1
|
Nasiri F, Ebrahimi P, Shahsavani MB, Barati A, Zarei I, Hong J, Hoshino M, Moosavi-Movahedi AA, Yousefi R. Unraveling the impact of the p.R107L mutation on the structure and function of human αB-Crystallin: Implications for cataract formation. Biochimie 2024; 222:151-168. [PMID: 38494110 DOI: 10.1016/j.biochi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.
Collapse
Affiliation(s)
- Farid Nasiri
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Parisa Ebrahimi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng, 475000, People's Republic of China
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Darvazi M, Ghorbani M, Ramazi S, Allahverdi A, Abdolmaleki P. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality. J Biomol Struct Dyn 2024; 42:5788-5798. [PMID: 37354135 DOI: 10.1080/07391102.2023.2229434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
The eye is a vital organ in the visual system, which is composed of transparent vascular tissue. αB-crystallin, a significant protein found in the lens, plays a crucial role in our understanding of lens diseases. Mutations in the αB-crystallin protein can cause lens diseases, such as cataracts and myopathy. However, the molecular mechanism underlying the R120G mutation is not fully understood. In this study, we utilized molecular dynamics simulations to illustrate, in atomic detail, how the R120G mutation leads to the aggregation of αB-crystallin and scattering of light in the lens. Our findings show that the R120G mutation alters the dynamic and structural properties of the αB-crystallin protein. Specifically, this mutation causes the angle of the hairpin at the C-terminal to increase from 80° to 150°, while reducing the distance between the hydrophobic patches around residues 10 and 44-55 from 1.5 nm to 1 nm. In addition, our results showed that the mutation could disrupt the IPI motif - β4/β8 interaction. The disruption of this interaction could affect the αB-crystallin oligomerization and the chaperone activity of αB-crystallin protein. The exposed hydrophobic area at the IPI motif - β4/β8 could become the primary site for interprotein interactions, which are responsible for large-scale aggregation. We have demonstrated that, in wild-type αB-crystallin protein, salt bridges R120 and D109, R107 and D80 are formed. However, in the case of the R120G mutation, the salt bridges R120 and R109 are disrupted, and a new salt bridge with a different pattern is formed. In our study, it has been found that all of the changes associated with the R120G mutation are located at the interface of chains A and B, which could impact the multimerization of the αB-crystallin. Previous research on the K92-E99 residue has shown that a salt bridge in the dimer I can reduce the chaperone activity of the protein. Furthermore, the salt bridges R120 and D109, as well as R107 and D80 in dimer II, induce changes in the hydrophobic envelope of β-sheets in the α-crystallin domain (ACD). These changes could have an impact on the multimerization of the αB-crystallin, leading to disruption of the oligomer structure and aggregation. Moreover, the changes in the αB-crystallin resulting from the R120G mutation can lead to faulty interactions with other proteins, which can cause the aggregation of αB-crystallin with other proteins, such as desmin. These findings may provide new insights into the development of treatments for lens diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mona Darvazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
McFarland R, Reichow S. Dynamic fibrillar assembly of αB-crystallin induced by perturbation of the conserved NT-IXI motif resolved by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586355. [PMID: 38585788 PMCID: PMC10996541 DOI: 10.1101/2024.03.22.586355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
αB-crystallin is an archetypical member of the small heat-shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we mutated a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin. This resulted in a profound structural transformation, from highly polydispersed caged-like native assemblies into a comparatively well-ordered helical fibril state amenable to high-resolution cryo-EM analysis. The reversible nature of the induced fibrils facilitated interrogation of functional effects due to perturbation of the NT-IXI motif in both the native-like oligomer and fibril states. Together, our investigations unveiled several features thought to be key mechanistic attributes to sHSPs and point to a critical significance of the NT-IXI motif in αB-crystallin assembly, dynamics and chaperone activity.
Collapse
Affiliation(s)
- Russell McFarland
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
- Current: Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Steve Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
4
|
Wang H, Tian Q, Zhang Y, Xi Y, Hu L, Yao K, Li J, Chen X. Celastrol regulates the oligomeric state and chaperone activity of αB-crystallin linked with protein homeostasis in the lens. FUNDAMENTAL RESEARCH 2024; 4:394-400. [PMID: 38933503 PMCID: PMC11197752 DOI: 10.1016/j.fmre.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022] Open
Abstract
Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant βA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.
Collapse
Affiliation(s)
- Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Yibo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Thorkelsson A, Chin MT. Role of the Alpha-B-Crystallin Protein in Cardiomyopathic Disease. Int J Mol Sci 2024; 25:2826. [PMID: 38474073 DOI: 10.3390/ijms25052826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Alpha-B-crystallin, a member of the small heat shock family of proteins, has been implicated in a variety of cardiomyopathies and in normal cardiac homeostasis. It is known to function as a molecular chaperone, particularly for desmin, but also interacts with a wide variety of additional proteins. The molecular chaperone function is also enhanced by signal-dependent phosphorylation at specific residues under stress conditions. Naturally occurring mutations in CRYAB, the gene that encodes alpha-B-crystallin, have been suggested to alter ionic intermolecular interactions that affect dimerization and chaperone function. These mutations have been associated with myofibrillar myopathy, restrictive cardiomyopathy, and hypertrophic cardiomyopathy and promote pathological hypertrophy through different mechanisms such as desmin aggregation, increased reductive stress, or activation of calcineurin-NFAT signaling. This review will discuss the known mechanisms by which alpha-B-crystallin functions in cardiac homeostasis and the pathogenesis of cardiomyopathies and provide insight into potential future areas of exploration.
Collapse
Affiliation(s)
- Andres Thorkelsson
- Tufts University School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Michael T Chin
- Tufts University School of Medicine, Tufts University, Boston, MA 02111, USA
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
6
|
Hosseini Jafari M, Shahsavani MB, Hoshino M, Hong J, Saboury AA, Moosavi-Movahedi AA, Yousefi R. Unveiling the structural and functional consequences of the p.D109G pathogenic mutation in human αB-Crystallin responsible for restrictive cardiomyopathy and skeletal myopathy. Int J Biol Macromol 2024; 254:127933. [PMID: 37939764 DOI: 10.1016/j.ijbiomac.2023.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
αB-Crystallin (αB-Cry) is expressed in many tissues, and mutations in this protein are linked to various diseases, including cataracts, Alzheimer's disease, Parkinson's disease, and several types of myopathies and cardiomyopathies. The p.D109G mutation, which substitutes a conserved aspartate residue involved in the interchain salt bridges, with glycine leads to the development of both restrictive cardiomyopathy (RCM) and skeletal myopathy. In this study, we generated this mutation in the α-Cry domain (ACD) which is crucial for forming the active chaperone dimeric state, using site-directed mutagenesis. After inducing expression in the bacterial host, we purified the mutant and wild-type recombinant proteins using anion exchange chromatography. Various spectroscopic evaluations revealed significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry caused by this mutation. Furthermore, this pathogenic mutation led to the formation of protein oligomers with larger sizes than those of the wild-type protein counterpart. The mutant protein also exhibited increased chaperone activity and decreased chemical, thermal, and proteolytic stability. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and fluorescence microscopy (FM) demonstrated that p.D109G mutant protein is more prone to forming amyloid aggregates. The misfolding associated with the p.D109G mutation may result in abnormal interactions of human αB-Cry with its natural partners (e.g., desmin), leading to the formation of protein aggregates. These aggregates can interfere with normal cellular processes and may contribute to muscle cell dysfunction and damage, resulting in the pathogenic involvement of the p.D109G mutant protein in restrictive cardiomyopathy and skeletal myopathy.
Collapse
Affiliation(s)
- Mehrnaz Hosseini Jafari
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, People's Republic of China
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Wang C, Teng L, Liu ZS, Kamalova A, McMenimen KA. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface. Int J Mol Sci 2023; 25:471. [PMID: 38203641 PMCID: PMC10778692 DOI: 10.3390/ijms25010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.
Collapse
Affiliation(s)
- Chenwei Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Lilong Teng
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Zhiyan Silvia Liu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Aichurok Kamalova
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Kathryn A. McMenimen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
8
|
Park J, MacGavin S, Niederbrach L, Mchaourab HS. Interplay between Nrf2 and αB-crystallin in the lens and heart of zebrafish under proteostatic stress. Front Mol Biosci 2023; 10:1185704. [PMID: 37577747 PMCID: PMC10422029 DOI: 10.3389/fmolb.2023.1185704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
A coordinated oxidative stress response, partly triggered by the transcription factor Nrf2, protects cells from the continual production of reactive oxygen species. Left unbuffered, reactive oxygen species can lead to protein aggregation that has been implicated in a spectrum of diseases such as cataract of the ocular lens and myopathy of the heart. While proteostasis is maintained by diverse families of heat shock proteins, the interplay between the oxidative and proteostatic stress responses in the lens and heart has not been investigated. Capitalizing on multiple zebrafish lines that have compromised function of Nrf2 and/or the two zebrafish small heat shock proteins αBa- and αBb-crystallin, we uncovered a transcriptional relationship that leads to a substantial increase in αBb-crystallin transcripts in the heart in response to compromised function of Nrf2. In the lens, the concomitant loss of function of Nrf2 and αBa-crystallin leads to upregulation of the cholesterol biosynthesis pathway, thus mitigating the phenotypic consequences of the αBa-crystallin knockout. By contrast, abrogation of Nrf2 function accentuates the penetrance of a heart edema phenotype characteristic of embryos of αB-crystallin knockout lines. Multiple molecular pathways, such as genes involved in extracellular interactions and implicated in cardiomyopathy, are revealed from transcriptome profiling, thus identifying novel targets for further investigation. Together, our transcriptome/phenotypic analysis establishes an intersection between oxidative stress and chaperone responses in the lens and heart.
Collapse
Affiliation(s)
| | | | | | - Hassane S. Mchaourab
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Chou C, Martin GL, Perera G, Awata J, Larson A, Blanton R, Chin MT. A novel αB-crystallin R123W variant drives hypertrophic cardiomyopathy by promoting maladaptive calcium-dependent signal transduction. Front Cardiovasc Med 2023; 10:1223244. [PMID: 37435054 PMCID: PMC10331725 DOI: 10.3389/fcvm.2023.1223244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder affecting 1 in 500 people in the general population. Characterized by asymmetric left ventricular hypertrophy, cardiomyocyte disarray and cardiac fibrosis, HCM is a highly complex disease with heterogenous clinical presentation, onset and complication. While mutations in sarcomere genes can account for a substantial proportion of familial cases of HCM, 40%-50% of HCM patients do not carry such sarcomere variants and the causal mutations for their diseases remain elusive. Recently, we identified a novel variant of the alpha-crystallin B chain (CRYABR123W) in a pair of monozygotic twins who developed concordant HCM phenotypes that manifested over a nearly identical time course. Yet, how CRYABR123W promotes the HCM phenotype remains unclear. Here, we generated mice carrying the CryabR123W knock-in allele and demonstrated that hearts from these animals exhibit increased maximal elastance at young age but reduced diastolic function with aging. Upon transverse aortic constriction, mice carrying the CryabR123W allele developed pathogenic left ventricular hypertrophy with substantial cardiac fibrosis and progressively decreased ejection fraction. Crossing of mice with a Mybpc3 frame-shift model of HCM did not potentiate pathological hypertrophy in compound heterozygotes, indicating that the pathological mechanisms in the CryabR123W model are independent of the sarcomere. In contrast to another well-characterized CRYAB variant (R120G) which induced Desmin aggregation, no evidence of protein aggregation was observed in hearts expressing CRYABR123W despite its potent effect on driving cellular hypertrophy. Mechanistically, we uncovered an unexpected protein-protein interaction between CRYAB and calcineurin. Whereas CRYAB suppresses maladaptive calcium signaling in response to pressure-overload, the R123W mutation abolished this effect and instead drove pathologic NFAT activation. Thus, our data establish the CryabR123W allele as a novel genetic model of HCM and unveiled additional sarcomere-independent mechanisms of cardiac pathological hypertrophy.
Collapse
Affiliation(s)
- Chun Chou
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Gayani Perera
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Junya Awata
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Amy Larson
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Robert Blanton
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Michael T. Chin
- Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
10
|
Posner M, Murray KL, Andrew B, Brdicka S, Roberts A, Franklin K, Hussen A, Kaye T, Kepp E, McDonald MS, Snodgrass T, Zientek K, David LL. Impact of α-crystallin protein loss on zebrafish lens development. Exp Eye Res 2023; 227:109358. [PMID: 36572168 PMCID: PMC9918708 DOI: 10.1016/j.exer.2022.109358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The α-crystallin small heat shock proteins contribute to the transparency and refractive properties of the vertebrate eye lens and prevent the protein aggregation that would otherwise produce lens cataracts, the leading cause of human blindness. There are conflicting data in the literature as to what role the α-crystallins may play in early lens development. In this study, we used CRISPR gene editing to produce zebrafish lines with mutations in each of the three α-crystallin genes (cryaa, cryaba and cryabb) to prevent protein production. The absence of each α-crystallin protein was analyzed by mass spectrometry, and lens phenotypes were assessed with differential interference contrast microscopy and histology. Loss of αA-crystallin produced a variety of lens defects with varying severity in larvae at 3 and 4 dpf but little substantial change in normal fiber cell denucleation. Loss of αBa-crystallin produced no substantial lens defects. Our cryabb mutant produced a truncated αBb-crystallin protein and showed no substantial change in lens development. Mutation of each α-crystallin gene did not alter the mRNA levels of the remaining two, suggesting a lack of genetic compensation. These data suggest that αA-crystallin plays some role in lens development, but the range of phenotype severity in null mutants indicates its loss simply increases the chance for defects and that the protein is not essential. Our finding that cryaba and cryabb mutants lack noticeable lens defects is congruent with insubstantial transcript levels for these genes in lens epithelial and fiber cells through five days of development. Future experiments can explore the molecular mechanisms leading to lens defects in cryaa null mutants and the impact of αA-crystallin loss during zebrafish lens aging.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA.
| | - Kelly L Murray
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Brandon Andrew
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Stuart Brdicka
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Alexis Roberts
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Kirstan Franklin
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Adil Hussen
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Taylor Kaye
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Emmaline Kepp
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Mathew S McDonald
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Tyler Snodgrass
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Keith Zientek
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, USA
| | - Larry L David
- Department of Chemical Physiology & Biochemistry, Oregon Health and Science University, USA
| |
Collapse
|
11
|
Zhao Z, Sun Y, Fan Q, Jiang Y, Lu Y. Structural and functional analysis of SNP rs76740365 G>A in exon-3 of the alpha A-crystallin gene in lens epithelial cells. Mol Vis 2022; 28:317-330. [PMID: 36338667 PMCID: PMC9603911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs). Methods The human recombinant wild-type and mutant CRYAA (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant CRYAA was invested against the heat-induced aggregation of βL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated CRYAA were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot. Results The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the CRYAA oligomeric complex. Evaluation of the structures of the CRYAA indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant CRYAA displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3. Conclusions Taken together, our results for the first time showed that E156K mutation in CRYAA associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function.
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yang Sun
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Qi Fan
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
12
|
Wang K, Hoshino M, Uesugi K, Yagi N, Pierscionek BK, Andley UP. Oxysterol Compounds in Mouse Mutant αA- and αB-Crystallin Lenses Can Improve the Optical Properties of the Lens. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 35575904 PMCID: PMC9123516 DOI: 10.1167/iovs.63.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate how cataract-linked mutations affect the gradient refractive index (GRIN) and lens opacification in mouse lenses and whether there is any effect on the optics of the lens from treatment with an oxysterol compound. Methods A total of 35 mice including wild-type and knock-in mutants (Cryaa-R49C and Cryab-R120G) were used in these experiments: 26 mice were treated with topical VP1-001, an oxysterol, in one eye and vehicle in the other, and nine mice were untreated controls. Slit lamp biomicroscopy was used to analyze the lens in live animals and to provide apparent cataract grades. Refractive index in the lenses of 64 unfixed whole mouse eyes was calculated from measurements with X-ray phase tomography based on X-ray Talbot interferometry with a synchrotron radiation source. Results Heterozygous Cryaa-R49C lenses had slightly irregularly shaped contours in the center of the GRIN and distinct disturbances of the gradient index at the anterior and posterior poles. Contours near the lens surface were denser in homozygous Cryab-R120G lenses. Treatment with topical VP1-001, an oxysterol, showed an improvement in refractive index profiles in 61% of lenses and this was supported by a reduction in apparent lens opacity grade by 1.0 in 46% of live mice. Conclusions These results indicate that α-crystallin mutations alter the refractive index gradient of mouse lenses in distinct ways and suggest that topical treatment with VP1-001 may improve lens transparency and refractive index contours in some lenses with mutations.
Collapse
Affiliation(s)
- Kehao Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (SPring8), Sayo, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (SPring8), Sayo, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (SPring8), Sayo, Hyogo, Japan
| | - Barbara K. Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford, United Kingdom
| | - Usha P. Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
14
|
Khoshaman K, Ghahramani M, Shahsavani MB, Moosavi-Movahedi AA, Kurganov BI, Yousefi R. Myopathy-associated G154S mutation causes important changes in the conformational stability, amyloidogenic properties, and chaperone-like activity of human αB-crystallin. Biophys Chem 2021; 282:106744. [PMID: 34983005 DOI: 10.1016/j.bpc.2021.106744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
Glycine to serine substitution at position 154 of human αB-crystallin (αB-Cry) is behind the development of cardiomyopathy and late-onset distal myopathy. The current study was conducted with the aim to investigate the structural and functional features of the G154S mutant αB-Cry using various spectroscopic techniques and microscopic analyses. The secondary and tertiary structures of human αB-Cry were preserved mainly in the presence of G154S mutation, but the mutant protein indicated a reduced chaperone-like activity when γ-Cry as its natural partner in eye lenses was the substrate protein. Moreover, a significant reduction in the enzyme refolding ability and in vivo chaperone activity of the mutant protein were observed. Also, the mutant protein displayed reduced conformational stability upon urea-induced denaturation. Both fluorescence and electron microscopic analyses suggested that G154S mutant protein has an increased susceptibility for amyloid fibril formation. Therefore, the pathomechanism of G154S mutation can be explained by its attenuated chaperone function, decreased conformational stability, and increased amyloidogenic propensity. Some of these important changes may also alter the correct interaction of the mutated αB-Cry with its target proteins in myopathy.
Collapse
Affiliation(s)
- Kazem Khoshaman
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran
| | - Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran
| | | | | | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Structural and functional studies of D109A human αB-crystallin contributing to the development of cataract and cardiomyopathy diseases. PLoS One 2021; 16:e0260306. [PMID: 34843556 PMCID: PMC8629256 DOI: 10.1371/journal.pone.0260306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
αB-crystallin (heat shock protein β5/HSPB5) is a member of the family of small heat shock proteins that is expressed in various organs of the human body including eye lenses and muscles. Therefore, mutations in the gene of this protein (CRYAB) might have many pathological consequences. A new mutation has recently been discovered in the α-crystallin domain of this chaperone protein which replaces aspartate 109 with alanine (D109A). This mutation can cause myofibrillar myopathy (MFM), cataracts, and cardiomyopathy. In the current study, several spectroscopic and microscopic analyses, as well as gel electrophoresis assessment were applied to elucidate the pathogenic contribution of human αB-crystallin bearing D109A mutation in development of eye lens cataract and myopathies. The protein oligomerization, chaperone-like activity and chemical/thermal stabilities of the mutant and wild-type protein were also investigated in the comparative assessments. Our results suggested that the D109A mutation has a significant impact on the important features of human αB-crystallin, including its structure, size of the protein oligomers, tendency to form amyloid fibrils, stability, and chaperone-like activity. Given the importance of aspartate 109 in maintaining the proper structure of the α-crystallin domain, its role in the dimerization and chaperone-like activity, as well as preserving protein stability through the formation of salt bridges; mutation at this important site might have critical consequences and can explain the genesis of myopathy and cataract disorders. Also, the formation of large light-scattering aggregates and disruption of the chaperone-like activity by D109A mutation might be considered as important contributing factors in development of the eye lens opacity.
Collapse
|
16
|
Alperstein AM, Molnar KS, Dicke SS, Farrell KM, Makley LN, Zanni MT, Andley UP. Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy. PLoS One 2021; 16:e0257098. [PMID: 34520490 PMCID: PMC8439473 DOI: 10.1371/journal.pone.0257098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
αB-crystallin is a small heat shock protein that forms a heterooligomeric complex with αA-crystallin in the ocular lens. It is also widely distributed in tissues throughout the body and has been linked with neurodegenerative diseases such as Alzheimer's, where it is associated with amyloid fibrils. Crystallins can form amorphous aggregates in cataracts as well as more structured amyloid-like fibrils. The arginine 120 to glycine (R120G) mutation in αB-crystallin (Cryab-R120G) results in high molecular weight crystallin protein aggregates and loss of the chaperone activity of the protein in vitro, and it is associated with human hereditary cataracts and myopathy. Characterizing the amorphous (unstructured) versus the highly ordered (amyloid fibril) nature of crystallin aggregates is important in understanding their role in disease and important to developing pharmacological treatments for cataracts. We investigated protein secondary structure in wild-type (WT) and Cryab-R120G knock-in mutant mouse lenses using two-dimensional infrared (2DIR) spectroscopy, which has been used to detect amyloid-like fibrils in human lenses and measure UV radiation-induced changes in porcine lenses. Our goal was to compare the aggregated proteins in this mouse lens model to human lenses and evaluate the protein structural relevance of the Cryab-R120G knock-in mouse model to general age-related cataract disease. In the 2DIR spectra, amide I diagonal peak frequencies were red-shifted to smaller wavenumbers in mutant mouse lenses as compared to WT mouse lenses, consistent with an increase in ordered secondary structure. The cross peak frequency and intensity indicated the presence of amyloid in the mutant mouse lenses. While the diagonal and cross peak changes in location and intensity from the 2DIR spectra indicated significant structural differences between the wild type and mutant mouse lenses, these differences were smaller than those found in human lenses; thus, the Cryab-R120G knock-in mouse lenses contain less amyloid-like secondary structure than human lenses. The results of the 2DIR spectroscopy study confirm the presence of amyloid-like secondary structure in Cryab-R120G knock-in mice with cataracts and support the use of this model to study age-related cataract.
Collapse
Affiliation(s)
- Ariel M. Alperstein
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kathleen S. Molnar
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Sidney S. Dicke
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kieran M. Farrell
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leah N. Makley
- ViewPoint Therapeutics, San Francisco, California, United States of America
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Usha P. Andley
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
17
|
Wu YY, Desu NKR, Lu SY, Yu BY, Kumar R, Huang FY. H101G Mutation in Rat Lens αB-Crystallin Alters Chaperone Activity and Divalent Metal Ion Binding. Curr Pharm Biotechnol 2021; 23:719-727. [PMID: 34225616 DOI: 10.2174/1389201022666210702130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The molecular chaperone function of αB-crystallins is heavily involved in maintaining lens transparency and the development of cataracts. OBJECTIVE To study whether divalent metal ion binding improves the stability and αB-crystallin chaperone activity. METHOD In this study, we have developed an H101G αB-crystallin mutant and compared the surface hydrophobicity, chaperone activity, and secondary and tertiary structure with the wild type in the presence and absence of metal ions. RESULTS Substitution of His101 with glycine resulted in structural and functional changes. Spectral analysis and chaperone-like activity assays showed that substitution of glycine resulted in a higher percentage of random coils, increased hydrophobicity, and 22±2% higher chaperone-like activity. Whereas in the presence of the Cu2+ ion, H101G exhibited 32±1% less chaperone-like activity compared to the wild type. CONCLUSION Cu2+ has been reported to enhance the chaperone-like activity of lens α-crystallin. Our results indicate that H101 is the predominant Cu2+binding site, and the mutation resulted in a partial unfolding that impaired the binding of Cu2+ to H101 residue. In conclusion, this study further helps to understand the important binding site for Cu2+ to αB-crystallin.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| | | | - Shou-Yun Lu
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| | - Bi-Yu Yu
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan. Taiwan
| | - Fu-Yung Huang
- Department of Chemistry, National Cheng Kung University, Tainan. Taiwan
| |
Collapse
|
18
|
Chakafana G, Spracklen TF, Kamuli S, Zininga T, Shonhai A, Ntusi NAB, Sliwa K. Heat Shock Proteins: Potential Modulators and Candidate Biomarkers of Peripartum Cardiomyopathy. Front Cardiovasc Med 2021; 8:633013. [PMID: 34222357 PMCID: PMC8241919 DOI: 10.3389/fcvm.2021.633013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially life-threatening condition in which heart failure and systolic dysfunction occur late in pregnancy or within months following delivery. To date, no reliable biomarkers or therapeutic interventions for the condition exist, thus necessitating an urgent need for identification of novel PPCM drug targets and candidate biomarkers. Leads for novel treatments and biomarkers are therefore being investigated worldwide. Pregnancy is generally accompanied by dramatic hemodynamic changes, including a reduced afterload and a 50% increase in cardiac output. These increased cardiac stresses during pregnancy potentially impair protein folding processes within the cardiac tissue. The accumulation of misfolded proteins results in increased toxicity and cardiac insults that trigger heart failure. Under stress conditions, molecular chaperones such as heat shock proteins (Hsps) play crucial roles in maintaining cellular proteostasis. Here, we critically assess the potential role of Hsps in PPCM. We further predict specific associations between the Hsp types Hsp70, Hsp90 and small Hsps with several proteins implicated in PPCM pathophysiology. Furthermore, we explore the possibility of select Hsps as novel candidate PPCM biomarkers and drug targets. A better understanding of how these Hsps modulate PPCM pathogenesis holds promise in improving treatment, prognosis and management of the condition, and possibly other forms of acute heart failure.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy F Spracklen
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stephen Kamuli
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa
| | - Ntobeko A B Ntusi
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Department of Medicine, Faculty of Health Sciences, Cape Heart Institute, University of Cape Town, Cape Town, South Africa.,Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genomics 2021; 22:438. [PMID: 34112090 PMCID: PMC8194174 DOI: 10.1186/s12864-021-07758-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Myofibrillar myopathy in humans causes protein aggregation, degeneration, and weakness of skeletal muscle. In horses, myofibrillar myopathy is a late-onset disease of unknown origin characterized by poor performance, atrophy, myofibrillar disarray, and desmin aggregation in skeletal muscle. This study evaluated molecular and ultrastructural signatures of myofibrillar myopathy in Warmblood horses through gluteal muscle tandem-mass-tag quantitative proteomics (5 affected, 4 control), mRNA-sequencing (8 affected, 8 control), amalgamated gene ontology analyses, and immunofluorescent and electron microscopy. Results We identified 93/1533 proteins and 47/27,690 genes that were significantly differentially expressed. The top significantly differentially expressed protein CSRP3 and three other differentially expressed proteins, including, PDLIM3, SYNPO2, and SYNPOL2, are integrally involved in Z-disc signaling, gene transcription and subsequently sarcomere integrity. Through immunofluorescent staining, both desmin aggregates and CSRP3 were localized to type 2A fibers. The highest differentially expressed gene CHAC1, whose protein product degrades glutathione, is associated with oxidative stress and apoptosis. Amalgamated transcriptomic and proteomic gene ontology analyses identified 3 enriched cellular locations; the sarcomere (Z-disc & I-band), mitochondrial complex I and the extracellular matrix which corresponded to ultrastructural Z-disc disruption and mitochondrial cristae alterations found with electron microscopy. Conclusions A combined proteomic and transcriptomic analysis highlighted three enriched cellular locations that correspond with MFM ultrastructural pathology in Warmblood horses. Aberrant Z-disc mechano-signaling, impaired Z-disc stability, decreased mitochondrial complex I expression, and a pro-oxidative cellular environment are hypothesized to contribute to the development of myofibrillar myopathy in Warmblood horses. These molecular signatures may provide further insight into diagnostic biomarkers, treatments, and the underlying pathophysiology of MFM. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07758-0.
Collapse
|
20
|
Sprague-Piercy MA, Rocha MA, Kwok AO, Martin RW. α-Crystallins in the Vertebrate Eye Lens: Complex Oligomers and Molecular Chaperones. Annu Rev Phys Chem 2021; 72:143-163. [PMID: 33321054 PMCID: PMC8062273 DOI: 10.1146/annurev-physchem-090419-121428] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged β- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy.
Collapse
Affiliation(s)
- Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
| | - Megan A Rocha
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ashley O Kwok
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Rachel W Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
21
|
Reid Alderson T, Adriaenssens E, Asselbergh B, Pritišanac I, Van Lent J, Gastall HY, Wälti MA, Louis JM, Timmerman V, Baldwin AJ, LP Benesch J. A weakened interface in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes aberrant binding to interacting proteins. EMBO J 2021; 40:e103811. [PMID: 33644875 PMCID: PMC8047445 DOI: 10.15252/embj.2019103811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 01/18/2023] Open
Abstract
HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C-terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient-derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V-containing proteins. We identified multiple IxI/V-bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V-binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein-protein interactions.
Collapse
Affiliation(s)
- T Reid Alderson
- Chemistry Research LaboratoryUniversity of OxfordOxfordUK
- Laboratory of Chemical PhysicsNational Institutes of HealthBethesdaMDUSA
- Present address:
Department of BiochemistryTorontoONCanada
| | - Elias Adriaenssens
- Peripheral Neuropathy Research GroupDepartment of Biomedical SciencesInstitute Born BungeUniversity of AntwerpAntwerpenBelgium
| | - Bob Asselbergh
- Neuromics Support FacilityVIB Center for Molecular NeurologyVIBAntwerpenBelgium
- Neuromics Support Facility, Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Iva Pritišanac
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoONCanada
| | - Jonas Van Lent
- Peripheral Neuropathy Research GroupDepartment of Biomedical SciencesInstitute Born BungeUniversity of AntwerpAntwerpenBelgium
| | | | - Marielle A Wälti
- Laboratory of Chemical PhysicsNational Institutes of HealthBethesdaMDUSA
| | - John M Louis
- Laboratory of Chemical PhysicsNational Institutes of HealthBethesdaMDUSA
| | - Vincent Timmerman
- Peripheral Neuropathy Research GroupDepartment of Biomedical SciencesInstitute Born BungeUniversity of AntwerpAntwerpenBelgium
| | | | | |
Collapse
|
22
|
Lim EMF, Hoghooghi V, Hagen KM, Kapoor K, Frederick A, Finlay TM, Ousman SS. Presence and activation of pro-inflammatory macrophages are associated with CRYAB expression in vitro and after peripheral nerve injury. J Neuroinflammation 2021; 18:82. [PMID: 33761953 PMCID: PMC7992798 DOI: 10.1186/s12974-021-02108-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Inflammation constitutes both positive and negative aspects to recovery following peripheral nerve injury. Following damage to the peripheral nervous system (PNS), immune cells such as macrophages play a beneficial role in creating a supportive environment for regrowing axons by phagocytosing myelin and axonal debris. However, a prolonged inflammatory response after peripheral nerve injury has been implicated in the pathogenesis of negative symptoms like neuropathic pain. Therefore, the post-injury inflammation must be carefully controlled to prevent secondary damage while allowing for regeneration. CRYAB (also known as alphaB-crystallin/HSPB5) is a small heat shock protein that has many protective functions including an immunomodulatory role in mouse models of multiple sclerosis, spinal cord injury, and stroke. Because its expression wanes and rebounds in the early and late periods respectively after PNS damage, and CRYAB null mice with sciatic nerve crush injury display symptoms of pain, we investigated whether CRYAB is involved in the immune response following PNS injury. METHODS Sciatic nerve crush injuries were performed in age-matched Cryab knockout (Cryab-/-) and wildtype (WT) female mice. Nerve segments distal to the injury site were processed by immunohistochemistry for macrophages and myelin while protein lysates of the nerves were analyzed for cytokines and chemokines using Luminex and enzyme-linked immunosorbent assay (ELISA). Peritoneal macrophages from the two genotypes were also cultured and polarized into pro-inflammatory or anti-inflammatory phenotypes where their supernatants were analyzed for cytokines and chemokines by ELISA and protein lysates for macrophage antigen presenting markers using western blotting. RESULTS We report that (1) more pro-inflammatory CD16/32+ macrophages are present in the nerves of Cryab-/- mice at days 14 and 21 after sciatic nerve crush-injury compared to WT counterparts, and (2) CRYAB has an immunosuppressive effect on cytokine secretion [interleukin (IL)-β, IL-6, IL-12p40, tumor necrosis factor (TNF)-α] from pro-inflammatory macrophages in vitro. CONCLUSIONS CRYAB may play a role in curbing the potentially detrimental pro-inflammatory macrophage response during the late stages of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada
| | - Vahid Hoghooghi
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada
| | - Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada
| | - Kunal Kapoor
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada
| | - Trisha M Finlay
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada
| | - Shalina S Ousman
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada.
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Heritage Medical Research Building, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
23
|
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J 2021; 53:306-315. [PMID: 32453872 PMCID: PMC7864122 DOI: 10.1111/evj.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM-like disorders. OBJECTIVES To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non-MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non-MFM WB. STUDY DESIGN Case-control. ANIMALS 8 MFM WB, 8 non-MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. METHODS Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non-MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non-MFM WB by fitting a negative binomial generalised log-linear model per gene (false discovery rate <0.05). The maximal isometric force/cross-sectional area generated by isolated membrane-permeabilised muscle fibres was determined. RESULTS None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed-specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre-specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non-MFM WB (140.2 ± 43.7 kPa) (P = .8). MAIN LIMITATIONS RNA-seq-only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. CONCLUSIONS Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.
Collapse
Affiliation(s)
- Zoë J. Williams
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Deborah Velez-Irizarry
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Julien Ochala
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Carrie J. Finno
- University of California at Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Stephanie J. Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| |
Collapse
|
24
|
Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of αA-crystallin. Biochim Biophys Acta Gen Subj 2021; 1865:129846. [PMID: 33444727 DOI: 10.1016/j.bbagen.2021.129846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND αA-crystallin plays an important role in eye lens development. Its N-terminal domain is implicated in several important biological functions. Mutations in certain conserved arginine residues in the N-terminal region of αA-crystallin lead to cataract with characteristic cytoplasmic/nuclear aggregation of the mutant protein. In this study, we attempt to gain mechanistic insights into the congenital cataract caused by the R54C mutation in human αA-crystallin. METHODS We used several spectroscopic techniques to investigate the structure and function of the wild-type and R54CαA-crystallin. Immunoprecipitation, chromatin-enrichment followed by western blotting, immunofluorescence and cell-viability assay were performed to study the interaction partners, chromatin-association, stress-like response and cell-death caused by the mutant. RESULTS Although R54CαA-crystallin exhibited slight changes in quaternary structure, its chaperone-like activity was comparable to that of wild-type. When expressed in lens epithelial cells, R54CαA-crystallin exhibited a speckled appearance in the nucleus rather than cytoplasmic localization. R54CαA-crystallin triggered a stress-like response, resulting in nuclear translocation of αB-crystallin, disassembly of cytoskeletal elements and activation of caspase 3, leading to apoptosis. Analysis of the "interactome" revealed an increase in interaction of the mutant protein with nucleosomal histones, and its association with chromatin. CONCLUSIONS The study shows that alteration of "interactome" and nucleosomal association, rather than loss of chaperone-like activity, is the molecular basis of cataract caused by the R54C mutation in αA-crystallin. GENERAL SIGNIFICANCE The study provides a novel mechanism of cataract caused by a mutant of αA-crystallin, and sheds light on the possible mechanism of stress and cell death caused by such nuclear inclusions.
Collapse
|
25
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Nitu SS, Miriyala S, Panchatcharam M, Kevil CG, Orr AW, Bhuiyan MS. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J Am Heart Assoc 2020; 9:e017195. [PMID: 33208022 PMCID: PMC7763772 DOI: 10.1161/jaha.120.017195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Background The mutated α-B-Crystallin (CryABR120G) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryABR120G expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryABR120G mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryABR120G mice. In the present study, we report that the CryABR120G mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryABR120G hearts. Mitochondria isolated from CryABR120G transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryABR120G hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Richa Aishwarya
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Mahboob Morshed
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sadia S. Nitu
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher G. Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - A. Wayne Orr
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
26
|
Grosas AB, Rekas A, Mata JP, Thorn DC, Carver JA. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency. J Mol Biol 2020; 432:5593-5613. [PMID: 32827531 DOI: 10.1016/j.jmb.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
One of the most crowded biological environments is the eye lens which contains a high concentration of crystallin proteins. The molecular chaperones αB-crystallin (αBc) with its lens partner αA-crystallin (αAc) prevent deleterious crystallin aggregation and cataract formation. However, some forms of cataract are associated with structural alteration and dysfunction of αBc. While many studies have investigated the structure and function of αBc under dilute in vitro conditions, the effect of crowding on these aspects is not well understood despite its in vivo relevance. The structure and chaperone ability of αBc under conditions that mimic the crowded lens environment were investigated using the polysaccharide Ficoll 400 and bovine γ-crystallin as crowding agents and a variety of biophysical methods, principally contrast variation small-angle neutron scattering. Under crowding conditions, αBc unfolds, increases its size/oligomeric state, decreases its thermal stability and chaperone ability, and forms kinetically distinct amorphous and fibrillar aggregates. However, the presence of αAc stabilizes αBc against aggregation. These observations provide a rationale, at the molecular level, for the aggregation of αBc in the crowded lens, a process that exhibits structural and functional similarities to the aggregation of cataract-associated αBc mutants R120G and D109A under dilute conditions. Strategies that maintain or restore αBc stability, as αAc does, may provide therapeutic avenues for the treatment of cataract.
Collapse
Affiliation(s)
- Aidan B Grosas
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Agata Rekas
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
27
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
28
|
Frankfater C, Bozeman SL, Hsu FF, Andley UP. Alpha-crystallin mutations alter lens metabolites in mouse models of human cataracts. PLoS One 2020; 15:e0238081. [PMID: 32833997 PMCID: PMC7446835 DOI: 10.1371/journal.pone.0238081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cataracts are a major cause of blindness worldwide and commonly occur in individuals over 70 years old. Cataracts can also appear earlier in life due to genetic mutations. The lens proteins, αA- and αB-crystallins, are chaperone proteins that have important roles maintaining protein solubility to prevent cataract formation. Mutations in the CRYAA and CRYAB crystallin genes are associated with autosomal dominant early onset human cataracts. Although studies about the proteomic and genomic changes that occur in cataracts have been reported, metabolomics studies are very limited. Here, we directly investigated cataract metabolism using gas-chromatography-mass spectrometry (GC-MS) to analyze the metabolites in adult Cryaa-R49C and Cryab-R120G knock-in mouse lenses. The most abundant metabolites were myo-inositol, L-(+)-lactic acid, cholesterol, phosphate, glycerol phosphate, palmitic and 9-octadecenoic acids, α-D-mannopyranose, and β-D-glucopyranose. Cryaa-R49C knock-in mouse lenses had a significant decrease in the number of sugars and minor sterols, which occurred in concert with an increase in lactic acid. Cholesterol composition was unchanged. In contrast, Cryab-R120G knock-in lenses exhibited increased total amino acid content including valine, alanine, serine, leucine, isoleucine, glycine, and aspartic acid. Minor sterols, including cholest-7-en-3-ol and glycerol phosphate were decreased. These studies indicate that lenses from Cryaa-R49C and Cryab-R120G knock-in mice, which are models for human cataracts, have unique amino acid and metabolite profiles.
Collapse
Affiliation(s)
- Cheryl Frankfater
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Stephanie L. Bozeman
- Departments of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Usha P. Andley
- Departments of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
29
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
30
|
Wang X, Wang H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol Med 2020; 26:639-648. [PMID: 32589934 PMCID: PMC7321925 DOI: 10.1016/j.molmed.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Increased proteotoxic stress (IPTS) resulting from the increased production or decreased removal of abnormally folded proteins is recognized as an important pathogenic factor for a large group of highly disabling and life-threatening human diseases, such as neurodegenerative disorders and many heart diseases. The proteasome is pivotal to the timely removal of abnormal proteins but its functional capacity often becomes inadequate in the disease conditions; consequently, proteasome functional insufficiency in return exacerbates IPTS. Recent research in proteasome biology reveals that the proteasome can be activated by endogenous protein kinases, making it possible to pharmacologically prime the proteasome for treating diseases with IPTS.
Collapse
Affiliation(s)
- Xuejun Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| | - Hongmin Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
31
|
Wang L, Nie Q, Gao M, Yang L, Xiang JW, Xiao Y, Liu FY, Gong XD, Fu JL, Wang Y, Nguyen QD, Liu Y, Liu M, Li DWC. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression. Aging (Albany NY) 2020; 12:13594-13617. [PMID: 32554860 PMCID: PMC7377838 DOI: 10.18632/aging.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
The general transcription factor, CREB has been shown to play an essential role in promoting cell proliferation, neuronal survival and synaptic plasticity in the nervous system. However, its function in stress response remains to be elusive. In the present study, we demonstrated that CREB plays a major role in mediating stress response. In both rat lens organ culture and mouse lens epithelial cells (MLECs), CREB promotes oxidative stress-induced apoptosis. To confirm that CREB is a major player mediating the above stress response, we established stable lines of MLECs stably expressing CREB and found that they are also very sensitive to oxidative stress-induced apoptosis. To define the underlying mechanism, RNAseq analysis was conducted. It was found that CREB significantly suppressed expression of the αB-crystallin gene to sensitize CREB-expressing cells undergoing oxidative stress-induced apoptosis. CREB knockdown via CRISPR/CAS9 technology led to upregulation of αB-crystallin and enhanced resistance against oxidative stress-induced apoptosis. Moreover, overexpression of exogenous human αB-crystallin can restore the resistance against oxidative stress-induced apoptosis. Finally, we provided first evidence that CREB directly regulates αB-crystallin gene. Together, our results demonstrate that CREB is an important transcription factor mediating stress response, and it promotes oxidative stress-induced apoptosis by suppressing αB-crystallin expression.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Medical College, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Fang-Yuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| |
Collapse
|
32
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
33
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
34
|
Molnar KS, Dunyak BM, Su B, Izrayelit Y, McGlasson-Naumann B, Hamilton PD, Qian M, Covey DF, Gestwicki JE, Makley LN, Andley UP. Mechanism of Action of VP1-001 in cryAB(R120G)-Associated and Age-Related Cataracts. Invest Ophthalmol Vis Sci 2019; 60:3320-3331. [PMID: 31369034 PMCID: PMC6676924 DOI: 10.1167/iovs.18-25647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose We previously identified an oxysterol, VP1-001 (also known as compound 29), that partially restores the transparency of lenses with cataracts. To understand the mechanism of VP1-001, we tested the ability of its enantiomer, ent-VP1-001, to bind and stabilize αB-crystallin (cryAB) in vitro and to produce a similar therapeutic effect in cryAB(R120G) mutant and aged wild-type mice with cataracts. VP1-001 and ent-VP1-001 have identical physicochemical properties. These experiments are designed to critically evaluate whether stereoselective binding to cryAB is required for activity. Methods We compared the binding of VP1-001 and ent-VP1-001 to cryAB using in silico docking, differential scanning fluorimetry (DSF), and microscale thermophoresis (MST). Compounds were delivered by six topical administrations to mouse eyes over 2 weeks, and the effects on cataracts and lens refractive measures in vivo were examined. Additionally, lens epithelial and fiber cell morphologies were assessed via transmission electron microscopy. Results Docking studies suggested greater binding of VP1-001 into a deep groove in the cryAB dimer compared with ent-VP1-001. Consistent with this prediction, DSF and MST experiments showed that VP1-001 bound cryAB, whereas ent-VP1-001 did not. Accordingly, topical treatment of lenses with ent-VP1-001 had no effect, whereas VP1-001 produced a statistically significant improvement in lens clarity and favorable changes in lens morphology. Conclusions The ability of VP1-001 to bind native cryAB dimers is important for its ability to reverse lens opacity in mouse models of cataracts.
Collapse
Affiliation(s)
- Kathleen S Molnar
- ViewPoint Therapeutics, South San Francisco, California, United States
| | - Bryan M Dunyak
- ViewPoint Therapeutics, South San Francisco, California, United States
| | - Bonnie Su
- ViewPoint Therapeutics, South San Francisco, California, United States
| | | | - Brittney McGlasson-Naumann
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Paul D Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, California, United States
| | - Leah N Makley
- ViewPoint Therapeutics, South San Francisco, California, United States
| | - Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
35
|
Sprague-Piercy MA, Wong E, Roskamp KW, Fakhoury JN, Freites JA, Tobias DJ, Martin RW. Human αB-crystallin discriminates between aggregation-prone and function-preserving variants of a client protein. Biochim Biophys Acta Gen Subj 2019; 1864:129502. [PMID: 31812542 DOI: 10.1016/j.bbagen.2019.129502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The eye lens crystallins are highly soluble proteins that are required to last the lifespan of an organism due to low protein turnover in the lens. Crystallin aggregation leads to formation of light-scattering aggregates known as cataract. The G18V mutation of human γS-crystallin (γS-G18V), which is associated with childhood-onset cataract, causes structural changes throughout the N-terminal domain and increases aggregation propensity. The holdase chaperone protein αB-crystallin does not interact with wild-type γS-crystallin, but does bind its G18V variant. The specific molecular determinants of αB-crystallin binding to client proteins is incompletely charcterized. Here, a new variant of γS, γS-G18A, was created to test the limits of αB-crystallin selectivity. METHODS Molecular dynamics simulations were used to investigate the structure and dynamics of γS-G18A. The overall fold of γS-G18A was assessed by circular dichroism (CD) spectroscopy and intrinsic tryptophan fluorescence. Its thermal unfolding temperature and aggregation propensity were characterized by CD and DLS, respectively. Solution-state NMR was used to characterize interactions between αB-crystallin and γS-G18A. RESULTS γS-G18A exhibits minimal structural changes, but has compromised thermal stability relative to γS-WT. The placement of alanine, rather than valine, at this highly conserved glycine position produces minor changes in hydrophobic surface exposure. However, human αB-crystallin does not bind the G18A variant, in contrast to previous observations for γS-G18V, which aggregates at physiological temperature. CONCLUSIONS αB-crystallin is capable of distinguishing between aggregation-prone and function-preserving variants, and recognizing the transient unfolding or minor conformers that lead to aggregation in the disease-related variant. GENERAL SIGNIFICANCE Human αB-crystallin distinguishes between highly similar variants of a structural crystallin, binding the cataract-related γS-G18V variant, but not the function-preserving γS-G18A variant, which is monomeric at physiological temperature.
Collapse
Affiliation(s)
- Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States of America
| | - Eric Wong
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States of America
| | - Kyle W Roskamp
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States of America
| | - Joseph N Fakhoury
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States of America
| | - J Alfredo Freites
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States of America
| | - Douglas J Tobias
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States of America.
| | - Rachel W Martin
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States of America; Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
36
|
D'Agostino M, Scerra G, Cannata Serio M, Caporaso MG, Bonatti S, Renna M. Unconventional secretion of α-Crystallin B requires the Autophagic pathway and is controlled by phosphorylation of its serine 59 residue. Sci Rep 2019; 9:16892. [PMID: 31729431 PMCID: PMC6858465 DOI: 10.1038/s41598-019-53226-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023] Open
Abstract
α-Crystallin B (CRYAB or HspB5) is a chaperone member of the small heat-shock protein family that prevents aggregation of many cytosolic client proteins by means of its ATP-independent holdase activity. Surprisingly, several reports show that CRYAB exerts a protective role also extracellularly, and it has been recently demonstrated that CRYAB is secreted from human retinal pigment epithelial cells by an unconventional secretion pathway that involves multi-vesicular bodies. Here we show that autophagy is crucial for this unconventional secretion pathway and that phosphorylation at serine 59 residue regulates CRYAB secretion by inhibiting its recruitment to the autophagosomes. In addition, we found that autophagosomes containing CRYAB are not able to fuse with lysosomes. Therefore, CRYAB is capable to highjack and divert autophagosomes toward the exocytic pathway, inhibiting their canonical route leading to the lysosomal compartment. Potential implications of these findings in the context of disease-associated mutant proteins turn-over are discussed.
Collapse
Affiliation(s)
- M D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| | - G Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Cannata Serio
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - M G Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - S Bonatti
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
37
|
Ghahramani M, Yousefi R, Krivandin A, Muranov K, Kurganov B, Moosavi-Movahedi AA. Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin: The biochemical pathomechanism underlying cataract and myopathy development. Int J Biol Macromol 2019; 146:1142-1160. [PMID: 31678106 DOI: 10.1016/j.ijbiomac.2019.09.239] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
In human αB-crystallin (αB-Cry), the highly conserved residues arginine 69 (R69) and aspartate 109 (D109) are located within a critical motif of α-crystallin domain (ACD), contributing to the subunit interactions and oligomeric assembly. Recently, two missense mutations (R69C and D109H) in human αB-Cry have been reported to cause congenital cataract and myopathy disorders. We used various spectroscopic techniques, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), gel electrophoresis and transmission electron microscopy (TEM) to show how these mutations cause significant changes in structure, amyloidogenic feature and biological function of human αB-Cry. These pathogenic mutations resulted in the important alterations of the secondary, tertiary and oligomeric (quaternary) structures of human αB-Cry. The missense mutations were also capable to significantly increase the amyloidogenic propensity of human αB-Cry and to diminish the chaperone-like activity of this protein. The above mentioned changes were observed more noticeably after D109H mutation. The detrimental effects of D109H mutation may be due to the loss of salt bridge with R120 in the dimeric interface, flagging the anti-aggregation ability of αB-Cry chaperone. In conclusion, the R69C and D109H mutations displayed a significant damaging effect on the structure and chaperone function of human αB-Cry which could be considered as their biochemical pathomechanisms in development of congenital cataract and myopathy disorders.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Alexey Krivandin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Konstantin Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Boris Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | | |
Collapse
|
38
|
Local unfolding of the HSP27 monomer regulates chaperone activity. Nat Commun 2019; 10:1068. [PMID: 30842409 PMCID: PMC6403371 DOI: 10.1038/s41467-019-08557-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The small heat-shock protein HSP27 is a redox-sensitive molecular chaperone that is expressed throughout the human body. Here, we describe redox-induced changes to the structure, dynamics, and function of HSP27 and its conserved α-crystallin domain (ACD). While HSP27 assembles into oligomers, we show that the monomers formed upon reduction are highly active chaperones in vitro, but are susceptible to self-aggregation. By using relaxation dispersion and high-pressure nuclear magnetic resonance (NMR) spectroscopy, we observe that the pair of β-strands that mediate dimerisation partially unfold in the monomer. We note that numerous HSP27 mutations associated with inherited neuropathies cluster to this dynamic region. High levels of sequence conservation in ACDs from mammalian sHSPs suggest that the exposed, disordered interface present in free monomers or oligomeric subunits may be a general, functional feature of sHSPs. The small heat-shock protein HSP27 occurs predominantly in oligomeric forms, which makes its structural characterisation challenging. Here the authors employ CPMG and high-pressure NMR with native mass spectrometry and biophysical assays to show that the active monomeric form of HSP27 is substantially disordered and highly chaperone-active.
Collapse
|
39
|
Lyon YA, Collier MP, Riggs DL, Degiacomi MT, Benesch JLP, Julian RR. Structural and functional consequences of age-related isomerization in α-crystallins. J Biol Chem 2019; 294:7546-7555. [PMID: 30804217 PMCID: PMC6514633 DOI: 10.1074/jbc.ra118.007052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Long-lived proteins are subject to spontaneous degradation and may accumulate a range of modifications over time, including subtle alterations such as side-chain isomerization. Recently, tandem MS has enabled identification and characterization of such peptide isomers, including those differing only in chirality. However, the structural and functional consequences of these perturbations remain largely unexplored. Here, we examined the impact of isomerization of aspartic acid or epimerization of serine at four sites mapping to crucial oligomeric interfaces in human αA- and αB-crystallin, the most abundant chaperone proteins in the eye lens. To characterize the effect of isomerization on quaternary assembly, we utilized synthetic peptide mimics, enzyme assays, molecular dynamics calculations, and native MS experiments. The oligomerization of recombinant forms of αA- and αB-crystallin that mimic isomerized residues deviated from native behavior in all cases. Isomerization also perturbs recognition of peptide substrates, either enhancing or inhibiting kinase activity. Specifically, epimerization of serine (αASer-162) dramatically weakened inter-subunit binding. Furthermore, phosphorylation of αBSer-59, known to play an important regulatory role in oligomerization, was severely inhibited by serine epimerization and altered by isomerization of nearby αBAsp-62. Similarly, isomerization of αBAsp-109 disrupted a vital salt bridge with αBArg-120, a contact that when broken has previously been shown to yield aberrant oligomerization and aggregation in several disease-associated variants. Our results illustrate how isomerization of amino acid residues, which may seem to be only a minor structural perturbation, can disrupt native structural interactions with profound consequences for protein assembly and activity.
Collapse
Affiliation(s)
- Yana A Lyon
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Miranda P Collier
- the Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Dylan L Riggs
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521
| | - Matteo T Degiacomi
- the Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Justin L P Benesch
- the Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Ryan R Julian
- From the Department of Chemistry, University of California, Riverside, Riverside, California 92521,
| |
Collapse
|
40
|
Fang X, Bogomolovas J, Trexler C, Chen J. The BAG3-dependent and -independent roles of cardiac small heat shock proteins. JCI Insight 2019; 4:126464. [PMID: 30830872 DOI: 10.1172/jci.insight.126464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small heat shock proteins (sHSPs) comprise an important protein family that is ubiquitously expressed, is highly conserved among species, and has emerged as a critical regulator of protein folding. While these proteins are functionally important for a variety of tissues, an emerging field of cardiovascular research reveals sHSPs are also extremely important for maintaining normal cardiac function and regulating the cardiac stress response. Notably, numerous mutations in genes encoding sHSPs have been associated with multiple cardiac diseases. sHSPs (HSPB5, HSPB6, and HSPB8) have been described as mediating chaperone functions within the heart by interacting with the cochaperone protein BCL-2-associated anthanogene 3 (BAG3); however, recent reports indicate that sHSPs (HSPB7) can perform other BAG3-independent functions. Here, we summarize the cardiac functions of sHSPs and present the notion that cardiac sHSPs function via BAG3-dependent or -independent pathways.
Collapse
|
41
|
Ma X, Mani K, Liu H, Kovacs A, Murphy JT, Foroughi L, French BA, Weinheimer CJ, Kraja A, Benjamin IJ, Hill JA, Javaheri A, Diwan A. Transcription Factor EB Activation Rescues Advanced αB-Crystallin Mutation-Induced Cardiomyopathy by Normalizing Desmin Localization. J Am Heart Assoc 2019; 8:e010866. [PMID: 30773991 PMCID: PMC6405666 DOI: 10.1161/jaha.118.010866] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
Abstract
Background Mutations in αB-crystallin result in proteotoxic cardiomyopathy with desmin mislocalization to protein aggregates. Intermittent fasting ( IF ) is a novel approach to activate transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in the myocardium. We tested whether TFEB activation can be harnessed to treat advanced proteotoxic cardiomyopathy. Methods and Results Mice overexpressing the R120G mutant of αB-crystallin in cardiomyocytes ( Myh6-Cry ABR 120G) were subjected to IF or ad-lib feeding, or transduced with adeno-associated virus- TFEB or adeno-associated virus-green fluorescent protein after development of advanced proteotoxic cardiomyopathy. Adeno-associated virus-short hairpin RNA-mediated knockdown of TFEB and HSPB 8 was performed simultaneously with IF . Myh6-Cry ABR 120G mice demonstrated impaired autophagic flux, reduced lysosome abundance, and mammalian target of rapamycin activation in the myocardium. IF resulted in mammalian target of rapamycin inhibition and nuclear translocation of TFEB with restored lysosome abundance and autophagic flux; and reduced aggregates with normalized desmin localization. IF also attenuated left ventricular dilation and myocardial hypertrophy, increased percentage fractional shortening, and increased survival. Adeno-associated virus- TFEB transduction was sufficient to rescue cardiomyopathic manifestations, and resulted in reduced aggregates and normalized desmin localization in Myh6-Cry ABR 120G mice. Cry ABR 120G-expressing hearts demonstrated increased interaction of desmin with αB-crystallin and reduced interaction with chaperone protein, HSPB 8, compared with wild type, which was reversed by both IF and TFEB transduction. TFEB stimulated autophagic flux to remove protein aggregates and transcriptionally upregulated HSPB 8, to restore normal desmin localization in Cry ABR 120G-expressing cardiomyocytes. Short hairpin RNA-mediated knockdown of TFEB and HSPB 8 abrogated IF effects, in vivo. Conclusions IF and TFEB activation are clinically relevant therapeutic strategies to rescue advanced R120G αB-crystallin mutant-induced cardiomyopathy by normalizing desmin localization via autophagy-dependent and autophagy-independent mechanisms.
Collapse
Affiliation(s)
- Xiucui Ma
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Kartik Mani
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Haiyan Liu
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Attila Kovacs
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - John T. Murphy
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Layla Foroughi
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| | - Brent A. French
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA
| | - Carla J. Weinheimer
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - Aldi Kraja
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - Ivor J. Benjamin
- Department of Internal MedicineMedical College of WisconsinMilwaukeeWI
| | - Joseph A. Hill
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTX
| | - Ali Javaheri
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
| | - Abhinav Diwan
- Center for Cardiovascular Research and Division of CardiologyDepartment of Internal MedicineWashington University School of MedicineSt LouisMO
- Medical ServiceJohn Cochran Veterans Affairs Medical CenterSt LouisMO
| |
Collapse
|
42
|
Bhandari S, Biswas S, Chaudhary A, Dutta S, Suguna K. Dodecameric structure of a small heat shock protein from Mycobacterium marinum M. Proteins 2019; 87:365-379. [PMID: 30632633 DOI: 10.1002/prot.25657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones present ubiquitously in all kingdoms of life. Their low molecular weight subunits associate to form higher order structures. Under conditions of stress, sHSPs prevent aggregation of substrate proteins by undergoing rapid changes in their conformation or stoichiometry. Polydispersity and dynamic nature of these proteins have made structural investigations through crystallography a daunting task. In pathogens like Mycobacteria, sHSPs are immuno-dominant antigens, enabling survival of the pathogen within the host and contributing to disease persistence. We characterized sHSPs from Mycobacterium marinum M and determined the crystal structure of one of these. The protein crystallized in three different conditions as dodecamers, with dimers arranged in a tetrahedral fashion to form a closed cage-like architecture. Interestingly, we found a pentapeptide bound to the dodecamers revealing one of the modes of sHSP-substrate interaction. Further, we have observed that ATP inhibits the chaperoning activity of the protein.
Collapse
Affiliation(s)
- Spraha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sreeparna Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Anuradha Chaudhary
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
43
|
Delbecq SP, Klevit RE. HSPB5 engages multiple states of a destabilized client to enhance chaperone activity in a stress-dependent manner. J Biol Chem 2018; 294:3261-3270. [PMID: 30567736 DOI: 10.1074/jbc.ra118.003156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 12/03/2018] [Indexed: 11/06/2022] Open
Abstract
Small heat shock proteins (sHSPs) delay protein aggregation in an ATP-independent manner by interacting with client proteins that are in states susceptible to aggregation, including destabilized states related to cellular stress. Up-regulation of sHSPs under stress conditions supports their critical role in cellular viability. Widespread distribution of sHSPs in most organisms implies conservation of function, but it remains unclear whether sHSPs implement common or distinct mechanisms to delay protein aggregation. Comparisons among various studies are confounded by the use of different model client proteins, different assays for both aggregation and sHSP/client interactions, and variable experimental conditions used to mimic cellular stress. To further define sHSP/client interactions and their relevance to sHSP chaperone function, we implemented multiple strategies to characterize sHSP interactions with α-lactalbumin, a model client whose aggregation pathway is well defined. We compared the chaperone activity of human αB-crystallin (HSPB5) with HSPB5 variants that mimic states that arise under conditions of cellular stress or disease. The results show that these closely related sHSPs vary not only in their activity under identical conditions but also in their interactions with clients. Importantly, under nonstress conditions, WT HSPB5 delays client aggregation solely through transient interactions early in the aggregation pathway, whereas HSPB5 mutants that mimic stress-activated conditions can also intervene at later stages of the aggregation pathway to further delay client protein aggregation.
Collapse
Affiliation(s)
- Scott P Delbecq
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Rachel E Klevit
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| |
Collapse
|
44
|
Transgenic zebrafish models reveal distinct molecular mechanisms for cataract-linked αA-crystallin mutants. PLoS One 2018; 13:e0207540. [PMID: 30475834 PMCID: PMC6261105 DOI: 10.1371/journal.pone.0207540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations in the small heat shock proteins α-crystallins have been linked to autosomal dominant cataracts in humans. Extensive studies in vitro have revealed a spectrum of alterations to the structure and function of these proteins including shifts in the size of the oligomer, modulation of subunit exchange and modification of their affinity to client proteins. Although mouse models of these mutants were instrumental in identifying changes in cellular proliferation and lens development, a direct comparative analysis of their effects on lens proteostasis has not been performed. Here, we have transgenically expressed cataract-linked mutants of αA- and αB-crystallin in the zebrafish lens to dissect the underlying molecular changes that contribute to the loss of lens optical properties. Zebrafish lines expressing these mutants displayed a range of morphological lens defects. Phenotype penetrance and severity were dependent on the mutation even in fish lines lacking endogenous α-crystallin. The mechanistic origins of these differences were investigated by the transgenic co-expression of a destabilized human γD-crystallin mutant. We found that the R49C but not the R116C mutant of αA-crystallin drove aggregation of γD-crystallin, although both mutants have similar affinity to client proteins in vitro. Our working model attributes these differences to the propensity of R49C, located in the buried N-terminal domain of αA-crystallin, to disulfide crosslinking as previously demonstrated in vitro. Our findings complement and extend previous work in mouse models and emphasize the need of investigating chaperone/client protein interactions in appropriate cellular context.
Collapse
|
45
|
Haslbeck M, Weinkauf S, Buchner J. Small heat shock proteins: Simplicity meets complexity. J Biol Chem 2018; 294:2121-2132. [PMID: 30385502 DOI: 10.1074/jbc.rev118.002809] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.
Collapse
Affiliation(s)
- Martin Haslbeck
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Sevil Weinkauf
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| | - Johannes Buchner
- From the Department of Chemie and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany
| |
Collapse
|
46
|
Xu J, Zhao WJ, Chen XJ, Yao K, Yan YB. Introduction of an extra tryptophan fluorophore by cataract-associating mutations destabilizes βB2-crystallin and promotes aggregation. Biochem Biophys Res Commun 2018; 504:851-856. [DOI: 10.1016/j.bbrc.2018.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
|
47
|
Mishra S, Chandler SA, Williams D, Claxton DP, Koteiche HA, Stewart PL, Benesch JLP, Mchaourab HS. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Structure 2018; 26:1116-1126.e4. [PMID: 29983375 DOI: 10.1016/j.str.2018.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/10/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
Small heat-shock proteins (sHSPs) are molecular chaperones that bind partially and globally unfolded states of their client proteins. Previously, we discovered that the archaeal Hsp16.5, which forms ordered and symmetric 24-subunit oligomers, can be engineered to transition to an ordered and symmetric 48-subunit oligomer by insertion of a peptide from human HspB1 (Hsp27). Here, we uncovered the existence of an array of oligomeric states (30-38 subunits) that can be populated as a consequence of altering the sequence and length of the inserted peptide. Polydisperse Hsp16.5 oligomers displayed higher affinity to a model client protein consistent with a general mechanism for recognition and binding that involves increased access of the hydrophobic N-terminal region. Our findings, which integrate structural and functional analyses from evolutionarily distant sHSPs, support a model wherein the modular architecture of these proteins encodes motifs of oligomer polydispersity, dissociation, and expansion to achieve functional diversity and regulation.
Collapse
Affiliation(s)
- Sanjay Mishra
- Chemical & Physical Biology Program, Vanderbilt University, Nashville 37232, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Shane A Chandler
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe 85287, AZ, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA
| | - Phoebe L Stewart
- Department of Pharmacology Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville 37232, TN, USA.
| |
Collapse
|
48
|
Dimauro I, Antonioni A, Mercatelli N, Caporossi D. The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 2018; 23:491-505. [PMID: 29190034 PMCID: PMC6045558 DOI: 10.1007/s12192-017-0866-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/25/2022] Open
Abstract
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ambra Antonioni
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
49
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
50
|
Droho S, Keener ME, Mueller NH. Changes in function but not oligomeric size are associated with αB-crystallin lysine substitution. Biochem Biophys Rep 2018; 14:1-6. [PMID: 29872727 PMCID: PMC5986625 DOI: 10.1016/j.bbrep.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/19/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
αB-Crystallin, ubiquitously expressed in many tissues including the ocular lens, is a small heat shock protein that can prevent protein aggregation. A number of post-translation modifications are reported to modify αB-crystallin function. Recent studies have identified αB-crystallin lysine residues are modified by acetylation and ubiquitination. Therefore, we sought to determine the effects of lysine to alanine substitution on αB-crystallin functions including chaperone activity and modulation of actin polymerization. Analysis of the ten substitution mutants as recombinant proteins indicated all the proteins were soluble and formed oligomeric complexes similar to wildtype protein. Lysozyme aggregation induced by chemical treatment indicated that K82, K90, K121, K166 and K174/K175 were required for efficient chaperone activity. Thermal induction of γ-crystallin aggregation could be prevented by all αB-crystallin substitution mutants. These αB-crystallin mutants also were able to mediate wildtype levels of actin polymerization. Further analysis of two clones with either enhanced or reduced chaperone activity on individual client substrates or actin polymerization indicated both retained broad chaperone activity and anti-apoptotic activity. Collectively, these studies show the requirements for lysine residues in αB-crystallin function. αB-crystallin Lysine-to-alanine mutation yields soluble recombinant protein. αB-crystallin mutants form oligomeric complexes similar to wildtype. αB-crystallin mutants prevent thermal aggregation of γ-crystallin. αB-crystallin mutants have disperse activity in chemical aggregation assays. αB-crystallin mutants retain ability to modulate actin polymerization.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Mitchell E. Keener
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Niklaus H. Mueller
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Correspondence to: University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8311, Aurora, CO 80045, USA.
| |
Collapse
|