1
|
Lennikov A, ElZaridi F, Yang M. Modified streptozotocin-induced diabetic model in rodents. Animal Model Exp Med 2024; 7:777-780. [PMID: 39350510 PMCID: PMC11528383 DOI: 10.1002/ame2.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
Streptozotocin (STZ)-induced type I diabetes mellitus (DM) models have been pivotal in diabetes research due to their ability to mimic the insulin-dependent hyperglycemia akin to human type I diabetes. However, these models often suffer from poor induction rates and low survival post-STZ induction, especially in long-term experiments, necessitating insulin supplementation, which introduces additional variables to experiments. To address this, we present a novel modification to the STZ-induced DM model in C57BL/6J mice to improve survival rates without insulin supplementation. Our method involves non-fasting, low-dose STZ injections dissolved in pH-neutral phosphate buffer saline instead of acidic sodium citrate buffer, administered over 5 days. We observed hyperglycemia induction in 94.28% of mice within a week post-injection, with stable high blood glucose levels, stable body weight, and minimal mortality up to 21 weeks. Notably, omitting 10% sucrose in water and fasting did not affect hyperglycemia induction. Our findings suggest that the modified protocol not only decreases the experimental effort of the researchers, but reduces animal stress and mortality, thus enhancing experimental outcomes and animal welfare. By optimizing the STZ-induced DM model in C57BL/6J mice, our study provides a valuable resource for researchers aiming to study diabetes and its complications while minimizing experimental variability and animal usage.
Collapse
Affiliation(s)
- Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| | - Farris ElZaridi
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Mass Eye and EarHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Saini T, Mazumder PM. Current advancement in the preclinical models used for the assessment of diabetic neuropathy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2727-2745. [PMID: 37987794 DOI: 10.1007/s00210-023-02802-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Diabetic neuropathy is one of the prevalent and debilitating microvascular complications of diabetes mellitus, affecting a significant portion of the global population. Relational preclinical animal models are essential to understand its pathophysiology and develop effective treatments. This abstract provides an overview of current knowledge and advancements in such models. Various animal models have been developed to mimic the multifaceted aspects of human diabetic neuropathy, including both type 1 and type 2 diabetes. These models involve rodents (rats and mice) and larger animals like rabbits and dogs. Induction of diabetic neuropathy in these models is achieved through chemical, genetic, or dietary interventions, such as diabetogenic agents, genetic modifications, or high-fat diets. Preclinical animal models have greatly contributed to studying the intricate molecular and cellular mechanisms underlying diabetic neuropathy. They have shed light on hyperglycemia-induced oxidative stress, neuroinflammation, mitochondrial dysfunction, and altered neurotrophic factor signaling. Additionally, these models have allowed for the investigation of morphological changes, functional alterations, and behavioral manifestations associated with diabetic neuropathy. These models have also been crucial for evaluating the efficacy and safety of potential therapeutic interventions. Novel pharmacological agents, gene therapies, stem cell-based approaches, exercise, dietary modifications, and neurostimulation techniques have been tested using these models. However, limitations and challenges remain, including physiological differences between humans and animals, complex neuropathy phenotypes, and the need for translational validation. In conclusion, preclinical animal models have played a vital role in advancing our understanding and management of diabetic neuropathy. They have enhanced our knowledge of disease mechanisms, facilitated the development of novel treatments, and provided a platform for translational research. Ongoing efforts to refine and validate these models are crucial for future treatment developments for this debilitating condition.
Collapse
Affiliation(s)
- Tanishk Saini
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, India.
| |
Collapse
|
3
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Abdo Yahya M. Protective effect of eriodictyol against hyperglycemia-induced diabetic nephropathy in rats entails antioxidant and anti-inflammatory effects mediated by activating Nrf2. Saudi Pharm J 2023; 31:101817. [PMID: 37915829 PMCID: PMC10616554 DOI: 10.1016/j.jsps.2023.101817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The pathogenesis of diabetic nephropathy (DN) involves cellular activation of oxidative stress and inflammation. Eriodictyol is a citrus-derived flavonoid with multiple pharmacological and protective effects in various conditions. The protective role of Eriodictyol against diabetes and diabetic nephropathy is less investigated. The current research aimed to explore the role of eriodictyol in protecting against DN prompted by streptozotocin in male rats and investigate some possible mechanisms of action. Diabetes was brought about in rats by an i.p injection of a lone dose (65 mg/kg). Five groups of rats were included (n = 8 each) as control (non-diabetic), eriodictyol (20 mg/kg, orally), STZ-diabetic, STZ + eriodictyol (20 mg/kg, orally), and STZ + eriodictyol (20 mg/kg, orally) + ML385 (30 µg/kg, i.p.). Kidney histology and the levels of some markers of kidney function, renal oxidative stress, and renal inflammation were analyzed in all groups of rats. Treatment with eriodictyol prevented the damage in the renal glomeruli and tubules and reduced renal immune cell infiltration in STZ-treated animals. It also spiked urinary creatinine excretion and reduced urine volume and urinary levels of albumin, monocyte chemoattractant protein 1 (MCP-1), urinary kidney injury molecule-1 (KIM-1), and nephrin in these diabetic rats. In addition, eriodictyol stimulated the nuclear protein accumulation of Nrf2 and boosted the expression of superoxide dismutase (SOD), glutathione (GSH), heme oxygenase-1 (HO-1), and catalase (CAT) in the diabetic rat kidneys. In concomitance, it reduced the nuclear levels of NF-κB and levels of interleukine-6 (IL-6), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) and attenuated the reduction in renal ATP levels and the increase in the mitochondria transition pore opening (mtTPT). However, the administration of eriodictyol did not affect rats' body weights and fasting glucose and insulin levels but significantly reduced serum levels of cholesterol, triglycerides, LDL-c, and oxidized LDL-c (ox-LDL-c). In conclusion, eriodictyol prevents STZ-induced nephropathy by a hypolipidemic effect and concomitant antioxidant and anti-inflammatory effects mediated by activating Nrf2/NF-κB/antioxidant axis.
Collapse
Affiliation(s)
- Jozaa Z. AlTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 84428, Riyadh 11451, Saudi Arabia
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 84428, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Koprivica I, Jonić N, Diamantis D, Gajić D, Saksida T, Pejnović N, Tzakos AG, Stojanović I. Phenethyl ester of rosmarinic acid attenuates autoimmune responses during type 1 diabetes development in mice. Life Sci 2022; 288:120184. [PMID: 34838848 DOI: 10.1016/j.lfs.2021.120184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
AIMS Rosmarinic acid (RA) is a polyphenol that occurs in plants of the Lamiaceae family. Phenethyl ester of RA (PERA), a novel RA derivative, has been developed and evaluated in vivo in an animal model of type 1 diabetes (T1D). METHODS T1D was induced in male C57BL/6 mice using multiple low doses of streptozotocin (STZ) administered intraperitoneally for 5 consecutive days. Intraperitoneal administration of PERA (2.5 mg/kg bw) began from the first STZ injection and continued for 20 days. KEY FINDINGS PERA-treated mice exhibited lower incidence of T1D (monitored up to 38 days from the disease induction), and fluorescent histochemical analysis showed that their pancreatic islets expressed more insulin. PERA treatment significantly down-regulated the proportions of CD11b+ and CD11c+ myeloid cells in the immune cell infiltrates in the pancreatic islets early during T1D pathogenesis (on day 9 after T1D induction), while on day 15, PERA significantly reduced the proportions of CD11c+, CD8+, Th1 and Th17 cells. Simultaneously, it was found that the cells from the pancreatic infiltrates of PERA-treated mice produced significantly less reactive oxygen species than cells from the control group. SIGNIFICANCE These findings suggest that PERA efficiently prevented T1D development in mice. Interestingly, PERA attenuated the inflammatory process in the islets through temporally specific interference with the innate and adaptive immune response and therefore shows great promise for further clinical evaluation as a novel T1D therapeutic.
Collapse
Affiliation(s)
- Ivan Koprivica
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natalija Jonić
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dimitris Diamantis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Dragica Gajić
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnović
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andreas G Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Ivana Stojanović
- Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Kaku T, Suzuki M, Tominaga T, Ogawa A, Shimizu A, Watanabe K, Watanabe K, Maeda T, Matsuda Y. [Efficacy of the Extract from Fermentation of Soybean and Rice Bran on Hyperglycemia]. YAKUGAKU ZASSHI 2022; 142:289-293. [PMID: 35228381 DOI: 10.1248/yakushi.21-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, lifestyle-related diseases such as hypertension and diabetes have been on the rise. These conditions can cause serious conditions such as myocardial and cerebral infarctions. Therefore, proper control of blood pressure and blood glucose levels is important issues in preventive medicine. Traditional fermented foods have been shown to have various functions, and their effects on lifestyle-related diseases have attracted particular attention. In this study, we investigated the effects of fermented soybeans and rice bran (OE-1) and supplements containing OE-1 on blood glucose levels and weight changes. We identified an inhibitory effect on elevated blood glucose levels upon administration of OE-1, and this effect was thought to be due to digestive enzyme inhibition. These effects of foods containing OE-1 are expected to have a positive effect on the prevention and improvement of lifestyle-related diseases as health foods.
Collapse
Affiliation(s)
- Teppei Kaku
- Department of Clinical Pharmacy, Nihon Pharmaceutical University
| | - Miiru Suzuki
- Department of Clinical Pharmacy, Nihon Pharmaceutical University
| | | | | | | | | | | | - Tomoji Maeda
- Department of Clinical Pharmacy, Nihon Pharmaceutical University
| | | |
Collapse
|
7
|
Experimental animal models for diabetes and its related complications-a review. Lab Anim Res 2021; 37:23. [PMID: 34429169 PMCID: PMC8385906 DOI: 10.1186/s42826-021-00101-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus, a very common and multifaceted metabolic disorder is considered as one of the fastest growing public health problems in the world. It is characterized by hyperglycemia, a condition with high glucose level in the blood plasma resulting from defects in insulin secretion or its action and in some cases both the impairment in secretion and also action of insulin coexist. Historically, animal models have played a critical role in exploring and describing malady pathophysiology and recognizable proof of targets and surveying new remedial specialists and in vivo medicines. In the present study, we reviewed the experimental models employed for diabetes and for its related complications. This paper reviews briefly the broad chemical induction of alloxan and streptozotocin and its mechanisms associated with type 1 and type 2 diabetes. Also we highlighted the different models in other species and other animals.
Collapse
|
8
|
Navabi R, Negahdari B, Hajizadeh-Saffar E, Hajinasrollah M, Jenab Y, Rabbani S, Pakzad M, Hassani SN, Hezavehei M, Jafari-Atrabi M, Tahamtani Y, Baharvand H. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model. Life Sci 2021; 276:119374. [PMID: 33745896 DOI: 10.1016/j.lfs.2021.119374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
AIMS Immunomodulation concurrent with the promotion of β-cell function is a strategy used to develop innovative therapies for type 1 diabetes (T1D). Here, we assessed the therapeutic potential of co-administration of human clonal mesenchymal stem (stromal) cells (hBM-cMSCs) and liraglutide as a glucagon-like peptide-1 agonist in a non-human primate model with streptozotocin (STZ)-induced diabetes. MAIN METHODS Diabetes was induced through intravenous (i.v.) multiple low-dose (MLD) infusions of STZ at a dose of 30 mg/kg body weight (b.w.) for five consecutive days, followed by two booster injections of 35 mg/kg on days 12 and 19. After 90 days, the diabetic animals were randomly allocated to two groups: The combination therapy group (n = 4) received injections of 1.5 × 106 hBM-cMSCs/kg b.w. through celiac artery by angiography on days 91 and 105 and daily subcutaneous injections of liraglutide (up to 1.8 mg/day) until day 160 while vehicle group received phosphate-buffered saline. The monkeys were assessed for functional, immunological, and histological analysis. KEY FINDINGS The combined treatment group had continued reduction in FBG levels up to day 160, which was accompanied by increased b.w., C-peptide, and β-cell function, and decreased HbA1c and fructosamine levels compared to vehicle group. The combined treatment increased Tregs, IL-4, IL-10, and TGF-β1 and decreased IL-6 and IL-1β. Stereological analysis of the pancreatic tissue exhibited more total volume of insulin-secreting islets in the combined treatment group compared to vehicle group. SIGNIFICANCE Our findings demonstrated this combined treatment impaired the clinical symptoms of diabetes in this animal model through immunomodulation and β-cell preservation.
Collapse
Affiliation(s)
- Roghayeh Navabi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mostafa Hajinasrollah
- Animal Core Facility, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Science, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohamad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Jafari-Atrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
9
|
The DNA Sensor AIM2 Protects against Streptozotocin-Induced Type 1 Diabetes by Regulating Intestinal Homeostasis via the IL-18 Pathway. Cells 2020; 9:cells9040959. [PMID: 32295112 PMCID: PMC7227011 DOI: 10.3390/cells9040959] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.
Collapse
|
10
|
Weng Q, Zhao M, Zheng J, Yang L, Xu Z, Zhang Z, Wang J, Wang J, Yang B, Richard Lu Q, Ying M, He Q. STAT3 dictates β-cell apoptosis by modulating PTEN in streptozocin-induced hyperglycemia. Cell Death Differ 2020; 27:130-145. [PMID: 31097787 PMCID: PMC7205876 DOI: 10.1038/s41418-019-0344-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/31/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Insufficient pancreatic β-cell mass or insulin-producing β-cells are implicated in all forms of diabetes mellitus. However, the molecular mechanisms underlying β-cell destruction are complex and not fully defined. Here we observed that activation of STAT3 is intensely and specifically inhibited in β-cells under hyperglycemic conditions. By knocking out STAT3 specifically in mouse β-cells, we found that the loss of STAT3 sensitized mice to three low doses of STZ stimulation resulting in hyperglycemia. Mechanistically, accumulating PTEN, induced by STAT3 deficiency, directly represses phosphorylation of AKT, which negatively modulates transcription factor activation, dysregulates β-cell function, positively promotes apoptotic signaling, and finally induces β-cell apoptosis. Notably, the defective secretion of insulin and β-cells apoptosis was completely rescued by PTEN ablation in STAT3-null islets or PTEN inhibitor bpv(phen) treatment. Thus our data suggest that STAT3 is a vital modulator of β-cell survival and function, highlighting a critical role for STAT3 in the negative regulation of PTEN-AKT signaling pathway associated with β-cell dysfunction and apoptosis.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, 310058, Hangzhou, China
| | - Mengting Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zijie Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhikang Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Center for Drug Safety Evaluation and Research of Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
11
|
Low-Energy Extracorporeal Shock Wave Ameliorates Streptozotocin Induced Diabetes and Promotes Pancreatic Beta Cells Regeneration in a Rat Model. Int J Mol Sci 2019; 20:ijms20194934. [PMID: 31590394 PMCID: PMC6801760 DOI: 10.3390/ijms20194934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Traditional therapy for diabetes mellitus has focused on supportive treatment, and is not significant in the promotion of pancreatic beta cells regeneration. We investigated the effect of low- energy extracorporeal shock wave (SW) on a streptozotocin induced diabetes (DM) rat model. Methods: The DM rats were treated with ten sessions of low-energy SW therapy (weekly for ten consecutive weeks) or left untreated. We assessed blood glucose, hemoglobin A1c (HbA1c), urine volume, pancreatic islets area, c-peptide, glucagon-like peptide 1 (GLP-1) and insulin production, beta cells number, pancreatic tissue inflammation, oxidative stress, apoptosis, angiogenesis, and stromal cell derived factor 1 (SDF-1) ten weeks after the completion of treatment. Results: The ten- week low-energy SW therapy regimen significantly reduced blood glucose, HbA1c, and urine volume as well as significantly enhancing pancreatic islets area, c-peptide, GLP-1, and insulin production in the rat model of DM. Moreover, low-energy SW therapy increased the beta cells number in DM rats. This was likely primarily attributed to the fact that low-energy SW therapy reduced pancreatic tissue inflammation, apoptosis, and oxidative stress as well as increasing angiogenesis, cell proliferation, and tissue repair potency. Conclusions: Low-energy SW therapy preserved pancreatic islets function in streptozotocin-induced DM. Low-energy SW therapy may serve as a novel noninvasive and effective treatment of DM.
Collapse
|
12
|
Yu L, Li X, Zhang Z, Du P, Liu JL, Li Y, Yin T, Yu W, Sun H, Wang M, Luo C. Dimorphic autoantigenic and protective effects of Reg2 peptide in the treatment of diabetic β-cell loss. Diabetes Obes Metab 2019; 21:1209-1222. [PMID: 30690849 DOI: 10.1111/dom.13644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Abstract
AIMS The potential effect of regenerating (Reg) proteins in the treatment of diabetes has been indicated in the past decade, but the clinical use of Reg proteins requires more advances in translational medicine. In the present study, we produced recombinant regenerating protein 2 (rReg2), to prove its protective effect against streptozocin (STZ)-induced diabetes in BALB/c mice. MATERIALS AND METHODS rReg2 was administrated in STZ-induced diabetic mice. Blood glucose, body weight, serum insulin and islet β-cell loss were determined. However, Reg2 has also been reported to serve as an autoantigen that induces autoimmune attacks on islets and aggravates diabetic development in non-obese diabetic mice. To address this contradiction, complete Freund's adjuvant was injected to generate a model that was hypersensitive to Reg2. In this model, islet CD8 T-cell infiltration, serum Reg2 antibody and interleukin (IL)-4 and IL-10, and splenic CD4+/interferon (IFN)-γ+ T cells were determined. RESULTS Direct rReg2 pretreatment preserved islet β-cell mass against STZ and improved glycaemia, body weight and serum insulin content. The protection against cell death was further confirmed in cultured mouse islets and MIN6 cells. On the other hand, significant elevations of serum Reg2 antibody and splenic CD4+/IFN-γ+ T cells, and decreases in serum IL-4 and IL-10 were detected in rReg2-vaccinated mice, which may contribute to the accelerated diabetes. Interestingly, these mice, upon further rReg2 treatment, exhibited alleviated diabetic conditions with less islet CD8+ T-cell infiltration. CONCLUSION rReg2 treatment ameliorated STZ-induced diabetes in normal BALB/c mice. By contrast, rReg2 vaccination exacerbated, but further rReg2 treatment alleviated, the severity of STZ-induced diabetes. Thus, the protective effect of rReg2 is predominant over the autoantigenic β-cell destruction, supporting the potential of rReg2 in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Luting Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Xiang Li
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhiyuan Zhang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pei Du
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Youjie Li
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tianqi Yin
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Weihong Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Sun
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Luo
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production. Molecules 2018; 23:molecules23092338. [PMID: 30216981 PMCID: PMC6192519 DOI: 10.3390/molecules23092338] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022] Open
Abstract
In diabetes mellitus, the excessive rate of glucose production from the liver is considered a primary contributor for the development of hyperglycemia, in particular, fasting hyperglycemia. In this study, we investigated whether kaempferol, a flavonol present in several medicinal herbs and foods, can be used to ameliorate diabetes in an animal model of insulin deficiency and further explored the mechanism underlying the anti-diabetic effect of this flavonol. We demonstrate that oral administration of kaempferol (50 mg/kg/day) to streptozotocin-induced diabetic mice significantly improved hyperglycemia and reduced the incidence of overt diabetes from 100% to 77.8%. This outcome was accompanied by a reduction in hepatic glucose production and an increase in glucose oxidation in the muscle of the diabetic mice, whereas body weight, calorie intake, body composition, and plasma insulin and glucagon levels were not altered. Consistently, treatment with kaempferol restored hexokinase activity in the liver and skeletal muscle of diabetic mice while suppressed hepatic pyruvate carboxylase activity and gluconeogenesis. These results suggest that kaempferol may exert antidiabetic action via promoting glucose metabolism in skeletal muscle and inhibiting gluconeogenesis in the liver.
Collapse
|
14
|
Ferrero ME, Marni A, Parise M, Salari PC, Corsi M, Gaja G. Cyclosporine-induced insulin release in rats is related to an increase in plasma lipid levels. Transpl Int 2018. [DOI: 10.1111/tri.1992.5.s1.494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Wang X, Xi W, Qin J, Lv J, Wang Y, Zhang T, Li SJ. Deficiency of voltage-gated proton channel Hv1 attenuates streptozotocin-induced β-cell damage. Biochem Biophys Res Commun 2018; 498:975-980. [DOI: 10.1016/j.bbrc.2018.03.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
16
|
Androulidaki A, Wachsmuth L, Polykratis A, Pasparakis M. Differential role of MyD88 and TRIF signaling in myeloid cells in the pathogenesis of autoimmune diabetes. PLoS One 2018. [PMID: 29522531 PMCID: PMC5844544 DOI: 10.1371/journal.pone.0194048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by the autoimmune destruction of the insulin-producing pancreatic beta cells. While the role of adaptive immunity has been extensively studied, the role of innate immune responses and particularly of Toll- like Receptor (TLR) signaling in T1D remains poorly understood. Here we show that myeloid cell-specific MyD88 deficiency considerably protected mice from the development of streptozotocin (STZ)-induced diabetes. The protective effect of MyD88 deficiency correlated with increased expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in pancreatic lymph nodes from STZ-treated mice and in bone marrow-derived dendritic cells (BMDC) stimulated with apoptotic cells. Mice with myeloid cell specific TIR-domain-containing adapter-inducing interferon-β (TRIF) knockout showed a trend towards accelerated onset of STZ-induced diabetes, while TRIF deficiency resulted in reduced IDO expression in vivo and in vitro. Moreover, myeloid cell specific MyD88 deficiency delayed the onset of diabetes in Non-Obese Diabetic (NOD) mice, whereas TRIF deficiency had no effect. Taken together, these results identify MyD88 signaling in myeloid cells as a critical pathogenic factor in autoimmune diabetes, which is antagonized by TRIF-dependent responses. This differential function of MyD88 and TRIF depends at least in part on their opposite effects in regulating IDO expression in phagocytes exposed to apoptotic cells.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Apoptosis
- Dendritic Cells/physiology
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Enzyme Induction
- Female
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Macrophages, Peritoneal/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Myeloid Cells/immunology
- Myeloid Differentiation Factor 88/deficiency
- Myeloid Differentiation Factor 88/genetics
- Myeloid Differentiation Factor 88/physiology
- Phagocytosis
- Specific Pathogen-Free Organisms
- Streptozocin
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Ariadne Androulidaki
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Apostolos Polykratis
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
17
|
Qin N, Hu X, Li S, Wang J, Li Z, Li D, Xu F, Gao M, Hua H. Hypoglycemic effect of silychristin A from Silybum marianum fruit via protecting pancreatic islet β cells from oxidative damage and inhibiting α -glucosidase activity in vitro and in rats with type 1 diabetes. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
18
|
Meyerovich K, Violato NM, Fukaya M, Dirix V, Pachera N, Marselli L, Marchetti P, Strasser A, Eizirik DL, Cardozo AK. MCL-1 Is a Key Antiapoptotic Protein in Human and Rodent Pancreatic β-Cells. Diabetes 2017; 66:2446-2458. [PMID: 28667119 DOI: 10.2337/db16-1252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/20/2017] [Indexed: 11/13/2022]
Abstract
Induction of endoplasmic reticulum stress and activation of the intrinsic apoptotic pathway is widely believed to contribute to β-cell death in type 1 diabetes (T1D). MCL-1 is an antiapoptotic member of the BCL-2 protein family, whose depletion causes apoptosis in rodent β-cells in vitro. Importantly, decreased MCL-1 expression was observed in islets from patients with T1D. We report here that MCL-1 downregulation is associated with cytokine-mediated killing of human β-cells, a process partially prevented by MCL-1 overexpression. By generating a β-cell-specific Mcl-1 knockout mouse strain (βMcl-1KO), we observed that, surprisingly, MCL-1 ablation does not affect islet development and function. β-Cells from βMcl-1KO mice were, however, more susceptible to cytokine-induced apoptosis. Moreover, βMcl-1KO mice displayed higher hyperglycemia and lower pancreatic insulin content after multiple low-dose streptozotocin treatment. We found that the kinase GSK3β, the E3 ligases MULE and βTrCP, and the deubiquitinase USP9x regulate cytokine-mediated MCL-1 protein turnover in rodent β-cells. Our results identify MCL-1 as a critical prosurvival protein for preventing β-cell death and clarify the mechanisms behind its downregulation by proinflammatory cytokines. Development of strategies to prevent MCL-1 loss in the early stages of T1D may enhance β-cell survival and thereby delay or prevent disease progression.
Collapse
Affiliation(s)
- Kira Meyerovich
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Natalia M Violato
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Makiko Fukaya
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pachera
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Decio L Eizirik
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K Cardozo
- Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
19
|
Osada Y, Fujiyama T, Kamimura N, Kaji T, Nakae S, Sudo K, Ishiwata K, Kanazawa T. Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Exp Parasitol 2017; 177:1-12. [PMID: 28363777 DOI: 10.1016/j.exppara.2017.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 02/05/2023]
Abstract
Schistosoma mansoni (Sm) is known to exert protective effects against various allergic and autoimmune disorders. It has been reported that this parasite protects NOD mice from spontaneous type 1 diabetes (T1D) and ameliorates streptozotocin (STZ)-induced T1D in wild-type mice. Here, we tried to clarify the anti-diabetic mechanisms of Sm in the latter model. Sm infection partially prevented the degradation of pancreatic islets and hyperglycemia in multiple low-dose (MLD) STZ-treated mice. Neither Treg cell depletion nor genetic absences of IL-10 and/or STAT6 abrogated the anti-hyperglycemic effects of Sm. Among M2 macrophage markers, Arg-1 and Ym1, but not Retnla, remained up-regulated in the pancreatic lymph nodes and in the spleens of STAT6/IL-10 double deficient (DKO) mice. Collectively, it is suggested that Sm exerts anti-diabetic effects on this experimental T1D model via Treg/IL-4/IL-13/IL-10-independent mechanisms. Augmented expressions of Arg-1 and Ym1 in the lymphoid organs adjacent to pancreas may be relevant to the anti-diabetic effects of Sm.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Tomohiro Fujiyama
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Naoto Kamimura
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Tsukushi Kaji
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
20
|
Chu EP, Elso CM, Pollock AH, Alsayb MA, Mackin L, Thomas HE, Kay TW, Silveira PA, Mansell AS, Gaus K, Brodnicki TC. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol Immunol 2017; 82:19-33. [DOI: 10.1016/j.molimm.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
|
21
|
Bouafir Y, Ait-Lounis A, Laraba-Djebari F. Improvement of function and survival of pancreatic beta-cells in streptozotocin-induced diabetic model by the scorpion venom fraction F1. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1260591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yesmine Bouafir
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, Algiers, Algeria
| | - Aouatef Ait-Lounis
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, Algiers, Algeria
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, Algiers, Algeria
| |
Collapse
|
22
|
Costa FRC, Françozo MCS, de Oliveira GG, Ignacio A, Castoldi A, Zamboni DS, Ramos SG, Câmara NO, de Zoete MR, Palm NW, Flavell RA, Silva JS, Carlos D. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset. J Exp Med 2016; 213:1223-39. [PMID: 27325889 PMCID: PMC4925011 DOI: 10.1084/jem.20150744] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
Streptozotocin causes T1D by inducing the translocation of intestinal bacteria into pancreatic lymph nodes and driving the development of pathogenic Th1 and Th17 cells through NOD2 receptor. Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic β cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease.
Collapse
Affiliation(s)
- Frederico R C Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Marcela C S Françozo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Gabriela G de Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Aline Ignacio
- Department of Immunology, Institute of Biomedical Science (ICB), University of São Paulo, 05508-000 São Paulo, Brazil
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Science (ICB), University of São Paulo, 05508-000 São Paulo, Brazil
| | - Dario S Zamboni
- Department of Molecular and Cell Biology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Simone G Ramos
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Niels O Câmara
- Department of Immunology, Institute of Biomedical Science (ICB), University of São Paulo, 05508-000 São Paulo, Brazil
| | - Marcel R de Zoete
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06519 Howard Hughes Medical Institute, Yale University, New Haven, CT 06510 Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06519
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, The Anlyan Center, New Haven, CT 06519 Howard Hughes Medical Institute, Yale University, New Haven, CT 06510
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
Vieira FS, Nanini HF, Takiya CM, Coutinho-Silva R. P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice. Mol Cell Endocrinol 2016; 419:148-57. [PMID: 26483196 DOI: 10.1016/j.mce.2015.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/15/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of islet of Langerhans β-cells. P2X7 receptors (P2X7R) modulate proinflammatory immune responses by binding extracellular ATP, a classic 'danger signal'. Here, we evaluated whether the P2X7R has a role in T1D development. P2X7(-/-) mice are resistant to TD1 induction by streptozotocin (STZ) treatment, with no increase in blood glucose, decrease in insulin-positive cells, and pancreatic islet reduction, compared to WT (C57BL/6) mice. Also, the levels of proinflammatory mediators (IL-1β, IFN-γ and NO) did not increase after STZ treatment in P2X7(-/-) animals, with reduced infiltration of CD4(+), CD8(+), B220(+), CD11b(+) and CD11c(+) cells in the pancreatic lymph nodes. Treatment with a P2X7 antagonist mimicked the effect of P2X7 knockout, preventing STZ-induced diabetes. Our results show that the absence of the P2X7R provides resistance in the induction of diabetes in this model, and suggest that therapy targeting the P2X7R may be useful against clinical T1D.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hayandra Ferreira Nanini
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Laboratório de Patologia Clínica do Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Wang K, Tang Z, Zheng Z, Cao P, Shui W, Li Q, Zhang Y. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic BALB/c mice. Food Funct 2016; 7:4889-4897. [DOI: 10.1039/c6fo01196a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Angelica sinensis polysaccharide (ASP), one of the major active ingredients isolated from the roots of Angelica sinensis (Oliv.) Diels, possesses antidiabetic bioactivity.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhuohong Tang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Ziming Zheng
- Union Hospital of Huazhong University of Science and Technology
- Department of Pharmacy
- Wuhan
- China
| | - Peng Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Weizhi Shui
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qiang Li
- Union Hospital of Huazhong University of Science and Technology
- Department of Pharmacy
- Wuhan
- China
| | - Yu Zhang
- Union Hospital of Huazhong University of Science and Technology
- Department of Pharmacy
- Wuhan
- China
| |
Collapse
|
25
|
Tong J, Ma B, Ge L, Mo Q, Zhou G, He J, Wang Y. Dicaffeoylquinic Acid-Enriched Fraction of Cichorium glandulosum Seeds Attenuates Experimental Type 1 Diabetes via Multipathway Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10791-802. [PMID: 26586022 DOI: 10.1021/acs.jafc.5b04552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chicory has a major geographical presence in Europe and Asia. Cichorium glandulosum Boiss. et Huet, a genus Cichorium, is used for medicinal and food purposes in Asia. In this study, a dicaffeoylquinic acid-enriched fraction of C. glandulosum seeds n-BuOH fraction (CGSB) could ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin (STZ)-induced diabetic mice with continuous administration for 2 weeks. CGSB treatment showed significantly higher plasma insulin levels but lower free fatty acids in adipose tissue and liver. Moreover, CGSB improved pancreatic islet mass. In vitro, different fractions of C. glandulosum seed (CGS) induced the differentiation of 3T3-L1 preadipocytes. The mRNA level for peroxisome proliferator-activated receptor alpha increased in high glucose treatment group in HepG2 cells, while CGSB significantly down-regulated the mRNA expression. The main compound of CGSB, 3,5-dicaffeoylquinic acid, was isolated and identified, which exhibited α-glucosidase inhibitory activity. These findings demonstrated that CGSB attenuated experimental T1DM via multipathway protection.
Collapse
Affiliation(s)
- Jing Tong
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Bingxin Ma
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Lanlan Ge
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Qigui Mo
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Gao Zhou
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Jingsheng He
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
| | - Youwei Wang
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
26
|
Zhou Y, Hu Q, Chen F, Zhang J, Guo J, Wang H, Gu J, Ma L, Ho G. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets. Dis Model Mech 2015; 8:1625-33. [PMID: 26398949 PMCID: PMC4728317 DOI: 10.1242/dmm.021857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human umbilical cord matrix-derived stem cells (uMSCs), owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D) and type 2 diabetes (T2D). However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1) was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Qi Hu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Fuyi Chen
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Juan Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jincheng Guo
- Department of Molecular Pathology, Shantou University Medical College, Shantou 515041, China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiang Gu
- Department of Molecular Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lian Ma
- Department of Pediatrics, The Women and Children's Hospital of Shenzhen University, Shenzhen 518122, China
| | - Guyu Ho
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
27
|
Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med 2015; 6:1423-35. [PMID: 25339185 PMCID: PMC4237469 DOI: 10.15252/emmm.201303376] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The recent precipitous rise in autoimmune diseases is placing an increasing clinical and economic burden on health systems worldwide. Current therapies are only moderately efficacious, often coupled with adverse side effects. Here, we show that recombinant human insulin-like growth factor-1 (rhIGF-1) stimulates proliferation of both human and mouse regulatory T (Treg) cells in vitro and when delivered systemically via continuous minipump, it halts autoimmune disease progression in mouse models of type 1 diabetes (STZ and NOD) and multiple sclerosis (EAE) in vivo. rhIGF-1 administration increased Treg cells in affected tissues, maintaining their suppressive properties. Genetically, ablation of the IGF-1 receptor specifically on Treg cell populations abrogated the beneficial effects of rhIGF-1 administration on the progression of multiple sclerotic symptoms in the EAE model, establishing a direct effect of IGF-1 on Treg cell proliferation. These results establish systemically delivered rhIGF-1 as a specific, effective stimulator of Treg cell action, underscoring the clinical feasibility of manipulating natural tolerance mechanisms to suppress autoimmune disease.
Collapse
Affiliation(s)
- Daniel Bilbao
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Luisa Luciani
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Bjarki Johannesson
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Agnieszka Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Nadia Rosenthal
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy National Heart and Lung Institute, Imperial College, London, UK Australian Regenerative Medicine Institute/EMBL Australia, Monash University, Clayton, Vic., Australia
| |
Collapse
|
28
|
Yossef R, Gur C, Shemesh A, Guttman O, Hadad U, Nedvetzki S, Miletić A, Nalbandyan K, Cerwenka A, Jonjic S, Mandelboim O, Porgador A. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes. PLoS One 2015; 10:e0118936. [PMID: 25719382 PMCID: PMC4342013 DOI: 10.1371/journal.pone.0118936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.
Collapse
Affiliation(s)
- Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Nedvetzki
- BioLineRx Ltd., 19 Hartum Street, P.O. Box 45158. Jerusalem 91450, Israel
| | - Antonija Miletić
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg 69120, Germany
| | - Stipan Jonjic
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
29
|
Gnotobiology and the Study of Complex Interactions between the Intestinal Microbiota, Probiotics, and the Host. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Leptin recruits Creb-regulated transcriptional coactivator 1 to improve hyperglycemia in insulin-deficient diabetes. Mol Metab 2014; 4:227-36. [PMID: 25737949 PMCID: PMC4338314 DOI: 10.1016/j.molmet.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 12/31/2022] Open
Abstract
Objective Leptin alleviates hyperglycemia in rodent models of Type 1 diabetes by activating leptin receptors within the central nervous system. Here we delineate whether non-canonical leptin signaling through the Creb-regulated transcriptional coactivator 1 (Crtc1) contributes to leptin-dependent improvements in diabetic glucose metabolism. Methods We employed mice with a targeted genetic disruption of Crtc1, tracer dilution techniques and neuroanatomical studies to interrogate whether Crtc1 enables leptin to improve glucose metabolism in streptozotocin-induced (STZ) diabetes. Results Here we show that leptin improves diabetic glucose metabolism through Crtc1-dependent and independent mechanisms. We find that leptin reduces diabetic hyperglycemia, hepatic gluconeogenic gene expression and selectively increases glucose disposal to brown adipose tissue and heart, in STZ-diabetic Crtc1WT mice but not Crtc1+/− mice. By contrast, leptin decreases circulating glucagon levels in both STZ-diabetic Crtc1WT and Crtc1+/− mice. We also demonstrate that leptin promotes Crtc1 nuclear translocation in pro-opiomelanocortin (Pomc) and non-Pomc neurons within the hypothalamic arcuate nucleus (ARC). Accordingly, leptin's ability to induce Pomc gene expression in the ARC is blunted in STZ-diabetic Crtc1+/− mice. Conclusions Our study reveals that Crtc1 functions as a conduit for leptin's glucoregulatory actions in insulin-dependent diabetes. This study also highlights a new role for Crtc1 in modulating peripheral glucose metabolism.
Collapse
|
31
|
Guttman O, Yossef R, Freixo-Lima G, Rider P, Porgador A, Lewis EC. α1-Antitrypsin modifies general NK cell interactions with dendritic cells and specific interactions with islet β-cells in favor of protection from autoimmune diabetes. Immunology 2014; 144:530-539. [PMID: 25308894 PMCID: PMC4557689 DOI: 10.1111/imm.12403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
The autoimmune destruction of pancreatic β-cells is the hallmark of type 1 diabetes (T1D). Failure of anti-CD3 antibodies to provide long-lasting reversal of T1D and the expression of an NK cell ligand on β-cells suggest that NK cells play a role in disease pathogenesis. Indeed, killing of β-cells by NK cells has been shown to occur, mediated by activation of the NK cell activating receptor, NKp46. α1-antitrypsin (AAT), an anti-inflammatory and immunomodulatory glycoprotein, protects β-cells from injurious immune responses and is currently evaluated as a therapeutic for recent onset T1D. While isolated T lymphocytes are not inhibited by AAT, dendritic cells (DCs) become tolerogenic in its presence and other innate immune cells become less inflammatory. Yet a comprehensive profile of NK cell responses in the presence of AAT has yet to be described. In the present study, we demonstrate that AAT significantly reduces NK cell degranulation against β-cells, albeit in the whole animal and not in isolated NK cell cultures. AAT-treated mice, and not isolated cultured β-cells, exhibited a marked reduction in NKp46 ligand levels on β-cells. In related experiments, AAT-treated DCs exhibited reduced inducible DC-expressed IL-15 levels and evoked a weaker NK cell response. NK cell depletion in a T1D mouse model resulted in improved β-cell function and survival, similar to the effects observed by AAT treatment alone; nonetheless, the two approaches were non-synergistic. Our data suggest that AAT is a selective immunomodulator that retains pivotal NK cell responses, while diverting their activities away from islet β-cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Rami Yossef
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Gabriella Freixo-Lima
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Peleg Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department for Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| |
Collapse
|
32
|
Hughey CC, Wasserman DH, Lee-Young RS, Lantier L. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mamm Genome 2014; 25:522-38. [PMID: 25074441 DOI: 10.1007/s00335-014-9533-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
Obesity and type 2 diabetes lessen the quality of life of those afflicted and place considerable burden on the healthcare system. Furthermore, the detrimental impact of these pathologies is expected to persist or even worsen. Diabetes is characterized by impaired insulin action and glucose homeostasis. This has led to a rapid increase in the number of mouse models of metabolic disease being used in the basic sciences to assist in facilitating a greater understanding of the metabolic dysregulation associated with obesity and diabetes, the identification of therapeutic targets, and the discovery of effective treatments. This review briefly describes the most frequently utilized models of metabolic disease. A presentation of standard methods and technologies on the horizon for assessing metabolic phenotypes in mice, with particular emphasis on glucose handling and energy balance, is provided. The article also addresses issues related to study design, selection and execution of metabolic tests of glucose metabolism, the presentation of data, and interpretation of results.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, 823 Light Hall, 2215 Garland Ave, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
33
|
Lv CL, Wang J, Xie T, Ouyang J. Bone marrow transplantation reverses new-onset immunoinflammatory diabetes in a mouse model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5327-36. [PMID: 25197419 PMCID: PMC4152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Bone marrow transplantation might be an effective method to cure type 1 diabetes mellitus. This study aimed to investigate whether bone marrow transplantation could reverse hyperglycemia in diabetic mice and whether high-dose total body irradiation followed by high-dose bone marrow mononuclear cell infusion could improve the efficiency of bone marrow transplantation in treating diabetic mice. Diabetic mice after multiple low doses of streptozotocin injection were irradiated followed by infusion with approximately 1×10(7) bone marrow mononuclear cells intravenously. Before and after bone marrow transplantation, fasting blood glucose, intraperitoneal glucose tolerance test, serum insulin, pancreatic histology, and the examination of insulin and glucagon in islets were processed. All recipients returned to near euglycemic within 1 week after undergoing bone marrow transplantation. No mice became hyperglycemia again during investigation period. The change of serum insulin, glucose tolerance test, pancreatic histology and the expression of insulin and glucagon in recipient islets after bone marrow transplantation all revealed islets regeneration and significant amelioration when compared respectively with those of diabetic mice without bone marrow transplantation. Bone marrow transplantation contributed to reduce blood glucose, prevent further blood glucose hike in diabetic recipients, and promote islets regeneration. High-dose total body irradiation in combination with high-dose bone marrow monoclear cell infusion could improve the efficiency of bone marrow transplantation in treating streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Cheng-Lan Lv
- Department of Hematology, the Affiliated Drumtower Hospital of Nanjing University Medical School Nanjing 210008, China
| | - Jing Wang
- Department of Hematology, the Affiliated Drumtower Hospital of Nanjing University Medical School Nanjing 210008, China
| | - Ting Xie
- Department of Hematology, the Affiliated Drumtower Hospital of Nanjing University Medical School Nanjing 210008, China
| | - Jian Ouyang
- Department of Hematology, the Affiliated Drumtower Hospital of Nanjing University Medical School Nanjing 210008, China
| |
Collapse
|
34
|
Enk J, Mandelboim O. The role of natural cytotoxicity receptors in various pathologies: emphasis on type I diabetes. Front Immunol 2014; 5:4. [PMID: 24478773 PMCID: PMC3895823 DOI: 10.3389/fimmu.2014.00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that function mainly as immune sentinels against viral infection and tumorigenesis. NK cell function is governed by inhibitory and activating signals arising from corresponding receptors. A prominent group of activating NK receptors is the natural cytotoxicity receptors (NCRs), which includes NKp30, NKp44, and NKp46. These receptors bind various diverse ligands of pathogenic, tumor, and even self origin. Type 1 diabetes mellitus (T1D) is a multifactorial autoimmune disease, in which insulin-producing beta (β) cells are ablated by the immune system. This killing of β cells is carried out mainly by T cells, but many other immune cells have been implicated in the pathogenesis of this disease. Importantly, NK cells were shown to be key participants in the initial autoimmune attack. It was shown that all β cells from humans and mice, healthy or sick, express an unknown ligand for the activating NKp46 receptor. In this review, we describe the role played by the NCRs in various pathologies with an emphasis on Type I diabetes.
Collapse
Affiliation(s)
- Jonatan Enk
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School , Jerusalem , Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School , Jerusalem , Israel
| |
Collapse
|
35
|
Nagaraju S, Bertera S, Funair A, Wijkstrom M, Trucco M, Cooper DKC, Bottino R. Streptozotocin-associated lymphopenia in cynomolgus monkeys. Islets 2014; 6:e944441. [PMID: 25322828 PMCID: PMC4292713 DOI: 10.4161/19382014.2014.944441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Streptozotocin (STZ) is used to induce diabetes in experimental animals. It has a variety of adverse effects, ranging from nausea, emesis, and weight loss to liver damage, renal failure, and metabolic acidosis. STZ also has effects on the immune system, being associated with lymphopenia in rodents, the mechanism of which is not fully understood. We present data on a significant STZ-associated reduction in lymphocyte count in nonhuman primates. We report a significant reduction in absolute lymphocyte count; in 2 monkeys, the lymphopenia persisted for >100 d. However, a significant increase in absolute monocyte count was noted. Furthermore, an increase in serum monocyte chemoattractant protein-1 (MCP-1) was observed. The reduction in lymphocyte numbers may contribute to immunomodulation that may be beneficial to a subsequent islet graft, and may reduce the need for immunosuppressive therapy. The increase in monocytes and MCP-1, however, may be detrimental to the islet graft. Studies are warranted to explore the mechanism by which STZ has its effect.
Collapse
Affiliation(s)
- Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute;
University of Pittsburgh Medical Center; Pittsburgh, PA
USA
| | - Suzanne Bertera
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| | - Amber Funair
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute;
University of Pittsburgh Medical Center; Pittsburgh, PA
USA
| | - Massimo Trucco
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute;
University of Pittsburgh Medical Center; Pittsburgh, PA
USA
- Correspondence to: David KC Cooper;
| | - Rita Bottino
- Division of Immunogenetics; Department of
Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical
Center; Pittsburgh, PA USA
| |
Collapse
|
36
|
McBane JE, Vulesevic B, Padavan DT, McEwan KA, Korbutt GS, Suuronen EJ. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation. PLoS One 2013; 8:e77538. [PMID: 24204863 PMCID: PMC3799615 DOI: 10.1371/journal.pone.0077538] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/04/2013] [Indexed: 12/23/2022] Open
Abstract
Islet transplantation to treat type 1 diabetes (T1D) has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1) hydrogels, +/- circulating angiogenic cells (CACs), were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively), had more cross-links (9.2 vs. 7.4/µm(2)), and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%). In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+) and CXCR4(+) angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.
Collapse
Affiliation(s)
- Joanne E. McBane
- University of Ottawa Heart Institute, Ottawa, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Branka Vulesevic
- University of Ottawa Heart Institute, Ottawa, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Kimberly A. McEwan
- University of Ottawa Heart Institute, Ottawa, Canada
- Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | | | - Erik J. Suuronen
- University of Ottawa Heart Institute, Ottawa, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
37
|
Heligmosomoides polygyrus infection reduces severity of type 1 diabetes induced by multiple low-dose streptozotocin in mice via STAT6- and IL-10-independent mechanisms. Exp Parasitol 2013; 135:388-96. [DOI: 10.1016/j.exppara.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
38
|
Barbu-Tudoran L, Gavriliuc OI, Paunescu V, Mic FA. Accumulation of tissue macrophages and depletion of resident macrophages in the diabetic thymus in response to hyperglycemia-induced thymocyte apoptosis. J Diabetes Complications 2013; 27:114-22. [PMID: 23153674 DOI: 10.1016/j.jdiacomp.2012.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
AIMS We investigated the dynamics and morphology of thymus macrophages in response to thymus involution caused by hyperglycemia. Thymus is an organ affected early and dramatically after the onset of diabetes, losing most of the thymocyte populations but diabetes's impact on the components of the thymus stroma is largely unknown. METHODS Rats were injected with streptozotocin and thymus weight, body weight, and glycemia were measured at various time points. The dynamics and morphology of macrophages in the diabetic thymus were investigated by histology, immunohistochemistry, qPCR, electron microscopy and flow cytometry. RESULTS In hyperglycemic animals the involuting thymus is gradually infiltrated by tissue macrophages (ED1-positive) and depleted of resident macrophages (ED2-positive). While ED1 positive macrophages are scattered in both cortex and medulla the ED2 positive ones are limited to the cortex and cortico-medullary junction. CD4+CD11b+macrophages also accumulate. The TUNEL reaction that detects the degradation of the DNA from apoptotic thymocytes in the macrophages is enhanced. The thymic macrophages enlarge and accumulate lipid vacuoles and apoptotic bodies. qPCR measurements of the expression of macrophage markers showed a persistent increase in the diabetic thymus after the injection of streptozotocin. CONCLUSIONS Thymus involutes rapidly and persistently after the onset of hyperglycemia because of the elevated apoptosis in the thymocytes. Tissue macrophages accumulate in the thymus and the resident macrophages decrease. This results in an overall increase in macrophage activity in the diabetic thymus in response to the elevated apoptosis of thymocytes produced by hyperglycemia.
Collapse
|
39
|
Yaochite JNU, Caliari-Oliveira C, Davanso MR, Carlos D, Ribeiro Malmegrim KC, Ribeiro de Barros Cardoso C, Ramalho LNZ, Palma PVB, Santana da Silva J, Cunha FQ, Covas DT, Voltarelli JC. Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. Immunobiology 2013; 218:338-52. [DOI: 10.1016/j.imbio.2012.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/02/2012] [Accepted: 05/16/2012] [Indexed: 12/22/2022]
|
40
|
Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 2013; 30:1664-74. [PMID: 22644660 DOI: 10.1002/stem.1132] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that results from cell-mediated autoimmune destruction of insulin-producing cells. In T1DM animal models, it has been shown that the systemic administration of multipotent mesenchymal stromal cells, also referred as to mesenchymal stem cells (MSCs), results in the regeneration of pancreatic islets. Mechanisms underlying this effect are still poorly understood. Our aims were to assess whether donor MSCs (a) differentiate into pancreatic β-cells and (b) modify systemic and pancreatic pathophysiologic markers of T1DM. After the intravenous administration of 5 × 10(5) syngeneic MSCs, we observed that mice with T1DM reverted their hyperglycemia and presented no donor-derived insulin-producing cells. In contrast, 7 and 65 days post-transplantation, MSCs were engrafted into secondary lymphoid organs. This correlated with a systemic and local reduction in the abundance of autoaggressive T cells together with an increase in regulatory T cells. Additionally, in the pancreas of mice with T1DM treated with MSCs, we observed a cytokine profile shift from proinflammatory to antinflammatory. MSC transplantation did not reduce pancreatic cell apoptosis but recovered local expression and increased the circulating levels of epidermal growth factor, a pancreatic trophic factor. Therefore, the antidiabetic effect of MSCs intravenously administered is unrelated to their transdifferentiation potential but to their capability to restore the balance between Th1 and Th2 immunological responses along with the modification of the pancreatic microenvironment. Our data should be taken into account when designing clinical trials aimed to evaluate MSC transplantation in patients with T1DM since the presence of endogenous precursors seems to be critical in order to restore glycemic control.
Collapse
Affiliation(s)
- Fernando Ezquer
- Instituto de Ciencias, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
41
|
Kverka M, Tlaskalova-Hogenova H. Two faces of microbiota in inflammatory and autoimmune diseases: triggers and drugs. APMIS 2012; 121:403-21. [DOI: 10.1111/apm.12007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/13/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Miloslav Kverka
- Department of Immunology and Gnotobiology, Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - Helena Tlaskalova-Hogenova
- Department of Immunology and Gnotobiology, Institute of Microbiology; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| |
Collapse
|
42
|
Yin N, Xu J, Ginhoux F, Randolph GJ, Merad M, Ding Y, Bromberg JS. Functional specialization of islet dendritic cell subsets. THE JOURNAL OF IMMUNOLOGY 2012; 188:4921-30. [PMID: 22508930 DOI: 10.4049/jimmunol.1103725] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dendritic cells (DC) play important roles in both tolerance and immunity to β cells in type 1 diabetes. How and why DC can have diverse and opposing functions in islets remains elusive. To answer these questions, islet DC subsets and their specialized functions were characterized. Under both homeostatic and inflammatory conditions, there were two main tissue-resident DC subsets in islets, defined as CD11b(lo/-)CD103(+)CX3CR1(-) (CD103(+) DC), the majority of which were derived from fms-like tyrosine kinase 3-dependent pre-DC, and CD11b(+)CD103(-)CX3CR1(+) (CD11b(+) DC), the majority of which were derived from monocytes. CD103(+) DC were the major migratory DC and cross-presented islet-derived Ag in the pancreatic draining lymph node, although this DC subset displayed limited phagocytic activity. CD11b(+) DC were numerically the predominant subset (60-80%) but poorly migrated to the draining lymph node. Although CD11b(+) DC had greater phagocytic activity, they poorly presented Ag to T cells. CD11b(+) DC increased in numbers and percentage during T cell-mediated insulitis, suggesting that this subset might be involved in the pathogenesis of diabetes. These data elucidate the phenotype and function of homeostatic and inflammatory islet DC, suggesting differential roles in islet immunity.
Collapse
Affiliation(s)
- Na Yin
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Yin N, Zhang N, Lal G, Xu J, Yan M, Ding Y, Bromberg JS. Lymphangiogenesis is required for pancreatic islet inflammation and diabetes. PLoS One 2011; 6:e28023. [PMID: 22132197 PMCID: PMC3223214 DOI: 10.1371/journal.pone.0028023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022] Open
Abstract
Lymphangiogenesis is a common phenomenon observed during inflammation and engraftment of transplants, but its precise role in the immune response and underlying mechanisms of regulation remain poorly defined. Here we showed that in response to injury and autoimmunity, lymphangiogenesis occurred around islets and played a key role in the islet inflammation in mice. Vascular endothelial growth factors receptor 3 (VEGFR3) is specifically involved in lymphangiogenesis, and blockade of VEGFR3 potently inhibited lymphangiogenesis in both islets and the draining LN during multiple low-dose streptozotocin (MLDS) induced autoimmune insulitis, which resulted in less T cell infiltration, preservation of islets and prevention of the onset of diabetes. In addition to their well-known conduit function, lymphatic endothelial cells (LEC) also produced chemokines in response to inflammation. These LEC attracted two distinct CX3CR1hi and LYVE-1+ macrophage subsets to the inflamed islets and CX3CR1hi cells were influenced by LEC to differentiate into LYVE-1+ cells closely associated with lymphatic vessels. These observations indicate a linkage among lymphangiogenesis and myeloid cell inflammation during insulitis. Thus, inhibition of lymphangiogenesis holds potential for treating insulitis and autoimmune diabetes.
Collapse
Affiliation(s)
- Na Yin
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (JSB); (NY)
| | - Nan Zhang
- Department of Surgery, Marshall University, Huntington, West Virginia, United States of America
| | - Girdhari Lal
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jiangnan Xu
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Minhong Yan
- Department of Tumor Biology and Angiogenesis, Division of Research, Genentech Inc., South San Francisco, California, United States of America
| | - Yaozhong Ding
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jonathan S. Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, Maryland, United States of America
- Departments of Surgery and Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (JSB); (NY)
| |
Collapse
|
44
|
Graham ML, Mutch LA, Rieke EF, Kittredge JA, Faig AW, DuFour TA, Munson JW, Zolondek EK, Hering BJ, Schuurman HJ. Refining the high-dose streptozotocin-induced diabetic non-human primate model: an evaluation of risk factors and outcomes. Exp Biol Med (Maywood) 2011; 236:1218-30. [DOI: 10.1258/ebm.2011.011064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In preparation for islet transplantation, diabetes was induced using streptozotocin (STZ) in non-human primates ranging from juveniles to adults with diverse body types: we studied the process with respect to the diabetic state and emergence of adverse events (AEs) and their severity, and identified risk factors for clinical and laboratory AEs. Pharmaceutical-grade STZ was given based on body surface area (BSA) (1050–1250 mg/m2, equivalent to 80–108 mg/kg) or on body weight (BW) (100 mg/kg) to 54 cynomolgus and 24 rhesus macaques. AEs were related to risk factors, i.e. obesity parameters, BW and BSA, age and STZ dose in mg/m2. Clinical AEs during the first days after infusion prompted euthanasia of three animals. Except for those three animals, diabetes was successfully induced as shown by circulating C-peptide levels, the intravenous glucose tolerance test and/or arginine stimulation test. C-peptide after infusion weakly correlated ( P = 0.048) with STZ dose in mg/m2. Grade ≥3 nephrotoxicity or hepatotoxicity (serum markers >3× baseline or >5 × baseline, respectively) occurred in about 10% of cases and were generally mild and reversible. Grade ≥2 clinical AEs occurred in seven of 78 animals, reversed in four cases and significantly correlated with obesity parameters. Taking girth-to-height ratio (GHtR) as an indicator of obesity, with threshold value 0.92–0.95, the positive predictive value of obesity for AEs was 92% and the specificity 94%. We conclude that diabetes is successfully induced in non-obese animals using a 100 mg/kg pharmaceutical grade STZ dose. Obesity is a significant risk factor, and animals with a higher than normal GHtR should preferably receive a lower dose. The incidence of relevant clinical or laboratory AEs is low. Careful monitoring and supportive medical intervention can result in recovery of AEs.
Collapse
Affiliation(s)
- Melanie L Graham
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Lucas A Mutch
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Eric F Rieke
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Jessica A Kittredge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Aaron W Faig
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Theresa A DuFour
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - James W Munson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Elizabeth K Zolondek
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Bernhard J Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Henk-Jan Schuurman
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, 424 Harvard Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
45
|
Domingues A, Sartori A, Golim MA, Valente LMM, da Rosa LC, Ishikawa LLW, Siani AC, Viero RM. Prevention of experimental diabetes by Uncaria tomentosa extract: Th2 polarization, regulatory T cell preservation or both? JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:635-642. [PMID: 21718770 DOI: 10.1016/j.jep.2011.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/26/2011] [Accepted: 06/12/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria tomentosa (Willd.) DC (Rubiaceae) is a species native to the Amazon rainforest and surrounding tropical areas that is endowed with immunomodulatory properties and widely used around the world. In this study we investigated the immunomodulatory potential of Uncaria tomentosa (UT) aqueous-ethanol extract on the progression of immune-mediated diabetes. MATERIALS AND METHODS C57BL/6 male mice were injected with MLDS (40 mg/kg) and orally treated with UT at 10-400mg/kg during 21 days. Control groups received MLDS alone or the respective dilution vehicle. Pancreatic mononuclear infiltrate and β-cell insulin content were analyzed by HE and immunohistochemical staining, respectively, and measured by digital morphometry. Lymphocyte immunophenotyping and cytokine production were determined by flow cytometry analysis. RESULTS Treating the animals with 50-400mg/kg of UT caused a significant reduction in the glycemic levels, as well as in the incidence of diabetes. The morphometric analysis of insulitis revealed a clear protective effect. Animals treated with UT at 400mg/kg presented a higher number of intact islets and a significant inhibition of destructive insulitis. Furthermore, a significant protection against the loss of insulin-secreting presented β-cells was achieved, as observed by a careful immunohistochemical evaluation. The phenotypic analysis indicated that the groups treated with higher doses (100-400mg/kg) presented CD4(+) and CD8(+) T-cell values similar to those observed in healthy animals. These same higher doses also increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T-cells. Moreover, the extract modulated the production of Th1 and Th2, with increased levels of IL-4 and IL-5. CONCLUSIONS The extract was effective to prevent the progression of immune-mediated diabetes by distinct pathways.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cat's Claw/chemistry
- Cell Polarity/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Dose-Response Relationship, Drug
- Ethanol/chemistry
- Flow Cytometry
- Forkhead Transcription Factors/metabolism
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Immunohistochemistry
- Immunophenotyping/methods
- Insulin/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-4/metabolism
- Interleukin-5/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Solvents/chemistry
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Time Factors
- Water/chemistry
Collapse
Affiliation(s)
- Alexandre Domingues
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman HJ. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med 2011; 61:356-360. [PMID: 22330251 PMCID: PMC3155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/09/2010] [Accepted: 02/20/2011] [Indexed: 05/31/2023]
Abstract
Diabetes is induced in mice by using streptozotocin (STZ), a compound that has a preferential toxicity toward pancreatic β cells. We evaluated nude male mice from various sources for their sensitivity to a single high dose (160 to 240 mg/kg) of STZ. Diabetes was induced in male mice (age: median, 12 wk; interquartile range, 11 to 14 wk; body weight, about 30 g) from Taconic Farms (TAC), Jackson Laboratories (JAX), and Charles River Laboratories (CRL). Mice were monitored for 30 d for adverse side effects, blood glucose, and insulin requirements. In CRL mice given 240 mg/kg STZ, more than 95% developed diabetes within 4 to 5 d, and loss of body weight was relatively low (mean, 0.4 g). In comparison, both TAC and JAX mice were more sensitive to STZ, as evidenced by faster development of diabetes (even at a lower STZ dose), greater need for insulin after STZ, greater body weight loss (mean: TAC, 3.5 g; JAX, 3.7 g), and greater mortality. We recommend conducting exploratory safety assessments when selecting a nude mouse source, with the aim of limiting morbidity and mortality to less than 10%.
Collapse
Affiliation(s)
- Melanie L Graham
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|
47
|
Gruia AT, Barbu-Tudoran L, Mic AA, Ordodi VL, Paunescu V, Mic FA. Arachidonic acid accumulates in the stromal macrophages during thymus involution in diabetes. Histochem Cell Biol 2011; 136:79-92. [PMID: 21626126 DOI: 10.1007/s00418-011-0820-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/28/2022]
Abstract
Diabetes is a debilitating disease with chronic evolution that affects many tissues and organs over its course. Thymus is an organ that is affected early after the onset of diabetes, gradually involuting until it loses most of its thymocyte populations. We show evidence of accumulating free fatty acids with generation of eicosanoids in the diabetic thymus and we present a possible mechanism for the involution of the organ during the disease. Young rats were injected with streptozotocin and their thymuses examined for cell death by flow cytometry and TUNEL reaction. Accumulation of lipids in the diabetic thymus was investigated by histology and electron microscopy. The identity and quantitation of accumulating lipids was done with gas chromatography-mass spectrometry and liquid chromatography. The expression and dynamics of the enzymes were monitored via immunohistochemistry. Diabetes causes thymus involution by elevating the thymocyte apoptosis. Exposure of thymocytes to elevated concentration of glucose causes apoptosis. After the onset of diabetes, there is a gradual accumulation of free fatty acids in the stromal macrophages including arachidonic acid, the substrate for eicosanoids. The eicosanoids do not cause thymocyte apoptosis but administration of a cyclooxygenase inhibitor reduces the staining for ED1, a macrophage marker whose intensity correlates with phagocytic activity. Diabetes causes thymus involution that is accompanied by accumulation of free fatty acids in the thymic macrophages. Excess glucose is able to induce thymocyte apoptosis but eicosanoids are involved in the chemoattraction of macrophage to remove the dead thymocytes.
Collapse
Affiliation(s)
- Alexandra T Gruia
- Regional Center for Immunology and Transplant, Timisoara County Hospital, Timisoara, Romania
| | | | | | | | | | | |
Collapse
|
48
|
Ezquer F, Ezquer M, Simon V, Conget P. The antidiabetic effect of MSCs is not impaired by insulin prophylaxis and is not improved by a second dose of cells. PLoS One 2011; 6:e16566. [PMID: 21304603 PMCID: PMC3029393 DOI: 10.1371/journal.pone.0016566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/04/2011] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is due to autoimmune destruction of pancreatic beta-cells. Previously, we have shown that intravenously administered bone marrow-derived multipotent mesenchymal stromal cells (MSCs) allows pancreatic islet recovery, improves insulin secretion and reverts hyperglycemia in low doses streptozotocin (STZ)-induced diabetic mice. Here we evaluate whether insulin prophylaxis and the administration of a second dose of cells affect the antidiabetic therapeutic effect of MSC transplantation. Insulitis and subsequent elimination of pancreatic beta-cells was promoted in C57BL/6 mice by the injection of 40 mg/kg/day STZ for five days. Twenty-four days later, diabetic mice were distributed into experimental groups according to if they received or not insulin and/or one or two doses of healthy donor-derived MSCs. Three and half months later: glycemia, pancreatic islets number, insulinemia, glycated hemoglobin level and glucose tolerance were determined in animals that did not received exogenous insulin for the last 1.5 months. Also, we characterized MSCs isolated from mice healthy or diabetic. The therapeutic effect of MSC transplantation was observed in diabetic mice that received or not insulin prophylaxis. Improvements were similar irrespective if they received one or two doses of cells. Compared to MSCs from healthy mice, MSCs from diabetic mice had the same proliferation and adipogenic potentials, but were less abundant, with altered immunophenotype and no osteogenic potential. Our preclinical results should be taken into account when designing phase II clinical trials aimed to evaluate MSC transplantation in patients with T1D. Cells should be isolated form healthy donor, insulin prophylaxis could be maintained and a second dose, after an elapse of two months, appears unnecessary in the medium-term.
Collapse
Affiliation(s)
- Fernando Ezquer
- Instituto de Ciencias, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Instituto de Ciencias, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Valeska Simon
- Instituto de Ciencias, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Paulette Conget
- Instituto de Ciencias, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
- * E-mail:
| |
Collapse
|
49
|
Nan MH, Park JS, Myung CS. Construction of adiponectin-encoding plasmid DNA and gene therapy of non-obese type 2 diabetes mellitus. J Drug Target 2010; 18:67-77. [PMID: 19708766 DOI: 10.3109/10611860903225719] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adiponectin (ADN), an insulin-sensitizing adipokine, stimulates glucose uptake, inhibits gluconeogenesis, and plays an important role in improving insulin sensitivity. Since blood levels of ADN are low in type 2 diabetes mellitus (DM), this study was designed to investigate the therapeutic effectiveness of increasing the ADN level through injection of plasmid DNA encoding ADN in type 2 DM. A non-obese type 2 DM mouse model was established via combined administration of streptozotocin with nicotinamide and exhibited significantly higher plasma glucose concentration and insulin resistance compared with normal controls according to oral glucose tolerance and insulin challenge tests. Plasmid DNA encoding mouse ADN from differentiated NIH3T3 adipocytes was constructed in pVAX1 (pVAX/ADN). Transfection of pVAX/ADN into various cell lines including HeLa, HT22, HEK293, HepG2, and SK-Hep1 cells, increased ADN mRNA expression levels in a dose-dependent manner. The administration of pVAX/ADN into non-obese type 2 DM mice via tail vein significantly increased the blood level of ADN and decreased the plasma glucose concentration. Moreover, the parameters related to insulin resistance (HOMA-IR) and insulin sensitivity (QUICKI) were significantly improved. These results suggest that ADN gene therapy could be a clinically effective tool for the treatment of type 2 DM.
Collapse
Affiliation(s)
- Mei Hua Nan
- Department of Pharmacology, Chungnam National University College of Pharmacy, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | | | | |
Collapse
|
50
|
Xiang FL, Lu X, Strutt B, Hill DJ, Feng Q. NOX2 deficiency protects against streptozotocin-induced beta-cell destruction and development of diabetes in mice. Diabetes 2010; 59:2603-11. [PMID: 20627937 PMCID: PMC3279537 DOI: 10.2337/db09-1562] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The role of NOX2-containing NADPH oxidase in the development of diabetes is not fully understood. We hypothesized that NOX2 deficiency decreases reactive oxygen species (ROS) production and immune response and protects against streptozotocin (STZ)-induced β-cell destruction and development of diabetes in mice. RESEARCH DESIGN AND METHODS Five groups of mice--wild-type (WT), NOX2(-/-), WT treated with apocynin, and WT adoptively transferred with NOX2(-/-) or WT splenocytes--were treated with multiple-low-dose STZ. Blood glucose and insulin levels were monitored, and an intraperitoneal glucose tolerance test was performed. Isolated WT and NOX2(-/-) pancreatic islets were treated with cytokines for 48 h. RESULTS Significantly lower blood glucose levels, higher insulin levels, and better glucose tolerance was observed in NOX2(-/-) mice and in WT mice adoptively transferred with NOX2(-/-) splenocytes compared with the respective control groups after STZ treatment. Compared with WT, β-cell apoptosis, as determined by TUNEL staining, and insulitis were significantly decreased, whereas β-cell mass was significantly increased in NOX2(-/-) mice. In response to cytokine stimulation, ROS production was significantly decreased, and insulin secretion was preserved in NOX2(-/-) compared with WT islets. Furthermore, proinflammatory cytokine release induced by concanavalin A was significantly decreased in NOX2(-/-) compared with WT splenocytes. CONCLUSIONS NOX2 deficiency decreases β-cell destruction and preserves islet function in STZ-induced diabetes by reducing ROS production, immune response, and β-cell apoptosis.
Collapse
Affiliation(s)
- Fu-Li Xiang
- From the Departments of Medicine, Physiology, and Pharmacology, University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Xiangru Lu
- From the Departments of Medicine, Physiology, and Pharmacology, University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Brenda Strutt
- From the Departments of Medicine, Physiology, and Pharmacology, University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - David J. Hill
- From the Departments of Medicine, Physiology, and Pharmacology, University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Qingping Feng
- From the Departments of Medicine, Physiology, and Pharmacology, University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
- Corresponding author: Qingping Feng,
| |
Collapse
|