1
|
Panahipour L, Kargarpour Z, Mildner M, Kühtreiber H, Gruber R. RNAseq of peripheral blood mononucleated cells exposed to platelet-rich fibrin and enamel matrix derivatives. Sci Rep 2025; 15:3661. [PMID: 39881164 PMCID: PMC11779933 DOI: 10.1038/s41598-025-86791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Platelet-rich fibrin (PRF) and Enamel Matrix Derivatives (EMD) can support the local regenerative events in periodontal defects. There is reason to suggest that PRF and EMD exert part of their activity by targeting the blood-derived cells accumulating in the early wound healing blastema. However, the impact of PRF and EMD on blood cell response remains to be discovered. To this aim, we have exposed human peripheral blood mononucleated cells (PBMCs) to PRF lysates prepared by a swing-out rotor and EMD, followed by bulk RNA sequencing. A total of 111 and 8 genes are up- and down-regulated by PRF under the premise of an at least log2 two-fold change and a minus log10 significance level of two, respectively. Representative is a characteristic IFN response indicated by various human leukocyte antigens (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DRA, HLA-DRB1, HLA-DRB5), gamma Fc receptors (FCGR1A, FCGR1B, FCGR3B), chemokines (CXCL9-11), and calprotectin (S100A8/9 and S100A12), complement (C1QA/B, C2) and interferon-induced guanylate-binding proteins (GBP1, GBP5). With EMD, 67 and 29 genes are up- and down-regulated, respectively. Characteristic of the upregulated genes are tensins (TNS1 and TNS3). Among the genes downregulated by EMD were epsilon Fc receptors (FCER1A; FCER2), Fc receptor-like proteins (FCRL1, FCRL3) and CX3CR1. Genes commonly upregulated by PRF and EMD were most noticeably NXPH4 and MN1, as well as FN1, MMP14, MERTK, and AXL. Our findings suggest that PRF provokes an inflammatory response, while EMD dampens IgE signaling in peripheral mononucleated blood cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Kühtreiber
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, 3010, Switzerland.
- Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
2
|
Zheng Y, Corrêa-Silva S, Rodrigues RM, Corrêa de Souza E, Macaferri da Fonseca FA, Gilio AE, Carneiro-Sampaio M, Palmeira P. Infant respiratory infections modulate lymphocyte homing to breast milk. Front Immunol 2025; 15:1481416. [PMID: 39867906 PMCID: PMC11757141 DOI: 10.3389/fimmu.2024.1481416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Chemokines and their receptors are essential for leukocyte migration to several tissues, including human milk. Here, we evaluated the homing of T and B lymphocyte subsets to breast milk in response to ongoing respiratory infections in the nursing infant. Methods Blood and mature milk were collected from healthy mothers of nurslings with respiratory infections (Group I) and from healthy mothers of healthy nurslings (Group C). Total lymphocyte, T and B cells, their subset numbers, and the expression of the homing receptors CCR5, CCR6, CCR10, and CXCR3 in these cells were evaluated in milk. Maternal serum and milk chemokine, cytokine, and IgA and IgG antibody levels were also quantified. Results All milk lymphocyte numbers were greater in Group I than in Group C. All CD4 T-cell subsets expressing CCR5, CCR6, and CXCR3 were higher in Group I. Within the CD8 T-cell subsets, only CCR6 and CXCR3 were higher in Group I, while CCR5 expression was higher in Group I exclusively for activated CD8 T cells. Group I showed greater numbers of all CCR6+ B-cell subsets and CXCR3+ naive B cells and plasma cells than did Group C. Infection of the nurslings promoted increased CCL20, CXCL10, IL-6, IL-8, total IgA, and IgG levels in the milk. Conclusion Respiratory infections in nursing infants stimulate an increase in cytokines and chemokines in breast milk, facilitating the recruitment and activation of lymphocytes. This process may promote immunological tolerance and help in the maturation of the infant's immune system, providing an additional strategy for passive maternal-infant protection.
Collapse
Affiliation(s)
- Yingying Zheng
- Department of Pediatrics, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Simone Corrêa-Silva
- Laboratorio de Pediatria Clinica (LIM36), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Regina Maria Rodrigues
- Department of Pediatrics, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Corrêa de Souza
- Department of Pediatrics, University Hospital, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Alfredo Elias Gilio
- Department of Pediatrics, University Hospital, Medical School, University of São Paulo, São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Department of Pediatrics, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratorio de Pediatria Clinica (LIM36), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Yamanaka R, Ichii O, Nakamura T, Otani Y, Namaba T, Kon Y. Effects of autoimmune abnormalities on fertility and placental morphology in mice. Autoimmunity 2024; 57:2319209. [PMID: 38389171 DOI: 10.1080/08916934.2024.2319209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Autoimmune diseases (AIDs) alter the placental immune environment leading to fetal loss. This study investigated the effects of AIDs on pregnancy and the placenta in AID-prone MRL/MpJ-Faslpr/lpr mice and wild-type MRL/MpJ, which were mated with male MRL/MpJ and MRL/MpJ-Faslpr/lpr at five months and defined as moLpr and moMpJ, respectively. AID indices (spleen weight and serum autoantibody levels) and fertility status (number and size of fetuses, morphology, and comprehensive gene expression of placentas) were evaluated on gestational day 15.5. Both strains showed equivalent fertility, but moLpr showed lighter placentas and fetuses than moMpJ, and decreased fertility with AID severity. moLpr placentas had a higher number of T cells, higher expression of genes associated with T helper 2 and T follicular helper functions, and altered expression of genes (Krt15, Slc7a3, Sprr2a3) that significantly regulate pregnancy or immunity. The gene expression of T cell migration-associated chemokines (Ccl5, Cxcl9) was significantly increased in moLpr placentas, and CCL5 and CXCL9 were detected in moLpr placentas, particularly in T cells and placenta-component cells, respectively. Thus, AID altered placental morphofunction and fertility in mice; however, fertility was maintained at the examined time points. This study enhances our understanding of placental alterations and gestational risk due to AIDs.
Collapse
Affiliation(s)
- Risa Yamanaka
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Hokkaido Universityty, Sapporo, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takashi Namaba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Tan X, Grice LF, Tran M, Mulay O, Monkman J, Blick T, Vo T, Almeida AC, da Silva Motta J, de Moura KF, Machado-Souza C, Souza-Fonseca-Guimaraes P, Baena CP, de Noronha L, Guimaraes FSF, Luu HN, Drennon T, Williams S, Stern J, Uytingco C, Pan L, Nam A, Cooper C, Short K, Belz GT, Souza-Fonseca-Guimaraes F, Kulasinghe A, Nguyen Q. A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues. Immunology 2023; 170:401-418. [PMID: 37605469 DOI: 10.1111/imm.13679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/03/2023] [Indexed: 08/23/2023] Open
Abstract
The SARS-CoV-2 (COVID-19) virus has caused a devastating global pandemic of respiratory illness. To understand viral pathogenesis, methods are available for studying dissociated cells in blood, nasal samples, bronchoalveolar lavage fluid and similar, but a robust platform for deep tissue characterization of molecular and cellular responses to virus infection in the lungs is still lacking. We developed an innovative spatial multi-omics platform to investigate COVID-19-infected lung tissues. Five tissue-profiling technologies were combined by a novel computational mapping methodology to comprehensively characterize and compare the transcriptome and targeted proteome of virus infected and uninfected tissues. By integrating spatial transcriptomics data (Visium, GeoMx and RNAScope) and proteomics data (CODEX and PhenoImager HT) at different cellular resolutions across lung tissues, we found strong evidence for macrophage infiltration and defined the broader microenvironment surrounding these cells. By comparing infected and uninfected samples, we found an increase in cytokine signalling and interferon responses at different sites in the lung and showed spatial heterogeneity in the expression level of these pathways. These data demonstrate that integrative spatial multi-omics platforms can be broadly applied to gain a deeper understanding of viral effects on cellular environments at the site of infection and to increase our understanding of the impact of SARS-CoV-2 on the lungs.
Collapse
Affiliation(s)
- Xiao Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura F Grice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Onkar Mulay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Tuan Vo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ana Clara Almeida
- Pontifícia Universidade Católica do Paraná, PUCPR, Curitiba, Paraná, Brazil
- Laboratório de Patologia Experimental, PPGCS da PUCPR, Curitiba, Brazil
| | | | - Karen Fernandes de Moura
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Cleber Machado-Souza
- Faculdades Pequeno Príncipe-Instituto de Pesquisa Pelé Pequeno príncipe, Curitiba, Paraná, Brazil
| | | | | | - Lucia de Noronha
- Pontifícia Universidade Católica do Paraná, PUCPR, Curitiba, Paraná, Brazil
- Laboratório de Patologia Experimental, PPGCS da PUCPR, Curitiba, Brazil
| | | | - Hung N Luu
- UMPC Hillman Cancer Center & School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Liuliu Pan
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Andy Nam
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Caroline Cooper
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Kirsty Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gabrielle T Belz
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Reseach Institute, Queensland, Australia
| |
Collapse
|
5
|
Papaioannou S, See JX, Jeong M, De La Torre C, Ast V, Reiners-Koch PS, Sati A, Mogler C, Platten M, Cerwenka A, Stojanovic A. Liver sinusoidal endothelial cells orchestrate NK cell recruitment and activation in acute inflammatory liver injury. Cell Rep 2023; 42:112836. [PMID: 37471222 DOI: 10.1016/j.celrep.2023.112836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) rapidly clear lipopolysaccharide (LPS) from the bloodstream and establish intimate contact with immune cells. However, their role in regulating liver inflammation remains poorly understood. We show that LSECs modify their chemokine expression profile driven by LPS or interferon-γ (IFN-γ), resulting in the production of the myeloid- or lymphoid-attracting chemokines CCL2 and CXCL10, respectively, which accumulate in the serum of LPS-challenged animals. Natural killer (NK) cell exposure to LSECs in vitro primes NK cells for higher production of IFN-γ in response to interleukin-12 (IL-12) and IL-18. In livers of LPS-injected mice, NK cells are the major producers of this cytokine. In turn, LSECs require exposure to IFN-γ for CXCL10 expression, and endothelial-specific Cxcl10 gene deletion curtails NK cell accumulation in the inflamed livers. Thus, LSECs respond to both LPS and immune-derived signals and fuel a positive feedback loop of immune cell attraction and activation in the inflamed liver tissue.
Collapse
Affiliation(s)
- Sophia Papaioannou
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Volker Ast
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Clinical Chemistry, University Hospital Mannheim (UMM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Reiners-Koch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Ankita Sati
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Heidelberg, Germany; Department of Neurology, University Hospital Mannheim (UMM), MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
6
|
Hassanshahi F, Noroozi Karimabad M, Miranzadeh E, Hassanshahi G, Torabizadeh SA, Jebali A. The Serum Level of CXCL9, CXCL10, and CXCL11 and the Expression of CXCR3 of Peripheral Blood Mononuclear Cells in Brucellosis Patients. Curr Microbiol 2023; 80:201. [PMID: 37140634 DOI: 10.1007/s00284-023-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against β-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.
Collapse
Affiliation(s)
- Farzaneh Hassanshahi
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran.
| | - Elahe Miranzadeh
- Faculty of Veterinary Medicine, Islamic Azad university Shahr-E-Kord -Branch, Shahr-e-kord, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Jebali
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Science, Rafsanjan, Iran
| |
Collapse
|
7
|
Matsumoto A, Hiroi M, Mori K, Yamamoto N, Ohmori Y. Differential Anti-Tumor Effects of IFN-Inducible Chemokines CXCL9, CXCL10, and CXCL11 on a Mouse Squamous Cell Carcinoma Cell Line. Med Sci (Basel) 2023; 11:medsci11020031. [PMID: 37218983 DOI: 10.3390/medsci11020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Chemokines are a group of cytokines involved in the mobilization of leukocytes, which play a role in host defense and a variety of pathological conditions, including cancer. Interferon (IFN)-inducible chemokines C-X-C motif ligand 9 (CXCL), CXCL10, and CXCL11 are anti-tumor chemokines; however, the differential anti-tumor effects of IFN-inducible chemokines are not completely understood. In this study, we investigated the anti-tumor effects of IFN-inducible chemokines by transferring chemokine expression vectors into a mouse squamous cell carcinoma cell line, SCCVII, to generate a cell line stably expressing chemokines and transplanted it into nude mice. The results showed that CXCL9- and CXCL11-expressing cells markedly inhibited tumor growth, whereas CXCL10-expressing cells did not inhibit growth. The NH2-terminal amino acid sequence of mouse CXCL10 contains a cleavage sequence by dipeptidyl peptidase 4 (DPP4), an enzyme that cleaves the peptide chain of chemokines. IHC staining indicated DPP4 expression in the stromal tissue, suggesting CXCL10 inactivation. These results suggest that the anti-tumor effects of IFN-inducible chemokines are affected by the expression of chemokine-cleaving enzymes in tumor tissues.
Collapse
Affiliation(s)
- Ari Matsumoto
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Miki Hiroi
- Division of Basic Biology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Kazumasa Mori
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Nobuharu Yamamoto
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Yoshihiro Ohmori
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| |
Collapse
|
8
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Abdelbaky HH, Mitsuhashi S, Watanabe K, Ushio N, Miyakawa M, Furuoka H, Nishikawa Y. Involvement of chemokine receptor CXCR3 in the defense mechanism against Neospora caninum infection in C57BL/6 mice. Front Microbiol 2023; 13:1045106. [PMID: 36704563 PMCID: PMC9873264 DOI: 10.3389/fmicb.2022.1045106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
C-X-C motif chemokine receptor 3 (CXCR3) is an important receptor controlling the migration of leukocytes, although there is no report regarding its role in Neospora caninum infection. Herein, we investigated the relevance of CXCR3 in the resistance mechanism to N. caninum infection in mice. Wild-type (WT) C57BL/6 mice and CXCR3-knockout (CXCR3KO) mice were used in all experiments. WT mice displayed a high survival rate (100%), while 80% of CXCR3KO mice succumbed to N. caninum infection within 50 days. Compared with WT mice, CXCR3KO mice exhibited significantly lower body weights and higher clinical scores at the subacute stage of infection. Flow cytometric analysis revealed CXCR3KO mice as having significantly increased proportions and numbers of CD11c-positive cells compared with WT mice at 5 days post infection (dpi). However, levels of interleukin-6 and interferon-γ in serum and ascites were similar in all groups at 5 dpi. Furthermore, no differences in parasite load were detected in brain, spleen, lungs or liver tissue of CXCR3KO and WT mice at 5 and 21 dpi. mRNA analysis of brain tissue collected from infected mice at 30 dpi revealed no changes in expression levels of inflammatory response genes. Nevertheless, the brain tissue of infected CXCR3KO mice displayed significant necrosis and microglial activation compared with that of WT mice at 21 dpi. Interestingly, the brain tissue of CXCR3KO mice displayed significantly lower numbers of FoxP3+ cells compared with the brain tissue of WT mice at 30 dpi. Accordingly, our study suggests that the lack of active regulatory T cells in brain tissue of infected CXCR3KO mice is the main cause of these mice having severe necrosis and lower survival compared with WT mice. Thus, CXCR3+ regulatory T cells may play a crucial role in control of neosporosis.
Collapse
Affiliation(s)
- Hanan H. Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shuichiro Mitsuhashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenichi Watanabe
- Division of Pathobiological Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Miku Miyakawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hidefumi Furuoka
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan,*Correspondence: Yoshifumi Nishikawa, ✉
| |
Collapse
|
10
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Valdés N, Cortés M, Barraza F, Reyes-López FE, Imarai M. CXCL9-11 chemokines and CXCR3 receptor in teleost fish species. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100068. [PMID: 36569039 PMCID: PMC9782732 DOI: 10.1016/j.fsirep.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 12/27/2022] Open
Abstract
The coordinated migration of immune cells from lymphoid organs to in or out of the bloodstream, and towards the site of infection or tissue damage is fundamental for an efficient innate and adaptive immune response. Interestingly, an essential part of this movement is mediated by chemoattractant cytokines called chemokines. Although the nature and function of chemokines and their receptors are well documented in mammals, much research is needed to accomplish a similar level of understanding of the role of chemokines in fish immunity. The first chemokine gene identified in teleosts (rainbow trout, Oncorhynchus mykiss) was CK1 in 1998. Since then, the identification of fish chemokine orthologue genes and characterization of their role has been more complex than expected, primarily because of the whole genome duplication processes occurring in fish, and because chemokines evolve faster than other immune genes. Some of the most studied chemokines are CXCL9, CXCL10, CXCL11, and the CXCR3 receptor, all involved in T cell migration and in the induction of the T helper 1 (Th1) immune response. Data from the zebrafish and rainbow trout CXCL9-11/CXCR3 axis suggest that these chemokines and the receptor arose early in evolution and must be present in most teleost fish. However, the pieces of knowledge also indicate that different numbers of gene copies can be present in different species, with distinct regulatory expression mechanisms and probably, also with different roles, as the differential expression in fish tissues suggest. Here, we revised the current knowledge of the CXCL9-11/CXCR3 axis in teleost fishes, identifying the gaps in knowledge, and raising some hypotheses for the role of CXCL9, CXCL10 CXCL11, and CXCR3 receptor axis in fish, which can encourage further studies in the field.
Collapse
Affiliation(s)
- Natalia Valdés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología. Universidad de Santiago de Chile, Chile,Corresponding author.
| | - Marcos Cortés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología. Universidad de Santiago de Chile, Chile
| | - Felipe Barraza
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología. Universidad de Santiago de Chile, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología. Universidad de Santiago de Chile, Chile,Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología. Universidad de Santiago de Chile, Chile
| |
Collapse
|
12
|
Satarkar D, Patra C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front Cell Dev Biol 2022; 10:882017. [PMID: 35794867 PMCID: PMC9252580 DOI: 10.3389/fcell.2022.882017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chemokines form a sophisticated communication network wherein they maneuver the spatiotemporal migration of immune cells across a system. These chemical messengers are recognized by chemokine receptors, which can trigger a cascade of reactions upon binding to its respective ligand. CXC chemokine receptor 3 (CXCR3) is a transmembrane G protein-coupled receptor, which can selectively bind to CXCL9, CXCL10, and CXCL11. CXCR3 is predominantly expressed on immune cells, including activated T lymphocytes and natural killer cells. It thus plays a crucial role in immunological processes like homing of effector cells to infection sites and for pathogen clearance. Additionally, it is expressed on several cell types of the central nervous system and cardiovascular system, due to which it has been implicated in several central nervous system disorders, including Alzheimer's disease, multiple sclerosis, dengue viral disease, and glioblastoma, as well as cardiovascular diseases like atherosclerosis, Chronic Chagas cardiomyopathy, and hypertension. This review provides a narrative description of the evolution, structure, function, and expression of CXCR3 and its corresponding ligands in mammals and zebrafish and the association of CXCR3 receptors with cardiovascular and neuronal disorders. Unraveling the mechanisms underlying the connection of CXCR3 and disease could help researchers investigate the potential of CXCR3 as a biomarker for early diagnosis and as a therapeutic target for pharmacological intervention, along with developing robust zebrafish disease models.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
- SP Phule University, Pune, India
| |
Collapse
|
13
|
Kalaora S, Nagler A, Wargo JA, Samuels Y. Mechanisms of immune activation and regulation: lessons from melanoma. Nat Rev Cancer 2022; 22:195-207. [PMID: 35105962 DOI: 10.1038/s41568-022-00442-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Melanoma, a skin cancer that develops from pigment cells, has been studied intensively, particularly in terms of the immune response to tumours, and has been used as a model for the development of immunotherapy. This is due, in part, to the high mutational burden observed in melanomas, which increases both their immunogenicity and the infiltration of immune cells into the tumours, compared with other types of cancers. The immune response to melanomas involves a complex set of components and interactions. As the tumour evolves, it accumulates an increasing number of genetic and epigenetic alterations, some of which contribute to the immunogenicity of the tumour cells and the infiltration of immune cells. However, tumour evolution also enables the development of resistance mechanisms, which, in turn, lead to tumour immune escape. Understanding the interactions between melanoma tumour cells and the immune system, and the evolving changes within the melanoma tumour cells, the immune system and the microenvironment, is essential for the development of new cancer therapies. However, current research suggests that other extrinsic factors, such as the microbiome, may play a role in the immune response to melanomas. Here, we review the mechanisms underlying the immune response in the tumour and discuss recent advances as well as strategies for treatment development.
Collapse
Affiliation(s)
- Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Seiler LK, Phung NL, Nikolin C, Immenschuh S, Erck C, Kaufeld J, Haller H, Falk CS, Jonczyk R, Lindner P, Thoms S, Siegl J, Mayer G, Feederle R, Blume CA. An Antibody-Aptamer-Hybrid Lateral Flow Assay for Detection of CXCL9 in Antibody-Mediated Rejection after Kidney Transplantation. Diagnostics (Basel) 2022; 12:diagnostics12020308. [PMID: 35204399 PMCID: PMC8871475 DOI: 10.3390/diagnostics12020308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic antibody-mediated rejection (AMR) is a key limiting factor for the clinical outcome of a kidney transplantation (Ktx), where early diagnosis and therapeutic intervention is needed. This study describes the identification of the biomarker CXC-motif chemokine ligand (CXCL) 9 as an indicator for AMR and presents a new aptamer-antibody-hybrid lateral flow assay (hybrid-LFA) for detection in urine. Biomarker evaluation included two independent cohorts of kidney transplant recipients (KTRs) from a protocol biopsy program and used subgroup comparisons according to BANFF-classifications. Plasma, urine and biopsy lysate samples were analyzed with a Luminex-based multiplex assay. The CXCL9-specific hybrid-LFA was developed based upon a specific rat antibody immobilized on a nitrocellulose-membrane and the coupling of a CXCL9-binding aptamer to gold nanoparticles. LFA performance was assessed according to receiver operating characteristic (ROC) analysis. Among 15 high-scored biomarkers according to a neural network analysis, significantly higher levels of CXCL9 were found in plasma and urine and biopsy lysates of KTRs with biopsy-proven AMR. The newly developed hybrid-LFA reached a sensitivity and specificity of 71% and an AUC of 0.79 for CXCL9. This point-of-care-test (POCT) improves early diagnosis-making in AMR after Ktx, especially in KTRs with undetermined status of donor-specific HLA-antibodies.
Collapse
Affiliation(s)
- Lisa K. Seiler
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Ngoc Linh Phung
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (C.N.); (S.I.)
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (C.N.); (S.I.)
| | - Christian Erck
- Helmholtz Centre for Infection Research, Cellular Proteome Research Group, 38124 Braunschweig, Germany;
| | - Jessica Kaufeld
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (H.H.)
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (H.H.)
| | - Christine S. Falk
- Institute for Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Patrick Lindner
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Stefanie Thoms
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Julia Siegl
- Chemical Biology & Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany; (J.S.); (G.M.)
- Center of Aptamer Research & Development (CARD), University of Bonn, 53121 Bonn, Germany
| | - Günter Mayer
- Chemical Biology & Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany; (J.S.); (G.M.)
- Center of Aptamer Research & Development (CARD), University of Bonn, 53121 Bonn, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Cornelia A. Blume
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
- Correspondence:
| |
Collapse
|
15
|
Zhang N, Tan Q, Tao D, Song Y, Song W, Wang J, Ma L, Wu D, Feng Y, Yao J, Han X, Shi Y. Cytokines screening identifies MIG (CXCL9) for postoperative recurrence prediction in operated non-small cell lung cancer patients. Cytokine 2021; 149:155759. [PMID: 34775109 DOI: 10.1016/j.cyto.2021.155759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exploration of reliable biomarkers most likely to identify non-small cell lung cancer (NSCLC) patients at high risk for recurrence after surgery is needed. METHODS Quantibody® Human Cytokine Antibody 6000 was used as screening tool to measure serum levels of 280 cytokines in ten healthy individuals and nine samples from three NSCLC patients before operation, after operation and postoperative recurrence. Selected cytokines were validated in two independent sets (89 patients before surgery, 69 patients after surgery and 40 patients with postoperative recurrence for each set) using ELISA method. The association of the selected cytokine with clinicopathologic features was also evaluated. RESULTS Thirty-six cytokines were declined after surgery and again elevated when recurrence. We selected MIG to be further assessed in 2 validation sets, the mean value of serum MIG levels in 396 NSCLC patients was 253.42 ± 274.48 pg/mL and was significantly higher than the level in 60 healthy controls (47.65 ± 33.23 pg/mL, P < 0.0001). The serum MIG levels were 366.36 ± 324.04 pg/mL pre-operation, 134.04 ± 127.52 pg/mL post-operation and 208.05 ± 239.39 pg/mL in recurrence in NSCLC patients. The serum MIG levels were significant differences among NSCLC patients of pre-operation, post-operation and recurrence and controls (P < 0.0001). Moreover, Serum MIG levels were decreased markedly after operation and notably increased when disease relapsed (P < 0.0005). Serum MIG levels trend to be higher in patients with male gender, older age, smoking habit, poor tumor differentiation, and non-adenocarcinoma histology. CONCLUSIONS These data indicated that MIG might be an indicator of postoperative recurrence and help to identify NSCLC patient who was easy to relapse after surgery.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Dan Tao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yuanyuan Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Wenya Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianfei Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Li Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Di Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yun Feng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China; Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 41 Damucang Hutong, Xicheng District, Beijing 100032, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
16
|
Ritter K, Behrends J, Erdmann H, Rousseau J, Hölscher A, Volz J, Prinz I, Lindenstrøm T, Hölscher C. Interleukin-23 instructs protective multifunctional CD4 T cell responses after immunization with the Mycobacterium tuberculosis subunit vaccine H1 DDA/TDB independently of interleukin-17A. J Mol Med (Berl) 2021; 99:1585-1602. [PMID: 34351501 PMCID: PMC8541990 DOI: 10.1007/s00109-021-02100-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-17A-producing T helper (Th)17 cells are increasingly being acknowledged to be associated with protective immunity to Mycobacterium tuberculosis (Mtb). Subunit vaccines potently promote protective immune responses against Mtb infection that correlate with an expansion of IL-23-dependent Th17 cells. Previous studies revealed that after vaccination, IL-23 is required for protection against challenge with Mtb but the underlying IL-23-dependent-and possibly IL-17A-mediated-mechanisms remain elusive. Therefore, we here analyzed the early outcome of Mtb infection in C57BL/6, IL-23p19-deficient (-/-), and IL-17A-/- mice after vaccination with the subunit vaccine H1-DDA/TDB to investigate the role of the IL-23-Th17 immune axis for the instruction of vaccine-induced protection. While in IL-23p19-/- mice the protective effect was reduced, protection after vaccination was maintained in IL-17A-/- animals for the course of infection of 6 weeks, indicating that after vaccination with H1-DDA/TDB early protection against Mtb is-although dependent on IL-23-not mediated by IL-17A. In contrast, IL-17A deficiency appears to have an impact on maintaining long-term protection. In fact, IL-23 instructed the vaccine-induced memory immunity in the lung, in particular the sustained expansion of tumor necrosis factor (TNF)+IL-2+ multifunctional T cells, independently of IL-17A. Altogether, a targeted induction of IL-23 during vaccination against Mtb might improve the magnitude and quality of vaccine-induced memory immune responses. KEY MESSAGES: After subunit Mtb vaccination with H1-DDA/TDB, IL-23 but not IL-17A contributes to vaccine-induced early protection against infection with Mtb. IL-17F does not compensate for IL-17A deficiency in terms of H1-DDA/TDB-induced protection against Mtb infection. IL 23 promotes the H1-DDA/TDB-induced accumulation of effector memory T cells independently of IL 17A. IL-23 arbitrates the induction of H1-specific IFN-γ-TNF+IL-2+ double-positive multifunctional CD4 T cells after subunit Mtb vaccination in an IL-17A-independent manner.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Core Unit, Research Center Borstel, Borstel, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | | | - Johanna Volz
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Center for Molecular Neurobiology Hamburg, Eppendorf University Medical Center, Hamburg, Germany
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
17
|
Protein PGLYRP1/Tag7 Peptides Decrease the Proinflammatory Response in Human Blood Cells and Mouse Model of Diffuse Alveolar Damage of Lung through Blockage of the TREM-1 and TNFR1 Receptors. Int J Mol Sci 2021; 22:ijms222011213. [PMID: 34681871 PMCID: PMC8538247 DOI: 10.3390/ijms222011213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.
Collapse
|
18
|
Ferguson SA, Panos JJ, Sloper D, Varma V, Sarkar S. Alzheimer's disease: a step closer to understanding type 3 diabetes in African Americans. Metab Brain Dis 2021; 36:1803-1816. [PMID: 34021875 DOI: 10.1007/s11011-021-00754-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the fourth leading cause of death in the United States and the most common cause of adult-onset dementia. Recent results suggest an increased prevalence and severity in African Americans compared to Caucasians. Our understanding of the potential mechanism(s) underlying this ethnicity difference is limited. We previously described ethnicity-related differences in levels of neurodegenerative proteins and cytokines/chemokines in the BA21 region of African Americans and Caucasians with AD. Here, similar multiplex assays were used to examine those endpoints in patient postmortem cerebrospinal fluid (CSF). Additionally, we measured levels of C-peptide, ghrelin, gastric inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon, insulin, leptin, PAI-1, resistin, and visfatin using a human diabetes 10-plex assay. The cytokine and chemokine assays revealed that levels of 26 chemokines or cytokines differed significantly with ethnicity, and three of those were significantly associated with gender. The neurodegenerative disease panel indicated that levels of soluble RAGE were significantly elevated in African Americans compared to Caucasians. All measures in the diabetes disease panel assay were significantly elevated in African Americans: ghrelin, GIP, GLP-1, glucagon, insulin, and visfatin. Through peripheral sample analysis, these results provide further evidence that ethnicity is critically involved in the manifestation of AD.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
19
|
Eltahir M, Isaksson J, Mattsson JSM, Kärre K, Botling J, Lord M, Mangsbo SM, Micke P. Plasma Proteomic Analysis in Non-Small Cell Lung Cancer Patients Treated with PD-1/PD-L1 Blockade. Cancers (Basel) 2021; 13:cancers13133116. [PMID: 34206510 PMCID: PMC8268315 DOI: 10.3390/cancers13133116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Immunotherapy leads to highly variable responses in lung cancer patients. We assessed the value of a blood-based test to predict which patients would benefit from this new treatment modality. We determined that some patients have higher and lower levels of immune markers in their blood samples, and that this is related to better survival without tumor growth. The blood test has the potential to help select the optimal therapy for lung cancer patients. Abstract Checkpoint inhibitors have been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients demonstrate a durable clinical response. PD-L1 scoring is currently the only biomarker measure routinely used to select patients for immunotherapy, but its predictive accuracy is modest. The aim of our study was to evaluate a proteomic assay for the analysis of patient plasma in the context of immunotherapy. Pretreatment plasma samples from 43 NSCLC patients who received anti-PD-(L)1 therapy were analyzed using a proximity extension assay (PEA) to quantify 92 different immune oncology-related proteins. The plasma protein levels were associated with clinical and histopathological parameters, as well as therapy response and survival. Unsupervised hierarchical cluster analysis revealed two patient groups with distinct protein profiles associated with high and low immune protein levels, designated as “hot” and “cold”. Further supervised cluster analysis based on T-cell activation markers showed that higher levels of T-cell activation markers were associated with longer progression-free survival (PFS) (p < 0.01). The analysis of single proteins revealed that high plasma levels of CXCL9 and CXCL10 and low ADA levels were associated with better response and prolonged PFS (p < 0.05). Moreover, in an explorative response prediction model, the combination of protein markers (CXCL9, CXCL10, IL-15, CASP8, and ADA) resulted in higher accuracy in predicting response than tumor PD-L1 expression or each protein assayed individually. Our findings demonstrate a proof of concept for the use of multiplex plasma protein levels as a tool for anti-PD-(L)1 response prediction in NSCLC. Additionally, we identified protein signatures that could predict the response to anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
- Mohamed Eltahir
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden; (M.L.); (S.M.M.)
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
- Centre for Research and Development, Uppsala University, Region Gävleborg, 801 88 Uppsala, Sweden
| | - Johanna Sofia Margareta Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
| | - Klas Kärre
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
| | - Martin Lord
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden; (M.L.); (S.M.M.)
| | - Sara M. Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, 751 24 Uppsala, Sweden; (M.L.); (S.M.M.)
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.E.); (J.I.); (J.S.M.M.); (J.B.)
- Correspondence: ; Tel.: +46-18-6112615
| |
Collapse
|
20
|
Sun H, Fan J, Shang X, Tuohetaerbaike B, Li Y, Lv J, Wang Y, Wang L, Wang J, Ma X. Study on the relationship between CXCR3 and its ligands and tubal tuberculosis. Life Sci 2021; 272:119047. [PMID: 33454369 DOI: 10.1016/j.lfs.2021.119047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Chemokines play an important role in Mycobacterium tuberculosis infection. We aimed to investigate CXCR3, CXCL9, CXCL10 and CXCL11 to explore the correlation between the severity of tubal tuberculosis and chemokines. METHODS 26 patients with tubal tuberculosis diagnosed in our hospital from 2016 to 2019 were selected as the experimental group, and 18 female patients who underwent high-risk pregnancy supervision in our hospital from 2016 to 2018 were selected as the control group. The pathological manifestations of tubal tuberculosis were observed by HE staining, the expressions of CXCR3 and its ligands in fallopian tubes were detected by immunohistochemistry. RESULTS Typical granulomatous structure of tubal tuberculosis was observed by HE staining and most of them were accompanied by massive necrosis in the experimental group, while no granulomatous lesions were found in the control group. The results of immunohistochemical staining showed that CXCR3 and its ligands were expressed in the cytoplasm and nucleus of oviduct epithelial cells and inflammatory cells, in the granuloma area. CXCL9, CXCL10 and CXCL11 were related to the severity of the disease. KEY FINDINGS CXCR3 and its ligands were positively expressed in tubal tuberculosis, especially CXCL9, CXCL10 and CXCL11 were positively correlated with the severity of fallopian tube disease. SIGNIFICANCE It is helpful for clinical diagnosis and treatment detection, and provides a new therapeutic target for the study of female genital tuberculosis in the future.
Collapse
Affiliation(s)
- Hu Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China; First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jiahui Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China; First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | | | - Ying Li
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jie Lv
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yue Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Liang Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Jing Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China; Respiratory Department of the Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570000, China.
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
21
|
Shang X, Wang L, Liu Y, Liu X, Lv J, Zhou X, Wang H, Nazierhan S, Wang J, Ma X. Diagnostic value of CXCR3 and its ligands in spinal tuberculosis. Exp Ther Med 2020; 21:73. [PMID: 33365073 PMCID: PMC7716639 DOI: 10.3892/etm.2020.9505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to investigate whether C-X-C motif chemokine receptor 3 (CXCR3) and its ligands may aid in diagnosing spinal tuberculosis (ST). A total of 36 patients with ST and 20 healthy controls were enrolled in the present study. The morphology of tuberculous granuloma in spinal tissue was observed by hematoxylin and eosin staining. The presence and distribution of acid-fast bacilli (AFB) were observed by Ziehl-Neelsen (ZN) staining. The protein expression of Ag85B, IFN-γ, and CXCR3 and its ligands (CXCL9 and CXCL10) were detected by immunohistochemistry. The levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood of patients with ST and healthy controls were detected by reverse transcription-quantitative polymerase chain reaction and ELISA. Typical tuberculous granuloma was observed in the ST close tissue. AFB was observed by ZN staining. Positive expression of Ag85B was found in the surrounding caseous necrotic tissue of the tuberculous granuloma. IFN-γ, CXCR3, CXCL9 and CXCL10 were expressed in the tissue surrounding the tuberculous granuloma and their expression levels were markedly higher than those in the distant tissues. The levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood of patients with ST were significantly higher than those in the healthy controls. Receiver operating characteristic curve analysis demonstrated that IFN-γ, CXCR3 and CXCL10 were more reliable diagnostic markers in terms of sensitivity and specificity. IFN-γ, CXCR3, CXCL9 and CXCL10 were highly expressed in the lesion tissue and peripheral blood samples of patients with ST, and IFN-γ, CXCR3 and its ligands aided in diagnosing ST.
Collapse
Affiliation(s)
- Xiaoqian Shang
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Liang Wang
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yumei Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuemei Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, Xinjiang 830011, P.R. China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Hao Wang
- Department of Spinal Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830011, P.R. China
| | - Shaxika Nazierhan
- Department of Spinal Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830011, P.R. China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan Road, Urumqi, Xinjiang 830011, P.R. China
| | - Xiumin Ma
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
22
|
Hu X, Shang X, Wang L, Fan J, Wang Y, Lv J, Nazierhan S, Wang H, Wang J, Ma X. The role of CXCR3 and its ligands expression in Brucellar spondylitis. BMC Immunol 2020; 21:59. [PMID: 33208100 PMCID: PMC7672857 DOI: 10.1186/s12865-020-00390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/08/2020] [Indexed: 01/18/2023] Open
Abstract
Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China.,First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China
| | - Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China.,First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China
| | - Liang Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China.,First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China
| | - Jiahui Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China
| | - Yue Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China
| | - Shaxika Nazierhan
- Department of Spinal Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830011, P.R. China
| | - Hao Wang
- Department of Spinal Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830011, P.R. China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China. .,First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China.
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China. .,First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, P.R. China.
| |
Collapse
|
23
|
Kalbasi A, Tariveranmoshabad M, Hakimi K, Kremer S, Campbell KM, Funes JM, Vega-Crespo A, Parisi G, Champekar A, Nguyen C, Torrejon D, Shin D, Zaretsky JM, Damoiseaux RD, Speiser DE, Lopez-Casas PP, Quintero M, Ribas A. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci Transl Med 2020; 12:eabb0152. [PMID: 33055240 PMCID: PMC8053376 DOI: 10.1126/scitranslmed.abb0152] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Defects in tumor-intrinsic interferon (IFN) signaling result in failure of immune checkpoint blockade (ICB) against cancer, but these tumors may still maintain sensitivity to T cell-based adoptive cell therapy (ACT). We generated models of IFN signaling defects in B16 murine melanoma observed in patients with acquired resistance to ICB. Tumors lacking Jak1 or Jak2 did not respond to ICB, whereas ACT was effective against Jak2 KO tumors, but not Jak1 KO tumors, where both type I and II tumor IFN signaling were defective. This was a direct result of low baseline class I major histocompatibility complex (MHC I) expression in B16 and the dependency of MHC I expression on either type I or type II IFN signaling. We used genetic and pharmacologic approaches to uncouple this dependency and restore MHC I expression. Through independent mechanisms, overexpression of NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) and intratumoral delivery of BO-112, a potent nanoplexed version of polyinosinic:polycytidylic acid (poly I:C), each restored the efficacy of ACT against B16-Jak1 KO tumors. BO-112 activated double-stranded RNA (dsRNA) sensing (via protein kinase R and Toll-like receptor 3) and induced MHC I expression via nuclear factor κB, independent of both IFN signaling and NLRC5. In summary, we demonstrated that in the absence of tumor IFN signaling, MHC I expression is essential and sufficient for the efficacy of ACT. For tumors lacking MHC I expression due to deficient IFN signaling, activation of dsRNA sensors by BO-112 affords an alternative approach to restore the efficacy of ACT.
Collapse
Affiliation(s)
- Anusha Kalbasi
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Mito Tariveranmoshabad
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kevin Hakimi
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Sarah Kremer
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Katie M Campbell
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Juan M Funes
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Ameya Champekar
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christine Nguyen
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Davis Torrejon
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Shin
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Robert D Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Antoni Ribas
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
24
|
Ni J, Liu S, Qi F, Li X, Yu S, Feng J, Zheng Y. Screening TCGA database for prognostic genes in lower grade glioma microenvironment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:209. [PMID: 32309356 PMCID: PMC7154476 DOI: 10.21037/atm.2020.01.73] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To identify prognostic hub genes which associated with tumor microenvironment (TME) in lower grade glioma (LGG) of central nervous system. Methods We downloaded LGG patients gene transcriptome profiles of the central nervous system in The Cancer Genome Atlas (TCGA) database. Clinical characteristics and survival data through the Genomic Data Commons (GDC) tool were extracted. We used limma package for normalization processing. Scores of immune, stromal and ESTIMATE were calculated using ESTIMATE algorithm. Then, box plots were applied to explore the association between immune scores, stromal scores, ESTIMATE scores and histological type, tumor grade. Kaplan-Meier (K-M) analysis was utilized to explore the prognostic value of scores. Furthermore, heatmaps and volcano plots were applied for visualizing expression of differential expressed-gene screening and cluster analysis. Venn plots were constructed to screen the intersected differentially expressed genes (DEGs). In addition, enrichment of functions and signaling pathways and Gene Set Enrichment Analysis (GESA) of the DEGs were performed. Then we used protein-protein interaction (PPI) network and Cytoscape software to identify hub genes. We evaluated the prognostic value of hub genes and risk score (RS) calculated based on multivariate cox regression analysis. Finally, relationships of hub genes with the TME of LGG patients were evaluated based on tumor immune estimation resource (TIMER) database. Results Gene expression profiles and clinical data of 514 LGG samples were extracted and the results revealed that higher scores were significantly related with histological types and higher tumor grade (P<0.0001, respectively). Besides, higher scores were associated with worse survival outcomes in immune scores (P=0.0167), stromal scores (P=0.0035) and ESTIMATE scores (P=0.0190). Then, 785 up-regulated intersected genes and 357 down-regulated intersected genes were revealed. Functional enrichment analysis revealed that intersected genes were associated with immune response, inflammatory response, plasma membrane and receptor activity. After PPI network construction and cytoHubba analysis, 25 tumor immune-related hub genes were identified and enriched pathways were identified by GSEA. Besides, receiver operating characteristic (ROC) curves showed significantly predictive accuracy [area under curve (AUC) =0.771] of RS. Furthermore, significant prognostic values of hub genes were observed, and the relationships between hub genes and LGG TME were demonstrated. Conclusions We identified 25 TME-related genes which significantly associated with overall survival in patients with central nervous system LGG from TCGA database.
Collapse
Affiliation(s)
- Jie Ni
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shaorong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
25
|
Ferguson SA, Varma V, Sloper D, Panos JJ, Sarkar S. Increased inflammation in BA21 brain tissue from African Americans with Alzheimer's disease. Metab Brain Dis 2020; 35:121-133. [PMID: 31823110 DOI: 10.1007/s11011-019-00512-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Chronic neuroinflammation is strongly associated with AD and altered peripheral and central levels of chemokines and cytokines have been frequently described in those with AD. Given the increasing evidence of ethnicity-related differences in AD, it was of interest to determine if those altered chemokine and cytokine levels are ethnicity-related. Because African Americans exhibit a higher incidence of AD and increased symptom severity, we explored chemokine and cytokine concentrations in post-mortem brain tissue from the BA21 region of African Americans and Caucasians with AD using multiplex assays. IL-1β, MIG, TRAIL, and FADD levels were significantly increased in African Americans while levels of IL-3 and IL-8 were significantly decreased. Those effects did not interact with gender; however, overall levels of CCL25, CCL26 and CX3CL1 were significantly decreased in women. The NLRP3 inflammasome is thought to be critically involved in AD. Increased activation of this inflammasome in African Americans is consistent with the current results.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, 72079, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| |
Collapse
|
26
|
Arger NK, Ho ME, Allen IE, Benn BS, Woodruff PG, Koth LL. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med 2019; 161:105822. [PMID: 31783271 DOI: 10.1016/j.rmed.2019.105822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sarcoidosis is a granulomatous inflammatory disease with limited blood markers to predict outcomes. The interferon-gamma (IFN-γ)-inducible chemotactic cytokines (chemokines), CXCL9 and CXCL10, are both increased in sarcoidosis patients, yet they possess important molecular differences. Our study determined if serum chemokines correlated with different aspects of disease severity. METHODS We measured CXCL9 and CXCL10 serum levels at initial study visits and longitudinally in sarcoidosis subjects using ELISA. We examined these chemokines' relationships with pulmonary and organ involvement outcomes, their gene expression, peripheral blood immune cell populations, and immunosuppression use. RESULTS Higher CXCL10 levels negatively correlated with FVC, TLC, and DLCO at subjects' initial visit and when measured repeatedly over two years. CXCL10 also positively correlated with longitudinal respiratory symptom severity. Additionally, for every log10(CXCL10) increase, the risk of longitudinal pulmonary function decline increased 8.8 times over the 5-year study period (95% CI 1.6-50, p = 0.014, log10(CXCL0) range 0.84-2.7). In contrast, CXCL9 levels positively correlated with systemic organ involvement at initial study visit (1.5 additional organs involved for every log10(CXCL9) increase, 95% CI 1.1-2.0, p = 0.022, log10(CXCL9) range 1.3-3.3). CXCL10, not CXCL9, positively correlated with its own blood gene expression and monocyte level. Immunosuppressive treatment was associated with lower levels of both chemokines. CONCLUSIONS In sarcoidosis subjects, serum CXCL9 levels correlated with systemic organ involvement and CXCL10 levels strongly correlated with respiratory outcomes, which may ultimately prove helpful in clinical management. These differing associations may be due to differences in cellular regulation and tissue origin.
Collapse
Affiliation(s)
- Nicholas K Arger
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Melissa E Ho
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Isabel E Allen
- University of California, San Francisco, Department of Epidemiology and Biostatistics, 550 16thSt, San Francisco, CA, 94158, USA
| | - Bryan S Benn
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Prescott G Woodruff
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Laura L Koth
- University of California, San Francisco, Division of Pulmonary and Critical Care, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| |
Collapse
|
27
|
Abstract
'Immune checkpoint blockade' for cancer describes the use of therapeutic antibodies that disrupt negative immune regulatory checkpoints and unleash pre-existing antitumour immune responses. Antibodies targeting the checkpoint molecules cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1) and PD1 ligand 1 (PD-L1) have had early success in the clinic, which has led to approval by the US Food and Drug Administration of multiple agents in several cancer types. Yet, clinicians still have very limited tools to discriminate a priori patients who will and will not respond to treatment. This has fuelled a wave of research into the molecular mechanisms of tumour-intrinsic resistance to immune checkpoint blockade, leading to the rediscovery of biological processes critical to antitumour immunity, namely interferon signalling and antigen presentation. Other efforts have shed light on the immunological implications of canonical cancer signalling pathways, such as WNT-β-catenin signalling, cell cycle regulatory signalling, mitogen-activated protein kinase signalling and pathways activated by loss of the tumour suppressor phosphoinositide phosphatase PTEN. Here we review each of these molecular mechanisms of resistance and explore ongoing approaches to overcome resistance to immune checkpoint blockade and expand the spectrum of patients who can benefit from immune checkpoint blockade.
Collapse
|
28
|
Wakasa Y, Kimura N, Yamada T, Shimizu T, Hakamada K, Tsuchida S. Delay in hepatocyte proliferation and prostaglandin D2 synthase expression for cholestasis due to endotoxin during partial hepatectomy in rats. Mol Med Rep 2019; 20:4367-4375. [PMID: 31545425 PMCID: PMC6797974 DOI: 10.3892/mmr.2019.10681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/22/2019] [Indexed: 11/05/2022] Open
Abstract
Infection is a frequent complication of liver transplantation or partial hepatectomy (PH) and sometimes results in cholestasis. We examined factors involved in infection‑induced cholestasis after PH, employing a rat PH model and lipopolysaccharide (LPS) as a bacterial toxin. Male Sprague‑Dawley rats were subjected to 70% PH and/or LPS injection, and tissues were harvested at 0, 24, 72 and 168 h. Gene expression was analyzed by microarray analysis and reverse transcription‑quantitative polymerase chain reaction, and protein levels and localization were analyzed by western blotting and immunohistochemistry, respectively. Plasma bile acid levels were significantly higher in the LPS + PH group than in the PH group. Ribonucleotide reductase regulatory subunit M2 and proliferating cell nuclear antigen peaked at 24 and 72 h in the PH group and LPS + PH group, respectively, indicating a delay in cell proliferation in the latter group. The sodium‑dependent taurocholate cotransporting polypeptide and organic‑anion‑transporting polypeptide 1a1 and 1a2 were reduced in the PH group at 24 h, and were not further decreased in the LPS + PH group. Chemokine ligand 9 (Cxcl9), a chemokine involved in M2 macrophage polarization, increased after 24 h in the LPS and the LPS + PH groups. The number and shape of Cxcl9‑positive cells were similar to CD163‑positive cells, suggesting that such cells produced the chemokine. Hematopoietic prostaglandin D2 synthase (Ptgds2) was only detected in hepatocytes of the LPS + PH group exhibiting a delay in cell proliferation. Thus, Kupffer cells activated with LPS were suggested to be responsible for a delay in hepatocyte proliferation after PH.
Collapse
Affiliation(s)
- Yusuke Wakasa
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Takeshi Shimizu
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Shigeki Tsuchida
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| |
Collapse
|
29
|
Sun Z, Liu Y, Yu F, Xu Y, Yanli L, Liu N. Long non-coding RNA and mRNA profile analysis of metformin to reverse the pulmonary hypertension vascular remodeling induced by monocrotaline. Biomed Pharmacother 2019; 115:108933. [DOI: 10.1016/j.biopha.2019.108933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
|
30
|
Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, Lanitis E, Duraiswamy J, Tanyi JL, Benencia F, Conejo-Garcia J, Ramay HR, Montone KT, Powell DJ, Gimotty PA, Facciabene A, Jackson DG, Weber JS, Rodig SJ, Hodi SF, Kandalaft LE, Irving M, Zhang L, Foukas P, Rusakiewicz S, Delorenzi M, Coukos G. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. Cancer Cell 2019; 35:885-900.e10. [PMID: 31185212 PMCID: PMC6961655 DOI: 10.1016/j.ccell.2019.05.004] [Citation(s) in RCA: 500] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 01/05/2023]
Abstract
We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8+ T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Chemokine CCL5/genetics
- Chemokine CCL5/immunology
- Chemokine CCL5/metabolism
- Chemokine CXCL9/genetics
- Chemokine CXCL9/immunology
- Chemokine CXCL9/metabolism
- Chemotaxis, Leukocyte/drug effects
- Coculture Techniques
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- DNA Methylation
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunotherapy/methods
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Paracrine Communication
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Denarda Dangaj
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Marine Bruand
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Catherine Ronet
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Priyanka A Duttagupta
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; University of Chicago, Knapp Center for Biomedical Discovery, Department of Hematology & Oncology, Chicago, IL 60637, USA
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Jaikumar Duraiswamy
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Cell and Gene Therapy, OTAT/CBER/FDA, Silver Spring, MD 20993, USA
| | - Janos L Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Fabian Benencia
- Russ College of Engineering and Technology, Ohio University, Athens, OH 45701, USA
| | - Jose Conejo-Garcia
- Department of Immunology and Gynecologic Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Hena R Ramay
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel J Powell
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Phyllis A Gimotty
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrea Facciabene
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, New York University, 522 First Avenue, Room 1310 Smilow Building, New York, NY 10016, USA
| | - Scott J Rodig
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA; Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stephen F Hodi
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Lin Zhang
- Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Periklis Foukas
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland; 2nd Department of Pathology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland
| | - Mauro Delorenzi
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne 1066, Switzerland.
| |
Collapse
|
31
|
Yamaguchi H, Hiroi M, Ohmori Y. Silencing of the interferon-inducible gene Ifi204/p204 induces resistance to interferon-γ-mediated cell growth arrest of tumor cells. Cytokine 2019; 118:80-92. [DOI: 10.1016/j.cyto.2018.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
32
|
Lin CF, Su CJ, Liu JH, Chen ST, Huang HL, Pan SL. Potential Effects of CXCL9 and CCL20 on Cardiac Fibrosis in Patients with Myocardial Infarction and Isoproterenol-Treated Rats. J Clin Med 2019; 8:jcm8050659. [PMID: 31083544 PMCID: PMC6572441 DOI: 10.3390/jcm8050659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
The chemokines CXCL9 and CCL20 have been reported to be associated with ventricular dysfunction. This study was aimed to investigate the effects of CXCL9/CCL20 on cardiac fibrosis following myocardial infarction (MI). Blood samples of patients with MI were obtained to determine the serum CXCL9, CCL20, tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β). The expression of CXCL9 and CCL20 in hypoxia-incubated H9c2 cells and TNF-α/TGF-β-activated peripheral blood mononuclear cells (PBMCs) were examined. The experimental MI of rats was produced by the intraperitoneal injection of isoproterenol (ISO) (85 mg/kg/day) for two consecutive days. The growth and migration of CXCL9/CCL20-incubated cardiac fibroblasts in vitro were evaluated. TNF-α/TGF-β-activated PBMCs showed an enhanced expression of CXCL9 and CCL20, while hypoxic H9c2 cells did not. Patients with MI had significantly enhanced levels of serum TGF-β and CXCL9 compared to healthy subjects. ISO-treated rats had increased serum CXCL9 levels and marked cardiac fibrosis compared to control rats. The trend of increased serum CCL20 in patients with MI and ISO-treated rats was not significant. CXCL9-incubated cardiac fibroblasts showed enhanced proliferation and migration. The findings of this study suggest that an enhanced expression of CXCL9 following MI might play a role in post-MI cardiac fibrosis by activating cardiac fibroblasts.
Collapse
Affiliation(s)
- Chao-Feng Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan.
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Chih-Jou Su
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
| | - Jia-Hong Liu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Shui-Tien Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Han-Li Huang
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
33
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C, Ye DW, Tian YK. The Role of CXCR3 in Neurological Diseases. Curr Neuropharmacol 2019; 17:142-150. [PMID: 29119926 PMCID: PMC6343204 DOI: 10.2174/1570159x15666171109161140] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. METHODS English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. RESULTS The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. CONCLUSION These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Rong Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Xing
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Costa RS, Carvalho LP, Campos TM, Magalhães AS, Passos ST, Schriefer A, Silva JA, Lago E, Paixão CS, Machado P, Scott P, Carvalho EM. Early Cutaneous Leishmaniasis Patients Infected With Leishmania braziliensis Express Increased Inflammatory Responses After Antimony Therapy. J Infect Dis 2019; 217:840-850. [PMID: 29216363 DOI: 10.1093/infdis/jix627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
Background Early cutaneous leishmaniasis (ECL) is characterized by a nonulcerated papular lesion and illness duration less than 30 days. Approximately 4 weeks later, the cutaneous leishmaniasis (CL) ulcers appear. We were surprised to find that failure after antimony therapy (Sb5) is higher in ECL than CL. We hypothesize that the inflammatory response in ECL patients may increase during Sb5 therapy, which leads to treatment failure. Methods A cohort of 44 ECL patients infected by Leishmania braziliensis was established to evaluate the response to Sb5 and to compare immunologic responses in ECL patients with CL and healthy subjects. Results A hierarchical clustering based on cytokine levels showed a weak positive correlation between proinflammatory cytokine levels and those patients that failed Sb5 treatment. Although Sb5 therapy decreased interferon-γ and tumor necrosis factor levels in CL patients, we were surprised to find that an increase in these cytokines was observed in ECL patients. Moreover, interleukin (IL)-10 was less able to down-modulate immune responses in ECL. Conclusions The enhanced production of proinflammatory cytokines, due in part to the decreased ability of IL-10 to down-modulate immune response during therapy in ECL, promotes the development and persistence of leishmania ulcer despite antimony therapy.
Collapse
Affiliation(s)
- Rúbia S Costa
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucas P Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, Brazil
| | - Taís M Campos
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Andréa S Magalhães
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Sara T Passos
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert Schriefer
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Juliana A Silva
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Ednaldo Lago
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Camilla S Paixão
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo Machado
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
35
|
Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, Flodr P, Hubackova S, Bartek J, Hodny Z, Divoky V. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene 2019; 38:5627-5642. [PMID: 30967632 PMCID: PMC6756199 DOI: 10.1038/s41388-019-0813-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory and oncogenic signaling converge in disease evolution of BCR–ABL-negative myeloproliferative neoplasms, clonal hematopoietic stem cell disorders characterized by gain-of-function mutation in JAK2 kinase (JAK2V617F), with highest prevalence in patients with polycythemia vera (PV). Despite the high risk, DNA-damaging inflammatory microenvironment, PV progenitors tend to preserve their genomic stability over decades until their progression to post-PV myelofibrosis/acute myeloid leukemia. Using induced pluripotent stem cells-derived CD34+ progenitor-enriched cultures from JAK2V617F+ PV patient and from JAK2 wild-type healthy control, CRISPR-modified HEL cells and patients’ bone marrow sections from different disease stages, we demonstrate that JAK2V617F induces an intrinsic IFNγ- and NF-κB-associated inflammatory program, while suppressing inflammation-evoked DNA damage both in vitro and in vivo. We show that cells with JAK2V617F tightly regulate levels of inflammatory cytokines-induced reactive oxygen species, do not fully activate the ATM/p53/p21waf1 checkpoint and p38/JNK MAPK stress pathway signaling when exposed to inflammatory cytokines, suppress DNA single-strand break repair genes’ expression yet overexpress the dual-specificity phosphatase (DUSP) 1. RNAi-mediated knock-down and pharmacological inhibition of DUSP1, involved in p38/JNK deactivation, in HEL cells reveals growth addiction to DUSP1, consistent with enhanced DNA damage response and apoptosis in DUSP1-inhibited parental JAK2V617F+ cells, but not in CRISPR-modified JAK2 wild-type cells. Our results indicate that the JAK2V617F+ PV progenitors utilize DUSP1 activity as a protection mechanism against DNA damage accumulation, promoting their proliferation and survival in the inflammatory microenvironment, identifying DUSP1 as a potential therapeutic target in PV.
Collapse
Affiliation(s)
- J Stetka
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Vyhlidalova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - L Lanikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - P Koralkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - J Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - A Hlusi
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Flodr
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - S Hubackova
- Laboratory of Molecular Therapy, Institute of Biotechnology, BIOCEV, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - J Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark. .,Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic. .,Division of Genome Biology, Department of Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Z Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - V Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
36
|
Velazquez-Caldelas TE, Alcalá-Corona SA, Espinal-Enríquez J, Hernandez-Lemus E. Unveiling the Link Between Inflammation and Adaptive Immunity in Breast Cancer. Front Immunol 2019; 10:56. [PMID: 30761130 PMCID: PMC6362261 DOI: 10.3389/fimmu.2019.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has been recognized as an important driver in the development and growth of malignancies. Inflammatory signaling in cancer emerges from the combinatorial interaction of several deregulated pathways. Pathway deregulation is often driven by changes in the underlying gene regulatory networks. Confronted with such complex scenario, it can be argued that a closer analysis of the structure of such regulatory networks will shed some light on how gene deregulation led to sustained inflammation in cancer. Here, we inferred an inflammation-associated gene regulatory network from 641 breast cancer and 78 healthy samples. A modular structure analysis of the regulatory network was carried out, revealing a hierarchical modular structure. Modules show significant overrepresentation score p-values for biological processes unveiling a definite association between inflammatory processes and adaptive immunity. Other modules are enriched for T-cell activation, differentiation of CD8+ lymphocytes and immune cell migration, thus reinforcing the aforementioned association. These analyses suggest that in breast cancer tumors, the balance between antitumor response and immune tolerance involving CD8+ T cells is tipped in favor of the tumor. One possible mechanism is the induction of tolerance and anergization of these cells by persistent antigen exposure.
Collapse
Affiliation(s)
| | - Sergio Antonio Alcalá-Corona
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Ecology and Evolution, Erman Biology Center, The University of Chicago, Chicago, IL, United States
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
37
|
Wang Z, Zhang H, Liu R, Qian T, Liu J, Huang E, Lu Z, Zhao C, Wang L, Chu Y. Peyer's patches-derived CD11b + B cells recruit regulatory T cells through CXCL9 in dextran sulphate sodium-induced colitis. Immunology 2018; 155:356-366. [PMID: 29969845 DOI: 10.1111/imm.12977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Regulatory T (Treg) cells play an essential role in the maintenance of intestinal homeostasis. In Peyer's patches (PPs), which comprise the most important IgA induction site in the gut-associated lymphoid tissue, Treg cells promote IgA isotype switching. However, the mechanisms underlying their entry into PPs and isotype switching facilitation in activated B cells remain unknown. This study, based on the dextran sulphate sodium (DSS)-induced colitis model, revealed that Treg cells are significantly increased in PPs, along with CD11b+ B-cell induction. Immunofluorescence staining showed that infiltrated Treg cells were located around CD11b+ B cells and produced transforming growth factor-β, thereby inducing IgA+ B cells. Furthermore, in vivo and in vitro studies revealed that CD11b+ B cells in PPs had the capacity to recruit Treg cells into PPs rather than promoting their proliferation. Finally, we found that Treg cell recruitment was mediated by the chemokine CXCL9 derived from CD11b+ B cells in PPs. These findings demonstrate that CD11b+ B cells induced in PPs during colitis actively recruit Treg cells to accomplish IgA isotype switch in a CXCL9-dependent manner.
Collapse
Affiliation(s)
- Zhiming Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hushan Zhang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tingting Qian
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Enyu Huang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chujun Zhao
- Northfield Mount Hermon School, Mount Hermon, MA, USA
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Centre, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Myeloid-restricted ablation of Shp2 restrains melanoma growth by amplifying the reciprocal promotion of CXCL9 and IFN-γ production in tumor microenvironment. Oncogene 2018; 37:5088-5100. [PMID: 29795405 DOI: 10.1038/s41388-018-0337-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp2) is generally considered to be an oncogene owing to its ability in enhancing the malignancy of multiple types of tumor cells; however, its role in modulating tumor immunity remains largely elusive. Here, we reported that myeloid-restricted ablation of Shp2 suppressed melanoma growth. Mechanistically, loss of Shp2 potentiates macrophage production of CXCL9 in response to IFN-γ and tumor cell-derived cytokines, thereby facilitating the tumor infiltration of IFN-γ-producing T cells that could in turn support CXCL9 production within tumor microenvironment. Collectively, our findings highlight a causative role of myeloid Shp2 in dampening T cell-mediated antitumor immunity by restraining the macrophage/CXCL9-T cell/IFN-γ feedback loop. Thus, targeting macrophage Shp2 may help to create a Th1-dominant tumor immune microenvironment.
Collapse
|
39
|
Ruas LP, Genaro LM, Justo-Junior AS, Coser LO, de Castro LF, Trabasso P, Mamoni RL, Roque-Barreira MC, Blotta MHSL. Effect of ArtinM on Human Blood Cells During Infection With Paracoccidioides brasiliensis. Front Microbiol 2018; 9:867. [PMID: 29780375 PMCID: PMC5945982 DOI: 10.3389/fmicb.2018.00867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Infections caused by fungi are prominent in our environment and can be potentially fatal. paracoccidioidomycosis (PCM), caused by fungi of the Paracoccidioides genus, is the most frequent systemic mycosis in Brazil and the main cause of death among immunocompetent individuals. The antifungal therapy for PCM is usually effective but side effects and relapses are often reported. The latter could be avoided with alternative or complementary therapies aimed at boosting the immune response to combat this pathogen. Recent reports have pointed at the importance of an effective cellular immune response, with the participation of Th1 cells, in the resistance to and control of Paracoccidioides infection. The ArtinM lectin, extracted from jackfruit (Artocarpus heterophyllus) seeds, exhibits immunomodulatory activity against several intracellular pathogens, including Paracoccidioides brasiliensis, by promoting the development of a Th1 immune response. The aim of this work was to characterize the effect of ArtinM on peripheral blood cells of patients with PCM and on those of control individuals infected with fungal yeasts cells in vitro. Our results demonstrate that ArtinM activates human neutrophils in vitro, leading to an increase in cytokine production and CD54 expression. ArtinM activated P. brasiliensis-infected neutrophils from both healthy individuals and patients with PCM. This activation was not dependent on the dectin-1 receptor, because pre-incubation with laminarin, a dectin-1 receptor blocker, did not reverse the activated state of the cells. ArtinM also stimulated human peripheral blood mononuclear cells to secrete pro-inflammatory Th1-related cytokines, which are protective against Paracoccidioides infection. These data support the immunostimulatory action of ArtinM and encourage new studies using the lectin for the immunotherapy of PCM.
Collapse
Affiliation(s)
- Luciana P Ruas
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Livia M Genaro
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Amauri S Justo-Junior
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lilian O Coser
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Lívia F de Castro
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Plinio Trabasso
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ronei L Mamoni
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil.,Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| | - Maria-Cristina Roque-Barreira
- Department of Cell and Molecular Biology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria-Heloisa S L Blotta
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
40
|
Zhang C, Li Z, Xu L, Che X, Wen T, Fan Y, Li C, Wang S, Cheng Y, Wang X, Qu X, Liu Y. CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer. BMC Cancer 2018; 18:462. [PMID: 29690901 PMCID: PMC5916585 DOI: 10.1186/s12885-018-4384-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/17/2018] [Indexed: 01/10/2023] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) is an immunosuppressor that plays an important role in cancer treatments. Although majority of the studies demonstrated that PD-L1 expression was regulated by cellular intrinsic and extrinsic controls, and IFN-γ was a key molecule of extrinsic control, other studies imply that other cytokines play important roles in PD-L1 expression. In this study, we investigated the regulation of PD-L1 by chemokine signaling pathway in gastric cancer (GC) cells. Methods Bioinformatics was used to explore the PD-L1-related genes in GC and propose a hypothesis. PD-L1 and CXCR3 expression were detected by western blot in SGC7901 and MKN74 cell lines. Meanwhile, PD-L1 and CXCR3 expressions were immunohistochemically assessed for their relevance. Moreover, PD-L1, pSTAT3 and pAkt were detected after treatment with CXCL9/10/11. Furthermore,PD-L1, pSTAT3 and pAkt were evaluated after blocking chemokine signaling in SGC7901 cells. Results Based on online database analysis, CXCL9/10/11-CXCR3 is proposed to upregulate PD-L1 expression by activating the STAT and PI3K-Akt pathways. This hypothesis was confirmed by in vitro and vivo experiments. CXCR3 and PD-L1 were expressed in GC cell lines and tissues, and the expression of CXCR3 and PD-L1 was positively related. PD-L1 was upregulated after treatment with CXCL9/10/11, accompanied by activation of STAT3 and Akt. After blocking chemokine signaling, upregulation of PD-L1 and activation of STAT3 and Akt were diminished. Conclusions CXCL9/10/11-CXCR3 upregulated the expression of PD-L1 by activating the STAT and PI3K-Akt signaling pathways in GC cells. There was a significant positive correlation between the expression of PD-L1 and CXCR3 in gastric cancer patient tissues. Electronic supplementary material The online version of this article (10.1186/s12885-018-4384-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenlu Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China.,Department of Geratology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yibo Fan
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Shuo Wang
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yu Cheng
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xiaoxun Wang
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
41
|
Sorensen EW, Lian J, Ozga AJ, Miyabe Y, Ji SW, Bromley SK, Mempel TR, Luster AD. CXCL10 stabilizes T cell-brain endothelial cell adhesion leading to the induction of cerebral malaria. JCI Insight 2018; 3:98911. [PMID: 29669942 PMCID: PMC5931132 DOI: 10.1172/jci.insight.98911] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Malaria remains one of the world's most significant human infectious diseases and cerebral malaria (CM) is its most deadly complication. CM pathogenesis remains incompletely understood, hindering the development of therapeutics to prevent this lethal complication. Elevated levels of the chemokine CXCL10 are a biomarker for CM, and CXCL10 and its receptor CXCR3 are required for experimental CM (ECM) in mice, but their role has remained unclear. Using multiphoton intravital microscopy, CXCR3 receptor- and ligand-deficient mice and bone marrow chimeric mice, we demonstrate a key role for endothelial cell-produced CXCL10 in inducing the firm adhesion of T cells and preventing their cell detachment from the brain vasculature. Using a CXCL9 and CXCL10 dual-CXCR3-ligand reporter mouse, we found that CXCL10 was strongly induced in the brain endothelium as early as 4 days after infection, while CXCL9 and CXCL10 expression was found in inflammatory monocytes and monocyte-derived DCs within the blood vasculature on day 8. The induction of both CXCL9 and CXCL10 was completely dependent on IFN-γ receptor signaling. These data demonstrate that IFN-γ-induced, endothelium-derived CXCL10 plays a critical role in mediating the T cell-endothelial cell adhesive events that initiate the inflammatory cascade that injures the endothelium and induces the development of ECM.
Collapse
|
42
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
43
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Knörr F, Damm-Welk C, Ruf S, Singh VK, Zimmermann M, Reiter A, Woessmann W. Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica 2017; 103:477-485. [PMID: 29242300 PMCID: PMC5830391 DOI: 10.3324/haematol.2017.177972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/07/2017] [Indexed: 01/16/2023] Open
Abstract
Patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma often present with B-symptoms or hemophagocytosis and generate an anti-tumor immune response. Specific serum cytokine levels or profiles may reflect the tumor burden, non-specific immune stimulation by the tumor or differences in the strength of the patients’ anti-lymphoma immunity. We systematically correlated pretreatment concentrations of 25 cytokines with clinical and biological characteristics in a well-characterized cohort of 119 uniformly treated pediatric patients with anaplastic large cell lymphoma. Fifteen patients with anaplastic large cell lymphoma in remission and 11 patients with low-stage B-cell lymphoma served as controls. Concentrations of interleukin-9, interleukin-10, interleukin-17a, hepatocyte growth factor, soluble interleukin-2 receptor, and soluble CD30 were significantly higher in initial sera of patients than in the sera of subjects from both control groups, indicating an anaplastic large cell lymphoma-type cytokine signature. The levels of interleukin-6, interferon-γ, interferon γ-induced protein, and soluble interleukin-2 receptor correlated with the stage, initial general condition, minimal disseminated disease, anaplastic lymphoma kinase-antibody titers, and the risk of relapse among patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Only interleukin-6 showed an independent prognostic value in multivariate analyses. Pretreatment cytokine profiles in patients with anaplastic large cell lymphoma reflect a tumor signature as well as tumor burden and also differences in the strength of the patients’ immune response.
Collapse
Affiliation(s)
- Fabian Knörr
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Christine Damm-Welk
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Stephanie Ruf
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Vijay Kumar Singh
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Children's Hospital, Hannover Medical School, Germany
| | - Alfred Reiter
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| | - Wilhelm Woessmann
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen
| |
Collapse
|
45
|
Hepatectomy leads to loss of TRAIL-expressing liver NK cells via downregulation of the CXCL9-CXCR3 axis in mice. PLoS One 2017; 12:e0186997. [PMID: 29088306 PMCID: PMC5663402 DOI: 10.1371/journal.pone.0186997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023] Open
Abstract
Liver-resident natural killer (NK) cells express TNF-related apoptosis-inducing ligand (TRAIL), a critical molecule for NK cell-mediated tumor cell killing. We previously reported that TRAIL expression in liver NK cells decreases markedly after hepatectomy; however, the mechanism underlying this drastic alteration remains unknown. In this study, we assessed the role of chemokine signaling in liver-resident NK cells during the perioperative period of hepatectomy. The expression levels of various chemokine receptors on liver-resident NK cells and their associations with TRAIL expression were analyzed by flow cytometry. The expression of various intrahepatic chemokines/cytokines was analyzed after 70% hepatectomy in mice by quantitative RT-PCR and flow cytometry. We further investigated whether polyinosinic—polycytidylic acid (poly I:C)-induced NK cell activation could ameliorate TRAIL expression in the liver after 70% hepatectomy in CXCR3-/- and wild-type mice. TRAIL+ NK cells strongly and exclusively expressed CXCR3, and the expression of its ligand CXCL9 was significantly decreased in the liver after hepatectomy. The kinetics of hepatic CXCL9 expression resembled the changes in hepatic TRAIL+ NK cells after hepatectomy. Among liver-resident mononuclear cells, CXCL9 was predominantly secreted by macrophages in response to interferon-γ stimulation. Although the administration of poly I:C, an inducer of interferon-γ, increased hepatic CXCL9 levels in both CXCR3-/- and wild-type mice even after hepatectomy, only wild-type mice exhibited the recovery of TRAIL expression on NK cells. Partial hepatectomy remarkably reduced the proportion of TRAIL-expressing NK cells in the liver via the downregulation of the CXCL9–CXCR3 axis in mice. These findings extend our knowledge of the factors contributing to hepatocellular carcinoma recurrence after hepatectomy.
Collapse
|
46
|
Shinde P, Liu W, Ménoret A, Luster AD, Vella AT. Optimal CD4 T cell priming after LPS-based adjuvanticity with CD134 costimulation relies on CXCL9 production. J Leukoc Biol 2017; 102:57-69. [PMID: 28432083 DOI: 10.1189/jlb.1a0616-261rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022] Open
Abstract
LPS is a powerful adjuvant, and although LPS-mediated TLR4 signaling has been exquisitely delineated, the in vivo mechanism of how TLR4 responses impact T cell priming is far less clear. Besides costimulation, TNF and type 1 IFN are dominant cytokines released after TLR4 activation and can shape T cell responses, but other downstream factors have not been examined extensively. Depending on context, we show that IFNαR1 blockade resulted in minor to major effects on specific CD4 T cell clonal expansion. To help explain these differences, it was hypothesized that IFNαR1 blockade would inhibit specific T cell migration by reducing chemokine receptor signaling, but specific CD4 T cells from IFNαR1-blocked mice were readily able to migrate in response to specific chemokines. Next, we examined downstream factors and found that type 1 IFN signaling was necessary for chemokine production, even when mice were immunized with specific Ag with LPS and CD134 costimulation. IFNαR1 signaling promoted CXCL9 and CXCL10 synthesis, suggesting that these chemokines might be involved in the LPS and CD134 costimulation response. After immunization, we show that CXCL9 blockade inhibited CD4 T cell accumulation in the liver but also in LNs, even in the presence of elevated serum IFN-β levels. Thus, whereas type 1 IFN might have direct effects on primed CD4 T cells, the downstream chemokines that play a role during migration also impact accumulation. In sum, CXCL9 production is a key benchmark for productive CD4 T cell vaccination strategies.
Collapse
Affiliation(s)
- Paurvi Shinde
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Wenhai Liu
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut, USA; and
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA;
| |
Collapse
|
47
|
Ball JA, Vlisidou I, Blunt MD, Wood W, Ward SG. Hydrogen Peroxide Triggers a Dual Signaling Axis To Selectively Suppress Activated Human T Lymphocyte Migration. THE JOURNAL OF IMMUNOLOGY 2017; 198:3679-3689. [PMID: 28363904 PMCID: PMC5392728 DOI: 10.4049/jimmunol.1600868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023]
Abstract
H2O2 is an early danger cue required for innate immune cell recruitment to wounds. To date, little is known about whether H2O2 is required for the migration of human adaptive immune cells to sites of inflammation. However, oxidative stress is known to impair T cell activity, induce actin stiffness, and inhibit cell polarization. In this study, we show that low oxidative concentrations of H2O2 also impede chemokinesis and chemotaxis of previously activated human T cells to CXCL11, but not CXCL10 or CXCL12. We show that this deficiency in migration is due to a reduction in inflammatory chemokine receptor CXCR3 surface expression and cellular activation of lipid phosphatase SHIP-1. We demonstrate that H2O2 acts through an Src kinase to activate a negative regulator of PI3K signaling, SHIP-1 via phosphorylation, providing a molecular mechanism for H2O2-induced chemotaxis deficiency. We hypothesize that although H2O2 serves as an early recruitment trigger for innate immune cells, it appears to operate as an inhibitor of T lymphocyte immune adaptive responses that are not required until later in the repair process.
Collapse
Affiliation(s)
- Jennifer A Ball
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom; and
| | - Isabella Vlisidou
- Department of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Matthew D Blunt
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom; and
| | - Will Wood
- Department of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Stephen G Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom; and
| |
Collapse
|
48
|
Li Z, Gu J, Liu J, Zhu Q, Lu H, Lu Y, Rao J, Lu L, Wang X. Chitinase 3-like-1 deficient donor splenocytes accentuated the pathogenesis of acute graft-versus-host diseases through regulating T cell expansion and type I inflammation. Int Immunopharmacol 2017; 46:201-209. [PMID: 28324830 DOI: 10.1016/j.intimp.2017.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication following transplantation, limiting the success of this therapy. Chitinase 3-like-1 (CHI3L1), a member of the glycosyl hydrolase 18 family, plays a critical role in bacterial infections, allergic disease and a variety of malignancies. Here, we investigated whether CHI3L1 could affect the pathogenesis of aGVHD in a mouse allo-HCT model. In this study, we show that CHI3L1 deficiency in donor T cells increased the severity of aGVHD through enhancing systemic and local inflammation. In addition, we found that aGVHD induced by CHI3L1-knockout (CHI3L1-KO) donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines and chemokines, and significant inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) without changing the suppressive ability of donor Tregs remarkably. Expression of PERK1/2 and PAkt increased both in the skin and intestine from CHI3L1-KO splenocytes-treated aGVHD mice. Moreover, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of CHI3L1-KO splenocytes to migrate into target organs and produce Th1-related cytokines and chemokines, such as CXCL9, CXCL11, IFN-γ and TNF-α. Therefore, these results imply that CHI3L1 levels in donor cells may be related to the risk of aGVHD and targeting CHI3L1 may be a promising clinical strategy to control aGVHD.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jianhua Rao
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
49
|
Zimmermann J, Hafezi W, Dockhorn A, Lorentzen EU, Krauthausen M, Getts DR, Müller M, Kühn JE, King NJC. Enhanced viral clearance and reduced leukocyte infiltration in experimental herpes encephalitis after intranasal infection of CXCR3-deficient mice. J Neurovirol 2017; 23:394-403. [PMID: 28116674 DOI: 10.1007/s13365-016-0508-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common fatal sporadic encephalitis in developed countries. There is evidence from HSE animal models that not only direct virus-mediated damage caused but also the host's immune response contributes to the high mortality of the disease. Chemokines modulate and orchestrate this immune response. Previous experimental studies in HSE models identified the chemokine receptor CXCR3 and its ligands as molecules with a high impact on the course of HSE in mouse models. In this study, the role of the chemokine receptor CXCR3 was evaluated after intranasal infection with the encephalitogenic HSV-1 strain 17 syn+ using CXCR3-deficient mice (CXCR3-/-) and wild-type controls. We demonstrated a neurotropic viral spread into the CNS of after intranasal infection. Although viral load and histological distribution of infected neurons were independent from CXCR3 signaling early after infection, CXCR3-deficient mice cleared HSV-1 more efficiently 14 days after infection. Furthermore, CXCR3 deficiency led to a decreased weight loss in mice after HSV-1 infection. T cell infiltration and microglial activation was prominently reduced by inhibition of CXCR3 signaling. Quantitative PCR of proinflammatory cytokines and chemokines confirmed the reduced neuroinflammatory response in CXCR3-deficient mice during HSE. Our results demonstrate that the recruitment of peripheral immune cells into the CNS, induction of neuroinflammation, and consecutive weight loss during herpes encephalitis is modulated by CXCR3 signaling. Interruption of the CXCR3 pathway ameliorates the detrimental host immune response and in turn, leads paradoxically to an enhanced viral clearance after intranasal infection. Our data gives further insight into the role of CXCR3 during HSE after intranasal infection.
Collapse
Affiliation(s)
- J Zimmermann
- Department of Neurology, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - W Hafezi
- University Hospital Münster, Institute of Medical Microbiology-Clinical Virology, Münster, Germany
| | - A Dockhorn
- Department of Neurology, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Eva U Lorentzen
- University Hospital Münster, Institute of Medical Microbiology-Clinical Virology, Münster, Germany
| | - M Krauthausen
- Department of Neurology, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Cour Pharmaceutical Development Company, Elmhurst, IL, USA.,The Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M Müller
- Department of Neurology, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | - Joachim E Kühn
- University Hospital Münster, Institute of Medical Microbiology-Clinical Virology, Münster, Germany
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
50
|
Baxter VK, Griffin DE. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J Gen Virol 2016; 97:2908-2925. [PMID: 27667782 DOI: 10.1099/jgv.0.000613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng-/-) or IFN-γ receptor (Ifngr1-/-) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1-/- mice occurred 5-7 days after infection, with higher levels of IFN-γ in Ifngr1-/- mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1-/- mice recovered more rapidly. Ifng-/- and Ifngr1-/- mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1-/- and Ifng-/- mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|