1
|
Choi DK. Epigenetic regulation of angiogenesis and its therapeutics. Genomics Inform 2025; 23:4. [PMID: 39934895 DOI: 10.1186/s44342-025-00038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is essential for normal development, wound healing, and tissue repair. However, dysregulated angiogenesis is implicated in various pathological conditions, including cancer, diabetic retinopathy, and atherosclerosis. Epigenetic modifications, including DNA methylation, histone modification, and noncoding RNAs (e.g., miRNAs), play a crucial role in regulating angiogenic gene expression without altering the underlying DNA sequence. These modifications tightly regulate the balance between pro-angiogenic and anti-angiogenic factors, thereby influencing endothelial cell proliferation, migration, and tube formation. In recent years, epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., azacitidine, decitabine), histone deacetylase inhibitors (e.g., vorinostat, romidepsin), and BET inhibitors (e.g., JQ1), have emerged as promising therapeutic strategies for targeting abnormal angiogenesis. These agents modulate gene expression patterns, reactivating silenced tumor suppressor genes while downregulating pro-angiogenic signaling pathways. Additionally, miRNA modulators, such as MRG-110 and MRG-201, provide precise regulation of angiogenesis-related pathways, demonstrating significant therapeutic potential in preclinical models. This review underscores the intricate interplay between epigenetic regulation and angiogenesis, highlighting key mechanisms and therapeutic applications. Advancing our understanding of these processes will enable the development of more effective and targeted epigenetic therapies for angiogenesis-related diseases, paving the way for innovative clinical interventions.
Collapse
Affiliation(s)
- Dong Kyu Choi
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
2
|
Chatterjee S, Paul N, Das A, Bank S, Bankura B, Sarkar K, Saha S, Malakar S, Choudhury S, Ghosh S, Das M. Investigating the association of VHL gene variants with disease risk and clinicopathological outcomes in ccRCC patients from West Bengal, India. Urol Oncol 2025:S1078-1439(24)01046-9. [PMID: 39809638 DOI: 10.1016/j.urolonc.2024.12.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a prevalent and aggressive malignancy, with the von Hippel-Lindau (VHL) gene playing a critical role in its pathogenesis. However, the association between VHL gene variants and sporadic ccRCC risk remains unexplored in the Indian population. This study aimed to investigate the somatic and germline variants of the VHL gene in sporadic ccRCC patients from West Bengal, India, and their association with disease risk and clinicopathological parameters. METHODS A total of 210 ccRCC patients and 255 ethnicity-matched healthy controls were enrolled. Genomic DNA from blood and tissue samples was analyzed using PCR-based Sanger sequencing. The association of VHL variants with ccRCC risk was assessed using Chi-square tests. The impact of genetic variants on patient clinicopathological features and overall survival was evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. RESULTS We identified twenty-three single nucleotide variants (SNVs) in the VHL gene, including 3 novel variants, OR250433 T > G, OR125589 C > T and OQ627404 G > C. The intronic variant rs61758376 G > C and 3'UTR variant rs1642742 A > G were significantly associated with an increased risk of ccRCC (OR = 1.676, P = 0.0074; OR = 1.735, P = 0.0171, respectively). The rs1642742 GG genotype was also significantly associated with larger tumor size (P < 0.05) and advanced tumor stage (pT4). Kaplan-Meier analysis indicated poorer overall survival for patients with the rs1642742 GG genotype (log-rank P = 0.029). CONCLUSION Our study is the first to document the association of VHL gene variants with sporadic ccRCC risk and clinical outcomes in the Indian population. The identified variants, particularly rs61758376 and rs1642742, could serve as potential biomarkers for ccRCC susceptibility and prognosis.
Collapse
Affiliation(s)
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Biswabandhu Bankura
- Multidisciplinary Research Unit, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Soumen Saha
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Subhajit Malakar
- Department of Urology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sunirmal Choudhury
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, West Bengal, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Jain AK, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. Cell Chem Biol 2024; 31:2112-2127.e6. [PMID: 39437789 DOI: 10.1016/j.chembiol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (9) or methylpiperazine (11), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and Clostridioides difficile CamA. These compounds (9 and 11) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound 11 elicits DNA damage response via p53 activation in cancer cells.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Chang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Leora Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yifei Yang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Johnson M, Turcotte S. Loss of SETD2 in wild-type VHL clear cell renal cell carcinoma sensitizes cells to STF-62247 and leads to DNA damage, cell cycle arrest, and cell death characteristic of pyroptosis. Mol Oncol 2024. [PMID: 39592433 DOI: 10.1002/1878-0261.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Loss of chromosome 3p and loss of heterogeneity of the von Hippel-Lindau (VHL) gene are common characteristics of clear cell renal cell carcinoma (ccRCC). Despite frequent mutations on VHL, a fraction of tumors still grows with the expression of wild-type (WT) VHL and evolve into an aggressive subtype. Additionally, mutations on chromatin-modifying genes, such as the gene coding for the histone methyltransferase SET containing domain 2 (SETD2), are essential to ccRCC evolution. We previously identified STF-62247, a small molecule first discovered as a synthetically lethal molecule for VHL-deficient cells by blocking late stages of autophagy. This study investigated how other commonly mutated genes in ccRCC could impact the response to STF-62247. We showed that SETD2 inactivation in ccRCC cells expressing WT-VHL became vulnerable to STF-62247, as indicated by decreases in cell proliferation and survival. Furthermore, activation of the DNA damage response pathway leads to the loss of M-phase inducer phosphatase 1 (CDC25A) and cell cycle arrest in S phase. Cleavage of both caspase-3 and gasdermin E suggests that STF-62247 eliminates WT-VHL ccRCC cells through pyroptosis specifically when SETD2 is inactivated.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| |
Collapse
|
5
|
Zhang X, Blumenthal R, Cheng X. DNA-binding proteins from MBD through ZF to BEN: recognition of cytosine methylation status by one arginine with two conformations. Nucleic Acids Res 2024; 52:11442-11454. [PMID: 39329271 PMCID: PMC11514455 DOI: 10.1093/nar/gkae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Maintenance methylation, of palindromic CpG dinucleotides at DNA replication forks, is crucial for the faithful mitotic inheritance of genomic 5-methylcytosine (5mC) methylation patterns. MBD proteins use two arginine residues to recognize symmetrically-positioned methyl groups in fully-methylated 5mCpG/5mCpG and 5mCpA/TpG dinucleotides. In contrast, C2H2 zinc finger (ZF) proteins recognize CpG and CpA, whether methylated or not, within longer specific sequences in a site- and strand-specific manner. Unmethylated CpG sites, often within CpG island (CGI) promoters, need protection by protein factors to maintain their hypomethylated status. Members of the BEN domain proteins bind CGCG or CACG elements within CGIs to regulate gene expression. Despite their overall structural diversity, MBD, ZF and BEN proteins all use arginine residues to recognize guanine, adopting either a 'straight-on' or 'oblique' conformation. The straight-on conformation accommodates a methyl group in the (5mC/T)pG dinucleotide, while the oblique conformation can clash with the methyl group of 5mC, leading to preferential binding of unmethylated sequences.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
7
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Lin PH, Hsieh CH, Yu KJ, Shao IH, Chuang CK, Hsu T, Weng WH, Pang ST. AP-2α gene deregulation is associated with renal cell carcinoma patient survival. BMC Cancer 2024; 24:966. [PMID: 39112969 PMCID: PMC11304775 DOI: 10.1186/s12885-024-12526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC), one of the most fatal urologic tumors, accounts for approximately 3% of all adult cancers and exhibits a high metastatic index at diagnosis and a high rate of relapse. Radical or partial nephrectomy is a curative option for nonmetastatic RCCs. Targeted therapy has been shown to improve the survival of patients with metastatic RCCs. However, the underlying cellular and molecular events associated with RCC pathogenesis are not well known. METHODS To investigate the clinical role of the transcription factor activator protein (AP)-2α in RCC, methylated CpG island recovery assays and microarray analysis were employed. COBRA and RT‒qPCR assays were performed to assess AP-2α expression in RCC. RESULTS A negative correlation was noted between AP-2α mRNA expression levels and methylation status. Multivariate analyses showed that AP-2α mRNA was a major risk factor not only for overall and disease-free survival in RCC but also for disease-free survival in clear cell RCC. CONCLUSIONS Our results indicated that AP-2α expression was deregulated in RCC and associated with overall patient survival and disease-free survival. Such findings suggest that AP-2α might play an important role in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chin-Hsuan Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - I-Hung Shao
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Todd Hsu
- Institute of Bioscience and Biotechnology, Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
9
|
Newsham I, Sendera M, Jammula SG, Samarajiwa SA. Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns. Biol Methods Protoc 2024; 9:bpae028. [PMID: 38903861 PMCID: PMC11186673 DOI: 10.1093/biomethods/bpae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer, a collection of more than two hundred different diseases, remains a leading cause of morbidity and mortality worldwide. Usually detected at the advanced stages of disease, metastatic cancer accounts for 90% of cancer-associated deaths. Therefore, the early detection of cancer, combined with current therapies, would have a significant impact on survival and treatment of various cancer types. Epigenetic changes such as DNA methylation are some of the early events underlying carcinogenesis. Here, we report on an interpretable machine learning model that can classify 13 cancer types as well as non-cancer tissue samples using only DNA methylome data, with 98.2% accuracy. We utilize the features identified by this model to develop EMethylNET, a robust model consisting of an XGBoost model that provides information to a deep neural network that can generalize to independent data sets. We also demonstrate that the methylation-associated genomic loci detected by the classifier are associated with genes, pathways and networks involved in cancer, providing insights into the epigenomic regulation of carcinogenesis.
Collapse
Affiliation(s)
- Izzy Newsham
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, United Kingdom
| | - Marcin Sendera
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- Jagiellonian University, Faculty of Mathematics and Computer Science, 30-348 Kraków, Poland
| | - Sri Ganesh Jammula
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
- MedGenome labs, Bengaluru, 560099, India
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
- Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| |
Collapse
|
10
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
11
|
Deng J, Tu S, Li L, Li G, Zhang Y. Diagnostic, predictive and prognostic molecular biomarkers in clear cell renal cell carcinoma: A retrospective study. Cancer Rep (Hoboken) 2024; 7:e2116. [PMID: 38837683 PMCID: PMC11150078 DOI: 10.1002/cnr2.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common and aggressive subtype of kidney cancer. Many patients are diagnosed at advanced stages, making early detection crucial. Unfortunately, there are currently no noninvasive tests for ccRCC, emphasizing the need for new biomarkers. Additionally, ccRCC often develops resistance to treatments like radiotherapy and chemotherapy. Identifying biomarkers that predict treatment outcomes is vital for personalized care. The integration of artificial intelligence (AI), multi-omics analysis, and computational biology holds promise in bolstering detection precision and resilience, opening avenues for future investigations. The amalgamation of radiogenomics and biomaterial-basedimmunomodulation signifies a revolutionary breakthrough in diagnostic medicine. This review summarizes existing literature and highlights emerging biomarkers that enhance diagnostic, predictive, and prognostic capabilities for ccRCC, setting the stage for future clinical research.
Collapse
Affiliation(s)
- Jian Deng
- Department of OncologyHejiang Hospital of Traditional Chinese MedicineLuzhouPeople's Republic of China
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhouPeople's Republic of China
| | - ShengYuan Tu
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhouPeople's Republic of China
| | - Lin Li
- School of StomatologySouthwest Medical UniversityLuzhouPeople's Republic of China
| | - GangLi Li
- Department of OncologyHejiang Hospital of Traditional Chinese MedicineLuzhouPeople's Republic of China
| | - YinHui Zhang
- Department of PharmacyThe Affiliated Hospital of Southwest Medical UniversityLuzhouPeople's Republic of China
- Department of AnesthesiologyHospital (T.C.M) Affiliated to Southwest Medical UniversityLuzhouPeople's Republic of China
- Department of PharmacyHejiang Hospital of Traditional Chinese MedicineLuzhouPeople's Republic of China
| |
Collapse
|
12
|
Zhang S, Fang T, He Y, Feng W, Yu Z, Zheng Y, Zhang C, Hu S, Liu Z, Liu J, Yu J, Zhang H, He A, Gong Y, He Z, Yang K, Xi Z, Yu W, Zhou L, Yao L, Yue S. VHL mutation drives human clear cell renal cell carcinoma progression through PI3K/AKT-dependent cholesteryl ester accumulation. EBioMedicine 2024; 103:105070. [PMID: 38564827 PMCID: PMC10999658 DOI: 10.1016/j.ebiom.2024.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).
Collapse
Affiliation(s)
- Shuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Tinghe Fang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yexuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Weichen Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhuoyang Yu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yaoyao Zheng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Chi Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jian Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Han Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Kaiwei Yang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhijun Xi
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
13
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587980. [PMID: 38617249 PMCID: PMC11014617 DOI: 10.1101/2024.04.03.587980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Abstract Figure Highlights Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.
Collapse
|
14
|
Kanai Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol Int 2024; 74:167-186. [PMID: 38482965 PMCID: PMC11551818 DOI: 10.1111/pin.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.
Collapse
Affiliation(s)
- Yae Kanai
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
15
|
Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, Albalawi IA, Masoodi T, Subbaraj GK, Jamal F, Singh M, Kumar R, Macha MA, Uddin S, Akil ASAS, Haris M, Bhat AA. Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev 2024; 43:197-228. [PMID: 38329598 PMCID: PMC11016008 DOI: 10.1007/s10555-024-10172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Bilal Rah
- Iron Biology Group, Research Institute of Medical and Health Science, University of Sharjah, Sharjah, UAE
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | | | - Farrukh Jamal
- Dr. Rammanohar, Lohia Avadh University, Ayodhya, India
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Institute of Medical Sciences (AIIMS), Dr. BRAIRCH, All India, New Delhi, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
16
|
Jia L, Cowell LG, Kapur P. Understanding Factors that Influence Prognosis and Response to Therapy in Clear Cell Renal Cell Carcinoma. Adv Anat Pathol 2024; 31:96-104. [PMID: 38179997 DOI: 10.1097/pap.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this review, we highlight and contextualize emerging morphologic prognostic and predictive factors in renal cell carcinoma. We focus on clear cell renal cell carcinoma (ccRCC), the most common histologic subtype. Our understanding of the molecular characterization of ccRCC has dramatically improved in the last decade. Herein, we highlight how these discoveries have laid the foundation for new approaches to prognosis and therapeutic decision-making for patients with ccRCC. We explore the clinical relevance of common mutations, established gene expression signatures, intratumoral heterogeneity, sarcomatoid/rhabdoid morphology and PD-L1 expression, and discuss their impact on predicting response to therapy.
Collapse
Affiliation(s)
| | - Lindsay G Cowell
- Peter O'Donnell School of Public Health
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology
- Department of Urology, University of Texas Southwestern Medical Center
- Kidney Cancer Program at Simmons Comprehensive Cancer Center, Dallas, TX
| |
Collapse
|
17
|
Ma B, Qin L, Sun Z, Wang J, Tran LJ, Zhang J, Ye F, Liu Y, Chen M. The single-cell evolution trajectory presented different hypoxia heterogeneity to reveal the carcinogenesis of genes in clear cell renal cell carcinoma: Based on multiple omics and real experimental verification. ENVIRONMENTAL TOXICOLOGY 2024; 39:869-881. [PMID: 37886854 DOI: 10.1002/tox.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is the most prevalent and aggressive subtype of renal cell carcinoma, originating from renal tubular epithelial cells in the kidney. Hypoxia proves to be a feature commonly observed in solid tumors, leading to increased resistance to treatment and tumor progression. METHODS scRNA-seq data were procured from GSE159115 data set. We utilized UMAP and NMF algorithm for clustering and dimensionality reduction. The FindAllMarkers function was used to compare various groups and identify potential hypoxia marker genes. A series of in vitro experiments, including CFA, flow cytometry targeting cell cycle, CCK-8, and EDU, was applied to investigate how ANGPTL4 regulated the ccRCC progression. Two cell lines of ccRCC cells, 786-O and Caki, were used for si-ANGPTL4 transfection. RESULTS We annotated a total of a total of 6 cell clusters, namely ccRCC malignant cells, T cells, endothelial cells, myeloid cells, smooth muscle cells, and B cells. We observed higher levels of hypoxia-score in the ccRCC malignant cells, while lowest hypoxia-score in T and B cells. We detected multiple hypoxia-related subclusters of TME cells in ccRCC, among which S100A4 CD8+ T cells and nonhypoxia CD8+ T cells were found with a marked elevation of T cell inhibitory gene score. We identified that ANGPTL4+ endothelial cells might function as an integrative role in tumor angiogenesis. Multiple TME subclusters showed high potency in stratification of the prognosis of ccRCC patients. Moreover, by a series of in vitro experiment, we found ANGPTL4 regulated the ccRCC cell proliferation, probably through ERK/P38 pathway. CONCLUSION We discerned multiple hypoxia-related subclusters of TME cells in ccRCC, which displayed distinct functional features and great potency in predicting prognosis of ccRCC patients. We identified the role of ANGPTL4 in regulating ccRCC proliferation via ERK/p38 pathway.
Collapse
Affiliation(s)
- Baoluo Ma
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Linghui Qin
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, China
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Liu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Chen
- Department of Geriatric, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| |
Collapse
|
18
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Srivastava A, Srivastava A, Singh RK. Insight into the Epigenetics of Kaposi's Sarcoma-Associated Herpesvirus. Int J Mol Sci 2023; 24:14955. [PMID: 37834404 PMCID: PMC10573522 DOI: 10.3390/ijms241914955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetic reprogramming represents a series of essential events during many cellular processes including oncogenesis. The genome of Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic herpesvirus, is predetermined for a well-orchestrated epigenetic reprogramming once it enters into the host cell. The initial epigenetic reprogramming of the KSHV genome allows restricted expression of encoded genes and helps to hide from host immune recognition. Infection with KSHV is associated with Kaposi's sarcoma, multicentric Castleman's disease, KSHV inflammatory cytokine syndrome, and primary effusion lymphoma. The major epigenetic modifications associated with KSHV can be labeled under three broad categories: DNA methylation, histone modifications, and the role of noncoding RNAs. These epigenetic modifications significantly contribute toward the latent-lytic switch of the KSHV lifecycle. This review gives a brief account of the major epigenetic modifications affiliated with the KSHV genome in infected cells and their impact on pathogenesis.
Collapse
Affiliation(s)
- Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankit Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Faculty of Medical Sciences, Charotar University of Science and Technology, Changa 388421, Gujarat, India
| |
Collapse
|
20
|
Shirole NH, Kaelin WG. von-Hippel Lindau and Hypoxia-Inducible Factor at the Center of Renal Cell Carcinoma Biology. Hematol Oncol Clin North Am 2023; 37:809-825. [PMID: 37270382 PMCID: PMC11315268 DOI: 10.1016/j.hoc.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common form of kidney cancer is clear cell renal cell carcinoma (ccRCC). Biallelic VHL tumor suppressor gene inactivation is the usual initiating event in both hereditary (VHL Disease) and sporadic ccRCCs. The VHL protein, pVHL, earmarks the alpha subunits of the HIF transcription factor for destruction in an oxygen-dependent manner. Deregulation of HIF2 drives ccRCC pathogenesis. Drugs inhibiting the HIF2-responsive growth factor VEGF are now mainstays of ccRCC treatment. A first-in-class allosteric HIF2 inhibitor was recently approved for treating VHL Disease-associated neoplasms and appears active against sporadic ccRCC in early clinical trials.
Collapse
Affiliation(s)
- Nitin H Shirole
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - William G Kaelin
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School; Howard Hughes Medical Institute.
| |
Collapse
|
21
|
Wang X, Qiao Z, Aramini B, Lin D, Li X, Fan J. Potential biomarkers for immunotherapy in non-small-cell lung cancer. Cancer Metastasis Rev 2023; 42:661-675. [PMID: 37121931 DOI: 10.1007/s10555-022-10074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 05/02/2023]
Abstract
For individuals with advanced or metastatic non-small cell lung cancer (NSCLC), the primary treatment is platinum-based doublet chemotherapy. Immune checkpoint inhibitors (ICIs), primarily PD-1/PD-L1 and CTLA-4, have been found to be effective in patients with NSCLC who have no EGFR/ALK mutations. Furthermore, ICIs are considered a standard therapy. The quantity of fresh immunogenic antigens discovered by cytotoxic T cells was measured by PD-L1 expression and tumor mutational burden (TMB), which were the first biomarkers assessed in clinical trials. However, immunotherapy did not have response efficacy markers similar to targeted therapy, highlighting the significance of newly developed biomarkers. This investigation aims to review the research on immunotherapy for NSCLC, focusing primarily on the impact of biomarkers on efficacy prediction to determine whether biomarkers may be utilized to evaluate the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Ziyun Qiao
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, G.B. Morgagni-L. Pierantoni Hospital, University of Bologna, Forlì, Italy
| | - Dong Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Xiaolong Li
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China.
| |
Collapse
|
22
|
Cecchi N, Romanelli R, Ricevuti F, Amitrano M, Carbone MG, Dinardo M, Burgio E. Current knowledges in pharmaconutrition: " Ketogenics" in pediatric gliomas. Front Nutr 2023; 10:1222908. [PMID: 37614745 PMCID: PMC10442509 DOI: 10.3389/fnut.2023.1222908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Brain tumors account for 20-25% of pediatric cancers. The most frequent type of brain tumor is Glioma from grade I to grade IV according to the rate of malignancy. Current treatments for gliomas use chemotherapy, radiotherapy, tyrosine kinase inhibitors, monoclonal antibodies and surgery, but each of the treatment strategies has several serious side effects. Therefore, to improve treatment efficacy, it is necessary to tailor therapies to patient and tumor characteristics, using appropriate molecular targets. An increasingly popular strategy is pharmaconutrition, which combines a tailored pharmacological treatment with a diet designed to synergize the effects of drugs. In this review we deal in the molecular mechanisms, the epigenetic effects and modulation of the oxidative stress pathway of ketogenic diets, that underlie its possible role, in the treatment of infantile gliomas, as a complementary approach to conventional cancer therapy.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Marianna Amitrano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit – A.O.R.N. Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Ernesto Burgio
- ECERI-European Cancer and Environment Research Institute, Brussels, Belgium
| |
Collapse
|
23
|
Distante A, Marandino L, Bertolo R, Ingels A, Pavan N, Pecoraro A, Marchioni M, Carbonara U, Erdem S, Amparore D, Campi R, Roussel E, Caliò A, Wu Z, Palumbo C, Borregales LD, Mulders P, Muselaers CHJ. Artificial Intelligence in Renal Cell Carcinoma Histopathology: Current Applications and Future Perspectives. Diagnostics (Basel) 2023; 13:2294. [PMID: 37443687 DOI: 10.3390/diagnostics13132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Renal cell carcinoma (RCC) is characterized by its diverse histopathological features, which pose possible challenges to accurate diagnosis and prognosis. A comprehensive literature review was conducted to explore recent advancements in the field of artificial intelligence (AI) in RCC pathology. The aim of this paper is to assess whether these advancements hold promise in improving the precision, efficiency, and objectivity of histopathological analysis for RCC, while also reducing costs and interobserver variability and potentially alleviating the labor and time burden experienced by pathologists. The reviewed AI-powered approaches demonstrate effective identification and classification abilities regarding several histopathological features associated with RCC, facilitating accurate diagnosis, grading, and prognosis prediction and enabling precise and reliable assessments. Nevertheless, implementing AI in renal cell carcinoma generates challenges concerning standardization, generalizability, benchmarking performance, and integration of data into clinical workflows. Developing methodologies that enable pathologists to interpret AI decisions accurately is imperative. Moreover, establishing more robust and standardized validation workflows is crucial to instill confidence in AI-powered systems' outcomes. These efforts are vital for advancing current state-of-the-art practices and enhancing patient care in the future.
Collapse
Affiliation(s)
- Alfredo Distante
- Department of Urology, Catholic University of the Sacred Heart, 00168 Roma, Italy
- Department of Urology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Laura Marandino
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Riccardo Bertolo
- Department of Urology, San Carlo Di Nancy Hospital, 00165 Rome, Italy
| | - Alexandre Ingels
- Department of Urology, University Hospital Henri Mondor, APHP (Assistance Publique-Hôpitaux de Paris), 94000 Créteil, France
| | - Nicola Pavan
- Department of Surgical, Oncological and Oral Sciences, Section of Urology, University of Palermo, 90133 Palermo, Italy
| | - Angela Pecoraro
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, 10043 Turin, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, 66100 Chieti, Italy
| | - Umberto Carbonara
- Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation-Urology, University of Bari, 70121 Bari, Italy
| | - Selcuk Erdem
- Division of Urologic Oncology, Department of Urology, Istanbul University Istanbul Faculty of Medicine, Istanbul 34093, Turkey
| | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, 10043 Turin, Italy
| | - Riccardo Campi
- Urological Robotic Surgery and Renal Transplantation Unit, Careggi Hospital, University of Florence, 50121 Firenze, Italy
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Anna Caliò
- Section of Pathology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Zhenjie Wu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Carlotta Palumbo
- Division of Urology, Maggiore della Carità Hospital of Novara, Department of Translational Medicine, University of Eastern Piedmont, 13100 Novara, Italy
| | - Leonardo D Borregales
- Department of Urology, Well Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Constantijn H J Muselaers
- Department of Urology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
24
|
Galkin F, Kovalchuk O, Koldasbayeva D, Zhavoronkov A, Bischof E. Stress, diet, exercise: Common environmental factors and their impact on epigenetic age. Ageing Res Rev 2023; 88:101956. [PMID: 37211319 DOI: 10.1016/j.arr.2023.101956] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Epigenetic aging clocks have gained significant attention as a tool for predicting age-related health conditions in clinical and research settings. They have enabled geroscientists to study the underlying mechanisms of aging and assess the effectiveness of anti-aging therapies, including diet, exercise and environmental exposures. This review explores the effects of modifiable lifestyle factors' on the global DNA methylation landscape, as seen by aging clocks. We also discuss the underlying mechanisms through which these factors contribute to biological aging and provide comments on what these findings mean for people willing to build an evidence-based pro-longevity lifestyle.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Canada
| | | | - Alex Zhavoronkov
- Deep Longevity, Hong Kong; Insilico Medicine, Hong Kong; Buck Institute for Research on Aging, Novato, CA, USA
| | - Evelyne Bischof
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Shanghai University of Medicine and Health Sciences, Shanghai, China; Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Via S. Pansini, 580131, Naples, Italy
| |
Collapse
|
25
|
Zeng Z, Zhang Z, Cheng X, Yang H, Gong B, Zhou X, Zhang C, Wang X, Wang G. Downregulation of RAB17 have a poor prognosis in kidney renal clear cell carcinoma and its expression correlates with DNA methylation and immune infiltration. Cell Signal 2023:110743. [PMID: 37269962 DOI: 10.1016/j.cellsig.2023.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND RAB17 is one of the RAB family members. It has been reported to be closely associated with a variety of tumors and has different roles in various tumors. However, the effect of RAB17 in KIRC remains unclear. MATERIALS AND METHODS We analyzed the differential expression of RAB17 in kidney renal clear cell carcinoma (KIRC) tissues and normal tissues using the public databases. The prognostic role of RAB17 in KIRC was analyzed using the Cox regression methods, and a prognostic model was constructed based on the results of the Cox analysis. In addition, further analysis of RAB17 in KIRC was performed in relation to genetic alterations, DNA methylation m6A methylation and immune infiltration. Finally, RAB17 mRNA and protein expression levels were analyzed in tissue samples (KIRC tissues and normal tissues) and cell lines (normal renal tubular cell and KIRC cells), and in vitro functional assays were performed. RESULTS RAB17 was low-expressed in KIRC. Downregulation of RAB17 expression is correlated with unfavorable clinicopathological characteristics and a worse prognosis in KIRC. The RAB17 gene alteration in KIRC was primarily characterized by copy number alteration. Six CpG sites of RAB17 DNA methylation levels are higher in KIRC tissues than in normal tissues, and are correlated with RAB17 mRNA expression levels, showing a significant negative correlation. cg01157280 site DNA methylation levels are associated with pathological stage and overall survival, and it may be the only CpG site with independent prognostic significance. Functional mechanism analysis revealed that RAB17 is closely associated with immune infiltration. RAB17 expression was found to be negatively correlated with most immune cell infiltration according to two different methods. Furthermore, most immunomodulators were significantly negatively correlated with RAB17 expression, and significantly positively correlated with RAB17 DNA methylation levels. RAB17 was significantly low expression in KIRC cells and KIRC tissues. In vitro, silencing of RAB17 promoted KIRC cell migration. CONCLUSION RAB17 can be used as a potential prognostic biomarker for patients with KIRC and for assessing immunotherapy response.
Collapse
Affiliation(s)
- Zhenhao Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Heng Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China
| | - Xinyi Wang
- The First Affiliated Hospital of Nanchang University, Nanchang 330000, China.
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China; Jiangxi Institute of Urology, Nanchang 330000, China.
| |
Collapse
|
26
|
Chrabańska M, Szweda-Gandor N, Drozdzowska B. Two Single Nucleotide Polymorphisms in the Von Hippel-Lindau Tumor Suppressor Gene in Patients with Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043778. [PMID: 36835190 PMCID: PMC9959571 DOI: 10.3390/ijms24043778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The most common subtype of renal cell carcinoma (RCC) is clear cell type (ccRCC), which accounts for approximately 75% of cases. von Hippel-Lindau (VHL) gene has been shown to be affected in more than half of ccRCC cases. Two single nucleotide polymorphisms (SNPs) located in VHL gene, rs779805 and rs1642742, are reported to be involved in the occurrence of ccRCC. The aim of this study was to assess their associations with clinicopathologic and immunohistochemical parameters, as well as risk and survival of ccRCC. The study population consisted of 129 patients. No significant differences in genotype or allele frequencies of VHL gene polymorphisms were observed between ccRCC cases and control population, and we have found that our results do not indicate a significant relationship of these SNPs with respect to ccRCC susceptibility. Additionally, we did not observe a significant association of these two SNPs with ccRCC survival. However, our results conclude that rs1642742 and rs779805 in the VHL gene are associated with increased tumor size, which is the most important prognostic indicator of renal cancer. Moreover, our analysis showed that patients with genotype AA of rs1642742 have a trend towards higher likelihood of developing ccRCC within their lifetime, while allele G of rs779805 can have a preventive effect against the development of renal cancer in stage 1. Therefore, these SNPs in VHL may be useful as genetic tumor markers for the molecular diagnostics for ccRCC patients.
Collapse
Affiliation(s)
- Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-663156695
| | - Nikola Szweda-Gandor
- Department and Clinic of Internal Medicine, Diabetology and Nephrology, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Bogna Drozdzowska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
27
|
Todorović L, Stanojević B. VHL tumor suppressor as a novel potential candidate biomarker in papillary thyroid carcinoma. BIOMOLECULES AND BIOMEDICINE 2023; 23:26-36. [PMID: 36036061 PMCID: PMC9901892 DOI: 10.17305/bjbms.2022.7850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 02/03/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of endocrine cancer, with an increasing incidence worldwide. The treatment of PTC is currently the subject of clinical controversy, making it critically important to identify molecular markers that would help improve the risk stratification of PTC patients and optimize the therapeutic approach. The VHL tumor suppressor gene has been implicated in tumorigenesis of various types of carcinoma and linked with their aggressive biological behavior. The role of VHL in the origin and development of PTC has only recently begun to be revealed. In this narrative review we attempt to summarize the existing knowledge that implicates VHL in PTC pathogenesis and to outline its potential significance as a candidate molecular biomarker for the grouping of PTC patients into high and low risk groups.
Collapse
Affiliation(s)
- Lidija Todorović
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Correspondence to Lidija Todorović:
| | - Boban Stanojević
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King’s College London, London, UK,Virocell Biologics, Department of Cell and Gene Therapy, Great Ormond Street Hospital for Children, Zayed Centre for Research into Rare Disease in Children, London, UK
| |
Collapse
|
28
|
Xing X, Karlow JA, Li D, Jang HS, Lee HJ, Wang T. Capture Methylation-Sensitive Restriction Enzyme Sequencing (Capture MRE-Seq) for Methylation Analysis of Highly Degraded DNA Samples. Methods Mol Biol 2023; 2621:73-89. [PMID: 37041441 DOI: 10.1007/978-1-0716-2950-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Understanding the impact of DNA methylation within different disease contexts often requires accurate assessment of these modifications in a genome-wide fashion. Frequently, patient-derived tissues stored in long-term hospital tissue banks have been preserved using formalin-fixation paraffin-embedding (FFPE). While these samples can comprise valuable resources for studying disease, the fixation process ultimately compromises the DNA's integrity and leads to degradation. Degraded DNA can complicate CpG methylome profiling using traditional techniques, particularly when performing methylation-sensitive restriction enzyme sequencing (MRE-seq), yielding high backgrounds and resulting in lowered library complexity. Here, we describe Capture MRE-seq, a new MRE-seq protocol tailored to preserving unmethylated CpG information when using samples with highly degraded DNA. The results using Capture MRE-seq correlate well (0.92) with traditional MRE-seq calls when profiling non-degraded samples, and can recover unmethylated regions in highly degraded samples when traditional MRE-seq fails, which we validate using bisulfite sequencing-based data (WGBS) as well as methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq).
Collapse
Affiliation(s)
- Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Karlow
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Daofeng Li
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyo Sik Jang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hyung Joo Lee
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Pin Pharmaceuticals, South San Francisco, CA, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Saini A, Varshney A, Saini A, Mani I. Insight into epigenetics and human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:1-21. [PMID: 37019588 DOI: 10.1016/bs.pmbts.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The most eminent research of the 21st century whirls around the epigenetic and the variability of DNA sequences in humans. The reciprocity between the epigenetic changes and the exogenous factors drives an influence on the inheritance biology and gene expression both inter-generationally and trans-generationally. Chromatin level modifications like DNA methylation, histone modifications or changes in transcripts functions either at transcription level or translational level pave the way for certain diseases or cancer in humans. The ability of epigenetics to explain the processes of various diseases has been demonstrated by recent epigenetic studies. Multidisciplinary therapeutic strategies were developed in order to analyse how epigenetic elements interact with different disease pathways. In this chapter we summarize how an organism may be predisposed to certain diseases by exposure to environmental variables such as chemicals, medications, stress, or infections during particular, vulnerable phases of life, and the epigenetic component may influence some of the diseases in humans.
Collapse
|
30
|
Cuproptosis-Related MiR-21-5p/FDX1 Axis in Clear Cell Renal Cell Carcinoma and Its Potential Impact on Tumor Microenvironment. Cells 2022; 12:cells12010173. [PMID: 36611966 PMCID: PMC9818076 DOI: 10.3390/cells12010173] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
As a newly identified type of programmed cell death, cuproptosis may have an impact on cancer development, including clear cell renal cell carcinoma (ccRCC). Herein, we first noticed that the expression levels of cuproptosis regulators exhibited a tight correlation with the clinicopathological characteristics of ccRCC. The cuproptosis-sensitive sub-type (CSS), classified via consensus clustering analysis, harbored a higher overall survival rate compared to the cuproptosis-resistant sub-type (CRS), which may have resulted from the differential infiltration of immune cells. FDX1, the cuproptosis master regulator, was experimentally determined as a tumor suppressor in ccRCC cells by suppressing the cell growth and cell invasion of ACHN and OSRC-2 cells in a cuproptosis-dependent and -independent manner. The results from IHC staining also demonstrated that FDX1 expression was negatively correlated with ccRCC tumor initiation and progression. Furthermore, we identified the miR-21-5p/FDX1 axis in ccRCC and experimentally verified that miR-21-5p directly binds the 3'-UTR of FDX1 to mediate its degradation. Consequently, a miR-21-5p inhibitor suppressed the cell growth and cell invasion of ACHN and OSRC-2 cells, which could be compensated by FDX1 knockdown, reinforcing the functional linkage between miR-21-5p and FDX1 in ccRCC. Finally, we evaluated the ccRCC tumor microenvironment under the miR-21-5p/FDX1 axis and noted that this axis was strongly associated with the infiltration of immune cells such as CD4+ T cells, Treg cells, and macrophages, suggesting that this signaling axis may alter microenvironmental components to drive ccRCC progression. Overall, this study constructed the miR-21-5p/FDX1 axis in ccRCC and analyzed its potential impact on the tumor microenvironment, providing valuable insights to improve current ccRCC management.
Collapse
|
31
|
Ma Y, Joyce A, Brandenburg O, Saatchi F, Stevens C, Tcheuyap VT, Christie A, Do QN, Fatunde O, Macchiaroli A, Wong SC, Woolford L, Yousuf Q, Miyata J, Carrillo D, Onabolu O, McKenzie T, Mishra A, Hardy T, He W, Li D, Ivanishev A, Zhang Q, Pedrosa I, Kapur P, Schluep T, Kanner SB, Hamilton J, Brugarolas J. HIF2 Inactivation and Tumor Suppression with a Tumor-Directed RNA-Silencing Drug in Mice and Humans. Clin Cancer Res 2022; 28:5405-5418. [PMID: 36190432 PMCID: PMC9771962 DOI: 10.1158/1078-0432.ccr-22-0963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE HIF2α is a key driver of kidney cancer. Using a belzutifan analogue (PT2399), we previously showed in tumorgrafts (TG) that ∼50% of clear cell renal cell carcinomas (ccRCC) are HIF2α dependent. However, prolonged treatment induced resistance mutations, which we also identified in humans. Here, we evaluated a tumor-directed, systemically delivered, siRNA drug (siHIF2) active against wild-type and resistant-mutant HIF2α. EXPERIMENTAL DESIGN Using our credentialed TG platform, we performed pharmacokinetic and pharmacodynamic analyses evaluating uptake, HIF2α silencing, target gene inactivation, and antitumor activity. Orthogonal RNA-sequencing studies of siHIF2 and PT2399 were pursued to define the HIF2 transcriptome. Analyses were extended to a TG line generated from a study biopsy of a siHIF2 phase I clinical trial (NCT04169711) participant and the corresponding patient, an extensively pretreated individual with rapidly progressive ccRCC and paraneoplastic polycythemia likely evidencing a HIF2 dependency. RESULTS siHIF2 was taken up by ccRCC TGs, effectively depleted HIF2α, deactivated orthogonally defined effector pathways (including Myc and novel E2F pathways), downregulated cell cycle genes, and inhibited tumor growth. Effects on the study subject TG mimicked those in the patient, where HIF2α was silenced in tumor biopsies, circulating erythropoietin was downregulated, polycythemia was suppressed, and a partial response was induced. CONCLUSIONS To our knowledge, this is the first example of functional inactivation of an oncoprotein and tumor suppression with a systemic, tumor-directed, RNA-silencing drug. These studies provide a proof-of-principle of HIF2α inhibition by RNA-targeting drugs in ccRCC and establish a paradigm for tumor-directed RNA-based therapeutics in cancer.
Collapse
Affiliation(s)
- Yuanqing Ma
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Joyce
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olivia Brandenburg
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Faeze Saatchi
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,O’Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quyen N. Do
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oluwatomilade Fatunde
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyssa Macchiaroli
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - So C. Wong
- Arrowhead Pharmaceuticals, Pasadena, CA, USA
| | - Layton Woolford
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qurratulain Yousuf
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oreoluwa Onabolu
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanner Hardy
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei He
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Li
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander Ivanishev
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Corresponding author James Brugarolas, M.D., Ph.D., University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8852, Phone: 214-648-4059,
| |
Collapse
|
32
|
Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA Cancer J Clin 2022. [PMID: 36512337 DOI: 10.3322/caac.21765] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer development is driven by the accumulation of alterations affecting the structure and function of the genome. Whereas genetic changes disrupt the DNA sequence, epigenetic alterations contribute to the acquisition of hallmark tumor capabilities by regulating gene expression programs that promote tumorigenesis. Shifts in DNA methylation and histone mark patterns, the two main epigenetic modifications, orchestrate tumor progression and metastasis. These cancer-specific events have been exploited as useful tools for diagnosis, monitoring, and treatment choice to aid clinical decision making. Moreover, the reversibility of epigenetic modifications, in contrast to the irreversibility of genetic changes, has made the epigenetic machinery an attractive target for drug development. This review summarizes the most advanced applications of epigenetic biomarkers and epigenetic drugs in the clinical setting, highlighting commercially available DNA methylation-based assays and epigenetic drugs already approved by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Veronica Davalos
- Josep Carreras Leukaemia Research Institute, Badalona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Molina-Cerrillo J, Santoni M, Ruiz Á, Massari F, Pozas J, Ortego I, Gómez V, Grande E, Alonso-Gordoa T. Epigenetics in advanced renal cell carcinoma: Potential new targets. Crit Rev Oncol Hematol 2022; 180:103857. [DOI: 10.1016/j.critrevonc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
34
|
In Vitro Characterization of Renal Drug Transporter Activity in Kidney Cancer. Int J Mol Sci 2022; 23:ijms231710177. [PMID: 36077583 PMCID: PMC9456511 DOI: 10.3390/ijms231710177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The activity of drug transporters is central to the secretory function of the kidneys and a defining feature of renal proximal tubule epithelial cells (RPTECs). The expression, regulation, and function of these membrane-bound proteins is well understood under normal renal physiological conditions. However, the impact of drug transporters on the pathophysiology of kidney cancer is still elusive. In the present study, we employed different renal cell carcinoma (RCC) cell lines and a prototypical non-malignant RPTEC cell line to characterize the activity, expression, and potential regulatory mechanisms of relevant renal drug transporters in RCC in vitro. An analysis of the uptake and efflux activity, the expression of drug transporters, and the evaluation of cisplatin cytotoxicity under the effects of methylation or epidermal growth factor receptor (EGFR) inhibition showed that the RCC cells retained substantial drug transport activity. In RCC cells, P-glycoprotein was localized in the nucleus and its pharmacological inhibition enhanced cisplatin toxicity in non-malignant RPTECs. On the other hand, methylation inhibition enhanced cisplatin toxicity by upregulating the organic cation uptake activity in RCC cells. Differential effects of methylation and EGFR were observed in transporter expression, showing regulatory heterogeneity in these cells. Interestingly, the non-malignant RPTEC cell line that was used lacked the machinery responsible for organic cation transport, which reiterates the functional losses that renal cells undergo in vitro.
Collapse
|
35
|
Ujfaludi Z, Kuthi L, Pankotai-Bodó G, Bankó S, Sükösd F, Pankotai T. Novel Diagnostic Value of Driver Gene Transcription Signatures to Characterise Clear Cell Renal Cell Carcinoma, ccRCC. Pathol Oncol Res 2022; 28:1610345. [PMID: 35586183 PMCID: PMC9108154 DOI: 10.3389/pore.2022.1610345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Routine molecular tumour diagnostics are augmented by DNA-based qualitative and quantitative molecular techniques detecting mutations of DNA. However, in the past decade, it has been unravelled that the phenotype of cancer, as it’s an extremely complex disease, cannot be fully described and explained by single or multiple genetic variants affecting only the coding regions of the genes. Moreover, studying the manifestation of these somatic mutations and the altered transcription programming—driven by genomic rearrangements, dysregulation of DNA methylation and epigenetic landscape—standing behind the tumorigenesis and detecting these changes could provide a more detailed characterisation of the tumour phenotype. Consequently, novel comparative cancer diagnostic pipelines, including DNA- and RNA-based approaches, are needed for a global assessment of cancer patients. Here we report, that by monitoring the expression patterns of key tumour driver genes by qPCR, the normal and the tumorous samples can be separated into distinct categories. Furthermore, we also prove that by examining the transcription signatures of frequently affected genes at 3p25, 3p21 and 9p21.3 genomic regions, the ccRCC (clear cell renal cell carcinoma) and non-tumorous kidney tissues can be distinguished based on the mRNA level of the selected genes. Our results open new diagnostics possibilities where the mRNA signatures of tumour drivers can supplement the DNA-based approaches providing a more precise diagnostics opportunity leading to determine more precise therapeutic protocols.
Collapse
Affiliation(s)
- Zsuzsanna Ujfaludi
- Albert Szent-Györgyi Clinical Center, Albert Szent-Györgyi Medical School, Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Levente Kuthi
- Albert Szent-Györgyi Clinical Center, Albert Szent-Györgyi Medical School, Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Albert Szent-Györgyi Clinical Center, Albert Szent-Györgyi Medical School, Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Sarolta Bankó
- Albert Szent-Györgyi Clinical Center, Albert Szent-Györgyi Medical School, Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Farkas Sükösd
- Albert Szent-Györgyi Clinical Center, Albert Szent-Györgyi Medical School, Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Albert Szent-Györgyi Clinical Center, Albert Szent-Györgyi Medical School, Institute of Pathology, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Minatel BC, Cohn DE, Pewarchuk ME, Barros-Filho MC, Sage AP, Stewart GL, Marshall EA, Telkar N, Martinez VD, Reis PP, Robinson WP, Lam WL. Genetic and Epigenetic Mechanisms Deregulate the CRL2pVHL Complex in Hepatocellular Carcinoma. Front Genet 2022; 13:910221. [PMID: 35664333 PMCID: PMC9159809 DOI: 10.3389/fgene.2022.910221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.
Collapse
Affiliation(s)
- Brenda C. Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- *Correspondence: David E. Cohn,
| | - Michelle E. Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Mateus C. Barros-Filho
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Adam P. Sage
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Nikita Telkar
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Patricia P. Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
37
|
Lee MK, Brown MS, Wilkins OM, Pattabiraman DR, Christensen BC. Distinct cytosine modification profiles define epithelial-to-mesenchymal cell-state transitions. Epigenomics 2022; 14:519-535. [PMID: 35382559 PMCID: PMC9118069 DOI: 10.2217/epi-2022-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis cascade, involving progression through intermediate cell states. Due to challenges with isolating intermediate cell states, genome-wide cytosine modifications that define transition are not completely understood. Methods: The authors measured multiple DNA cytosine modification marks and chromatin accessibility across clonal populations residing in specific EMT states. Results: Clones exhibiting more intermediate EMT phenotypes demonstrated increased 5-hydroxymethylcytosine and decreased 5-methylcytosine. Open chromatin regions containing increased 5-hydroxymethylcytosine CpG loci were enriched in EMT transcription factor motifs and were associated with Rho GTPases. Conclusion: The results indicate the importance of both distinct and shared epigenetic profiles associated with EMT processes that may be targeted to prevent EMT progression.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Meredith S Brown
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Owen M Wilkins
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Diwakar R Pattabiraman
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
38
|
Hayashi T, Eto K, Kadoya Y. Downregulation of ten-eleven translocation-2 triggers epithelial differentiation during organogenesis. Differentiation 2022; 125:45-53. [DOI: 10.1016/j.diff.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
39
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
40
|
Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022; 38:676-707. [DOI: 10.1016/j.tig.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
41
|
Luo J, Chen J, Zhou J, Han K, Li S, Duan J, Cao C, Lin J, Xie D, Wang F. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ‐mediated DNA repair. Cancer Sci 2022; 113:2008-2021. [PMID: 35348274 PMCID: PMC9207377 DOI: 10.1111/cas.15348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T‐box TF family protein, was downregulated with hypermethylation of promoter in early‐stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non‐homologous DNA end joining (NHEJ)‐mediated double‐stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor‐suppressive role of TBX20 by inhibiting NHEJ‐mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early‐stage CRC and a therapeutic target for combination therapy.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jie‐Wei Chen
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Kai Han
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Colorectal Surgery Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Si Li
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Ling Duan
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Chen‐Hui Cao
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Long Lin
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Dan Xie
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Feng‐Wei Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| |
Collapse
|
42
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
DNA Methylation Malleability and Dysregulation in Cancer Progression: Understanding the Role of PARP1. Biomolecules 2022; 12:biom12030417. [PMID: 35327610 PMCID: PMC8946700 DOI: 10.3390/biom12030417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Mammalian genomic DNA methylation represents a key epigenetic modification and its dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-expression patterns makes it the key governing mechanism of epigenetic change to the next generation of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of inheritable diseases, including cancer. We outline recent advancements in understanding how DNA modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation. In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological inhibitors, and their relevance as a combination therapy are highlighted.
Collapse
|
44
|
Lynch-like Syndrome: Potential Mechanisms and Management. Cancers (Basel) 2022; 14:cancers14051115. [PMID: 35267422 PMCID: PMC8909420 DOI: 10.3390/cancers14051115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Lynch-like syndrome (LLS) is defined as colorectal cancer cases with microsatellite instability (MSI) and loss of expression of MLH1, MSH2, MSH6, or PMS2 by immunohistochemistry (IHC) in the absence of a germline mutation in these genes that cannot be explained by BRAF mutation or MLH1 hypermethylation. The application of the universal strategy for the diagnosis of Lynch syndrome (LS) in all CRCs is leading to an increase in the incidence of cases of LLS. It has been described that risk of cancer in relatives of LLS patients is in between of that found in Lynch syndrome families and sporadic cases. That makes LLS patients and their families a challenging group for which the origin of CRC is unknown, being a mixture between unidentified hereditary CRC and sporadic cases. The potential causes of LLS are discussed in this review, as well as methods for identification of truly hereditary cases. Abstract Lynch syndrome is an autosomal dominant disorder caused by germline mutations in DNA mismatch repair (MMR) system genes, such as MLH1, MSH2, MSH6, or PMS2. It is the most common hereditary colorectal cancer syndrome. Screening is regularly performed by using microsatellite instability (MSI) or immunohistochemistry for the MMR proteins in tumor samples. However, in a proportion of cases, MSI is found or MMR immunohistochemistry is impaired in the absence of a germline mutation in MMR genes, BRAF mutation, or MLH1 hypermethylation. These cases are defined as Lynch-like syndrome. Patients with Lynch-like syndrome represent a mixture of truly hereditary and sporadic cases, with a risk of colorectal cancer in first-degree relatives that is between the risk of Lynch syndrome in families and relatives of sporadic colon cancer cases. Although multiple approaches have been suggested to distinguish between hereditary and sporadic cases, a homogeneous testing protocol and consensus on the adequate classification of these patients is still lacking. For this reason, management of Lynch-like syndrome and prevention of cancer in these families is clinically challenging. This review explains the concept of Lynch-like syndrome, potential mechanisms for its development, and methods for adequately distinguishing between sporadic and hereditary cases of this entity.
Collapse
|
45
|
Choubey P, Kaur H, Bansal K. Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer. Subcell Biochem 2022; 100:201-237. [PMID: 36301496 DOI: 10.1007/978-3-031-07634-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleic acid methylation is a fundamental epigenetic mechanism that impinges upon several cellular attributes, including metabolism and energy production. The dysregulation of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) methylation can lead to metabolic rewiring in the cell, which in turn facilitates tumor development. Here, we review the current knowledge on the interplay between DNA/RNA methylation and metabolic programs in cancer cells. We also discuss the mechanistic role of these pathways in tumor development and progression.
Collapse
Affiliation(s)
- Pallawi Choubey
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Harshdeep Kaur
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India.
| |
Collapse
|
46
|
Nasrullah, Hussain A, Ahmed S, Rasool M, Shah AJ. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022; 13:1666-1685. [PMID: 34986742 PMCID: PMC8805842 DOI: 10.1080/21655979.2021.2014387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Nasrullah
- Center for Advanced Studies in Vaccinology & Biotechnology (Casvab), University of Baluchistan, Quetta- Pakistan. E-mails:
| | - Abrar Hussain
- Department of Biotechnology, Faculty of Life Sciences, Buitems, Quetta-Pakistan. E-mails:
| | - Sagheer Ahmed
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan. E-mails:
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mails:
| | - Abdul Jabbar Shah
- Department of Pharmaceutical Sciences, Comsats University, Abbottabad. E-mails:
| |
Collapse
|
47
|
Das D, Karthik N, Taneja R. Epigenetic Small-Molecule Modulators Targeting Metabolic Pathways in Cancer. Subcell Biochem 2022; 100:523-555. [PMID: 36301505 DOI: 10.1007/978-3-031-07634-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic deregulation is a key factor in cancer progression. Epigenetic changes and metabolic rewiring are intertwined in cancer. Deregulated epigenetic modifiers cause metabolic aberrations by targeting the expression of metabolic enzymes. Conversely, metabolites and cofactors affect the expression and activity of epigenetic regulators. Small molecules are promising therapeutic approaches to target the epigenetic-metabolomic crosstalk in cancer. Here, we focus on the interplay between metabolic rewiring and epigenetic landscape in the context of tumourigenesis and highlight recent advances in the use of small-molecule drug targets for therapy.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translational Research Program Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
48
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Abstract
Few ideas in cancer genetics have been as influential as the “two-hit” theory of tumor suppressors. This idea was introduced in 1971 by Al Knudson in a paper in the Proceedings of the National Academy of Science and forms the basis for our current understanding of the role of mutations in cancer. In this theoretical discussion proposing a genetic basis for retinoblastoma, a childhood cancer of the retina, Knudson posited that these tumors arise from two inactivating mutations, targeting both alleles of a putative tumor suppressor gene. While this work built on earlier proposals that cancers are the result of mutations in more than one gene, it was the first to propose a plausible mechanism by which single genes that are affected by germ-line mutations in heritable cancers could also cause spontaneous, nonheritable tumors when mutated in somatic tissues. Remarkably, Knudson described the existence and properties of a retinoblastoma tumor suppressor gene a full 15 years before the gene was cloned.
Collapse
|
50
|
Zhu R, Li X, Cai Z, Liang S, Yuan Y, Xu Y, Lai D, Zhao H, Yang W, Bian J, Liu L, Xu G. Risk Scores Based on Six Survival-Related RNAs in a Competing Endogenous Network Composed of Differentially Expressed RNAs Between Clear Cell Renal Cell Carcinoma Patients Carrying Wild-Type or Mutant Von Hippel-Lindau Serve Well to Predict Malignancy and Prognosis. Front Oncol 2021; 11:726671. [PMID: 34760693 PMCID: PMC8573174 DOI: 10.3389/fonc.2021.726671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) carrying wild-type Von Hippel–Lindau (VHL) tumor suppressor are more invasive and of high morbidity. Concurrently, competing endogenous RNA (ceRNA) network has been suggested to play an important role in ccRCC malignancy. In order to understand why the patients carrying wild-type VHL gene have high degrees of invasion and morbidity, we applied bioinformatics approaches to identify 861 differentially expressed RNAs (DE-RNAs) between patients carrying wild-type and patients carrying mutant VHL from The Cancer Genome Atlas (TCGA) database, established a ceRNA network including 122 RNAs, and elected six survival-related DE-RNAs including Linc00942, Linc00858, RP13_392I16.1, hsa-miR-182-5p, hsa-miR-183-5p, and PAX3. Examining clinical samples from our hospital revealed that patients carrying wild-type VHL had significantly higher levels of all six RNAs than those carrying mutant VHL. Patients carrying wild-type VHL had significantly higher risk scores, which were calculated based on expression levels of all six RNAs, than those carrying mutant VHL. Patients with higher risk scores had significantly shorter survival times than those with lower risk scores. Therefore, the risk scores serve well to predict malignancy and prognosis.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiezhao Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siyang Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoji Yuan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuyu Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dehui Lai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhao
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqing Yang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leyuan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|