripes and body elongation segregate independently, indicating that the two traits are not genetically linked. Their correlation in nature is therefore likely maintained by correlational selection. Lastly, by performing a mate preference assay using a striped CRISPR-Cas9 mutant of a nonstriped species, we show that females do not differentiate between striped CRISPR mutant males and nonstriped wild-type males, suggesting that these patterns might be less important for species recognition and mate choice. In summary, our study suggests that the massive rates of repeated evolution of stripe patterns are shaped by correlational selection with body elongation, but not by sexual selection.
Collapse
Affiliation(s)
- Sabine Urban
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - Jan Gerwin
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - C. Darrin Hulsey
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
- Present address:
School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Axel Meyer
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
| | - Claudius F. Kratochwil
- Chair in Zoology and Evolutionary BiologyDepartment of BiologyUniversity of KonstanzKonstanzGermany
- Present address:
Institute of Biotechnology, HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Estalles C, Turbek SP, José Rodríguez-Cajarville M, Silveira LF, Wakamatsu K, Ito S, Lovette IJ, Tubaro PL, Lijtmaer DA, Campagna L. Concerted variation in melanogenesis genes underlies emergent patterning of plumage in capuchino seedeaters. Proc Biol Sci 2022; 289:20212277. [PMID: 35016545 PMCID: PMC8753160 DOI: 10.1098/rspb.2021.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns-which involve combinations of multiple colour patches across the body-can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype-phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.
Collapse
Affiliation(s)
- Cecilia Estalles
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Sheela P. Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | | | - Luís Fábio Silveira
- Seção de Aves, Museu de Zoologia, Universidade de São Paulo, Caixa Postal 42.494, CEP 04218-970 São Paulo, Brazil
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Irby J. Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Pablo L. Tubaro
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A. Lijtmaer
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Brock KM, McTavish EJ, Edwards DL. Color Polymorphism is a Driver of Diversification in the Lizard Family Lacertidae. Syst Biol 2021; 71:24-39. [PMID: 34146110 PMCID: PMC8677543 DOI: 10.1093/sysbio/syab046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Color polymorphism-two or more heritable color phenotypes maintained within a single breeding population-is an extreme type of intraspecific diversity widespread across the tree of life. Color polymorphism is hypothesized to be an engine for speciation, where morph loss or divergence between distinct color morphs within a species results in the rapid evolution of new lineages, and thus, color polymorphic lineages are expected to display elevated diversification rates. Multiple species in the lizard family Lacertidae are color polymorphic, making them an ideal group to investigate the evolutionary history of this trait and its influence on macroevolution. Here, we produce a comprehensive species-level phylogeny of the lizard family Lacertidae to reconstruct the evolutionary history of color polymorphism and test if color polymorphism has been a driver of diversification. Accounting for phylogenetic uncertainty with multiple phylogenies and simulation studies, we estimate an ancient origin of color polymorphism (111 Ma) within the Lacertini tribe (subfamily Lacertinae). Color polymorphism most likely evolved few times in the Lacertidae and has been lost at a much faster rate than gained. Evolutionary transitions to color polymorphism are associated with shifts in increased net diversification rate in this family of lizards. Taken together, our empirical results support long-standing theoretical expectations that color polymorphism is a driver of diversification.[Color polymorphism; Lacertidae; state-dependent speciation extinction models; trait-dependent diversification.].
Collapse
Affiliation(s)
- Kinsey M Brock
- Department of Life & Environmental Sciences, School of Natural Sciences, University of California, Merced 5400 N. Lake Rd., Merced, CA 95340 USA
- Quantitative & Systems Biology Graduate Group, School of Natural Sciences, University of California, Merced 5400 N. Lake Rd., Merced, CA 95340 USA
| | - Emily Jane McTavish
- Department of Life & Environmental Sciences, School of Natural Sciences, University of California, Merced 5400 N. Lake Rd., Merced, CA 95340 USA
| | - Danielle L Edwards
- Department of Life & Environmental Sciences, School of Natural Sciences, University of California, Merced 5400 N. Lake Rd., Merced, CA 95340 USA
| |
Collapse
|
6
|
James ME, Arenas-Castro H, Groh JS, Allen SL, Engelstädter J, Ortiz-Barrientos D. Highly Replicated Evolution of Parapatric Ecotypes. Mol Biol Evol 2021; 38:4805-4821. [PMID: 34254128 PMCID: PMC8557401 DOI: 10.1093/molbev/msab207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel evolution of ecotypes occurs when selection independently drives the evolution of similar traits across similar environments. The multiple origins of ecotypes are often inferred based on a phylogeny that clusters populations according to geographic location and not by the environment they occupy. However, the use of phylogenies to infer parallel evolution in closely related populations is problematic because gene flow and incomplete lineage sorting can uncouple the genetic structure at neutral markers from the colonization history of populations. Here, we demonstrate multiple origins within ecotypes of an Australian wildflower, Senecio lautus. We observed strong genetic structure as well as phylogenetic clustering by geography and show that this is unlikely due to gene flow between parapatric ecotypes, which was surprisingly low. We further confirm this analytically by demonstrating that phylogenetic distortion due to gene flow often requires higher levels of migration than those observed in S. lautus. Our results imply that selection can repeatedly create similar phenotypes despite the perceived homogenizing effects of gene flow.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Henry Arenas-Castro
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | | |
Collapse
|
7
|
Yong L, Croft DP, Troscianko J, Ramnarine IW, Wilson AJ. Sensory-based quantification of male colour patterns in Trinidadian guppies reveals no support for parallel phenotypic evolution in multivariate trait space. Mol Ecol 2021; 31:1337-1357. [PMID: 34170592 DOI: 10.1111/mec.16039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/29/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Parallel evolution, in which independent populations evolve along similar phenotypic trajectories, offers insights into the repeatability of adaptive evolution. Here, we revisit a classic example of parallelism, that of repeated evolution of brighter males in the Trinidadian guppy (Poecilia reticulata). In guppies, colonisation of low predation habitats is associated with emergence of 'more colourful' phenotypes since predator-induced viability selection for crypsis weakens while sexual selection by female preference for conspicuousness remains strong. Our study differs from previous investigations in three respects. First, we adopted a multivariate phenotyping approach to characterise parallelism in multitrait space. Second, we used ecologically-relevant colour traits defined by the visual systems of the two selective agents (i.e., guppy, predatory cichlid). Third, we estimated population genetic structure to test for adaptive (parallel) evolution against a model of neutral phenotypic divergence. We find strong phenotypic differentiation that is inconsistent with a neutral model but very limited support for the predicted pattern of greater conspicuousness at low predation. Effects of predation regime on each trait were in the expected direction, but weak, largely nonsignificant, and explained little among-population variation. In multitrait space, phenotypic trajectories of lineages colonising low from high predation regimes were not parallel. Our results are consistent with reduced predation risk facilitating adaptive differentiation, potentially by female choice, but suggest that this proceeds in independent directions of multitrait space across lineages. Pool-sequencing data also revealed SNPs showing greater differentiation than expected under neutrality, among which some are found in genes contributing to colour pattern variation, presenting opportunities for future genetic study.
Collapse
Affiliation(s)
- Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Darren P Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Indar W Ramnarine
- Department of Life Sciences, The University of The West Indies, St Augustine, Trinidad and Tobago
| | - Alastair J Wilson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
8
|
Carleton KL, Conte MA, Malinsky M, Nandamuri SP, Sandkam BA, Meier JI, Mwaiko S, Seehausen O, Kocher TD. Movement of transposable elements contributes to cichlid diversity. Mol Ecol 2020; 29:4956-4969. [PMID: 33049090 DOI: 10.1111/mec.15685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
African cichlid fishes are a prime model for studying speciation mechanisms. Despite the development of extensive genomic resources, it has been difficult to determine which sources of genetic variation are responsible for cichlid phenotypic variation. One of their most variable phenotypes is visual sensitivity, with some of the largest spectral shifts among vertebrates. These shifts arise primarily from differential expression of seven cone opsin genes. By mapping expression quantitative trait loci (eQTL) in intergeneric crosses of Lake Malawi cichlids, we previously identified four causative genetic variants that correspond to indels in the promoters of either key transcription factors or an opsin gene. In this comprehensive study, we show that these indels are the result of the movement of transposable elements (TEs) that correlate with opsin expression variation across the Malawi flock. In tracking the evolutionary history of these particular indels, we found they are endemic to Lake Malawi, suggesting that these TEs are recently active and are segregating within the Malawi cichlid lineage. However, an independent indel has arisen at a similar genomic location in one locus outside of the Malawi flock. The convergence in TE movement suggests these loci are primed for TE insertion and subsequent deletions. Increased TE mobility may be associated with interspecific hybridization, which disrupts mechanisms of TE suppression. This might provide a link between cichlid hybridization and accelerated regulatory variation. Overall, our study suggests that TEs may be an important driver of key regulatory changes, facilitating rapid phenotypic change and possibly speciation in African cichlids.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Milan Malinsky
- Wellcome Sanger Institute, Cambridge, UK.,Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | - Joana I Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Salome Mwaiko
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Rometsch SJ, Torres-Dowdall J, Meyer A. Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190535. [PMID: 32654645 DOI: 10.1098/rstb.2019.0535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cichlid fishes are exceptionally species-rich, speciated at explosive rates and, hence, are a model system in speciation research. Yet, their reproductive isolating barriers have, so far, not been comprehensively studied. Here, we review current knowledge on pre- and postzygotic mechanisms in cichlids. While premating isolation is the norm in cichlids, its strength varies across lineages and with the geographical setting. Moreover, manipulations of ambient conditions tended to reduce assortative mating among closely related species, suggesting that premating isolation in cichlids is often fragile and context dependent. The observed lack of complete reproductive isolation is supported by past and present hybridization events that have contributed to diversity by creating novel allelic combinations. On the other hand, our meta-analysis highlights that intrinsic postzygotic isolation might accumulate faster than assumed. Mild forms of genetic incompatibilities, such as sex ratio distortion, can already be observed among closely related species. Therefore, cessation of gene flow by strong reproductive isolation in cichlids requires a combination of premating prezygotic isolation supplemented with intrinsic and extrinsic postzygotic barriers. Further, we suggest crucial next steps to improve our knowledge about reproductive barriers in cichlids to understand the evolutionary dynamics of pre- and postzygotic isolation mechanisms during adaptive radiations. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Sina J Rometsch
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
10
|
Picq S, Sperling J, Cheng CJ, Carlson BA, Gallant JR. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae. Evolution 2020; 74:911-935. [PMID: 32187650 PMCID: PMC7816287 DOI: 10.1111/evo.13953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.
Collapse
Affiliation(s)
- Sophie Picq
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| | - Joshua Sperling
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Catherine J. Cheng
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Bruce A. Carlson
- Washington University in St. Louis Department of Biology, St. Louis, MO 63130 USA
| | - Jason R. Gallant
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| |
Collapse
|
11
|
Schneider RF, Rometsch SJ, Torres-Dowdall J, Meyer A. Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits. Mol Ecol 2020; 29:1476-1493. [PMID: 32215986 DOI: 10.1111/mec.15416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Cichlid fishes' famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated data sets on sex-specific body coloration, species-specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analysed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels-even in sexually dimorphic cichlid species-which argues against coevolution of sexual dichromatism and differences in sex-specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colourful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyperdiverse lineage.
Collapse
Affiliation(s)
- Ralph F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Marine Ecology, GEOMAR, Kiel, Germany
| | - Sina J Rometsch
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julián Torres-Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
13
|
Escobar-Camacho D, Taylor MA, Cheney KL, Green NF, Marshall NJ, Carleton KL. Color discrimination thresholds in a cichlid fish: Metriaclima benetos. J Exp Biol 2019; 222:jeb201160. [PMID: 31399486 PMCID: PMC6765173 DOI: 10.1242/jeb.201160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/05/2019] [Indexed: 01/31/2023]
Abstract
Color vision is essential for animals as it allows them to detect, recognize and discriminate between colored objects. Studies analyzing color vision require an integrative approach, combining behavioral experiments, physiological models and quantitative analyses of photoreceptor stimulation. Here, we demonstrate, for the first time, the limits of chromatic discrimination in Metriaclima benetos, a rock-dwelling cichlid from Lake Malawi, using behavioral experiments and visual modeling. Fish were trained to discriminate between colored stimuli. Color discrimination thresholds were quantified by testing fish chromatic discrimination between the rewarded stimulus and distracter stimuli that varied in chromatic distance (ΔS). This was done under fluorescent lights alone and with additional violet lights. Our results provide two main outcomes. First, cichlid color discrimination thresholds correspond with predictions from the receptor noise limited (RNL) model but only if we assume a Weber fraction higher than the typical value of 5%. Second, cichlids may exhibit limited color constancy under certain lighting conditions as most individuals failed to discriminate colors when violet light was added. We further used the color discrimination thresholds obtained from these experiments to model color discrimination of actual fish colors and backgrounds under natural lighting for Lake Malawi. We found that, for M. benetos, blue is most chromatically contrasting against yellows and space-light, which might be important for discriminating male nuptial colorations and detecting males against the background. This study highlights the importance of lab-based behavioral experiments in understanding color vision and in parameterizing the assumptions of the RNL vision model for different species.
Collapse
Affiliation(s)
| | - Michaela A Taylor
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Rapid divergence, molecular evolution, and morphological diversification of coastal host-parasite systems from southern Brazil. Parasitology 2019; 146:1313-1332. [PMID: 31142390 DOI: 10.1017/s0031182019000556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study assessed the role of historical processes on the geographic isolation, molecular evolution, and morphological diversification of host-parasite populations from the southern Brazilian coast. Adult specimens of Scleromystax barbatus and Scleromystax macropterus were collected from the sub-basin of the Nhundiaquara River and the sub-basin of the Paranaguá Bay, state of Paraná, Brazil. Four species of Gyrodactylus were recovered from the body surface of both host species. Morphometric analysis of Gyrodactylus spp. and Scleromystax spp. indicated that subpopulations of parasites and hosts could be distinguished from different sub-basins and locations, but the degree of morphological differentiation seems to be little related to geographic distance between subpopulations. Phylogenetic relationships based on DNA sequences of Gyrodactylus spp. and Scleromystax spp. allowed distinguishing lineages of parasites and hosts from different sub-basins. However, the level of genetic structuring of parasites was higher in comparison to host species. Evidence of positive selection in mtDNA sequences is likely associated with local adaptation of lineages of parasites and hosts. A historical demographic analysis revealed that populations of Gyrodactylus and Scleromystax have expanded in the last 250 000 years. The genetic variation of parasites and hosts is consistent with population-specific selection, population expansions, and recent evolutionary co-divergence.
Collapse
|
15
|
Pinho C, Cardoso V, Hey J. A population genetic assessment of taxonomic species: The case of Lake Malawi cichlid fishes. Mol Ecol Resour 2019; 19:1164-1180. [PMID: 31012255 PMCID: PMC6764894 DOI: 10.1111/1755-0998.13027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Organisms sampled for population‐level research are typically assigned to species by morphological criteria. However, if those criteria are limited to one sex or life stage, or the organisms come from a complex of closely related forms, the species assignments may misdirect analyses. The impact of such sampling can be assessed from the correspondence of genetic clusters, identified only from patterns of genetic variation, to the species identified using only phenotypic criteria. We undertook this protocol with the rock‐dwelling mbuna cichlids of Lake Malawi, for which species within genera are usually identified using adult male coloration patterns. Given high local endemism of male colour patterns, and considerable allele sharing among species, there persists considerable taxonomic uncertainty in these fishes. Over 700 individuals from a single transect were photographed, genotyped and separately assigned: (a) to morphospecies using photographs; and (b) to genetic clusters using five widely used methods. Overall, the correspondence between clustering methods was strong for larger clusters, but methods varied widely in estimated number of clusters. The correspondence between morphospecies and genetic clusters was also strong for larger clusters, as well as some smaller clusters for some methods. These analyses generally affirm (a) adult male‐limited sampling and (b) the taxonomic status of Lake Malawi mbuna, as the species in our study largely appear to be well‐demarcated genetic entities. More generally, our analyses highlight the challenges for clustering methods when the number of populations is unknown, especially in cases of highly uneven sample sizes.
Collapse
Affiliation(s)
- Catarina Pinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Vera Cardoso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jody Hey
- Rutgers, the State University of New Jersey, Piscataway, New Jersey.,CCGG, Center for Computational Genetics and Genomics, Department of Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Provost KL, Mauck WM, Smith BT. Genomic divergence in allopatric Northern Cardinals of the North American warm deserts is linked to behavioral differentiation. Ecol Evol 2018; 8:12456-12478. [PMID: 30619558 PMCID: PMC6309012 DOI: 10.1002/ece3.4596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/22/2023] Open
Abstract
Biogeographic barriers are considered important in initiating speciation through geographic isolation, but they rarely indiscriminately and completely reduce gene flow across entire communities. Explicitly demonstrating which factors are associated with gene-flow levels across barriers would help elucidate how speciation is initiated and isolation maintained. Here, we investigated the association of behavioral isolation on population differentiation in Northern Cardinals (Cardinalis cardinalis) distributed across the Cochise Filter Barrier, a region of transitional habitat which separates the Sonoran and Chihuahuan deserts of North America. Using genomewide markers, we modeled demographic history by fitting the data to isolation and isolation-with-migration models. The best-fit model indicated that desert populations diverged in the Pleistocene with low, historic, and asymmetric gene flow across the barrier. We then tested behavioral isolation using reciprocal call-broadcast experiments to compare song recognition between deserts, controlling for song dialect changes within deserts. We found that male Northern Cardinals in both deserts were most aggressive to local songs and failed to recognize across-barrier songs. A correlation of genomic differentiation and strong song discrimination is consistent with a model where speciation is initiated across a barrier and maintained by behavioral isolation.
Collapse
Affiliation(s)
- Kaiya L. Provost
- Department of OrnithologyAmerican Museum of Natural HistoryNew YorkNew York
- Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkNew York
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNew York
| | - William M. Mauck
- Department of OrnithologyAmerican Museum of Natural HistoryNew YorkNew York
- Present address:
New York Genome CenterNew YorkNew York
| | | |
Collapse
|
17
|
Zhong H, Zhang H, Tang Z, Guo Z, Yan J, Xiao J, Luo Y, Zhou Y. Evidence for natural selection of immune genes from Parachromis managuensis by transcriptome sequencing. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1519377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Hong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, PR China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Zhongbao Guo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, PR China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| |
Collapse
|
18
|
Gilman RT, Fowler-Finn K, Hebets EA. A Probable Case of Incipient Speciation in Schizocosa Wolf Spiders Driven by Allochrony, Habitat Use, and Female Mate Choice. Am Nat 2018; 192:332-346. [PMID: 30125229 DOI: 10.1086/698302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is growing evidence that speciation can occur between populations that are not geographically isolated. The emergence of assortative mating is believed to be critical to this process, but how assortative mating arises in diverging populations is poorly understood. The wolf spider genus Schizocosa has become a model system for studying mechanisms of assortative mating. We conducted a series of experiments to identify the factors that control mate pair formation in a Schizocosa population that includes both ornamented and nonornamented males. We show that the population also includes two previously unrecognized female phenotypes. One female phenotype mates mostly or exclusively with ornamented males, and the other mates mostly or exclusively with unornamented males. Assortative mating within these groups is maintained by differences in maturation time, microhabitat use, and female mate preference. We conclude that the population is not a single species, as previously believed, but rather an incipient species pair with multiple overlapping mechanisms of reproductive isolation. The identification of a new incipient species pair in the well-studied and rapidly speciating Schizocosa clade presents new opportunities for the study of speciation without geographic isolation.
Collapse
|
19
|
The Colorful Sex Chromosomes of Teleost Fish. Genes (Basel) 2018; 9:genes9050233. [PMID: 29751562 PMCID: PMC5977173 DOI: 10.3390/genes9050233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes.
Collapse
|
20
|
Lipshutz SE. Interspecific competition, hybridization, and reproductive isolation in secondary contact: missing perspectives on males and females. Curr Zool 2018; 64:75-88. [PMID: 29492041 PMCID: PMC5809030 DOI: 10.1093/cz/zox060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/15/2017] [Indexed: 12/26/2022] Open
Abstract
Research on sexual selection and hybridization has focused on female mate choice and male-male competition. While the evolutionary outcomes of interspecific female preference have been well explored, we are now gaining a better understanding of the processes by which male-male competition between species in secondary contact promotes reproductive isolation versus hybridization. What is relatively unexplored is the interaction between female choice and male competition, as they can oppose one another or align with similar outcomes for reproductive isolation. The role of female-female competition in hybridization is also not well understood, but could operate similarly to male-male competition in polyandrous and other systems where costs to heterospecific mating are low for females. Reproductive competition between either sex of sympatric species can cause the divergence and/or convergence of sexual signals and recognition, which in turn influences the likelihood for interspecific mating. Future work on species interactions in secondary contact should test the relative influences of both mate choice and competition for mates on hybridization outcomes, and should not ignore the possibilities that females can compete over mating resources, and males can exercise mate choice.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Ecology and Evolutionary Biology, Division of Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
21
|
Servedio MR, Boughman JW. The Role of Sexual Selection in Local Adaptation and Speciation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022905] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual selection plays several intricate and complex roles in the related processes of local adaptation and speciation. In some cases sexual selection can promote these processes, but in others it can be inhibitory. We present theoretical and empirical evidence supporting these dual effects of sexual selection during local adaptation, allopatric speciation, and speciation with gene flow. Much of the empirical evidence for sexual selection promoting speciation is suggestive rather than conclusive; we present what would constitute strong evidence for sexual selection driving speciation. We conclude that although there is ample evidence that sexual selection contributes to the speciation process, it is very likely to do so only in concert with natural selection.
Collapse
Affiliation(s)
- Maria R. Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Janette W. Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
22
|
Wagner MD, Blanton RE. Do River Drainage Boundaries Coincide with Phylogeographic Breaks in the Redband Darter? COPEIA 2017. [DOI: 10.1643/ci-16-414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Roberts RB, Moore EC, Kocher TD. An allelic series at pax7a is associated with colour polymorphism diversity in Lake Malawi cichlid fish. Mol Ecol 2017; 26:2625-2639. [PMID: 28027432 DOI: 10.1111/mec.13975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023]
Abstract
Despite long-standing interest in the evolution and maintenance of discrete phenotypic polymorphisms, the molecular genetic basis of such polymorphism in the wild is largely unknown. Female sex-associated blotched colour polymorphisms found in cichlids of Lake Malawi, East Africa, represent a highly successful polymorphic phenotype, found and maintained in four genera across the geographic expanse of the lake. Previously, we identified an association with an allelic variant of the paired-box transcription factor gene pax7a and blotched colour morphs in Lake Malawi cichlid fishes. Although a diverse range of blotched phenotypes are present in Lake Malawi cichlid species, they all appeared to result from an allele of pax7a that produces increased levels of transcript. Here, we examine the developmental and genetic basis of variation among blotched morphs. First, we confirm that pax7a-associated blotch morphs result primarily from modulation of melanophore development and survival. From laboratory crosses and natural population studies, we identify at least three alleles of pax7a associated with discrete subtypes of blotched morphs, in addition to the ancestral pax7a allele. Genotypes at pax7a support initial evolution of a novel pax7a allele to produce the blotched class of morphs, followed by subsequent evolution of that pax7a blotched allele to produce additional alleles associated with discrete colour morphs. Variant alleles of pax7a produce different levels of pax7a transcript, correlating with pigmentation phenotype at the cellular level. This naturally selected allelic series should serve as a case study for understanding the molecular genetic control of pax7a expression and the evolution of sex-associated alleles.
Collapse
Affiliation(s)
- Reade B Roberts
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, Raleigh, NC, 27695, USA
| | - Emily C Moore
- Keck Center for Behavioral Biology, North Carolina State University, 3510 Thomas Hall, Raleigh, NC, 27695, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, 1210 Biology-Psychology Building, College Park, MD, 20742, USA
| |
Collapse
|
24
|
Naumenko SA, Logacheva MD, Popova NV, Klepikova AV, Penin AA, Bazykin GA, Etingova AE, Mugue NS, Kondrashov AS, Yampolsky LY. Transcriptome‐based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Mol Ecol 2017; 26:536-553. [DOI: 10.1111/mec.13927] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Sergey A. Naumenko
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
- Genetics and Genome Biology Program The Hospital For Sick Children Toronto ON Canada
| | - Maria D. Logacheva
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
- Pirogov Russian National Research Medical University Moscow Russia
| | - Nina V. Popova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Anna V. Klepikova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
| | - Aleksey A. Penin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
| | - Georgii A. Bazykin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences Moscow Russia
- Pirogov Russian National Research Medical University Moscow Russia
- Skolkovo Institute of Science and Technology Skolkovo Russia
| | - Anna E. Etingova
- Baikal Museum Irkutsk Research Center Russian Academy of Sciences Listvyanka, Irkutsk region Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics Russian Institute for Fisheries and Oceanography (VNIRO) Moscow Russia
- Laboratory of Experimental Embryology Koltsov Institute of Developmental Biology Moscow Russia
| | - Alexey S. Kondrashov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Department of Ecology and Evolution University of Michigan Ann Arbor MI USA
| | - Lev Y. Yampolsky
- Department of Biological Sciences East Tennessee State University Johnson City TN USA
| |
Collapse
|
25
|
Meier JI, Sousa VC, Marques DA, Selz OM, Wagner CE, Excoffier L, Seehausen O. Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Mol Ecol 2016; 26:123-141. [PMID: 27613570 DOI: 10.1111/mec.13838] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 01/15/2023]
Abstract
Modes and mechanisms of speciation are best studied in young species pairs. In older taxa, it is increasingly difficult to distinguish what happened during speciation from what happened after speciation. Lake Victoria cichlids in the genus Pundamilia encompass a complex of young species and polymorphic populations. One Pundamilia species pair, P. pundamilia and P. nyererei, is particularly well suited to study speciation because sympatric population pairs occur with different levels of phenotypic differentiation and reproductive isolation at different rocky islands within the lake. Genetic distances between allopatric island populations of the same nominal species often exceed those between the sympatric species. It thus remained unresolved whether speciation into P. nyererei and P. pundamilia occurred once, followed by geographical range expansion and interspecific gene flow in local sympatry, or if the species pair arose repeatedly by parallel speciation. Here, we use genomic data and demographic modelling to test these alternative evolutionary scenarios. We demonstrate that gene flow plays a strong role in shaping the observed patterns of genetic similarity, including both gene flow between sympatric species and gene flow between allopatric populations, as well as recent and early gene flow. The best supported model for the origin of P. pundamilia and P. nyererei population pairs at two different islands is one where speciation happened twice, whereby the second speciation event follows shortly after introgression from an allopatric P. nyererei population that arose earlier. Our findings support the hypothesis that very similar species may arise repeatedly, potentially facilitated by introgressed genetic variation.
Collapse
Affiliation(s)
- Joana I Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Vitor C Sousa
- CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - David A Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Oliver M Selz
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Catherine E Wagner
- Biodiversity Institute & Department of Botany, University of Wyoming, Berry Center, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| |
Collapse
|
26
|
Bacquet PMB, de Jong MA, Brattström O, Wang H, Molleman F, Heuskin S, Lognay G, Löfstedt C, Brakefield PM, Vanderpoorten A, Nieberding CM. Differentiation in putative male sex pheromone components across and within populations of the African butterfly Bicyclus anynana as a potential driver of reproductive isolation. Ecol Evol 2016; 6:6064-84. [PMID: 27648226 PMCID: PMC5016632 DOI: 10.1002/ece3.2298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/27/2022] Open
Abstract
Sexual traits are often the most divergent characters among closely related species, suggesting an important role of sexual traits in speciation. However, to prove this, we need to show that sexual trait differences accumulate before or during the speciation process, rather than being a consequence of it. Here, we contrast patterns of divergence among putative male sex pheromone (pMSP) composition and the genetic structure inferred from variation in the mitochondrial cytochrome oxidase 1 and nuclear CAD loci in the African butterfly Bicyclus anynana (Butler, 1879) to determine whether the evolution of "pheromonal dialects" occurs before or after the differentiation process. We observed differences in abundance of some shared pMSP components as well as differences in the composition of the pMSP among B. anynana populations. In addition, B. anynana individuals from Kenya displayed differences in the pMSP composition within a single population that appeared not associated with genetic differences. These differences in pMSP composition both between and within B. anynana populations were as large as those found between different Bicyclus species. Our results suggest that "pheromonal dialects" evolved within and among populations of B. anynana and may therefore act as precursors of an ongoing speciation process.
Collapse
Affiliation(s)
- Paul M. B. Bacquet
- Evolutionary Ecology and Genetics GroupBiodiversity Research CentreEarth and Life InstituteUniversité catholique de LouvainCroix du Sud 4‐51348Louvain‐la‐NeuveBelgium
| | - Maaike A. de Jong
- Biological SciencesUniversity of BristolWoodland RoadBristolBS8 1UGUK
| | - Oskar Brattström
- Department of ZoologyUniversity Museum of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Hong‐Lei Wang
- Department of BiologyPheromone GroupLund UniversitySE‐223 62LundSweden
| | - Freerk Molleman
- Indian Institute of Science Education and Research ThiruvananthapuramVanasiri Evolutionary Ecology LabCollege of Engineering Trivandrum CampusTrivandrum695016KeralaIndia
| | - Stéphanie Heuskin
- Laboratory of Analytical ChemistryDepartment of AgroBioChemGembloux Agro‐Bio TechUniversity of LiegePassage des Déportés 2B‐5030GemblouxBelgium
| | - George Lognay
- Laboratory of Analytical ChemistryDepartment of AgroBioChemGembloux Agro‐Bio TechUniversity of LiegePassage des Déportés 2B‐5030GemblouxBelgium
| | - Christer Löfstedt
- Department of BiologyPheromone GroupLund UniversitySE‐223 62LundSweden
| | - Paul M. Brakefield
- Department of ZoologyUniversity Museum of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Alain Vanderpoorten
- Biologie de l’évolution et de la conservationUniversity of LiègeB22 Sart TilmanB‐4000LiègeBelgium
| | - Caroline M. Nieberding
- Evolutionary Ecology and Genetics GroupBiodiversity Research CentreEarth and Life InstituteUniversité catholique de LouvainCroix du Sud 4‐51348Louvain‐la‐NeuveBelgium
| |
Collapse
|
27
|
Marques DA, Lucek K, Haesler MP, Feller AF, Meier JI, Wagner CE, Excoffier L, Seehausen O. Genomic landscape of early ecological speciation initiated by selection on nuptial colour. Mol Ecol 2016; 26:7-24. [DOI: 10.1111/mec.13774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- David Alexander Marques
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Kay Lucek
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- University of Sheffield; Sheffield UK
| | - Marcel Philipp Haesler
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Anna Fiona Feller
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Joana Isabel Meier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Catherine E. Wagner
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- Department of Botany, Biodiversity Institute; University of Wyoming; Laramie WY USA
| | - Laurent Excoffier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Swiss Institute of Bioinformatics; Lausanne Switzerland
| | - Ole Seehausen
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| |
Collapse
|
28
|
Wang L, Wan ZY, Lim HS, Yue GH. Genetic variability, local selection and demographic history: genomic evidence of evolving towards allopatric speciation in Asian seabass. Mol Ecol 2016; 25:3605-21. [PMID: 27262162 DOI: 10.1111/mec.13714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022]
Abstract
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South-East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South-East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South-East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South-East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South-East Asia during mid-Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the 'genomic islands' scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid-Pleistocene.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Huan Sein Lim
- Marine Aquaculture Center, Agri-Food & Veterinary Authority of Singapore, 5 Maxwell Road, Singapore, 069110, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
29
|
Ciccotto PJ, Mendelson TC. The ecological drivers of nuptial color evolution in darters (Percidae: Etheostomatinae). Evolution 2016; 70:745-56. [PMID: 27003224 DOI: 10.1111/evo.12901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/29/2022]
Abstract
Closely related animal lineages often vary in male coloration, and ecological selection is hypothesized to shape this variation. The role of ecological selection in inhibiting male color has been documented extensively at the population level, but relatively few studies have investigated the evolution of male coloration across a clade of closely related species. Darters are a diverse group of fishes that vary in the presence of elaborate male nuptial coloration, with some species exhibiting vivid color patterns and others mostly or entirely achromatic. We used phylogenetic logistic regression to test for correlations between the presence/absence of color traits across darter species and the ecological conditions in which these species occur. Environmental variables were correlated with the presence of nuptial color in darters with colorful species tending to inhabit environments that would support fewer predators and potentially transmit a broader spectrum of natural light compared to species lacking male coloration. We also tested the color preferences of a common darter predator, largemouth bass, and found that it exhibits a strong preference for red, providing further evidence of predation as a source of selection on color evolution in darters. Ecological selection therefore appears to be an important factor in dictating the presence or absence of male coloration in this group of fishes.
Collapse
Affiliation(s)
- Patrick J Ciccotto
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.
| | - Tamra C Mendelson
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, 21250
| |
Collapse
|
30
|
Greenberg J, Jordan RC, Sorensen AE. The effect of territory quality on female preference in Metriaclima zebra. Afr J Ecol 2016. [DOI: 10.1111/aje.12278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua Greenberg
- Department of Ecology and Evolution; Rutgers University; 14 College Farm Road New Brunswick NJ 08901 U.S.A
| | - Rebecca C. Jordan
- Department of Ecology and Evolution; Rutgers University; 59 Lipman Drive Room 104 New Brunswick NJ 08901 U.S.A
| | - Amanda E. Sorensen
- Department of Ecology and Evolution; Rutgers University; 59 Lipman Drive Room 108 New Brunswick NJ 08901 U.S.A
| |
Collapse
|
31
|
Sorensen A, Mellor D, Jordan R. Effect of carotenoids on cichlid phenotype and mating behavior. ETHOL ECOL EVOL 2016. [DOI: 10.1080/03949370.2015.1018953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proc Natl Acad Sci U S A 2015; 112:15568-73. [PMID: 26644580 DOI: 10.1073/pnas.1512864112] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9-15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world's largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.
Collapse
|
33
|
Gilman RT, Kozak GM. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation. Evolution 2015; 69:3004-12. [PMID: 26459795 PMCID: PMC5057300 DOI: 10.1111/evo.12797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 11/29/2022]
Abstract
Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual-based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation.
Collapse
|
34
|
Seehausen O. Process and pattern in cichlid radiations - inferences for understanding unusually high rates of evolutionary diversification. THE NEW PHYTOLOGIST 2015; 207:304-312. [PMID: 25983053 DOI: 10.1111/nph.13450] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/26/2015] [Indexed: 05/15/2023]
Abstract
The cichlid fish radiations in the African Great Lakes differ from all other known cases of rapid speciation in vertebrates by their spectacular trophic diversity and richness of sympatric species, comparable to the most rapid angiosperm radiations. I review factors that may have facilitated these radiations and compare these with insights from recent work on plant radiations. Work to date suggests that it was a coincidence of ecological opportunity, intrinsic ecological versatility and genomic flexibility, rapidly evolving behavioral mate choice and large amounts of standing genetic variation that permitted these spectacular fish radiations. I propose that spatially orthogonal gradients in the fit of phenotypes to the environment facilitate speciation because they allow colonization of alternative fitness peaks during clinal speciation despite local disruptive selection. Such gradients are manifold in lakes because of the interaction of water depth as an omnipresent third spatial dimension with other fitness-relevant variables. I introduce a conceptual model of adaptive radiation that integrates these elements and discuss its applicability to, and predictions for, plant radiations.
Collapse
Affiliation(s)
- Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- EAWAG Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| |
Collapse
|
35
|
Tsubaki Y, Okuyama H. Adaptive loss of color polymorphism and character displacements in sympatric Mnais damselflies. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9778-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Shum P, Pampoulie C, Kristinsson K, Mariani S. Three-dimensional post-glacial expansion and diversification of an exploited oceanic fish. Mol Ecol 2015; 24:3652-67. [PMID: 26073046 PMCID: PMC4744735 DOI: 10.1111/mec.13262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/27/2023]
Abstract
Vertical divergence in marine organisms is being increasingly documented, yet much remains to be carried out to understand the role of depth in the context of phylogeographic reconstruction and the identification of management units. An ideal study system to address this issue is the beaked redfish, Sebastes mentella – one of four species of ‘redfish’ occurring in the North Atlantic – which is known for a widely distributed ‘shallow‐pelagic’ oceanic type inhabiting waters between 250 and 550 m, and a more localized ‘deep‐pelagic’ population dwelling between 550 and 800 m, in the oceanic habitat of the Irminger Sea. Here, we investigate the extent of population structure in relation to both depth and geographic spread of oceanic beaked redfish throughout most of its distribution range. By sequencing the mitochondrial control region of 261 redfish collected over a decadal interval, and combining 160 rhodopsin coding nuclear sequences and previously genotyped microsatellite data, we map the existence of two strongly divergent evolutionary lineages with significantly different distribution patterns and historical demography, and whose genetic variance is mostly explained by depth. Combined genetic data, analysed via independent approaches, are consistent with a Late Pleistocene lineage split, where segregation by depth probably resulted from the interplay of climatic and oceanographic processes with life history and behavioural traits. The ongoing process of diversification in North Atlantic S. mentella may serve as an ‘hourglass’ to understand speciation and adaptive radiation in Sebastes and in other marine taxa distributed across a depth gradient.
Collapse
Affiliation(s)
- Peter Shum
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | | | | | - Stefano Mariani
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| |
Collapse
|
37
|
Husemann M, Nguyen R, Ding B, Danley PD. A genetic demographic analysis of Lake Malawi rock-dwelling cichlids using spatio-temporal sampling. Mol Ecol 2015; 24:2686-701. [DOI: 10.1111/mec.13205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Martin Husemann
- Biology Department; Baylor University; One Bear Place #97388 Waco TX 76798 USA
- Department of General Zoology; Institute of Biology; Martin-Luther University Halle-Wittenberg; Hoher Weg 8 Halle (Saale) D-06120 Germany
| | - Rachel Nguyen
- Biology Department; Baylor University; One Bear Place #97388 Waco TX 76798 USA
| | - Baoqing Ding
- Biology Department; Baylor University; One Bear Place #97388 Waco TX 76798 USA
| | - Patrick D. Danley
- Biology Department; Baylor University; One Bear Place #97388 Waco TX 76798 USA
| |
Collapse
|
38
|
Martin MD, Mendelson TC. Changes in sexual signals are greater than changes in ecological traits in a dichromatic group of fishes. Evolution 2014; 68:3618-28. [PMID: 25138537 DOI: 10.1111/evo.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/18/2014] [Indexed: 12/25/2022]
Abstract
Understanding the mechanisms by which phenotypic divergence occurs is central to speciation research. These mechanisms can be revealed by measuring differences in traits that are subject to different selection pressures; greater influence of different types of selection can be inferred from greater divergence in associated traits. Here, we address the potential roles of natural and sexual selection in promoting phenotypic divergence between species of snubnose darters by comparing differences in body shape, an ecologically relevant trait, and male color, a sexual signal. Body shape was measured using geometric morphometrics, and male color was measured using digital photography and visual system-dependent color values. Differences in male color are larger than differences in body shape across eight allopatric, phylogenetically independent species pairs. While this does not exclude the action of divergent natural selection, our results suggest a relatively more important role for sexual selection in promoting recent divergence in darters. Variation in the relative differences between male color and body shape across species pairs reflects the continuous nature of speciation mechanisms, ranging from ecological speciation to speciation by sexual selection alone.
Collapse
Affiliation(s)
- Michael D Martin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, 21250.
| | | |
Collapse
|
39
|
Schulte JE, O'Brien CS, Conte MA, O'Quin KE, Carleton KL. Interspecific variation in Rx1 expression controls opsin expression and causes visual system diversity in African cichlid fishes. Mol Biol Evol 2014; 31:2297-308. [PMID: 24859246 DOI: 10.1093/molbev/msu172] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying natural phenotypic diversity are key to understanding evolution and speciation. Cichlid fishes are among the most speciose vertebrates and an ideal model for identifying genes controlling species differences. Cichlids have diverse visual sensitivities that result from species expressing subsets of seven cichlid cone opsin genes. We previously identified a quantitative trait locus (QTL) that tunes visual sensitivity by varying SWS2A (short wavelength sensitive 2A) opsin expression in a genetic cross between two Lake Malawi cichlid species. Here, we identify Rx1 (retinal and anterior neural fold homeobox) as the causative gene for the QTL using fine mapping and RNAseq in retinal transcriptomes. Rx1 is differentially expressed between the parental species and correlated with SWS2A expression in the F2 progeny. Expression of Rx1 and SWS2A is also correlated in a panel of 16 Lake Malawi cichlid species. Association mapping in this panel identified a 413-bp deletion located 2.5-kb upstream of the Rx1 translation start site that is correlated with decreased Rx1 expression. This deletion explains 62% of the variance in SWS2A expression across 53 cichlid species in 29 genera. The deletion occurs in both the sand and rock-dwelling cichlid clades, suggesting that it is an ancestral polymorphism. Our finding supports the hypothesis that mixing and matching of ancestral polymorphisms can explain the diversity of present day cichlid phenotypes.
Collapse
Affiliation(s)
- Jane E Schulte
- Department of Biology, University of Maryland, College Park
| | | | | | - Kelly E O'Quin
- Department of Biology, University of Maryland, College Park
| | | |
Collapse
|
40
|
Husemann M, Tobler M, McCauley C, Ding B, Danley PD. Evolution of body shape in differently coloured sympatric congeners and allopatric populations of Lake Malawi's rock-dwelling cichlids. J Evol Biol 2014; 27:826-39. [PMID: 24617299 DOI: 10.1111/jeb.12353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/30/2022]
Abstract
The cichlid fishes of Lake Malawi represent one of the most diverse adaptive radiations of vertebrates known. Among the rock-dwelling cichlids (mbuna), closely related sympatric congeners possess similar trophic morphologies (i.e. cranial and jaw structures), defend overlapping or adjacent territories, but can be easily distinguished based on male nuptial coloration. The apparent morphological similarity of congeners, however, leads to an ecological conundrum: theory predicts that ecological competition should lead to competitive exclusion. Hence, we hypothesized that slight, yet significant, ecological differences accompanied the divergence in sexual signals and that the divergence of ecological and sexual traits is correlated. To evaluate this hypothesis, we quantified body shape, a trait of known ecological importance, in populations of Maylandia zebra, a barred, widespread mbuna, and several sympatric nonbarred congeners. We found that the barred populations differ in body shape from their nonbarred sympatric congeners and that the direction of shape differences was consistent across all barred vs. nonbarred comparisons. Barred populations are generally deeper bodied which may be an adaptation to the structurally complex habitat they prefer, whereas the nonbarred species have a more fusiform body shape, which may be adaptive in their more open microhabitat. Furthermore, M. zebra populations sympatric with nonbarred congeners differ from populations where the nonbarred phenotype is absent and occupy less morphospace, indicating potential ecological character displacement. Mitochondrial DNA as well as published AFLP data indicated that the nonbarred populations are not monophyletic and therefore may have evolved multiple times independently. Overall our data suggest that the evolution of coloration and body shape may be coupled as a result of correlational selection. We hypothesize that correlated evolution of sexually selected and ecological traits may have contributed to rapid speciation as well as the maintenance of diversity in one of the most diverse adaptive radiations known.
Collapse
Affiliation(s)
- M Husemann
- Biology Department, Baylor University, Waco, TX, USA
| | | | | | | | | |
Collapse
|
41
|
Wagner CE, Harmon LJ, Seehausen O. Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol Lett 2014; 17:583-92. [DOI: 10.1111/ele.12260] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/18/2013] [Accepted: 01/24/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Catherine E. Wagner
- Department of Fish Ecology & Evolution; EAWAG, Centre for Ecology; Evolution and Biogeochemistry; 6047 Kastanienbaum Switzerland
- Department of Aquatic Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 3012 Bern Switzerland
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| | - Luke J. Harmon
- Department of Biological Sciences; University of Idaho; Moscow ID 83844 USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST); University of Idaho; Moscow ID 83844 USA
| | - Ole Seehausen
- Department of Fish Ecology & Evolution; EAWAG, Centre for Ecology; Evolution and Biogeochemistry; 6047 Kastanienbaum Switzerland
- Department of Aquatic Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 3012 Bern Switzerland
| |
Collapse
|
42
|
Magalhaes IS, Croft GE, Joyce DA. Altering an extended phenotype reduces intraspecific male aggression and can maintain diversity in cichlid fish. PeerJ 2013; 1:e209. [PMID: 24349896 PMCID: PMC3845871 DOI: 10.7717/peerj.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/23/2013] [Indexed: 12/05/2022] Open
Abstract
Reduced male aggression towards different phenotypes generating negative frequency-dependent intrasexual selection has been suggested as a mechanism to facilitate the invasion and maintenance of novel phenotypes in a population. To date, the best empirical evidence for the phenomenon has been provided by laboratory studies on cichlid fish with different colour polymorphisms. Here we experimentally tested the hypothesis in a natural population of Lake Malawi cichlid fish, in which males build sand-castles (bowers) to attract females during seasonal leks. We predicted that if bower shape plays an important role in male aggressive interactions, aggression among conspecific males should decrease when their bower shape is altered. Accordingly, we allocated randomly chosen bowers in a Nyassachromis cf. microcephalus lek into three treatments: control, manipulated to a different shape, and simulated manipulation. We then measured male behaviours and bower shape before and after these treatments. We found that once bower shape was altered, males were involved in significantly fewer aggressive interactions with conspecific males than before manipulation. Mating success was not affected. Our results support the idea that an extended phenotype, such as bower shape, can be important in maintaining polymorphic populations. Specifically, reduced male conspecific aggression towards males with different extended phenotypes (here, bower shapes) may cause negative frequency-dependent selection, allowing the invasion and establishment of a new phenotype (bower builder). This could help our understanding of mechanisms of diversification within populations, and in particular, the overall diversification of bower shapes within Lake Malawi cichlids.
Collapse
Affiliation(s)
- Isabel Santos Magalhaes
- School of Biological, Biomedical and Environmental Sciences, University of Hull , Hull , UK ; School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Guy E Croft
- Petersfield House, Dog Kennel Lane, Hadlow Down , East Sussex , UK
| | - Domino A Joyce
- School of Biological, Biomedical and Environmental Sciences, University of Hull , Hull , UK
| |
Collapse
|
43
|
Joo D, Kwan YS, Song J, Pinho C, Hey J, Won YJ. Identification of cichlid fishes from Lake Malawi using computer vision. PLoS One 2013; 8:e77686. [PMID: 24204918 PMCID: PMC3808401 DOI: 10.1371/journal.pone.0077686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The explosively radiating evolution of cichlid fishes of Lake Malawi has yielded an amazing number of haplochromine species estimated as many as 500 to 800 with a surprising degree of diversity not only in color and stripe pattern but also in the shape of jaw and body among them. As these morphological diversities have been a central subject of adaptive speciation and taxonomic classification, such high diversity could serve as a foundation for automation of species identification of cichlids. METHODOLOGY/PRINCIPAL FINDING Here we demonstrate a method for automatic classification of the Lake Malawi cichlids based on computer vision and geometric morphometrics. For this end we developed a pipeline that integrates multiple image processing tools to automatically extract informative features of color and stripe patterns from a large set of photographic images of wild cichlids. The extracted information was evaluated by statistical classifiers Support Vector Machine and Random Forests. Both classifiers performed better when body shape information was added to the feature of color and stripe. Besides the coloration and stripe pattern, body shape variables boosted the accuracy of classification by about 10%. The programs were able to classify 594 live cichlid individuals belonging to 12 different classes (species and sexes) with an average accuracy of 78%, contrasting to a mere 42% success rate by human eyes. The variables that contributed most to the accuracy were body height and the hue of the most frequent color. CONCLUSIONS Computer vision showed a notable performance in extracting information from the color and stripe patterns of Lake Malawi cichlids although the information was not enough for errorless species identification. Our results indicate that there appears an unavoidable difficulty in automatic species identification of cichlid fishes, which may arise from short divergence times and gene flow between closely related species.
Collapse
Affiliation(s)
- Deokjin Joo
- Department of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea
| | - Ye-seul Kwan
- Division of EcoScience, Ewha Womans University, Seoul, Korea
| | - Jongwoo Song
- Department of Statistics, Ewha Womans University, Seoul, Korea
| | - Catarina Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jody Hey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, Korea
| |
Collapse
|
44
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
45
|
Maan ME, Sefc KM. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences. Semin Cell Dev Biol 2013; 24:516-28. [PMID: 23665150 PMCID: PMC3778878 DOI: 10.1016/j.semcdb.2013.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022]
Abstract
Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity.
Collapse
Affiliation(s)
- Martine E. Maan
- University of Groningen, Behavioural Biology, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Kristina M. Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
46
|
Hudson AG, Vonlanthen P, Bezault E, Seehausen O. Genomic signatures of relaxed disruptive selection associated with speciation reversal in whitefish. BMC Evol Biol 2013; 13:108. [PMID: 23721457 PMCID: PMC3685556 DOI: 10.1186/1471-2148-13-108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background Speciation reversal: the erosion of species differentiation via an increase in introgressive hybridization due to the weakening of previously divergent selection regimes, is thought to be an important, yet poorly understood, driver of biodiversity loss. Our study system, the Alpine whitefish (Coregonus spp.) species complex is a classic example of a recent postglacial adaptive radiation: forming an array of endemic lake flocks, with the independent origination of similar ecotypes among flocks. However, many of the lakes of the Alpine radiation have been seriously impacted by anthropogenic nutrient enrichment, resulting in a collapse in neutral genetic and phenotypic differentiation within the most polluted lakes. Here we investigate the effects of eutrophication on the selective forces that have shaped this radiation, using population genomics. We studied eight sympatric species assemblages belonging to five independent parallel adaptive radiations, and one species pair in secondary contact. We used AFLP markers, and applied FST outlier (BayeScan, Dfdist) and logistic regression analyses (MatSAM), to identify candidate regions for disruptive selection in the genome and their associations with adaptive traits within each lake flock. The number of outlier and adaptive trait associated loci identified per lake were then regressed against two variables (historical phosphorus concentration and contemporary oxygen concentration) representing the strength of eutrophication. Results Whilst we identify disruptive selection candidate regions in all lake flocks, we find similar trends, across analysis methods, towards fewer disruptive selection candidate regions and fewer adaptive trait/candidate loci associations in the more polluted lakes. Conclusions Weakened disruptive selection and a concomitant breakdown in reproductive isolating mechanisms in more polluted lakes has lead to increased gene flow between coexisting Alpine whitefish species. We hypothesize that the resulting higher rates of interspecific recombination reduce either the number or extent of genomic islands of divergence surrounding loci evolving under disruptive natural selection. This produces the negative trend seen in the number of selection candidate loci recovered during genome scans of whitefish species flocks, with increasing levels of anthropogenic eutrophication: as the likelihood decreases that AFLP restriction sites will fall within regions of heightened genomic divergence and therefore be classified as FST outlier loci. This study explores for the first time the potential effects of human-mediated relaxation of disruptive selection on heterogeneous genomic divergence between coexisting species.
Collapse
Affiliation(s)
- Alan G Hudson
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
47
|
Roda F, Ambrose L, Walter GM, Liu HL, Schaul A, Lowe A, Pelser PB, Prentis P, Rieseberg LH, Ortiz-Barrientos D. Genomic evidence for the parallel evolution of coastal forms in theSenecio lautuscomplex. Mol Ecol 2013; 22:2941-52. [DOI: 10.1111/mec.12311] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Federico Roda
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Luke Ambrose
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Gregory M. Walter
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Huanle L. Liu
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Andrea Schaul
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Andrew Lowe
- Australian Centre for Evolutionary Biology and Biodiversity; School of Earth and Environmental Science; University of Adelaide; Adelaide SA Australia
- Science Resource Centre; Department for Environment and Natural Resources; North Terrace Adelaide South Australia Australia
| | - Pieter B. Pelser
- School of Biological Sciences; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4001 Australia
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- Biology Department; Indiana University; 1001 E Third Street Bloomington IN 47405 USA
| | | |
Collapse
|
48
|
Henning F, Jones JC, Franchini P, Meyer A. Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genomics 2013; 14:171. [PMID: 23497064 PMCID: PMC3623868 DOI: 10.1186/1471-2164-14-171] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/06/2013] [Indexed: 12/30/2022] Open
Abstract
Background Animal pigmentation has received much attention in evolutionary biology research due to its strong implications for adaptation and speciation. However, apart from a few cases the genetic changes associated with these evolutionary processes remain largely unknown. The Midas cichlid fish from Central America are an ideal model system for investigating pigmentation traits that may also play a role in speciation. Most Midas cichlids maintain their melanophores and exhibit a grayish (normal) color pattern throughout their lives. A minority of individuals, however, undergo color change and exhibit a distinctive gold or even white coloration in adulthood. The ontogenetic color change in the Midas cichlids may also shed light on the molecular mechanisms underlying pigmentation disorders in humans. Results Here we use next-generation sequencing (Illumina) RNAseq analyses to compare skin transcriptome-wide expression levels in three distinct stages of color transformation in Midas cichlids. cDNA libraries of scale tissue, for six biological replicates of each group, were generated and sequenced using Illumina technology. Using a combination of three differential expression (DE) analyses we identified 46 candidate genes that showed DE between the color morphs. We find evidence for two key DE patterns: a) genes involved in melanosomal pathways are up-regulated in normally pigmented fish; and b) immediate early and inflammatory response genes were up-regulated in transitional fish, a response that parallels some human skin disorders such as melanoma formation and psoriasis. One of the DE genes segregates with the gold phenotype in a genetic cross and might be associated with incipient speciation in this highly “species-rich” lineage of cichlids. Conclusions Using transcriptomic analyses we successfully identified key expression differences between different color morphs of Midas cichlid fish. These differentially expressed genes have important implications for our understanding of the molecular mechanisms underlying speciation in this lineage of extremely young species since they mate strongly assortatively, and new species may arise by sexual selection due to this color polymorphism. Some of the human orthologues of the genes identified here may also be involved in pigmentation differences and diseases and therefore provide genetic markers for the detection of human pigmentation disorders.
Collapse
Affiliation(s)
- Frederico Henning
- Laboratory of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz 78457, Germany
| | | | | | | |
Collapse
|
49
|
Deagle BE, Jones FC, Absher DM, Kingsley DM, Reimchen TE. Phylogeography and adaptation genetics of stickleback from the Haida Gwaii archipelago revealed using genome-wide single nucleotide polymorphism genotyping. Mol Ecol 2013; 22:1917-32. [PMID: 23452150 PMCID: PMC3604130 DOI: 10.1111/mec.12215] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/26/2023]
Abstract
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine-freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome-wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.
Collapse
Affiliation(s)
- Bruce E Deagle
- Department of Biology, University of Victoria, Victoria, British Colombia, Canada.
| | | | | | | | | |
Collapse
|
50
|
Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A, Wittwer S, Seehausen O. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol 2012; 22:2848-63. [DOI: 10.1111/mec.12083] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
|