1
|
Liu N, Xu Y, Sun L, Li M, Huang J, Hao B. The signal peptide of BmNPV GP64 activates the ERAD pathway to regulate heterogeneous secretory protein expression. Microb Cell Fact 2024; 23:284. [PMID: 39420373 PMCID: PMC11487928 DOI: 10.1186/s12934-024-02534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
As a powerful eukaryotic expression vector, the baculovirus expression vector system (BEVS) is widely applied to the production of heterogeneous proteins for research and pharmaceutical purposes, while optimization of BEVS remains a work in progress for membrane or secreted protein expression. In this study, the impact of the signal peptide (SP) derived from Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 protein on protein expression, secretion, and the endoplasmic reticulum-associated degradation (ERAD) pathway were investigated in BmN cells and BEVS. Transient expression studies in BmN cells revealed that SP alters the localization and expression levels of recombinant proteins, reducing intracellular accumulation while enhancing secretion efficiency. Quantitative analysis demonstrated that SP-mediated secretion was markedly higher compared to controls, albeit with lower total expression levels. Further exploration into SP-mediated ERAD pathway activation showed increased expression of BiP and other ERAD-associated genes (PDI, UFD1, S1P, and ASK1), correlating with higher SP-driven protein expression levels. RNA interference (RNAi) experiments elucidated that knockdown of ERAD-associated genes enhances both the secretion efficiency of SP-guided proteins and the infectivity of BmNPV. Particularly, interference with BiP demonstrated the most pronounced effect on protein secretion enhancement. Viral infection experiments further supported these findings, showing upregulated ERAD-associated genes during BmNPV infection, indicating their role in viral protein processing and infectivity. In conclusion, this study elucidates the complex interplay between SP-mediated protein secretion, ERAD pathway activation, and viral infectivity in BmNPV-infected cells. These insights suggest strategies for optimizing recombinant protein production and viral protein processing in baculovirus expression systems, with potential implications for biotechnological and biomedical applications. Further research could refine our understanding and manipulation of protein secretion pathways in insect cell-based expression systems.
Collapse
Affiliation(s)
- Na Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Ying Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Luping Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Mengmeng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, PR China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China.
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
2
|
Yuan C, Liao Y, Si W, Huang M, Li D, Wang F, Quan Y, Yu X, Liao S. Trim21 modulates endoplasmic reticulum-associated degradation and sensitizes cancer cells to ER stress-induced apoptosis by inhibiting VCP/Npl4/UFD1 assembly. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167533. [PMID: 39368714 DOI: 10.1016/j.bbadis.2024.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) serves as a crucial quality and quantity control system that removes misfolded or unassembled proteins from the Endoplasmic Reticulum (ER) through the cytoplasmic ubiquitin-proteasome system (UPS), which is critical for cell fate decision. ER stress arises when misfolded proteins accumulated within the ER lumen, potentially leading to cell death via proapoptotic unfolded protein response (UPR). UFD1 in associated with VCP-Npl4, is recognized as a key regulator of protein homeostasis in ERAD. However, the factors that control VCP complex assembly remain unclear. The study elucidates the function of Trim21, an E3 ubiquitin ligase, through its interaction with UFD1, facilitating K27-linkage ubiquitination of UFD1 and inhibiting its incorporation into the VCP complex. This results in the suppression of ERAD substrates degradation and the activation of a proapoptotic unfolded protein response in cancer cells. Additionally, Trim21 over-expression enhances ER stress response and promotes apoptosis upon expose to the ER inducer Tunicamycin. Notably, elevated Trim21 expression correlates with improved overall survival in various tumor types. Overall, the findings highlight the critical role of Trim21 in regulating ERAD progression and cell fate determination in cancer cells through modulation of VCP/Npl4/UFD1 complex assembly.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yanli Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Public Health, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - WenXia Si
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Mi Huang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Duanzhuo Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Fuqing Wang
- School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yi Quan
- Department of Oncology, Zhaoqing First People's Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Xin Yu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China.
| | - Shengjie Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China.
| |
Collapse
|
3
|
Shanmugam SK, Kanner SA, Zou X, Amarh E, Choudhury P, Soni R, Kass RS, Colecraft HM. Decoding polyubiquitin regulation of K V7. 1 functional expression with engineered linkage-selective deubiquitinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613539. [PMID: 39345403 PMCID: PMC11429900 DOI: 10.1101/2024.09.17.613539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Protein posttranslational modification with distinct polyubiquitin linkage chains is a critical component of the 'ubiquitin code' that universally regulates protein expression and function to control biology. Functional consequences of diverse polyubiquitin linkages on proteins are mostly unknown, with progress hindered by a lack of methods to specifically tune polyubiquitin linkages on individual proteins in live cells. Here, we bridge this gap by exploiting deubiquitinases (DUBs) with preferences for hydrolyzing different polyubiquitin linkages: OTUD1 - K63; OTUD4 - K48; Cezanne - K11; TRABID - K29/K33; and USP21 - non-specific. We developed a suite of engineered deubiquitinases (enDUBs) comprised of DUB catalytic domains fused to a GFP-targeted nanobody and used them to investigate polyubiquitin linkage regulation of an ion channel, YFP-KCNQ1. Mass spectrometry of YFP-KCNQ1 expressed in HEK293 cells indicated channel polyubiquitination with K48 (72%) and K63 (24%) linkages being dominant. NEDD4-2 and ITCH both decreased KCNQ1 functional expression but with distinctive polyubiquitination signatures. All enDUBs reduced KCNQ1 ubiquitination but yielded unique effects on channel expression, surface density, ionic currents, and subcellular localization. The pattern of outcomes indicates K11, K29/K33, and K63 chains mediate net KCNQ1-YFP intracellular retention, but achieved in different ways: K11 promotes ER retention/degradation, enhances endocytosis, and reduces recycling; K29/K33 promotes ER retention/degradation; K63 enhances endocytosis and reduces recycling. The pattern of enDUB effects on KCNQ1-YFP differed in cardiomyocytes, emphasizing ubiquitin code mutability. Surprisingly, enDUB-O4 decreased KCNQ1-YFP surface density suggesting a role for K48 in forward trafficking. Lastly, linkage-selective enDUBs displayed varying capabilities to rescue distinct trafficking-deficient long QT syndrome type 1 mutations. The results reveal distinct polyubiquitin chains control different aspects of KCNQ1 functional expression, demonstrate ubiquitin code plasticity, and introduce linkage-selective enDUBs as a potent tool to help demystify the polyubiquitin code.
Collapse
Affiliation(s)
| | | | - Xinle Zou
- Department of Molecular Pharmacology and Therapeutics
| | - Enoch Amarh
- Department of Physiology and Cellular Biophysics
| | | | - Rajesh Soni
- Proteomics and Macromolecular crystallography, Columbia University Irving Medical Center, New York, NY
| | | | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics
- Department of Molecular Pharmacology and Therapeutics
| |
Collapse
|
4
|
Lange SM, McFarland MR, Lamoliatte F, Carroll T, Krshnan L, Pérez-Ràfols A, Kwasna D, Shen L, Wallace I, Cole I, Armstrong LA, Knebel A, Johnson C, De Cesare V, Kulathu Y. VCP/p97-associated proteins are binders and debranching enzymes of K48-K63-branched ubiquitin chains. Nat Struct Mol Biol 2024:10.1038/s41594-024-01354-y. [PMID: 38977901 DOI: 10.1038/s41594-024-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Branched ubiquitin (Ub) chains constitute a sizable fraction of Ub polymers in human cells. Despite their abundance, our understanding of branched Ub function in cell signaling has been stunted by the absence of accessible methods and tools. Here we identify cellular branched-chain-specific binding proteins and devise approaches to probe K48-K63-branched Ub function. We establish a method to monitor cleavage of linkages within complex Ub chains and unveil ATXN3 and MINDY as debranching enzymes. We engineer a K48-K63 branch-specific nanobody and reveal the molecular basis of its specificity in crystal structures of nanobody-branched Ub chain complexes. Using this nanobody, we detect increased K48-K63-Ub branching following valosin-containing protein (VCP)/p97 inhibition and after DNA damage. Together with our discovery that multiple VCP/p97-associated proteins bind to or debranch K48-K63-linked Ub, these results suggest a function for K48-K63-branched chains in VCP/p97-related processes.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Matthew R McFarland
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Logesvaran Krshnan
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Anna Pérez-Ràfols
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Dominika Kwasna
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Linnan Shen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Iona Wallace
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Isobel Cole
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
5
|
Yanagi KS, Jochim B, Kunjo SO, Breen P, Ruvkun G, Lehrbach N. Mutations in nucleotide metabolism genes bypass proteasome defects in png-1/NGLY1-deficient Caenorhabditis elegans. PLoS Biol 2024; 22:e3002720. [PMID: 38991033 PMCID: PMC11265709 DOI: 10.1371/journal.pbio.3002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/23/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.
Collapse
Affiliation(s)
- Katherine S. Yanagi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Briar Jochim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sheikh Omar Kunjo
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Peter Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas Lehrbach
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Noireterre A, Stutz F. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. DNA Repair (Amst) 2024; 139:103691. [PMID: 38744091 DOI: 10.1016/j.dnarep.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The ATP-dependent molecular chaperone Cdc48 (in yeast) and its human counterpart p97 (also known as VCP), are essential for a variety of cellular processes, including the removal of DNA-protein crosslinks (DPCs) from the DNA. Growing evidence demonstrates in the last years that Cdc48/p97 is pivotal in targeting ubiquitinated and SUMOylated substrates on chromatin, thereby supporting the DNA damage response. Along with its cofactors, notably Ufd1-Npl4, Cdc48/p97 has emerged as a central player in the unfolding and processing of DPCs. This review introduces the detailed structure, mechanism and cellular functions of Cdc48/p97 with an emphasis on the current knowledge of DNA-protein crosslink repair pathways across several organisms. The review concludes by discussing the potential therapeutic relevance of targeting p97 in DPC repair.
Collapse
Affiliation(s)
- Audrey Noireterre
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 4 1211, Switzerland.
| |
Collapse
|
7
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
8
|
Jung JE, Ewing MA, Valentine SJ, Clemmer DE. Structural Insights into Linkage-Specific Ubiquitin Chains Using Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:982-991. [PMID: 38597281 DOI: 10.1021/jasms.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The structural characterization and differentiation of four types of oligoubiquitin conjugates [linear (Met1)-, Lys11-, Lys48-, Lys63-linked di-, tri-, and tetraubiquitin chains] using ion mobility mass spectrometry are reported. A comparison of collision cross sections for the same linkage of di-, tri-, and tetraubiquitin chains shows differences in conformational elongation for higher charge states due to the interplay of linkage-derived structure and Coulombic repulsion. For di- and triubiquitin chains, this elongation results in a single narrow feature representing an elongated conformation type for multiple higher charge state species. In contrast, higher charge state tetraubiquitin species do not form a single conformer type as readily. A comparison of different linkages in tetraubiquitin chains reveals greater similarity in conformation type at lower charge states; with increasing charge state, the four linkage types diverge in the relative proportions of elongated conformer types with Met1- ≥ Lys11- > Lys63- > Lys48-linkage. These differences in conformational trends could be discussed with respect to biological functions of linkage-specific polyubiquitinated proteins.
Collapse
Affiliation(s)
- Ji Eun Jung
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Forensic Chemistry Division, National Forensic Service, Wonju 26460, Korea
| | - Michael A Ewing
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Roche Infomatics, F. Hoffman-La Roche AG, Basel, CH 4070, Switzerland
| | - Stephen J Valentine
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
9
|
Ikeda T, Yamazaki K, Okumura F, Kamura T, Nakatsukasa K. Role of the San1 ubiquitin ligase in the heat stress-induced degradation of nonnative Nup1 in the nuclear pore complex. Genetics 2024; 226:iyae017. [PMID: 38302116 DOI: 10.1093/genetics/iyae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/21/2022] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of nonnative Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-Nup component of the central core of the NPC) was stable, C-terminally green fluorescent protein-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of nontagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of nonnative Nups generated by genetic mutation or when NPC biogenesis is impaired.
Collapse
Affiliation(s)
- Takanari Ikeda
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Kenji Yamazaki
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Fukuoka 813-8529, Japan
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kunio Nakatsukasa
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| |
Collapse
|
10
|
Ju D, Wu S, Li L, Xie Y. Ubiquitylation-independent cotranslational degradation of dihydrofolate reductase and ubiquitin. Biochem Biophys Res Commun 2024; 702:149651. [PMID: 38350414 DOI: 10.1016/j.bbrc.2024.149651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Nascent proteins are degraded during or immediately after synthesis, a process called cotranslational protein degradation (CTPD). Although CTPD was observed decades ago, it has never been fully explored mechanistically and functionally. We show here that dihydrofolate reductase (DHFR) and ubiquitin (Ub), two stable proteins widely used in protein degradation studies, are actually subject to CTPD. Unlike canonical posttranslational protein degradation, CTPD of DHFR and Ub does not require prior ubiquitylation. Our data also suggest that protein expression level and N-terminal folding pattern may be two critical determinants for CTPD. Thus, this study reveals that CTPD plays a role in regulating the homeostasis of long-lived proteins and provides insights into the mechanism of CTPD.
Collapse
Affiliation(s)
- Donghong Ju
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shichao Wu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Li
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Youming Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Park CR, Min JH, Gong Y, Sang H, Lee KH, Kim CS. Arabidopsis thaliana ubiquitin-associated protein 2 (AtUAP2) functions as an E4 ubiquitin factor and negatively modulates dehydration stress response. PLANT MOLECULAR BIOLOGY 2024; 114:13. [PMID: 38324104 DOI: 10.1007/s11103-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
E4, a ubiquitin (Ub) chain assembly factor and post-translational modification protein, plays a key role in the regulation of multiple cellular functions in plants during biotic or abiotic stress. We have more recently reported that E4 factor AtUAP1 is a negative regulator of the osmotic stress response and enhances the multi-Ub chain assembly of E3 ligase Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1). To further investigate the function of other E4 Ub factors in osmotic stress, we isolated AtUAP2, an AtUAP1 homolog, which interacted with AtRZF1, using pull-down assay and bimolecular fluorescence complementation analysis. AtUAP2, a Ub-associated motif-containing protein, interacts with oligo-Ub5, -Ub6, and -Ub7 chains. The yeast functional complementation experiment revealed that AtUAP2 functions as an E4 Ub factor. In addition, AtUAP2 is localized in the cytoplasm, different from AtUAP1. The activity of AtUAP2 was relatively strongly induced in the leaf tissue of AtUAP2 promoter-β-glucuronidase transgenic plants by abscisic acid, dehydration, and oxidative stress. atuap2 RNAi lines were more insensitive to osmotic stress condition than wild-type during the early growth of seedlings, whereas the AtUAP2-overexpressing line exhibited relatively more sensitive responses. Analyses of molecular and physiological experiments showed that AtUAP2 could negatively mediate the osmotic stress-induced signaling. Genetic studies showed that AtRZF1 mutation could suppress the dehydration-induced sensitive phenotype of the AtUAP2-overexpressing line, suggesting that AtRZF1 acts genetically downstream of AtUAP2 during osmotic stress. Taken together, our findings show that the AtRZF1-AtUAP2 complex may play important roles in the ubiquitination pathway, which controls the osmotic stress response in Arabidopsis.
Collapse
Affiliation(s)
- Cho-Rong Park
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Ji-Hee Min
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, 77843-2128, College Station, TX, USA
| | - Ying Gong
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Jung JE, Cárdenas V, Petre BA. Epitope identification of a Lys63 linkage ubiquitin antibody by mass spectrometric epitope excision and extraction approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:348-358. [PMID: 37724023 DOI: 10.1177/14690667231199012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Ubiquitin, a conserved protein in eukaryotic cells, exists as a monomer or polyubiquitin chains known as isopeptide-linked polymers. These chains are attached to a substrate or other ubiquitin molecules through a covalent bond between the α-amino group of lysine in ubiquitin and glycine in the C-terminal of the subsequent ubiquitin unit. The choice of the specific lysine residue in ubiquitin for forming ubiquitin-ubiquitin chains determines its biochemical and biological function. A detailed chemical structure-function evaluation of the respective polyubiquitin chain is required. Interestingly, specific lysine linkage polyubiquitin chains become covalently bonded to many pathological inclusions seen in serious human disease states which appear to be resistant to normal degradation, so the interaction between polyubiquitin chains and ubiquitin antibodies is very useful. For example, the neurofibrillary tangles of Alzheimer's disease and the Lewy bodies seen in Parkinson's disease are heavily ubiquitinated and can be readily visualized using specific ubiquitin antibodies. This study utilized synthetic ubiquitin building block peptides that contained various lysine residues (K6, K11, K33, K48, and K63) linked to a Gly-Gly dipeptide, with the aim of exploring the recognition specificity of the Lys63-polyubiquitin antibody. The interaction studies between different ubiquitin building blocks and the specific Lys63-ubiquitin (K63-Ub) antibody were performed by affinity-mass spectrometry (Affinity-MS) and immunoblotting which enables direct protein identification from biological material with unprecedented selectivity. Affinity-MS and dot blot data proved the specific binding of the K63-Ub antibody to the ubiquitin peptides containing Lys6 or Lys63 residues. In epitope excision for mass spectrometric epitope identification, the ubiquitin building block with Lys63 residue bound to the immobilized K63-Ub antibody was proteolytically cleaved using pronase. The resulting epitope and non-epitope fractions were subjected to matrix-assisted laser desorption/ionization-time of flight analysis, revealing that the epitope is located within the sequence ubiquitin(60-66). Epitope extraction-MS consistently confirmed these findings.
Collapse
Affiliation(s)
- Ji Eun Jung
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
- Forensic Toxicology and Chemistry Division, Seoul Institute, National Forensic Service, Seoul, Korea
| | - Vanessa Cárdenas
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Brîndușa Alina Petre
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
- Laboratory of Biochemistry, Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
13
|
Celada SI, Li G, Celada LJ, Lu W, Kanagasabai T, Feng W, Cao Z, Salsabeel N, Mao N, Brown LK, Mark ZA, Izban MG, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Wang X, Chen Z. Lysosome-dependent FOXA1 ubiquitination contributes to luminal lineage of advanced prostate cancer. Mol Oncol 2023; 17:2126-2146. [PMID: 37491794 PMCID: PMC10552895 DOI: 10.1002/1878-0261.13497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Changes in FOXA1 (forkhead box protein A1) protein levels are well associated with prostate cancer (PCa) progression. Unfortunately, direct targeting of FOXA1 in progressive PCa remains challenging due to variations in FOXA1 protein levels, increased FOXA1 mutations at different stages of PCa, and elusive post-translational FOXA1 regulating mechanisms. Here, we show that SKP2 (S-phase kinase-associated protein 2) catalyzes K6- and K29-linked polyubiquitination of FOXA1 for lysosomal-dependent degradation. Our data indicate increased SKP2:FOXA1 protein ratios in stage IV human PCa compared to stages I-III, together with a strong inverse correlation (r = -0.9659) between SKP2 and FOXA1 levels, suggesting that SKP2-FOXA1 protein interactions play a significant role in PCa progression. Prostate tumors of Pten/Trp53 mice displayed increased Skp2-Foxa1-Pcna signaling and colocalization, whereas disruption of the Skp2-Foxa1 interplay in Pten/Trp53/Skp2 triple-null mice demonstrated decreased Pcna levels and increased expression of Foxa1 and luminal positive cells. Treatment of xenograft mice with the SKP2 inhibitor SZL P1-41 decreased tumor proliferation, SKP2:FOXA1 ratios, and colocalization. Thus, our results highlight the significance of the SKP2-FOXA1 interplay on the luminal lineage in PCa and the potential of therapeutically targeting FOXA1 through SKP2 to improve PCa control.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
- Department of Biological SciencesTennessee State UniversityNashvilleTNUSA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | | | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Weiran Feng
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Zhen Cao
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Weill Cornell Graduate School of Medical SciencesWeill Cornell MedicineNew YorkNYUSA
| | - Nazifa Salsabeel
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ninghui Mao
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - LaKendria K. Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell BiologyMeharry Medical CollegeNashvilleTNUSA
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell BiologyMeharry Medical CollegeNashvilleTNUSA
| | - Xinchun Zhou
- Department of PathologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| | - Robert J. Matusik
- Department of UrologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Xiaofei Wang
- Department of Biological SciencesTennessee State UniversityNashvilleTNUSA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and PharmacologyMeharry Medical CollegeNashvilleTNUSA
| |
Collapse
|
14
|
Anton V, Buntenbroich I, Simões T, Joaquim M, Müller L, Buettner R, Odenthal M, Hoppe T, Escobar-Henriques M. E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response. Mol Cell 2023; 83:2976-2990.e9. [PMID: 37595558 PMCID: PMC10434984 DOI: 10.1016/j.molcel.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.
Collapse
Affiliation(s)
- Vincent Anton
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ira Buntenbroich
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mariana Joaquim
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Leonie Müller
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Reinhard Buettner
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
15
|
Strížová A, Šmátralová P, Chovančíková P, Machala Z, Polčic P. Defects in Mitochondrial Functions Affect the Survival of Yeast Cells Treated with Non-Thermal Plasma. Int J Mol Sci 2023; 24:ijms24119391. [PMID: 37298346 DOI: 10.3390/ijms24119391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure of living cells to non-thermal plasma produced in various electrical discharges affects cell physiology and often results in cell death. Even though plasma-based techniques have started finding practical applications in biotechnology and medicine, the molecular mechanisms of interaction of cells with plasma remain poorly understood. In this study, the involvement of selected cellular components or pathways in plasma-induced cell killing was studied employing yeast deletion mutants. The changes in yeast sensitivity to plasma-activated water were observed in mutants with the defect in mitochondrial functions, including transport across the outer mitochondrial membrane (∆por1), cardiolipin biosynthesis (∆crd1, ∆pgs1), respiration (ρ0) and assumed signaling to the nucleus (∆mdl1, ∆yme1). Together these results indicate that mitochondria play an important role in plasma-activated water cell killing, both as the target of the damage and the participant in the damage signaling, which may lead to the induction of cell protection. On the other hand, our results show that neither mitochondria-ER contact sites, UPR, autophagy, nor proteasome play a major role in the protection of yeast cells from plasma-induced damage.
Collapse
Affiliation(s)
- Anna Strížová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Paulína Šmátralová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Petra Chovančíková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
16
|
Wu HH, Leng S, Abuetabh Y, Sergi C, Eisenstat DD, Leng R. The SWIB/MDM2 motif of UBE4B activates the p53 pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:466-481. [PMID: 36865087 PMCID: PMC9971181 DOI: 10.1016/j.omtn.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The tumor suppressor p53 plays a critical role in cancer pathogenesis, and regulation of p53 expression is essential for maintaining normal cell growth. UBE4B is an E3/E4 ubiquitin ligase involved in a negative-feedback loop with p53. UBE4B is required for Hdm2-mediated p53 polyubiquitination and degradation. Thus, targeting the p53-UBE4B interactions is a promising anticancer strategy for cancer therapy. In this study, we confirm that while the UBE4B U box does not bind to p53, it is essential for the degradation of p53 and acts in a dominant-negative manner, thereby stabilizing p53. C-terminal UBE4B mutants lose their ability to degrade p53. Notably, we identified one SWIB/Hdm2 motif of UBE4B that is vital for p53 binding. Furthermore, the novel UBE4B peptide activates p53 functions, including p53-dependent transactivation and growth inhibition, by blocking the p53-UBE4B interactions. Our findings indicate that targeting the p53-UBE4B interaction presents a novel approach for p53 activation therapy in cancer.
Collapse
Affiliation(s)
- H. Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada,Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - David D. Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Avenue, University of Alberta, Edmonton, AB T6G 1Z2, Canada,Department of Pediatrics, University of Alberta, 11405 - 87 Avenue, Edmonton, AB T6G 1C9, Canada,Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB T6G 2H7, Canada,Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada,Corresponding author: Roger Leng, 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
17
|
Fan Y, Xu F, Wang R, He J. Lysine 222 in PPAR γ1 functions as the key site of MuRF2-mediated ubiquitination modification. Sci Rep 2023; 13:1999. [PMID: 36737649 PMCID: PMC9898238 DOI: 10.1038/s41598-023-28905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR γ) plays key roles in the development, physiology, reproduction, and homeostasis of organisms. Its expression and activity are regulated by various posttranslational modifications. We previously reported that E3 ubiquitin ligase muscle ring finger protein 2 (MuRF2) inhibits cardiac PPAR γ1 protein level and activity, eventually protects heart from diabetic cardiomyopathy; furthermore, by GST-pulldown assay, we found that MuRF2 modifies PPAR γ1 via poly-ubiquitination and accelerates PPAR γ1 proteasomal degradation. However, the key ubiquitination site on PPAR γ that MuRF2 targets for remains unclear. In the present study, we demonstrate that lysine site 222 is the receptor of MuRF2-mediated PPAR γ1 ubiquitination modification, using prediction of computational models, immunoprecipitation, ubiquitination assays, cycloheximide chasing assay and RT-qPCR. Our findings elucidated the underlying details of MuRF2 prevents heart from diabetic cardiomyopathy through the PPAR γ1 regulatory pathway.
Collapse
Affiliation(s)
- Yucheng Fan
- Department of Pathology, The First People's Hospital of Shizuishan, Affiliated to Ningxia Medical University, Shizuishan, China
| | - Fangjing Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Rui Wang
- School of Basic Medical Sciences , Ningxia Medical University, Yinchuan, China
| | - Jun He
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
18
|
Seo MJ, Kim IY, Lee DM, Park YJ, Cho MY, Jin HJ, Choi KS. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis 2023; 14:42. [PMID: 36658130 PMCID: PMC9852458 DOI: 10.1038/s41419-023-05586-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Auranofin (AF), a gold (I)-containing phosphine compound, is being investigated for oncological application as a repurposed drug. We show here that 4~5 µM AF induces paraptosis, a non-apoptotic cell death mode characterized by dilation of the endoplasmic reticulum (ER) and mitochondria, in breast cancer cells. Although the covalent inhibition of thioredoxin reductase (TrxR), an enzyme that critically controls intracellular redox homeostasis, is considered the primary mechanism of AF's anticancer activity, knockdown of TrxR1 did not induce paraptosis. Instead, both TrxR1 knockdown plus the proteasome inhibitor (PI), bortezomib (Bz), and 2 μM AF plus Bz induced paraptosis, thereby mimicking the effect of 5 μM AF. These results suggest that the paraptosis induced by 5 μM AF requires the inhibition of both TrxR1 and proteasome. We found that TrxR1 knockdown/Bz or subtoxic doses of AF and Bz induced paraptosis selectively in breast cancer cells, sparing non-transformed MCF10A cells, whereas 4~5 μM AF killed both cancer and MCF10A cells. GSH depletion was found to be more critical than ROS generation for the paraptosis induced by dual TrxR1/proteasome inhibition. In this process, the ATF4/CHAC1 (glutathione-specific gamma-glutamylcyclotransferase 1) axis leads to GSH degradation, contributing to proteotoxic stress possibly due to the accumulation of misfolded thiol-containing proteins. These results suggest that the paraptosis-inducing strategy of AF plus a PI may provide an effective therapeutic strategy against pro-apoptotic therapy-resistant cancers and reduce the potential side effects associated with high-dose AF.
Collapse
Affiliation(s)
- Min Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - In Young Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
- Nano-safety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Korea
| | - Dong Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Yeon Jung Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Hyo Joon Jin
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Ajou University School of Medicine, Suwon, 16499, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
19
|
E3 Ubiquitin Ligase TRIP12 Controls Exit from Mitosis via Positive Regulation of MCL-1 in Response to Taxol. Cancers (Basel) 2023; 15:cancers15020505. [PMID: 36672454 PMCID: PMC9856375 DOI: 10.3390/cancers15020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy resistance is a major hurdle in cancer treatment. Taxol-based chemotherapy is widely used in the treatment of cancers including breast, ovarian, and pancreatic cancer. Loss of function of the tumor suppressor F-box WD-40 domain containing 7 (FBW7) mutations leads to the accumulation of its substrate MCL-1 which is associated with Taxol resistance in human cancers. We recently showed that E3 ubiquitin ligase TRIP12 is a negative regulator of FBW7 protein. In this study, we find that Taxol-induced mitotic block in cancer cells is partly controlled by TRIP12 via its positive regulation of MCL-1 protein. Genetic inhibition of TRIP12 accelerates MCL-1 protein degradation in mitosis. Notably, introducing double-point mutations in lysines 404/412 of FBW7 to arginine which makes it resistant to proteasomal degradation, leads to the sharp reduction of MCL-1 protein levels and sensitizes cancer cells to Taxol-induced cell death. Finally, TRIP12 deletion leads to enhanced mitotic arrest and cell death in an FBW7 and MCL-1 dependent manner in multiple cell lines including colorectal and ovarian cancer but not in breast cancer. Thus, the TRIP12/FBW7/MCL-1 axis may provide a therapeutic target to overcome Taxol-associated chemotherapy resistance in cancer.
Collapse
|
20
|
Asimaki E, Petriukov K, Renz C, Meister C, Ulrich HD. Fast friends - Ubiquitin-like modifiers as engineered fusion partners. Semin Cell Dev Biol 2022; 132:132-145. [PMID: 34840080 PMCID: PMC9703124 DOI: 10.1016/j.semcdb.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Ubiquitin and its relatives are major players in many biological pathways, and a variety of experimental tools based on biological chemistry or protein engineering is available for their manipulation. One popular approach is the use of linear fusions between the modifier and a protein of interest. Such artificial constructs can facilitate the understanding of the role of ubiquitin in biological processes and can be exploited to control protein stability, interactions and degradation. Here we summarize the basic design considerations and discuss the advantages as well as limitations associated with their use. Finally, we will refer to several published case studies highlighting the principles of how they provide insight into pathways ranging from membrane protein trafficking to the control of epigenetic modifications.
Collapse
|
21
|
Pouyo R, Chung K, Delacroix L, Malgrange B. The ubiquitin-proteasome system in normal hearing and deafness. Hear Res 2022; 426:108366. [PMID: 34645583 DOI: 10.1016/j.heares.2021.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Post-translational modifications of proteins are essential for the proper development and function of many tissues and organs, including the inner ear. Ubiquitination is a highly selective post-translational modification that involves the covalent conjugation of ubiquitin to a substrate protein. The most common outcome of protein ubiquitination is degradation by the ubiquitin-proteasome system (UPS), preventing the accumulation of misfolded, damaged, and excess proteins. In addition to proteasomal degradation, ubiquitination regulates other cellular processes, such as transcription, translation, endocytosis, receptor activity, and subcellular localization. All of these processes are essential for cochlear development and maintenance, as several studies link impairment of UPS with altered cochlear development and hearing loss. In this review, we provide insight into the well-oiled machinery of UPS with a focus on its confirmed role in normal hearing and deafness and potential therapeutic strategies to prevent and treat UPS-associated hearing loss.
Collapse
Affiliation(s)
- Ronald Pouyo
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Keshi Chung
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Laurence Delacroix
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium.
| |
Collapse
|
22
|
Mehrtash AB, Hochstrasser M. Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets. iScience 2022; 25:105351. [PMID: 36325070 PMCID: PMC9619350 DOI: 10.1016/j.isci.2022.105351] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
In ER-associated degradation (ERAD), misfolded ER proteins are degraded by the proteasome after undergoing ubiquitylation. Yeast Doa10 (human MARCHF6/TEB4) is a membrane-embedded E3 ubiquitin ligase that functions with E2s Ubc6 and Ubc7. Ubc6 attaches a single ubiquitin to substrates, which is extended by Ubc7 to form a polyubiquitin chain. We show the conserved C-terminal element (CTE) of Doa10 promotes E3-mediated Ubc6 activity. Doa10 substrates undergoing an alternative ubiquitylation mechanism are still degraded in CTE-mutant cells. Structure prediction by AlphaFold2 suggests the CTE binds near the catalytic RING-CH domain, implying a direct role in substrate ubiquitylation, and we confirm this interaction using intragenic suppression. Truncation analysis defines a minimal E2-binding region of Doa10; structural predictions suggest that Doa10 forms a retrotranslocation channel and that E2s bind within the cofactor-binding region defined here. These results provide mechanistic insight into how Doa10, and potentially other ligases, interact with their cofactors and mediate ERAD. The conserved Doa10 C-terminus promotes E3-mediated activity of Ubc6 The minimal E2-binding region of Doa10 includes TMs 1–9 The N- and C-terminus of Doa10 interact, likely forming an ERAD protein channel
Collapse
Affiliation(s)
- Adrian B. Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520 CT, USA
| | - Mark Hochstrasser
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520 CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
- Corresponding author
| |
Collapse
|
23
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
24
|
Classification and Expression Profile of the U-Box E3 Ubiquitin Ligase Enzyme Gene Family in Maize (Zea mays L.). PLANTS 2022; 11:plants11192459. [PMID: 36235327 PMCID: PMC9573083 DOI: 10.3390/plants11192459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
The U-box E3 (PUB) family genes encode the E3 ubiquitin ligase enzyme, which determines substrate specific recognition during protein ubiquitination. They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristic of PUB gene family in the important staple crop, maize (Zea mays L.). In this study, the PUB gene in maize was aimed to identify and classify through whole-genome screening. Phylogenetic tree, gene structure, conserved motif, chromosome location, gene duplication (GD), synteny, and cis-acting regulatory element of PUB member were analyzed. The expression profiles of ZmPUB gene family in maize during development and under abiotic stress and hormones treatment were analyzed by the RNA-seq data. A total of 79 PUB genes were identified in maize genome, and they were stratified into seven categories. There were 25 pairs of segmental duplications (SD) and 1 pair of tandem duplication (TD) identified in the maize PUB gene family. A close relationship was observed between the monocot plant maize and rice in PUB gene family. There were 94 kinds of cis-acting elements identified in the maize PUB gene family, which included 46 biotic- and abiotic-responsive elements, 19 hormone-responsive elements, 13 metabolic and growth-related elements. The expression profiles of maize PUB gene family showed characteristics of tissue specificity and response to abiotic stress and hormones treatment. These results provided an extensive overview of the maize PUB gene family.
Collapse
|
25
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
26
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
27
|
Li M, Zhang J, Bai Q, Fang L, Song H, Cao Y. Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in Yarrowia lipolytica. Front Microbiol 2022; 13:898884. [PMID: 35547152 PMCID: PMC9082995 DOI: 10.3389/fmicb.2022.898884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jinlai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Qiuyan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Schizosaccharomyces pombe Fzo1 is subjected to the ubiquitin-proteasome-mediated degradation during the stationary phase. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:397-404. [PMID: 35075549 DOI: 10.1007/s10123-022-00231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Mitochondria are highly dynamic organelles that undergo fission and fusion to adapt to the metabolic needs of the cell. Mitofusins are dynamin-like GTPases that play a key role in the regulation of mitochondrial fusion and metabolism. In Saccharomyces cerevisiae, mitofusin Fzo1 levels are controlled by post-translational ubiquitination and degradation. However, it is not clear whether the levels of the Schizosaccharomyces pombe mitofusin Fzo1 are similarly regulated. In this study, we examined the expression S. pombe Fzo1 during normal growth. We showed that Fzo1 protein levels but not mRNA expression levels were reduced during the stationary phase. The protein was stabilized by the proteasome inhibitor bortezomib. Disruption of ubc8 encoding a ubiquitin-conjugating enzyme and rsv2 encoding an S. pombe homolog of S. cerevisiae RPN4 known for activating the expression of genes required for proteasomal biogenesis suppresses the proteasomal degradation of Fzo1 during the stationary phase. Overexpression of fzo1 prevents its degradation. Our results suggest that like S. pombe Fzo1 expression is not regulated by transcription but rather by proteolytic degradation during the stationary phase. Our findings also suggest that although S. cerevisiae and S. pombe Fzo1 proteins are regulated by ubiquitin-proteasomal degradation, different ubiquitin-conjugating enzymes (E2) and ubiquitin ligases (E3) are involved in their degradation.
Collapse
|
29
|
Assembly and function of branched ubiquitin chains. Trends Biochem Sci 2022; 47:759-771. [DOI: 10.1016/j.tibs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
|
30
|
Wegmann S, Meister C, Renz C, Yakoub G, Wollscheid HP, Takahashi DT, Mikicic I, Beli P, Ulrich HD. Linkage reprogramming by tailor-made E3s reveals polyubiquitin chain requirements in DNA-damage bypass. Mol Cell 2022; 82:1589-1602.e5. [PMID: 35263628 PMCID: PMC9098123 DOI: 10.1016/j.molcel.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.
Collapse
Affiliation(s)
- Sabrina Wegmann
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - George Yakoub
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Diane T Takahashi
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 10413 Illkirch, Strasbourg, France
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
31
|
Ahn MY, Seo DH, Kim WT. PUB22 and PUB23 U-box E3 ubiquitin ligases negatively regulate 26S proteasome activity under proteotoxic stress conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:625-631. [PMID: 34964269 DOI: 10.1111/jipb.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The mechanism regulating proteasomal activity under proteotoxic stress conditions remains unclear. Here, we showed that arsenite-induced proteotoxic stress resulted in upregulation of Arabidopsis homologous PUB22 and PUB23 U-box E3 ubiquitin ligases and that pub22pub23 double mutants displayed arsenite-insensitive seed germination and root growth phenotypes. PUB22/PUB23 downregulated 26S proteasome activity by promoting the dissociation of the 19S regulatory particle from the holo-proteasome complex, resulting in intracellular accumulation of UbG76V -GFP, an artificial substrate of the proteasome complex, and insoluble poly-ubiquitinated proteins. These results suggest that PUB22/PUB23 play a critical role in arsenite-induced proteotoxic stress response via negative regulation of 26S proteasome integrity.
Collapse
Affiliation(s)
- Min Yong Ahn
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Dong Hye Seo
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
32
|
Lee HJ, Lee DM, Seo MJ, Kang HC, Kwon SK, Choi KS. PSMD14 Targeting Triggers Paraptosis in Breast Cancer Cells by Inducing Proteasome Inhibition and Ca 2+ Imbalance. Int J Mol Sci 2022; 23:ijms23052648. [PMID: 35269789 PMCID: PMC8910635 DOI: 10.3390/ijms23052648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
PSMD14, a subunit of the 19S regulatory particles of the 26S proteasome, was recently identified as a potential prognostic marker and therapeutic target in diverse human cancers. Here, we show that the silencing and pharmacological blockade of PSMD14 in MDA-MB 435S breast cancer cells induce paraptosis, a non-apoptotic cell death mode characterized by extensive vacuolation derived from the endoplasmic reticulum (ER) and mitochondria. The PSMD14 inhibitor, capzimin (CZM), inhibits proteasome activity but differs from the 20S proteasome subunit-inhibiting bortezomib (Bz) in that it does not induce aggresome formation or Nrf1 upregulation, which underlie Bz resistance in cancer cells. In addition to proteasome inhibition, the release of Ca2+ from the ER into the cytosol critically contributes to CZM-induced paraptosis. Induction of paraptosis by targeting PSMD14 may provide an attractive therapeutic strategy against cancer cells resistant to proteasome inhibitors or pro-apoptotic drugs.
Collapse
Affiliation(s)
- Hong-Jae Lee
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
| | - Dong-Min Lee
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
| | - Min-Ji Seo
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
| | - Ho-Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Kyeong-Sook Choi
- Department of Biochemistry and Molecular Biology, Ajou University, Suwon 16499, Korea; (H.-J.L.); (D.-M.L.); (M.-J.S.)
- Correspondence: ; Tel.: +82-31-219-4552; Fax: +82-31-219-5059
| |
Collapse
|
33
|
Borg Y, Alsford S, Pavlika V, Zaikin A, Nesbeth DN. Synthetic biology tools for engineering Goodwin oscillation in Trypanosoma brucei brucei. Heliyon 2022; 8:e08891. [PMID: 35198764 PMCID: PMC8844716 DOI: 10.1016/j.heliyon.2022.e08891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022] Open
Abstract
Kinetoplastid protozoa possess properties that are highly divergent from the mammalian, yeast and bacterial cells more commonly used in synthetic biology and represent a tantalisingly untapped source of bioengineering potential. Trypanosoma brucei brucei (T. b. brucei), an established model organism for studying the Kinetoplastida, is non-pathogenic to humans and provides an interesting test case for establishing synthetic biology in this phylogenetic class. To demonstrate further the tractability of Kinetoplastida to synthetic biology, we sought to construct and demonstrate a Goodwin oscillator, the simplest oscillatory gene network, in T. b. brucei for the first time. We report one completed iteration of the archetypal synthetic biology Design-Build-Test-Learn (DBTL) cycle; firstly, using Ab initio mathematical modelling of the behaviour a theoretical, oscillatory, trypanosomal synthetic gene network (SGN) to inform the design of a plasmid encoding that network. Once assembled, the plasmid was then used to generate a stable transfectant T. b. brucei cell line. To test the performance of the oscillatory SGN, a novel experimental setup was established to capture images of the fluorescent signal from motion-restricted live cells. Data captured were consistent with oscillatory behaviour of the SGN, with cellular fluorescence observed to oscillate with a period of 50 min, with varying amplitude and linear growth trend. This first DBTL cycle establishes a foundation for future cycles in which the SGN design and experimental monitoring setup can be further refined.
Collapse
Affiliation(s)
- Yanika Borg
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, Bernard Katz Building, Gordon Street, University College London, London, WC1E 6BT, UK.,Department of Mathematics and Institute for Women's Health, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sam Alsford
- Faculty of Infectious and Tropical Diseases & Department of Infection Biology, The London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Vasos Pavlika
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, Bernard Katz Building, Gordon Street, University College London, London, WC1E 6BT, UK
| | - Alexei Zaikin
- Department of Mathematics and Institute for Women's Health, University College London, Gower Street, London, WC1E 6BT, UK.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Darren N Nesbeth
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, Bernard Katz Building, Gordon Street, University College London, London, WC1E 6BT, UK
| |
Collapse
|
34
|
Choi SH, Cho K, Kim ES, Yoo HY. Proline-serine-threonine-repeat region of MDC1 mediates Chk1 phosphorylation and the DNA double-strand break repair. Int J Biochem Cell Biol 2021; 143:106152. [PMID: 34974185 DOI: 10.1016/j.biocel.2021.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
MDC1, a mediator of DNA damage response, recruits other repair proteins on double-strand break (DSB) sites. MDC1 is necessary for activating checkpoint kinases Chk1 and Chk2. It is unclear whether Chk1 interacts with MDC1. MDC1 also comprises many discrete domains. The role of the proline-serine-threonine (PST)-repeat domain of MDC1 in the DNA damage response is unclear. Here, we showed that MDC1 directly binds Chk1 through this PST-repeat region. Phosphorylation of Chk1 by ionizing radiation (IR) also required this PST-repeat domain. Degradation of intact MDC1 was accelerated depending on the PST-repeat domain after IR exposure. In the IR damage response, the PST-repeat-deleted MDC1 levels remained elevated with slow degradation. This abnormal regulation of MDC1 was F-box- and WD40 repeat-containing 7 (FBXW7)-dependent. The mutation of lysine 1413 within the PST-repeat of MDC1 deregulated MDC1 with or without damage. K1413R mutant and PST-deleted MDC1 displayed reduced ability to repair the damaged genome post-IR exposure. These results provide that the PST domain of MDC1 is involved in Chk1 and DNA repair activation. The findings suggest new insights into how MDC1 connects the checkpoint and DNA repair in the DNA damage response.
Collapse
Affiliation(s)
- Seung Ho Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06355, Korea
| | - Kyoungjoo Cho
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea
| | - Eun Seon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06355, Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06355, Korea.
| |
Collapse
|
35
|
Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules 2021; 11:biom11121821. [PMID: 34944465 PMCID: PMC8698790 DOI: 10.3390/biom11121821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.
Collapse
|
36
|
Kats I, Reinbold C, Kschonsak M, Khmelinskii A, Armbruster L, Ruppert T, Knop M. Up-regulation of ubiquitin-proteasome activity upon loss of NatA-dependent N-terminal acetylation. Life Sci Alliance 2021; 5:5/2/e202000730. [PMID: 34764209 PMCID: PMC8605321 DOI: 10.26508/lsa.202000730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Inactivation of N-terminal acetyltransferase A is found to alter Rpn4 as well as E3 ligase abundance, causing up-regulation of Ubiquitin–proteasome activity. In this context, Tom1 is also identified as a novel chain-elongating enzyme of the UFD-pathway. N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin–independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.
Collapse
Affiliation(s)
- Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Reinbold
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marc Kschonsak
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Laura Armbruster
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany .,Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
37
|
Giovannucci TA, Salomons FA, Stoy H, Herzog LK, Xu S, Qian W, Merino LG, Gierisch ME, Haraldsson M, Lystad AH, Uvell H, Simonsen A, Gustavsson AL, Vallin M, Dantuma NP. Identification of a novel compound that simultaneously impairs the ubiquitin-proteasome system and autophagy. Autophagy 2021; 18:1486-1502. [PMID: 34740308 PMCID: PMC9298443 DOI: 10.1080/15548627.2021.1988359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.
Collapse
Affiliation(s)
- Tatiana A Giovannucci
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Henriette Stoy
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Laura K Herzog
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Xu
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Weixing Qian
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden (CBCS), Umeå University, Umeå, Sweden
| | - Lara G Merino
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alf H Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | - Hanna Uvell
- Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden (CBCS), Umeå University, Umeå, Sweden
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michaela Vallin
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Shenderov E, Kandasamy M, Gileadi U, Chen J, Shepherd D, Gibbs J, Prota G, Silk JD, Yewdell JW, Cerundolo V. Generation and characterization of HLA-A2 transgenic mice expressing the human TCR 1G4 specific for the HLA-A2 restricted NY-ESO-1 157-165 tumor-specific peptide. J Immunother Cancer 2021; 9:jitc-2021-002544. [PMID: 34088742 PMCID: PMC8183295 DOI: 10.1136/jitc-2021-002544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background NY-ESO-1 is a tumor-specific, highly immunogenic, human germ cell antigen of the MAGE-1 family that is a promising vaccine and cell therapy candidate in clinical trial development. The mouse genome does not encode an NY-ESO-1 homolog thereby not subjecting transgenic T-cells to thymic tolerance mechanisms that might impair in-vivo studies. We hypothesized that an NY-ESO-1 T cell receptor (TCR) transgenic mouse would provide the unique opportunity to study avidity of TCR response against NY-ESO-1 for tumor vaccine and cellular therapy development against this clinically relevant and physiological human antigen. Methods To study in vitro and in vivo the requirements for shaping an effective T cell response against the clinically relevant NY-ESO-1, we generated a C57BL/6 HLA-A*0201 background TCR transgenic mouse encoding the 1G4 TCR specific for the human HLA-A2 restricted, NY-ESO-1157-165 SLLMWITQC (9C), initially identified in an NY-ESO-1 positive melanoma patient. Results The HLA-A*0201 restricted TCR was positively selected on both CD4+ and CD8+ cells. Mouse 1G4 T cells were not activated by endogenous autoimmune targets or a large library of non-cognate viral antigens. In contrast, their activation by HLA-A2 NY-ESO-1157-165 complexes was evident by proliferation, CD69 upregulation, interferon-γ production, and interleukin-2 production, and could be tuned using a twofold higher affinity altered peptide ligand, NY-ESO-1157-165V. NY-ESO-1157-165V recombinant vaccination of syngeneic mice adoptively transferred with m1G4 CD8+ T cells controlled tumor growth in vivo. 1G4 transgenic mice suppressed growth of syngeneic methylcholanthrene (MCA) induced HHD tumor cells expressing the full-length human NY-ESO-1 protein but not MCA HHD tumor cells lacking NY-ESO-1. Conclusions The 1G4 TCR mouse model for the physiological human TCR against the clinically relevant antigen, NY-ESO-1, is a valuable tool with the potential to accelerate clinical development of NY-ESO-1-targeted T-cell and vaccine therapies.
Collapse
Affiliation(s)
- Eugene Shenderov
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK .,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Matheswaran Kandasamy
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Jili Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Dawn Shepherd
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - James Gibbs
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Jonathan D Silk
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK.,Next Generation Research, Adaptimmune, Abingdon, UK
| | - Jonathan W Yewdell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, UK
| |
Collapse
|
39
|
Lee KK, Rajagopalan D, Bhatia SS, Tirado-Magallanes R, Chng WJ, Jha S. The oncogenic E3 ligase TRIP12 suppresses epithelial-mesenchymal transition (EMT) and mesenchymal traits through ZEB1/2. Cell Death Discov 2021; 7:95. [PMID: 33963176 PMCID: PMC8105346 DOI: 10.1038/s41420-021-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid hormone receptor interactor 12 (TRIP12) is an E3 ligase most notably involved in the proteolytic degradation of the tumor suppressor p14ARF. Through this process, it is proposed that TRIP12 plays an oncogenic role in tumor initiation and growth. However, its role in other cancer processes is unknown. In this study, using publicly available cancer patient datasets, we found TRIP12 to be associated with distant metastasis-free survival in breast cancer, suggesting an inhibitory role in metastasis. Following TRIP12 depletion, an epithelial-mesenchymal transition (EMT) shift occurred with concomitant changes in EMT cell adhesion markers identified through RNA-seq. In line with EMT changes, TRIP12-depleted cells gained mesenchymal traits such as loss of cell polarity, dislodgement from bulk cells at a higher frequency, and increased cellular motility. Furthermore, ectopic TRIP12 expression sensitized cells to anoikis. Mechanistically, TRIP12 suppresses EMT through inhibiting ZEB1/2 gene expression, and ZEB1/2 depletion rescues EMT markers and mesenchymal behavior. Overall, our study delineates TRIP12's role in inhibition of EMT and implies a potential suppressive role in breast cancer metastasis.
Collapse
Affiliation(s)
- Kwok Kin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shreshtha Sailesh Bhatia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Liao PC, Wolken DMA, Serrano E, Srivastava P, Pon LA. Mitochondria-Associated Degradation Pathway (MAD) Function beyond the Outer Membrane. Cell Rep 2021; 32:107902. [PMID: 32668258 PMCID: PMC7391283 DOI: 10.1016/j.celrep.2020.107902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022] Open
Abstract
The mitochondria-associated degradation pathway (MAD) mediates ubiquitination and degradation of mitochondrial outer membrane (MOM) proteins by the proteasome. We find that the MAD, but not other quality-control pathways including macroautophagy, mitophagy, or mitochondrial chaperones and proteases, is critical for yeast cellular fitness under conditions of paraquat (PQ)-induced oxidative stress in mitochondria. Specifically, inhibition of the MAD increases PQ-induced defects in growth and mitochondrial quality and decreases chronological lifespan. We use mass spectrometry analysis to identify possible MAD substrates as mitochondrial proteins that exhibit increased ubiquitination in response to PQ treatment and inhibition of the MAD. We identify candidate substrates in the mitochondrial matrix and inner membrane and confirm that two matrix proteins are MAD substrates. Our studies reveal a broader function for the MAD in mitochondrial protein surveillance beyond the MOM and a major role for the MAD in cellular and mitochondrial fitness in response to chronic, low-level oxidative stress in mitochondria.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | - Edith Serrano
- Department of Chemistry, Barnard College, Columbia University, New York, NY 10027, USA
| | - Pallavi Srivastava
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
41
|
Martín-Villanueva S, Gutiérrez G, Kressler D, de la Cruz J. Ubiquitin and Ubiquitin-Like Proteins and Domains in Ribosome Production and Function: Chance or Necessity? Int J Mol Sci 2021; 22:ijms22094359. [PMID: 33921964 PMCID: PMC8122580 DOI: 10.3390/ijms22094359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Gabriel Gutiérrez
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| |
Collapse
|
42
|
Li L, Zhang X, Wang X, Kim SW, Herndon JM, Becker-Hapak MK, Carreno BM, Myers NB, Sturmoski MA, McLellan MD, Miller CA, Johanns TM, Tan BR, Dunn GP, Fleming TP, Hansen TH, Goedegebuure SP, Gillanders WE. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation. Genome Med 2021; 13:56. [PMID: 33879241 PMCID: PMC8059244 DOI: 10.1186/s13073-021-00872-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.
Collapse
Affiliation(s)
- Lijin Li
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel W Kim
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - John M Herndon
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | | | - Beatriz M Carreno
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Present Address: Parker Institute for Cancer Immunotherapy, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy B Myers
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Mark A Sturmoski
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Michael D McLellan
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Tanner M Johanns
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin R Tan
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Gavin P Dunn
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
- Present Address: Norton Thoracic Institute, St. Joseph Hospital and Medical Center, Phoenix, AZ, USA
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
43
|
Chen X, Dou QP, Liu J, Tang D. Targeting Ubiquitin-Proteasome System With Copper Complexes for Cancer Therapy. Front Mol Biosci 2021; 8:649151. [PMID: 33928122 PMCID: PMC8076789 DOI: 10.3389/fmolb.2021.649151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Characterizing mechanisms of protein homeostasis, a process of balancing between protein synthesis and protein degradation, is important for understanding the potential causes of human diseases. The ubiquitin–proteasome system (UPS) is a well-studied mechanism of protein catabolism, which is responsible for eliminating misfolded, damaged, or aging proteins, thereby maintaining quality and quantity of cellular proteins. The UPS is composed of multiple components, including a series of enzymes (E1, E2, E3, and deubiquitinase [DUB]) and 26S proteasome (19S regulatory particles + 20S core particle). An impaired UPS pathway is involved in multiple diseases, including cancer. Several proteasome inhibitors, such as bortezomib, carfilzomib, and ixazomib, are approved to treat patients with certain cancers. However, their applications are limited by side effects, drug resistance, and drug–drug interactions observed in their clinical processes. To overcome these shortcomings, alternative UPS inhibitors have been searched for in many fields. Copper complexes (e.g., CuET, CuHQ, CuCQ, CuPDTC, CuPT, and CuHK) are found to be able to inhibit a core component of the UPS machinery, such as 20S proteasome, 19S DUBs, and NPLOC4/NPL4 complex, and are proposed to be one class of metal-based anticancer drugs. In this review, we will summarize functions and applications of copper complexes in a concise perspective, with a focus on connections between the UPS and cancer.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Q Ping Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
44
|
Proteasomal degradation of the tumour suppressor FBW7 requires branched ubiquitylation by TRIP12. Nat Commun 2021; 12:2043. [PMID: 33824312 PMCID: PMC8024278 DOI: 10.1038/s41467-021-22319-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/03/2021] [Indexed: 11/08/2022] Open
Abstract
The tumour suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), that targets several oncoproteins for proteasomal degradation. FBW7 is widely mutated and FBW7 protein levels are commonly downregulated in cancer. Here, using an shRNA library screen, we identify the HECT-domain E3 ubiquitin ligase TRIP12 as a negative regulator of FBW7 stability. We find that SCFFBW7-mediated ubiquitylation of FBW7 occurs preferentially on K404 and K412, but is not sufficient for its proteasomal degradation, and in addition requires TRIP12-mediated branched K11-linked ubiquitylation. TRIP12 inactivation causes FBW7 protein accumulation and increased proteasomal degradation of the SCFFBW7 substrate Myeloid Leukemia 1 (MCL1), and sensitizes cancer cells to anti-tubulin chemotherapy. Concomitant FBW7 inactivation rescues the effects of TRIP12 deficiency, confirming FBW7 as an essential mediator of TRIP12 function. This work reveals an unexpected complexity of FBW7 ubiquitylation, and highlights branched ubiquitylation as an important signalling mechanism regulating protein stability. The tumor suppressor FBW7 is a substrate adaptor for the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF) and itself a target for ubiquitylation. Here, the authors show that TRIP12 mediates branched K11-linked ubiquitylation of FBW7, to regulate its stability and thus abundance of a subset of SCFFBW7 substrates.
Collapse
|
45
|
Kandasamy G, Pradhan AK, Palanimurugan R. Ccr4-Not complex subunits Ccr4, Caf1, and Not4 are novel proteolysis factors promoting the degradation of ubiquitin-dependent substrates by the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119010. [PMID: 33727038 DOI: 10.1016/j.bbamcr.2021.119010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022]
Abstract
Degradation of short-lived and abnormal proteins is essential for normal cellular homeostasis. In eukaryotes, such unstable cellular proteins are selectively degraded by the ubiquitin proteasome system (UPS). Abnormalities in protein degradation by the UPS have been linked to several human diseases. Ccr4, Caf1, and Not4 proteins are known components of the Ccr4-Not multimeric complex. Ccr4 and Caf1 have established roles in transcription, mRNA de-adenylation and RNA degradation etc., while Not4 was shown to have important roles in regulating translation and protein quality control pathways. Here we show that Ccr4, Caf1, and Not4 have a novel function at a post-ubiquitylation step in the UPS pathway by promoting ubiquitin-dependent degradation of short-lived proteins by the 26S proteasome. Using a substrate of the well-studied ubiquitin fusion degradation (UFD) pathway, we found that its UPS-mediated degradation was severely impaired upon deletion of CCR4, CAF1, or NOT4 genes in Saccharomyces cerevisiae. Additionally, we show that Ccr4, Caf1, and Not4 bind to cellular ubiquitin conjugates, and that Ccr4 and Caf1 proteins interact with the proteasome. In contrast to Ccr4, Caf1, and Not4, other subunits of the Ccr4-Not complex are dispensable for UFD substrate degradation. From our findings we conclude that the Ccr4-Not complex subunits Ccr4, Caf1, and Not4 have a novel function outside of the canonical Ccr4-Not complex as a factor targeting ubiquitylated substrates for proteasomal degradation.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| | - Ashis Kumar Pradhan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | - R Palanimurugan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| |
Collapse
|
46
|
Genome Wide Analysis of U-Box E3 Ubiquitin Ligases in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22052699. [PMID: 33800063 PMCID: PMC7962133 DOI: 10.3390/ijms22052699] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
U-box E3 ligase genes play specific roles in protein degradation by post-translational modification in plant signaling pathways, developmental stages, and stress responses; however, little is known about U-box E3 genes in wheat. We identified 213 U-box E3 genes in wheat based on U-box and other functional domains in their genome sequences. The U-box E3 genes were distributed among 21 chromosomes and most showed high sequence homology with homoeologous U-box E3 genes. Synteny analysis of wheat U-box E3 genes was conducted with other plant species such as Brachypodium distachyon, barley, rice, Triricum uratu, and Aegilops tauschii. A total of 209 RNA-seq samples representing 22 tissue types, from grain, root, leaf, and spike samples across multiple time points, were analyzed for clustering of U-box E3 gene expression during developmental stages, and the genes responded differently in various tissues and developmental stages. In addition, expression analysis of U-box E3 genes under abiotic stress, including drought, heat, and both heat and drought, and cold conditions, was conducted to provide information on U-box E3 gene expression under specific stress conditions. This analysis of U-box E3 genes could provide valuable information to elucidate biological functions for a better understanding of U-box E3 genes in wheat.
Collapse
|
47
|
Joshi KK, Matlack TL, Pyonteck S, Vora M, Menzel R, Rongo C. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis. EMBO Rep 2021; 22:e51063. [PMID: 33470040 PMCID: PMC7926251 DOI: 10.15252/embr.202051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.
Collapse
Affiliation(s)
- Kishore K Joshi
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Tarmie L Matlack
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Stephanie Pyonteck
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Mehul Vora
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| | - Ralph Menzel
- Institute of Biology and EcologyHumboldt University BerlinBerlinGermany
| | - Christopher Rongo
- Department of GeneticsThe Waksman InstituteRutgers The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
48
|
Sharma M, Yadav P, Doshi A, Brahmbhatt HD, Prabha CR. Probing the effects of double mutations on the versatile protein ubiquitin in Saccharomyces cerevisiae. Int J Biol Macromol 2021; 179:299-308. [PMID: 33662424 DOI: 10.1016/j.ijbiomac.2021.02.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022]
Abstract
Ubiquitin is an indispensable protein of eukaryotic origin with an extraordinarily high degree of sequence conservation. It is used to tag proteins post-translationally and the process of ubiquitination regulates the activity of the modified proteins or drives them for degradation. Double mutations produce varied effects in proteins, depending on the structural relationship of the mutated residues, their role in the overall structure and functions of a protein. Six double mutants derived from the ubiquitin mutant UbEP42, namely S20F-A46S, S20F-L50P, S20F-I61T, A46S-L50P, A46S-I61T, and L50P-I61T, have been studied here to understand how they influence the ubiquitination related functions, by analysing their growth and viability, Cdc28 levels, K-48 linked polyubiquitination, UFD pathway, lysosomal degradation, endosomal sorting, survival under heat, and antibiotic stresses. The double mutation L50P-I61T is the most detrimental, followed by S20F-I61T and A46S-I61T. The double mutations studied here, in general, make cells more sensitive than the wild type to one or the other stress. However, the excessive negative effects of L50P and I61T are compensated under certain conditions by S20F and A46S mutations. The competitive inhibition produced by these substitutions could be used to manage certain ubiquitination associated diseases.
Collapse
Affiliation(s)
- Mrinal Sharma
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Prranshu Yadav
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Ankita Doshi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Hemang D Brahmbhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - C Ratna Prabha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
49
|
Kahles T, Poon C, Qian L, Palfini V, Srinivasan SP, Swaminathan S, Blanco I, Rodney-Sandy R, Iadecola C, Zhou P, Hochrainer K. Elevated post-ischemic ubiquitination results from suppression of deubiquitinase activity and not proteasome inhibition. Cell Mol Life Sci 2021; 78:2169-2183. [PMID: 32889561 PMCID: PMC7933347 DOI: 10.1007/s00018-020-03625-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Cerebral ischemia-reperfusion increases intraneuronal levels of ubiquitinated proteins, but the factors driving ubiquitination and whether it results from altered proteostasis remain unclear. To address these questions, we used in vivo and in vitro models of cerebral ischemia-reperfusion, in which hippocampal slices were transiently deprived of oxygen and glucose to simulate ischemia followed by reperfusion, or the middle cerebral artery was temporarily occluded in mice. We found that post-ischemic ubiquitination results from two key steps: restoration of ATP at reperfusion, which allows initiation of protein ubiquitination, and free radical production, which, in the presence of sufficient ATP, increases ubiquitination above pre-ischemic levels. Surprisingly, free radicals did not augment ubiquitination through inhibition of the proteasome as previously believed. Although reduced proteasomal activity was detected after ischemia, this was neither caused by free radicals nor sufficient in magnitude to induce appreciable accumulation of proteasomal target proteins or ubiquitin-proteasome reporters. Instead, we found that ischemia-derived free radicals inhibit deubiquitinases, a class of proteases that cleaves ubiquitin chains from proteins, which was sufficient to elevate ubiquitination after ischemia. Our data provide evidence that free radical-dependent deubiquitinase inactivation rather than proteasomal inhibition drives ubiquitination following ischemia-reperfusion, and as such call for a reevaluation of the mechanisms of post-ischemic ubiquitination, previously attributed to altered proteostasis. Since deubiquitinase inhibition is considered an endogenous neuroprotective mechanism to shield proteins from oxidative damage, modulation of deubiquitinase activity may be of therapeutic value to maintain protein integrity after an ischemic insult.
Collapse
Affiliation(s)
- Timo Kahles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Neurology, Cantonal Hospital Aarau, 5001, Aarau, Switzerland
| | - Carrie Poon
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Liping Qian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Victoria Palfini
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Shilpa Swaminathan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ismary Blanco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Reunet Rodney-Sandy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
50
|
Morimoto D, Walinda E, Takashima S, Nishizawa M, Iwai K, Shirakawa M, Sugase K. Structural Dynamic Heterogeneity of Polyubiquitin Subunits Affects Phosphorylation Susceptibility. Biochemistry 2021; 60:573-583. [PMID: 33616406 DOI: 10.1021/acs.biochem.0c00619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyubiquitin is a multifunctional protein tag formed by the covalent conjugation of ubiquitin molecules. Due to the high rigidity of the ubiquitin fold, the ubiquitin moieties in a polyubiquitin chain appear to be structurally equivalent to each other. It is therefore unclear how a specific ubiquitin moiety in a chain may be preferentially recognized by some proteins, such as the kinase PINK1. Here we show that there is structural dynamic heterogeneity in the two ubiquitin moieties of K48-linked diubiquitin by NMR spectroscopic analyses. Our analyses capture subunit-asymmetric structural fluctuations that are not directly related to the closed-to-open transition of the two ubiquitin moieties in diubiquitin. Strikingly, these newly identified heterogeneous structural fluctuations may be linked to an increase in susceptibility to phosphorylation by PINK1. Coupled with the fact that there are almost no differences in static tertiary structure among ubiquitin moieties in a chain, the observed subunit-specific structural fluctuations may be an important factor that distinguishes individual ubiquitin moieties in a chain, thereby aiding both efficiency and specificity in post-translational modifications.
Collapse
Affiliation(s)
- Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shingo Takashima
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Mayu Nishizawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|