1
|
Silver SV, Popovics P. The Multifaceted Role of Osteopontin in Prostate Pathologies. Biomedicines 2023; 11:2895. [PMID: 38001899 PMCID: PMC10669591 DOI: 10.3390/biomedicines11112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The prostate gland, located beneath the bladder and surrounding the proximal urethra in men, plays a vital role in reproductive physiology and sexual health. Despite its importance, the prostate is vulnerable to various pathologies, including prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Osteopontin (OPN), a versatile protein involved in wound healing, inflammatory responses, and fibrotic diseases, has been implicated in all three prostate conditions. The role of OPN in prostatic pathophysiology, affecting both benign and malignant prostate conditions, is significant. Current evidence strongly suggests that OPN is expressed at a higher level in prostate cancer and promotes tumor progression and aggressiveness. Conversely, OPN is primarily secreted by macrophages and foam cells in benign prostate conditions and provokes inflammation and fibrosis. This review discusses the accumulating evidence on the role of OPN in prostatic diseases, cellular sources, and potential roles while also highlighting areas for future investigations.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
2
|
Wang P, Anderson DE, Ye Y. PI3K-AKT activation resculpts integrin signaling to drive filamentous tau-induced proinflammatory astrogliosis. Cell Biosci 2023; 13:179. [PMID: 37759245 PMCID: PMC10536728 DOI: 10.1186/s13578-023-01128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Microtubule-binding protein tau is a misfolding-prone protein associated with tauopathies. As tau undergoes cell-to-cell transmission, extracellular tau aggregates convert astrocytes into a pro-inflammatory state via integrin activation, causing them to release unknown neurotoxic factors. RESULTS Here, we combine transcriptomics with isotope labeling-based quantitative mass spectrometry analysis of mouse primary astrocyte secretome to establish PI3K-AKT as a critical differentiator between pathogenic and physiological integrin activation; simultaneous activation of PI3K-AKT and focal adhesion kinase (FAK) in tau fibril-treated astrocytes changes the output of integrin signaling, causing pro-inflammatory gene upregulation, trans-Golgi network restructuring, and altered secretory flow. Furthermore, NCAM1, as a proximal signaling component in tau-stimulated integrin and PI3K-AKT activation, facilitates the secretion of complement C3 as a main neurotoxic factor. Significantly, tau fibrils-associated astrogliosis and C3 secretion can be mitigated by FAK or PI3K inhibitors. CONCLUSIONS These findings reveal an unexpected function for PI3K-AKT in tauopathy-associated reactive astrogliosis, which may be a promising target for anti-inflammation-based Alzheimer's therapy.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - D Eric Anderson
- Advanced Mass Spectrometry Core, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Wang P, Anderson DE, Ye Y. PI3K-AKT activation resculpts integrin signaling to drive filamentous tau-induced proinflammatory astrogliosis. RESEARCH SQUARE 2023:rs.3.rs-3253118. [PMID: 37674732 PMCID: PMC10479431 DOI: 10.21203/rs.3.rs-3253118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Microtubule-binding protein tau is a misfolding-prone protein associated with tauopathies. As tau undergoes cell-to-cell transmission, extracellular tau aggregates convert astrocytes into a pro-inflammatory state via integrin activation, causing them to release unknown neurotoxic factors. Results Here, we combine transcriptomics with isotope labeling-based quantitative mass spectrometry analysis of mouse primary astrocyte secretome to establish PI3K-AKT as a critical differentiator between pathogenic and physiological integrin activation; simultaneous activation of PI3K-AKT and focal adhesion kinase (FAK) in tau fibril-treated astrocytes changes the output of integrin signaling, causing pro-inflammatory gene upregulation, trans-Golgi network restructuring, and altered secretory flow. Furthermore, NCAM1, as a proximal signaling component in tau-stimulated integrin and PI3K-AKT activation, facilitates the secretion of complement C3 as a main neurotoxic factor. Significantly, tau fibrils-associated astrogliosis and C3 secretion can be mitigated by FAK or PI3K inhibitors. Conclusions These findings reveal an unexpected function for PI3K-AKT in tauopathy-associated reactive astrogliosis, which may be a promising target for anti-inflammation-based Alzheimer's therapy.
Collapse
Affiliation(s)
- Peng Wang
- National Institute of Diabetes and Digestive and Kidney Diseases
| | - D Eric Anderson
- National Institute of Diabetes and Digestive and Kidney Diseases
| | - Yihong Ye
- National Institute of Diabetes and Digestive and Kidney Diseases
| |
Collapse
|
4
|
Cajas D, Guajardo E, Jara-Rosales S, Nuñez C, Vargas R, Carriel V, Campos A, Milla L, Orihuela P, Godoy-Guzman C. Molecules involved in the sperm interaction in the human uterine tube: a histochemical and immunohistochemical approach. Eur J Histochem 2023; 67. [PMID: 37052420 PMCID: PMC10141343 DOI: 10.4081/ejh.2023.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.
Collapse
Affiliation(s)
- David Cajas
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Emanuel Guajardo
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH); Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago.
| | - Sergio Jara-Rosales
- Escuela de Obstetricia, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede Los Leones, Santiago; Programa de Doctorado en Enfermedades Crónicas, Universidad San Sebastián, Sede Los Leones.
| | - Claudio Nuñez
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Luis Milla
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Pedro Orihuela
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH), Santiago.
| | - Carlos Godoy-Guzman
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH); Universidad de Santiago de Chile (USACH), Escuela de Medicina, Unidad de Histología, Santiago.
| |
Collapse
|
5
|
Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules 2023; 13:biom13030502. [PMID: 36979437 PMCID: PMC10046882 DOI: 10.3390/biom13030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Osteopontin (OPN) is a bone-derived phosphoglycoprotein related to physiological and pathological mechanisms that nowadays has gained relevance due to its role in the immune system response to chronic degenerative diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). OPN is an extracellular matrix (ECM) glycoprotein that plays a critical role in bone remodeling. Therefore, it is an effector molecule that promotes joint and cartilage destruction observed in clinical studies, in vitro assays, and animal models of RA and OA. Since OPN undergoes multiple modifications, including posttranslational changes, proteolytic cleavage, and binding to a wide range of receptors, the mechanisms by which it produces its effects, in some cases, remain unclear. Although there is strong evidence that OPN contributes significantly to the immunopathology of RA and OA when considering it as a common denominator molecule, some experimental trial results argue for its protective role in rheumatic diseases. Elucidating in detail OPN involvement in bone and cartilage degeneration is of interest to the field of rheumatology. This review aims to provide evidence of the OPN’s multifaceted role in promoting joint and cartilage destruction and propose it as a common denominator of AR and OA immunopathology.
Collapse
|
6
|
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin SH, Kim JS, Childs T, Lashley T, Burden JJ, Sasner M, Sala Frigerio C, Jung S, Hong S. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease. Nat Neurosci 2023; 26:406-415. [PMID: 36747024 PMCID: PMC9991912 DOI: 10.1038/s41593-023-01257-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-β oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.
Collapse
Affiliation(s)
- Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Judy Z Ge
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Laís S S Ferreira
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | | | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Carlo Sala Frigerio
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Steffen Jung
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
7
|
Raghubar AM, Pham DT, Tan X, Grice LF, Crawford J, Lam PY, Andersen SB, Yoon S, Teoh SM, Matigian NA, Stewart A, Francis L, Ng MSY, Healy HG, Combes AN, Kassianos AJ, Nguyen Q, Mallett AJ. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Front Med (Lausanne) 2022; 9:873923. [PMID: 35872784 PMCID: PMC9300864 DOI: 10.3389/fmed.2022.873923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Available transcriptomes of the mammalian kidney provide limited information on the spatial interplay between different functional nephron structures due to the required dissociation of tissue with traditional transcriptome-based methodologies. A deeper understanding of the complexity of functional nephron structures requires a non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing (ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys will give transcriptomic insights within and across species of physiology at the functional structure level and cellular communication at the cell level. Here, we applied ST-seq in six mice and four human kidneys that were histologically absent of any overt pathology. We defined the location of specific nephron structures in the captured ST-seq datasets using three lines of evidence: pathologist's annotation, marker gene expression, and integration with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared the mouse and human cortical kidney regions. In the human ST-seq datasets, we further investigated the cellular communication within glomeruli and regions of proximal tubules-peritubular capillaries by screening for co-expression of ligand-receptor gene pairs. Gene expression signatures of distinct nephron structures and microvascular regions were spatially resolved within the mouse and human ST-seq datasets. We identified 7,370 differentially expressed genes (p adj < 0.05) distinguishing species, suggesting changes in energy production and metabolism in mouse cortical regions relative to human kidneys. Hundreds of potential ligand-receptor interactions were identified within glomeruli and regions of proximal tubules-peritubular capillaries, including known and novel interactions relevant to kidney physiology. Our application of ST-seq to normal human and murine kidneys confirms current knowledge and localization of transcripts within the kidney. Furthermore, the generated ST-seq datasets provide a valuable resource for the kidney community that can be used to inform future research into this complex organ.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Duy T. Pham
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Laura F. Grice
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Pui Yeng Lam
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Stacey B. Andersen
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
- UQ Sequencing Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sohye Yoon
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
| | - Siok Min Teoh
- UQ Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Stewart
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Monica S. Y. Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Nephrology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, Queensland, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, QLD, Australia
| |
Collapse
|
8
|
Messex JK, Byrd CJ, Thomas MU, Liou GY. Macrophages Cytokine Spp1 Increases Growth of Prostate Intraepithelial Neoplasia to Promote Prostate Tumor Progression. Int J Mol Sci 2022; 23:4247. [PMID: 35457063 PMCID: PMC9027984 DOI: 10.3390/ijms23084247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer development and progression are associated with increased infiltrating macrophages. Prostate cancer is derived from prostatic intraepithelial neoplasia (PIN) lesions. However, the effects macrophages have on PIN progression remain unclear. Here, we showed that the recruited macrophages adjacent to PIN expressed M2 macrophage markers. In addition, high levels of Spp1 transcripts, also known as osteopontin, were identified in these macrophages. Extraneously added Spp1 accelerated PIN cell proliferation through activation of Akt and JNK in a 3D culture setting. We also showed that PIN cells expressed CD44, integrin αv, integrin β1, and integrin β3, all of which have been previously reported as receptors for Spp1. Finally, blockade of Akt and JNK activation through their specific inhibitor completely abolished macrophage Spp1-induced cell proliferation of PIN. Hence, our data revealed Spp1 as another macrophage cytokine/growth factor and its mediated mechanism to upregulate PIN cell growth, thus promoting prostate cancer development.
Collapse
Affiliation(s)
- Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA; (C.J.B.); (M.U.T.)
| | - Mikalah U. Thomas
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA; (C.J.B.); (M.U.T.)
| | - Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA;
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA; (C.J.B.); (M.U.T.)
| |
Collapse
|
9
|
Cheng Y, Li Y, Scherer N, Grundner-Culemann F, Lehtimäki T, Mishra BH, Raitakari OT, Nauck M, Eckardt KU, Sekula P, Schultheiss UT. Genetics of osteopontin in patients with chronic kidney disease: The German Chronic Kidney Disease study. PLoS Genet 2022; 18:e1010139. [PMID: 35385482 PMCID: PMC9015153 DOI: 10.1371/journal.pgen.1010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.
Collapse
Affiliation(s)
- Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Binisha H. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
10
|
Hattori T, Iwasaki-Hozumi H, Bai G, Chagan-Yasutan H, Shete A, Telan EF, Takahashi A, Ashino Y, Matsuba T. Both Full-Length and Protease-Cleaved Products of Osteopontin Are Elevated in Infectious Diseases. Biomedicines 2021; 9:biomedicines9081006. [PMID: 34440210 PMCID: PMC8394573 DOI: 10.3390/biomedicines9081006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Circulating full-length osteopontin (FL-OPN) is elevated in plasma from patients with various infectious diseases, such as adult T-cell leukemia, Mycobacterium tuberculosis (TB), hepatitis virus infection, leptospirosis, acquired immune deficiency syndrome (AIDS), AIDS/TB, and coronavirus disease 2019 (COVID-19). Proteolysis of OPN by thrombin, matrix metalloproteases, caspase 8/3, cathepsin D, plasmin, and enterokinase generates various cleaved OPNs with a variety of bioactivities by binding to different target cells. Moreover, OPN is susceptible to gradual proteolysis. During inflammation, one of the cleaved fragments, N-terminal thrombin-cleaved OPN (trOPN or OPN-Arg168 [OPN-R]), induces dendritic cell (DC) adhesion. Further cleavage by carboxypeptidase B2 or carboxypeptidase N removes Arg168 from OPN-R to OPN-Leu167 (OPN-L). Consequently, OPN-L decreases DC adhesion. In particular, the differences in plasma level over time are observed between FL-OPN and its cleaved OPNs during inflammation. We found that the undefined OPN levels (mixture of FL-OPN and cleaved OPN) were elevated in plasma and reflected the pathology of TB and COVID-19 rather than FL-OPN. These infections are associated with elevated levels of various proteases. Inhibition of the cleavage or the activities of cleaved products may improve the outcome of the therapy. Research on the metabolism of OPN is expected to create new therapies against infectious diseases.
Collapse
Affiliation(s)
- Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Correspondence: ; Tel./Fax: +81-866-22-9469
| | - Hiroko Iwasaki-Hozumi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Haorile Chagan-Yasutan
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Ashwnini Shete
- ICMR-National AIDS Research Institute, 73 G-Block, MIDC, Bhosari, Pune 411026, India;
| | - Elizabeth Freda Telan
- STD AIDS Cooperative Central Laboratory, San Lazaro Hospital, Manila 1003, Philippines;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Takashi Matsuba
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka 882-8508, Japan;
| |
Collapse
|
11
|
Pereira AR, Lipphaus A, Ergin M, Salehi S, Gehweiler D, Rudert M, Hansmann J, Herrmann M. Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell-Extracellular Matrix Interactions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4431. [PMID: 34442954 PMCID: PMC8398413 DOI: 10.3390/ma14164431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Mert Ergin
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research, Translational Center for Regenerative Therapies, 97082 Wuerzburg, Germany;
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
12
|
Suri A, Singh N, Bansal SK. A Study on the Serum γ-Glutamyltranspeptidase and Plasma Osteopontin in Alcoholic Liver Disease. J Lab Physicians 2021; 14:101-108. [PMID: 36032990 PMCID: PMC9417738 DOI: 10.1055/s-0041-1729479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background
Alcoholic liver disease (ALD) is a major source of alcohol-related morbidity and mortality. Heavy drinkers and alcoholics may progress from fatty liver to alcoholic hepatitis to cirrhosis. The enzyme γ-glutamyltranspeptidase (GGT) is a membrane-bound glycoprotein which catalyzes the transfer of the γ-glutamyl group from γ-glutamyl peptides to other peptides, amino acids, and water. Serum GGT activity mainly attributed to hepatobiliary system and thus is an important marker of ALD. Hence the present study is conducted to estimate and correlate the levels of GGT and osteopontin (OPN) in ALD.
Aims and Objectives
The objective of this study is to estimate and correlate the levels of GGT and OPN in ALD.
Materials and Methods
Sixty clinically diagnosed cases of ALD and sixty age- and gender-matched healthy controls were recruited for the study. Blood samples were collected from them and serum aspartate aminotransferase, serum alanine transaminases (ALTs), serum ALP levels, and plasma OPN levels were measured. Estimation of serum aspartate transaminases (AST), ALTs, and alkaline phosphatase (ALP) was assayed by standard photometric methods in autoanalyzer ERBA-XL (EM-200) using commercially available kits. OPN was estimated by using commercial kit based on enzyme-linked immunosorbent assay.
Results
The parameters of the liver function tests such as AST, ALT, and ALP were significantly increased in patients with ALD (
p
< 0.001) when compared with the healthy control subjects. In the present study, significantly increased levels of γ-glutamyl transferases and OPN were found in patients with ALD (
p
< 0.001) when compared with the control subjects. OPN showed significant positive correlations with AST (
r
= 0.76,
p
< 0.001), ALT (
r
= 0.64,
p
< 0.001), ALP (
r
= 0.68,
p
< 0.001), and GGT (
r
= 0.61,
p
< 0.001).
Conclusion
The present study focuses on the role of GGT and OPN that are sensitive indicators of liver cell injury and are most helpful in recognizing hepatocellular diseases such as ALD, hepatitis, and liver cirrhosis. Hence, the pattern of the GGT and OPN levels elevation can be helpful diagnostically.
Collapse
Affiliation(s)
- Arpita Suri
- Department of Biochemistry, Faculty of Medicine and Health Sciences, SGT University, Gurugram, Haryana, India
| | - Naveen Singh
- Department of Biochemistry, Faculty of Medicine and Health Sciences, SGT University, Gurugram, Haryana, India
| | - Sanjiv Kumar Bansal
- Department of Biochemistry, Faculty of Medicine and Health Sciences, SGT University, Gurugram, Haryana, India
| |
Collapse
|
13
|
Bevan L, Lim ZW, Venkatesh B, Riley PR, Martin P, Richardson RJ. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc Res 2021; 116:1357-1371. [PMID: 31566660 PMCID: PMC7243279 DOI: 10.1093/cvr/cvz221] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 11/14/2022] Open
Abstract
Aims A robust inflammatory response to tissue injury is a necessary part of the repair process but the deposition of scar tissue is a direct downstream consequence of this response in many tissues including the heart. Adult zebrafish not only possess the capacity to regenerate lost cardiomyocytes but also to remodel and resolve an extracellular scar within tissues such as the heart, but this scar resolution process remains poorly understood. This study aims to characterize the scarring and inflammatory responses to cardiac damage in adult zebrafish in full and investigate the role of different inflammatory subsets specifically in scarring and scar removal. Methods and results Using stable transgenic lines, whole organ imaging and genetic and pharmacological interventions, we demonstrate that multiple inflammatory cell lineages respond to cardiac injury in adult zebrafish. In particular, macrophage subsets (tnfα+ and tnfα−) play prominent roles with manipulation of different phenotypes suggesting that pro-inflammatory (tnfα+) macrophages promote scar deposition following cardiac injury whereas tnfα− macrophages facilitate scar removal during regeneration. Detailed analysis of these specific macrophage subsets reveals crucial roles for Csf1ra in promoting pro-inflammatory macrophage-mediated scar deposition. Additionally, the multifunctional cytokine Osteopontin (Opn) (spp1) is important for initial scar deposition but also for resolution of the inflammatory response and in late-stage ventricular collagen remodelling. Conclusions This study demonstrates the importance of a correctly balanced inflammatory response to facilitate scar deposition during repair but also to allow subsequent scar resolution, and full cardiac regeneration, to occur. We have identified Opn as having both pro-fibrotic but also potentially pro-regenerative roles in the adult zebrafish heart, driving Collagen deposition but also controlling inflammatory cell resolution.
Collapse
Affiliation(s)
- Laura Bevan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhi Wei Lim
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Byrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Paul Martin
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Rebecca J Richardson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Fu Y, Zhang Y, Lei Z, Liu T, Cai T, Wang A, Du W, Zeng Y, Zhu J, Liu Z, Huang JA. Abnormally activated OPN/integrin αVβ3/FAK signalling is responsible for EGFR-TKI resistance in EGFR mutant non-small-cell lung cancer. J Hematol Oncol 2020; 13:169. [PMID: 33287873 PMCID: PMC7720454 DOI: 10.1186/s13045-020-01009-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acquired epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance limits the long-term clinical efficacy of tyrosine kinase-targeting drugs. Although most of the mechanisms of acquired EGFR-TKI resistance have been revealed, the mechanism of ~ 15% of cases has not yet been elucidated. METHODS Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Proteome profiler array analysis was performed to find proteins contributing to acquired EGFR-TKI resistance. Secreted OPN was detected by ELISA. Immunohistochemical analysis was conducted to detect expression of integrin αV in NSCLC tissue. The effect of VS-6063 on apoptosis and proliferation of PC9 gefitinib-resistant cells was detected by fluorescence-activated cell sorting (FACS) and clonogenic assays. A mouse xenograft model was used to assess the effect of VS-6063 on the sensitivity of PC9 gefitinib-resistant cells to gefitinib. RESULTS OPN was overexpressed in acquired EGFR-TKI-resistant NSCLCs. Secreted OPN contributed to acquired EGFR-TKI resistance by activating the integrin αVβ3/FAK pathway. Inhibition of FAK signalling increased sensitivity to EGFR-TKIs in PC9 gefitinib-resistant cells both in vitro and in vivo. CONCLUSIONS OPN contributes to acquired EGFR-TKI resistance by up-regulating expression of integrin αVβ3, which activates the downstream FAK/AKT and ERK signalling pathways to promote cell proliferation in NSCLC.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhe Lei
- Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Tingting Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Wenwen Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, People's Republic of China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
15
|
Tang M, Jiang Y, Jia H, Patpur BK, Yang B, Li J, Yang C. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:159-168. [PMID: 31852298 DOI: 10.1080/21691401.2019.1699822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulating evidence links osteopontin (OPN), a pro-fibrogenic extracellular matrix protein, to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In this study, liver tissues isolated from non-alcoholic steatohepatitis (NASH) patients expressed higher OPN than those of controls. However, the exact mechanism(s) for this phenomenon is yet to be clarified. Autophagy is the natural, regulated degradation and recycling of a cell's dysfunctional components, in order to maintain homeostasis. Increasing evidence supports that autophagy can constitute an effective Defence mechanism against NAFLD conditions. Herein, we constructed NAFLD mice model by high-fat (HF) and methionine-choline-deficient (MCD) diet and found that OPN is upregulated in livers of NAFLD mice. Besides, secreted OPN inhibited autophagosome-lysosome fusion via binding with its receptors integrin αVβ3 and αVβ5 in HepG2 cells supplemented with free fatty acids (FFA) and the livers of NAFLD mice. Silencing of OPN attenuated autophagy impairment and reduced lipid accumulation, while supplementation of OPN exhibited the opposite effect. Furthermore, treatment with anti-OPN Ab significantly attenuated steatosis as well as autophagy impairment in the liver. Our findings indicated that OPN plays a vital role in the pathogenesis of the development of NAFLD via autophagy impairment, which might represent a potential new therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Min Tang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yan Jiang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haoyu Jia
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bhuvanesh Kinish Patpur
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Bo Yang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jing Li
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
16
|
Si J, Wang C, Zhang D, Wang B, Hou W, Zhou Y. Osteopontin in Bone Metabolism and Bone Diseases. Med Sci Monit 2020; 26:e919159. [PMID: 31996665 PMCID: PMC7003659 DOI: 10.12659/msm.919159] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Osteopontin (OPN), a secreted phosphoprotein, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of cell matrix proteins and participates in many biological activities. Studies have shown that OPN plays a role in bone metabolism and homeostasis. OPN not only is an important factor in neuron-mediated and endocrine-regulated bone mass, but also is involved in biological activities such as proliferation, migration, and adhesion of several bone-related cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoclasts, and osteoblasts. OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as osteoporosis, rheumatoid arthritis, and osteosarcoma. As expected, the functions of OPN in the bone have become a research hotspot. In this article, we try to decipher the mechanism of OPN-regulated bone metabolism and bone diseases.
Collapse
Affiliation(s)
- Jinyan Si
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chaowei Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Denghui Zhang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bo Wang
- Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Weiwei Hou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
17
|
Assessment of bioactivities of the human milk lactoferrin–osteopontin complex in vitro. J Nutr Biochem 2019; 69:10-18. [DOI: 10.1016/j.jnutbio.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/28/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
|
18
|
Kaleta B, Krata N, Zagożdżon R, Mucha K. Osteopontin Gene Polymorphism and Urinary OPN Excretion in Patients with Immunoglobulin A Nephropathy. Cells 2019; 8:cells8060524. [PMID: 31159229 PMCID: PMC6628186 DOI: 10.3390/cells8060524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022] Open
Abstract
Osteopontin (OPN) is a glycoprotein involved in the pathogenesis of multiple autoimmune and inflammatory conditions. However, the association of variants of secreted phosphoprotein 1 gene (SPP1), which encodes OPN, with immunoglobulin A nephropathy (IgAN) has not been examined up to date. Moreover, the role of OPN in disease pathogenesis and clinical manifestations is not fully known. Therefore, the aim of the study was to determine the frequency of four single nucleotide polymorphisms (SNiPs) of SPP1 gene, as well as the urinary OPN excretion in IgAN patients and healthy controls. In total, 58 Caucasian patients with biopsy-proven IgAN and 184 gender-, age-, and ethnically-matched healthy controls were genotyped for rs1126616, rs1126772, rs9138, and rs7687316/rs3841116 polymorphisms by real time polymerase chain reaction (RT-PCR). Urinary OPN concentration was determined by enzyme-linked immunosorbent assay (ELISA) in 58 IgAN patients and 19 controls. SPP1 SNiPs, as well as urinary OPN excretion, were analyzed in relation to their possible associations with the clinicopathological parameters. The frequency of the minor TT/CT genotypes of rs1126616 was significantly higher in IgAN patients compared to controls (P = 0.0217). Similarly, the minor (CC/AC) genotypes and the C allele of rs9138 were more frequent in IgAN patients (P = 0.0425 and P = 0.0112, respectively). Moreover, these two SNiPs were associated with the higher urinary OPN excretion (P < 0.05). These findings suggest that rs1126616, as well as rs9138, may be associated with IgAN development, however future studies in this field are required.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Natalia Krata
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| |
Collapse
|
19
|
Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation. Blood 2019; 134:74-84. [PMID: 31076444 DOI: 10.1182/blood.2019000972] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and is characterized by the onset of acute respiratory distress within 6 hours upon blood transfusion. Specific therapies are unavailable. Preexisting inflammation is a risk factor for TRALI and neutrophils (polymorphonuclear neutrophils [PMNs]) are considered to be the major pathogenic cells. Osteopontin (OPN) is a multifunctional protein expressed at sites of inflammation and, for example, is involved in pulmonary disorders, can regulate cellular migration, and can function as a PMN chemoattractant. We investigated whether OPN is involved in TRALI induction by promoting PMN recruitment to the lungs. Using a previously established murine TRALI model, we found that in contrast to wild-type (WT) mice, OPN knockout (KO) mice were resistant to antibody-mediated PMN-dependent TRALI induction. Administration of purified OPN to the OPN KO mice, however, restored the TRALI response and pulmonary PMN accumulation. Alternatively, blockade of OPN in WT mice using an anti-OPN antibody prevented the onset of TRALI induction. Using pulmonary immunohistochemistry, OPN could be specifically detected in the lungs of mice that suffered from TRALI. The OPN-mediated TRALI response seemed dependent on macrophages, likely the cellular source of OPN and OPN polymerization, and independent from the OPN receptor CD44, interleukin 6 (IL-6), and other PMN chemoattractants including macrophage inflammatory protein-2 (MIP-2). These data indicate that OPN is critically required for induction of antibody-mediated murine TRALI through localization to the lungs and stimulation of pulmonary PMN recruitment. This suggests that anti-OPN antibody therapy may be a potential therapeutic strategy to explore in TRALI patients.
Collapse
|
20
|
Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, Zhou C, Chou J, Parkman VJA, Novick SJ, Strutzenberg TS, Pascal BD, Le PT, Brooks DJ, Roche AM, Gerber KK, Mattheis L, Chen W, Tu H, Bouxsein ML, Griffin PR, Baron R, Rosen CJ, Bonewald LF, Spiegelman BM. Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell 2018; 175:1756-1768.e17. [PMID: 30550785 PMCID: PMC6298040 DOI: 10.1016/j.cell.2018.10.025] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/27/2018] [Accepted: 10/07/2018] [Indexed: 01/08/2023]
Abstract
Irisin is secreted by muscle, increases with exercise, and mediates certain favorable effects of physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, brain, and bone. However, the skeletal response to exercise is less clear, and the receptor for irisin has not been identified. Here we show that irisin binds to proteins of the αV class of integrins, and biophysical studies identify interacting surfaces between irisin and αV/β5 integrin. Chemical inhibition of the αV integrins blocks signaling and function by irisin in osteocytes and fat cells. Irisin increases both osteocytic survival and production of sclerostin, a local modulator of bone remodeling. Genetic ablation of FNDC5 (or irisin) completely blocks osteocytic osteolysis induced by ovariectomy, preventing bone loss and supporting an important role of irisin in skeletal remodeling. Identification of the irisin receptor should greatly facilitate our understanding of irisin's function in exercise and human health.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Christiane D Wrann
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02219, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Sara Vidoni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Yukiko Kitase
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Kenichi Nagano
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Chenhe Zhou
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Joshua Chou
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Virginia-Jeni A Parkman
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Timothy S Strutzenberg
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Phuong T Le
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Alexander M Roche
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Kaitlyn K Gerber
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Laura Mattheis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | | | - Hua Tu
- LakePharma, Inc., San Carlos, CA 94070, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Lynda F Bonewald
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Orthopedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Kaleta B. The role of osteopontin in kidney diseases. Inflamm Res 2018; 68:93-102. [PMID: 30456594 DOI: 10.1007/s00011-018-1200-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a pleiotropic glycoprotein expressed in various cell types in animals and in humans, including bone, immune, smooth muscle, epithelial and endothelial cells. Moreover, OPN is found in kidneys (in the thick ascending limbs of the loop of Henle and in distal nephrons) and urine. The protein plays an important role in mineralization and bone resorption. In addition, OPN is involved in the regulation of immunity and inflammation, angiogenesis and apoptosis. It was demonstrated that OPN and some OPN gene polymorphic variants are associated with the pathogenesis and progression of multiple disorders, such as cancer, autoimmune, neurodegenerative and cardiovascular diseases. Moreover, recent studies suggested that OPN is associated with the pathogenesis of renal failure. METHODS In this review, I briefly discussed the role of OPN and its gene polymorphisms in kidney physiology, as well as in various kidney diseases. FINDINGS AND CONCLUSION Most studies reported that OPN expression is elevated in urolithiasis, and also in acute and chronic kidney diseases, and in renal allograft dysfunction. Moreover, it was demonstrated that polymorphic variants of the OPN gene may be associated with renal failure. However, some reports suggested that OPN is essential for tubulogenesis, and that it inhibits calcium oxalate crystal formation and retention, nitric oxide synthesis, cell apoptosis and promotes cell regeneration. Thus, further studies are required to fully understand the role of OPN in kidney physiology and pathology. Eventually, these studies may result in the identification of OPN as a valuable marker for renal dysfunction prognosis and treatment.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 59 Nowogrodzka St., 02-006, Warsaw, Poland.
| |
Collapse
|
23
|
Lee MN, Hwang HS, Oh SH, Roshanzadeh A, Kim JW, Song JH, Kim ES, Koh JT. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med 2018; 50:1-16. [PMID: 30393382 PMCID: PMC6215840 DOI: 10.1038/s12276-018-0170-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Supplementation of mesenchymal stem cells (MSCs) at sites of bone resorption is required for bone homeostasis because of the non-proliferation and short lifespan properties of the osteoblasts. Calcium ions (Ca2+) are released from the bone surfaces during osteoclast-mediated bone resorption. However, how elevated extracellular Ca2+ concentrations would alter MSCs behavior in the proximal sites of bone resorption is largely unknown. In this study, we investigated the effect of extracellular Ca2+ on MSCs phenotype depending on Ca2+ concentrations. We found that the elevated extracellular Ca2+ promoted cell proliferation and matrix mineralization of MSCs. In addition, MSCs induced the expression and secretion of osteopontin (OPN), which enhanced MSCs migration under the elevated extracellular Ca2+ conditions. We developed in vitro osteoclast-mediated bone resorption conditions using mouse calvaria bone slices and demonstrated Ca2+ is released from bone resorption surfaces. We also showed that the MSCs phenotype, including cell proliferation and migration, changed when the cells were treated with a bone resorption-conditioned medium. These findings suggest that the dynamic changes in Ca2+ concentrations in the microenvironments of bone remodeling surfaces modulate MSCs phenotype and thereby contribute to bone regeneration.
Collapse
Affiliation(s)
- Mi Nam Lee
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hee-Su Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sin-Hye Oh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Amir Roshanzadeh
- School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Woo Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ju Han Song
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
24
|
Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin. Biochem J 2018; 475:1583-1595. [PMID: 29626154 DOI: 10.1042/bcj20170205] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 02/08/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr134/Thr138/Thr143/Thr147/Thr152) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr134/Thr138 or Thr143/Thr147/Thr152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation.
Collapse
|
25
|
Graham N, Qian BZ. Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. Int J Mol Sci 2018; 19:E1121. [PMID: 29642534 PMCID: PMC5979535 DOI: 10.3390/ijms19041121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the most advanced stage of many cancers and indicates a poor prognosis for patients due to resistance to anti-tumor therapies. The establishment of metastasis within the bone is a multistep process. To ensure survival within the bone marrow, tumor cells must initially colonize a niche in which they can enter dormancy. Subsequently, reactivation permits the proliferation and growth of the tumor cells, giving rise to a macro-metastasis displayed clinically as a bone metastatic lesion. Here, we review the evidences that suggest mesenchymal stromal cells play an important role in each of these steps throughout the development of bone metastasis. Similarities between the molecular mechanisms implicated in these processes and those involved in the homeostasis of the bone indicate that the metastatic cells may exploit the homeostatic processes to their own advantage. Identifying the molecular interactions between the mesenchymal stromal cells and tumor cells that promote tumor development may offer insight into potential therapeutic targets that could be utilized to treat bone metastasis.
Collapse
Affiliation(s)
- Nicola Graham
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Bin-Zhi Qian
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
26
|
Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J Bone Miner Res 2018; 33:517-533. [PMID: 29091316 DOI: 10.1002/jbmr.3332] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) are newly appreciated regulators of tissue homeostasis and a means of intercellular communication. Reports have investigated the role of EVs and their cargoes in cellular regulation and have tried to fine-tune their biotechnological use, but to date very little is known on their function in bone biology. To investigate the relevance of EV-mediated communication between bone cells, we isolated EVs from primary mouse osteoblasts and assessed membrane integrity, size, and structure by transmission electron microscopy (TEM) and fluorescence-activated cell sorting (FACS). EVs actively shuttled loaded fluorochromes to osteoblasts, monocytes, and endothelial cells. Moreover, osteoblast EVs contained mRNAs shared with donor cells. Osteoblasts are known to regulate osteoclastogenesis, osteoclast survival, and osteoclast function by the pro-osteoclastic cytokine, receptor activator of nuclear factor κ-B ligand (Rankl). Osteoblast EVs were enriched in Rankl, which increased after PTH treatment. These EVs were biologically active, supporting osteoclast survival. EVs isolated from rankl-/- osteoblasts lost this pro-osteoclastic function, indicating its Rankl-dependence. They integrated ex vivo into murine calvariae, and EV-shuttled fluorochromes were quickly taken up by the bone upon in vivo EV systemic administration. Rankl-/- mice lack the osteoclast lineage and are negative for its specific marker tartrate-resistant acid phosphatase (TRAcP). Treatment of rankl-/- mice with wild-type osteoblast EVs induced the appearance of TRAcP-positive cells in an EV density-dependent manner. Finally, osteoblast EVs internalized and shuttled anti-osteoclast drugs (zoledronate and dasatinib), inhibiting osteoclast activity in vitro and in vivo. We conclude that osteoblast EVs are involved in intercellular communication between bone cells, contribute to the Rankl pro-osteoclastic effect, and shuttle anti-osteoclast drugs, representing a potential means of targeted therapeutic delivery. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alexander Loftus
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
27
|
La Penna G, Chelli R. Structural Insights into the Osteopontin-Aptamer Complex by Molecular Dynamics Simulations. Front Chem 2018; 6:2. [PMID: 29441346 PMCID: PMC5797602 DOI: 10.3389/fchem.2018.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Osteopontin is an intrinsically disordered protein involved in tissue remodeling. As a biomarker for pathological hypertrophy and fibrosis, the protein is targeted by an RNA aptamer. In this work, we model the interactions between osteopontin and its aptamer, including mono- (Na+) and divalent (Mg2+) cations. The molecular dynamics simulations suggest that the presence of divalent cations forces the N-terminus of osteopontin to bind the shell of divalent cations adsorbed over the surface of its RNA aptamer, the latter exposing a high negative charge density. The osteopontin plasticity as a function of the local concentration of Mg is discussed in the frame of the proposed strategies for osteopontin targeting as biomarker and in theranostic.
Collapse
Affiliation(s)
- Giovanni La Penna
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (CNR), Florence, Italy
| | - Riccardo Chelli
- Dipartimento di Chimica, Università di Firenze, Florence, Italy
| |
Collapse
|
28
|
Wang S, Zhou X, Yang J. Integrin αvβ3 Is Essential for Maintenance of Decidua Tissue Homeostasis and of Natural Killer Cell Immune Tolerance During Pregnancy. Reprod Sci 2018; 25:1424-1430. [DOI: 10.1177/1933719117746766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shaojuan Wang
- Department of Gynaecology and Obstetrics, People's Hospital of Longgang Distract, Shenzhen, Guangdong, China
| | - Xiaoli Zhou
- Department of Gynaecology and Obstetrics, Women and Children's Hospital of Longgang Distract, Shenzhen, Guangdong, China
| | - Jing Yang
- Department of Gynaecology and Obstetrics, People's Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
29
|
The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J Cell Commun Signal 2017; 12:333-342. [PMID: 28975544 DOI: 10.1007/s12079-017-0413-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Collapse
|
30
|
Early and late gene expression profiles of the ovine mucosa in response to Haemonchus contortus infection employing Illumina RNA-seq technology. Parasitol Int 2017; 66:681-692. [PMID: 28552633 DOI: 10.1016/j.parint.2017.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
We conducted herein transcriptome sequencing of the ovine abomasal tissues using the Illumina HiSeq 4000 platform to segregate early and late H. contortus-infected sheep (7 and 50days post-infected groups, respectively) from the control naive ones. A total of 548, 357 and 7 were substantially induced genes in 7days post-infection versus uninfected-control group, 50days post-infection versus 7days post-infection (7dpi), and 50days post-infection (50dpi) versus uninfected-control group, respectively. However, a total of 301, 355 and 11 were significantly repressed genes between 7dpi versus uninfected-control group, 50dpi versus 7dpi, and 50dpi versus uninfected-control group, correspondingly. This indicates that H. contortus infection induced a more potent activation of abomasal gene expression in the early stage of infection as compared to the late stage. Seven pathways were annotated by Kyoto Encyclopedia of Genes, and Genomes pathway analysis accounted for the significant percentage in early H. contortus infection. This study shows for the first time that both galectin-11 and matricellular protein osteopontin are up-regulated in abomasal tissue after chronic H. contortus infection, while galectin-4 is specifically down-regulated in the early infection. Additionally, our results showed that the induction or repression of these molecules is likely to determine the infection progression.
Collapse
|
31
|
Dickerson MT, Vierra NC, Milian SC, Dadi PK, Jacobson DA. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS One 2017; 12:e0175069. [PMID: 28403169 PMCID: PMC5389796 DOI: 10.1371/journal.pone.0175069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased β-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced β-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.
Collapse
Affiliation(s)
- Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicholas C. Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah C. Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
32
|
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16:31. [PMID: 28148268 PMCID: PMC5286812 DOI: 10.1186/s12943-017-0597-8] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/19/2017] [Indexed: 02/08/2023] Open
Abstract
Tumour progression is dependent on the interaction between tumour cells and cells of the surrounding microenvironment. The tumour is a dynamic milieu consisting of various cell types such as endothelial cells, fibroblasts, cells of the immune system and mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells that are known to reside in various areas such as the bone marrow, fat and dental pulp. MSCs have been found to migrate towards inflammatory sites and studies have shown that they also migrate towards and incorporate into the tumour. The key question is how they interact there. MSCs may interact with tumour cells through paracrine signalling. On the other hand, MSCs have the capacity to differentiate to various cell types such as osteocytes, chondrocytes and adipocytes and it is possible that MSCs differentiate at the site of the tumour. More recently it has been shown that cross-talk between tumour cells and MSCs has been shown to increase metastatic potential and promote epithelial-to-mesenchymal transition. This review will focus on the role of MSCs in tumour development at various stages of progression from growth of the primary tumour to the establishment of distant metastasis.
Collapse
Affiliation(s)
- Sarah M Ridge
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland. .,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland.
| |
Collapse
|
33
|
Wen Y, Jeong S, Xia Q, Kong X. Role of Osteopontin in Liver Diseases. Int J Biol Sci 2016; 12:1121-8. [PMID: 27570486 PMCID: PMC4997056 DOI: 10.7150/ijbs.16445] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN), a multifunctional protein, is involved in numerous pathological conditions including inflammation, immunity, angiogenesis, fibrogenesis and carcinogenesis in various tissues. Extensive studies have elucidated the critical role of OPN in cell signaling such as regulation of cell proliferation, migration, inflammation, fibrosis and tumor progression. In the liver, OPN interacts with integrins, CD44, vimentin and MyD88 signaling, thereby induces infiltration, migration, invasion and metastasis of cells. OPN is highlighted as a chemoattractant for macrophages and neutrophils during injury in inflammatory liver diseases. OPN activates hepatic stellate cells (HSCs) to exert an enhancer in fibrogenesis. The role of OPN in hepatocellular carcinoma (HCC) has also generated significant interests, especially with regards to its role as a diagnostic and prognostic factor. Interestingly, OPN acts an opposing role in liver repair under different pathological conditions. This review summarizes the current understanding of OPN in liver diseases. Further understanding of the pathophysiological role of OPN in cellular interactions and molecular mechanisms associated with hepatic inflammation, fibrosis and cancer may contribute to the development of novel strategies for clinical diagnosis, monitoring and therapy of liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Hussein AM, Sakr HF, Alenzi FQ. Possible Underlying Mechanisms of the Renoprotective Effect of Remote Limb Ischemic Preconditioning Against Renal Ischemia/Reperfusion Injury: A Role of Osteopontin, Transforming Growth Factor-Beta and Survivin. Nephron Clin Pract 2016; 134:117-129. [PMID: 27486809 DOI: 10.1159/000447953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been documented that remote limb ischemic preconditioning (rIPC) protect kidneys against renal ischemia/reperfusion (I/R). We hypothesized that osteopontin (OPN), transforming growth factor beta (TGF-β), apoptotic proteins (survivin and caspase-3) and oxidative stress play role in the renoprotective effects of rIPC. MATERIALS AND METHODS Fifty-four male Sprague-Dawley rats were randomized into 3 equal groups: sham group, I/R group (left renal 45 min ischemia) and rIPC group (as I/R group with 3 cycles of left hind limb ischemia just before renal ischemia). Each group was subdivided into 24, 48 and 72 h groups according to the time of sacrifice. We measured serum creatinine and blood urea nitrogen (BUN) at the baseline and end points. Also, left kidney was harvested at study end points for assessment of the expression of OPN, TGF-β, apoptotic proteins (survivin and caspase-3) and oxidative stress markers (malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)) in kidney tissues and histopathological examination. RESULTS Serum creatinine and BUN levels and histopathological damage score were significantly lower in rIPC group than I/R group (p < 0.005). Also, compared to I/R group, the levels of MDA and the expression of OPN, TGF-β and caspase-3 in kidney tissues were significantly lower in rIPC group, while the levels of SOD and GSH and the expression of survivin in kidney tissues were significantly higher in rIPC group at all time points (p ≤ 0.05). CONCLUSIONS rIPC exhibited protective effects against renal I/R injury which might be due to inhibition of OPN expression, inflammatory cytokine TGF-β and caspase-3 and activation of anti-apoptotic protein survivin as well as improvement of oxidative stress in kidney tissues.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- Department of Medical Physiology, Mansoura University, Faculty of Medicine, Mansoura, Egypt
| | | | | |
Collapse
|
35
|
Cabiati M, Svezia B, Matteucci M, Botta L, Pucci A, Rinaldi M, Caselli C, Lionetti V, Del Ry S. Myocardial Expression Analysis of Osteopontin and Its Splice Variants in Patients Affected by End-Stage Idiopathic or Ischemic Dilated Cardiomyopathy. PLoS One 2016; 11:e0160110. [PMID: 27479215 PMCID: PMC4968805 DOI: 10.1371/journal.pone.0160110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 02/02/2023] Open
Abstract
Osteopontin (OPN) is a phosphoglycoprotein of cardiac extracellular matrix and it is still poorly defined whether its expression changes in failing heart of different origin. The full-length OPN-a and its isoforms (OPN-b, OPN-c) transcriptomic profile were evaluated in myocardium of patients with dilated or ischemic cardiomyopathy (DCM n = 8; LVEF% = 17.5±3; ICM n = 8; LVEF% = 19.5±5.2) and in auricle of valvular patients (VLP n = 5; LVEF%≥50), by Real-time PCR analysis. OPN-a and thrombin mRNA levels resulted significantly higher in DCM compared to ICM patients (DCM:31.3±7.4, ICM:2.7±1.1, p = 0.0002; DCM:19.1±4.9, ICM:5.4±2.2, p = 0.007, respectively). Although both genes’ mRNA levels increased in patients with LVEF<50% (DCM+ICM) with respect to VLP with LVEF>50%, a significant increase in OPN (p = 0.0004) and thrombin (p = 0.001) expression was observed only in DCM. In addition, a correlation between OPN-a and thrombin was found in patients with LVEF<50% (r = 0.6; p = 0.003). The mRNA pattern was confirmed by OPN-a cardiac protein concentration (VLP:1.127±0.26; DCM:1.29±0.22; ICM:1.00±0.077 ng/ml). The OPN splice variants expression were detectable only in ICM (OPN-b: 0.357±0.273; OPN-c: 0.091±0.033) and not in DCM patients. A significant correlation was observed between collagen type I, evaluated by immunohistochemistry analysis, and both OPN-a mRNA expression (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77, p = 0.016). Concluding, OPN-a and thrombin mRNA resulted dependent on the origin of heart failure while OPN-b and OPN-c highlighted a different expression for DCM and ICM patients, suggesting their correlation with different clinical-pathophysiological setting.
Collapse
Affiliation(s)
| | - Benedetta Svezia
- CNR Institute of Clinical Physiology, Pisa, Italy
- Laboratory of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Marco Matteucci
- Laboratory of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Luca Botta
- Department of cardiac Surgery, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Angela Pucci
- Department of Pathology, University Hospital Pisa, Pisa, Italy
| | - Mauro Rinaldi
- Cardiac Surgery Department, Cardiothoracic Department, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, and University of Torino, Turin, Italy
| | | | - Vincenzo Lionetti
- Laboratory of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- * E-mail: (SDR); (VL)
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Pisa, Italy
- * E-mail: (SDR); (VL)
| |
Collapse
|
36
|
Wan C, Yuan G, Luo D, Zhang L, Lin H, Liu H, Chen L, Yang G, Chen S, Chen Z. The Dentin Sialoprotein (DSP) Domain Regulates Dental Mesenchymal Cell Differentiation through a Novel Surface Receptor. Sci Rep 2016; 6:29666. [PMID: 27430624 PMCID: PMC4949421 DOI: 10.1038/srep29666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/18/2016] [Indexed: 01/22/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP (aa183-219) stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP (aa183-219) in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop.
Collapse
Affiliation(s)
- Chunyan Wan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States
| | - Guohua Yuan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Daoshu Luo
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States.,Department of Anatomy, Histology and Embryology, School of Basic Medical sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States.,Department of Surgery, The First Affiliated Hospital, Fujian Medial University, Fuzhou, 350005, China
| | - Guobin Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
37
|
Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo. J Immunol Res 2016; 2016:9345495. [PMID: 27478856 PMCID: PMC4961817 DOI: 10.1155/2016/9345495] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α4β1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases.
Collapse
|
38
|
Jürets A, Le Bras M, Staffler G, Stein G, Leitner L, Neuhofer A, Tardelli M, Turkof E, Zeyda M, Stulnig TM. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage. PLoS One 2016; 11:e0148333. [PMID: 26840958 PMCID: PMC4740464 DOI: 10.1371/journal.pone.0148333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/15/2016] [Indexed: 01/10/2023] Open
Abstract
Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Alexander Jürets
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Gesine Stein
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Leitner
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Angelika Neuhofer
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matteo Tardelli
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Edvin Turkof
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M. Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
39
|
Choi SI, Maeng YS, Kim TI, Lee Y, Kim YS, Kim EK. Lysosomal trafficking of TGFBIp via caveolae-mediated endocytosis. PLoS One 2015; 10:e0119561. [PMID: 25853243 PMCID: PMC4390356 DOI: 10.1371/journal.pone.0119561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/10/2015] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor-beta-induced protein (TGFBIp) is ubiquitously expressed in the extracellular matrix (ECM) of various tissues and cell lines. Progressive accumulation of mutant TGFBIp is directly involved in the pathogenesis of TGFBI-linked corneal dystrophy. Recent studies reported that mutant TGFBIp accumulates in cells; however, the trafficking of TGFBIp is poorly understood. Therefore, we investigated TGFBIp trafficking to determine the route of its internalization and secretion and to elucidate its roles in the pathogenesis of granular corneal dystrophy type 2 (GCD2). Our data indicate that newly synthesized TGFBIp was secreted via the endoplasmic reticulum/Golgi-dependent secretory pathway, and this secretion was delayed in the corneal fibroblasts of patients with GCD2. We also found that TGFBIp was internalized by caveolae-mediated endocytosis, and the internalized TGFBIp accumulated after treatment with bafilomycin A1, an inhibitor of lysosomal degradation. In addition, the proteasome inhibitor MG132 inhibits the endocytosis of TGFBIp. Co-immunoprecipitation revealed that TGFBIp interacted with integrin αVβ3. Moreover, treatment with arginine-glycine-aspartic acid (RGD) tripeptide suppressed the internalization of TGFBIp. These insights on TGFBIp trafficking could lead to the identification of novel targets and the development of new therapies for TGFBI-linked corneal dystrophy.
Collapse
Affiliation(s)
- Seung-il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Sun Maeng
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-im Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yangsin Lee
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Vision Research, Severance Biomedical Science Institute, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
40
|
Kuwabara Y, Katayama A, Tomiyama R, Piao H, Kurihara S, Ono S, Mine K, Akira S, Orimo H, Takeshita T. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period. J Endocrinol 2015; 224:49-59. [PMID: 25352284 DOI: 10.1530/joe-14-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteopontin (OPN), a secreted glycoprotein, has multiple physiological functions. This study investigated the regulation and roles of OPN in the mouse ovary during the periovulatory stages. Immature female mice were treated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to simulate follicle maturation and ovulation. In situ hybridization and real-time RT-PCR were performed to assess expression of Opn in the periovulatory ovary. Granulosa cells (GCs) from PMSG-primed immature mice were cultured with or without hCG in the presence or absence of OPN, and effects on expression of Opn, progesterone synthesis, and vascular endothelial growth factor (VEGF) signaling were assessed by real-time RT-PCR, ELISA, and western blotting analysis. Opn transcripts were significantly upregulated 3 h after hCG treatment, followed by a peak at 16 h, and the transcripts localized to GCs. Incubation with hCG significantly increased quantities of Opn transcripts in GCs and OPN levels in the culture medium at 12 and 24 h. Furthermore, OPN treatment caused a significant increase in the levels of Star protein, P 450 cholesterol side-chain cleavage enzyme (p450scc), 3-beta-hydroxysteroid dehydrogenase (Hsd3b), and progesterone in the culture medium. OPN treatment promoted Vegf expression in GCs, which was significantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor. In addition, OPN treatment stimulated phosphorylation of AKT, a downstream PI3K signaling molecule. In conclusion, expression of Opn was upregulated in mouse ovarian GCs in response to a gonadotropin surge through epidermal growth factor receptor signaling, which enhances progesterone synthesis and Vegf expression during the early-luteal phase.
Collapse
Affiliation(s)
- Yoshimitsu Kuwabara
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akira Katayama
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ryoko Tomiyama
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hu Piao
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Sachiko Kurihara
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Shuichi Ono
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Katsuya Mine
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Shigeo Akira
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hideo Orimo
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Toshiyuki Takeshita
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
41
|
Johnson GA, Burghardt RC, Bazer FW. Osteopontin: a leading candidate adhesion molecule for implantation in pigs and sheep. J Anim Sci Biotechnol 2014; 5:56. [PMID: 25671104 PMCID: PMC4322467 DOI: 10.1186/2049-1891-5-56] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/25/2014] [Indexed: 11/10/2022] Open
Abstract
Osteopontin (OPN; also known as Secreted Phosphoprotein 1, SPP1) is a secreted extra-cellular matrix (ECM) protein that binds to a variety of cell surface integrins to stimulate cell-cell and cell-ECM adhesion and communication. It is generally accepted that OPN interacts with apically expressed integrin receptors on the uterine luminal epithelium (LE) and conceptus trophectoderm to attach the conceptus to the uterus for implantation. Research conducted with pigs and sheep has significantly advanced understanding of the role(s) of OPN during implantation through exploitation of the prolonged peri-implantation period of pregnancy when elongating conceptuses are free within the uterine lumen requiring extensive paracrine signaling between conceptus and endometrium. This is followed by a protracted and incremental attachment cascade of trophectoderm to uterine LE during implantation, and development of a true epitheliochorial or synepitheliochorial placenta exhibited by pigs and sheep, respectively. In pigs, implanting conceptuses secrete estrogens which induce the synthesis and secretion of OPN in adjacent uterine LE. OPN then binds to αvβ6 integrin receptors on trophectoderm, and the αvβ3 integrin receptors on uterine LE to bridge conceptus attachment to uterine LE for implantation. In sheep, implanting conceptuses secrete interferon tau that prolongs the lifespan of CL. Progesterone released by CL then induces OPN synthesis and secretion from the endometrial GE into the uterine lumen where OPN binds integrins expressed on trophectoderm (αvβ3) and uterine LE (identity of specific integrins unknown) to adhere the conceptus to the uterus for implantation. OPN binding to the αvβ3 integrin receptor on ovine trophectoderm cells induces in vitro focal adhesion assembly, a prerequisite for adhesion and migration of trophectoderm, through activation of: 1) P70S6K via crosstalk between FRAP1/MTOR and MAPK pathways; 2) MTOR, PI3K, MAPK3/MAPK1 (Erk1/2) and MAPK14 (p38) signaling to stimulate trohectoderm cell migration; and 3) focal adhesion assembly and myosin II motor activity to induce migration of trophectoderm cells. Further large in vivo focal adhesions assemble at the uterine-placental interface of both pigs and sheep and identify the involvement of sizable mechanical forces at this interface during discrete periods of trophoblast migration, attachment and placentation in both species.
Collapse
Affiliation(s)
- Greg A Johnson
- />Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Robert C Burghardt
- />Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Fuller W Bazer
- />Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
42
|
Albertsson AM, Zhang X, Leavenworth J, Bi D, Nair S, Qiao L, Hagberg H, Mallard C, Cantor H, Wang X. The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. J Neuroinflammation 2014; 11:197. [PMID: 25465048 PMCID: PMC4266908 DOI: 10.1186/s12974-014-0197-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
Abstract
Background Osteopontin (OPN) is a highly phosphorylated sialoprotein and a soluble cytokine that is widely expressed in a variety of tissues, including the brain. OPN and OPN-derived peptides have been suggested to have potential neuroprotective effects against ischemic brain injury, but their role in preterm brain injury is unknown. Methods We used a hypoxia-ischemia (HI)-induced preterm brain injury model in postnatal day 5 mice. OPN and OPN-derived peptides were given intracerebroventricularly and intranasally before HI. Brain injury was evaluated at 7 days after the insults. Results There was a significant increase in endogenous OPN mRNA and OPN protein in the mouse brain after the induction of HI at postnatal day 5. Administration of full-length OPN protein and thrombin-cleaved OPN did not affect preterm brain injury. This was demonstrated with both intracerebroventricular and intranasal administration of OPN as well as in OPN-deficient mice. Interestingly, both N134–153 and C154–198 OPN-derived peptides increased the severity of brain injury in this HI-induced preterm brain injury model. Conclusions The neuroprotective effects of OPN are age-dependent, and, in contrast to the more mature brain, OPN-derived peptides potentiate injury in postnatal day 5 mice. Intranasal administration is an efficient way of delivering drugs to the central nervous system (CNS) in neonatal mice and is likely to be an easy and noninvasive method of drug delivery to the CNS in preterm infants.
Collapse
Affiliation(s)
- Anna-Maj Albertsson
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| | - Xiaoli Zhang
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Front St, 450052, Zhengzhou, China.
| | - Jianmei Leavenworth
- Department of Cancer, Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA, 02115, USA.
| | - Dan Bi
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Front St, 450052, Zhengzhou, China.
| | - Syam Nair
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| | - Lili Qiao
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, Song Jiang Central Hospital, 746 Songjiang Zhongshan West Rd, 201600, Shanghai, China.
| | - Henrik Hagberg
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Perinatal Center, Department of Obstetrics and Gynecology, Sahlgrenska Academy at University of Gothenburg, Journalvägen 6, 41685, Gothenburg, Sweden. .,Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Carina Mallard
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden.
| | - Harvey Cantor
- Department of Cancer, Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA, 02115, USA.
| | - Xiaoyang Wang
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden. .,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 7 Kangfu Front St, 450052, Zhengzhou, China.
| |
Collapse
|
43
|
Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin. Matrix Biol 2014; 41:19-25. [PMID: 25446551 DOI: 10.1016/j.matbio.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 12/17/2022]
Abstract
Osteopontin (OPN) is a ligand for the α4ß1 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of post-translational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines and compared OPN interaction with α4 integrin to that of VCAM and fibronectin. Jurkat cells, whose α4 integrins are inherently activated, adhered to different preparations of OPN in the presence of Mn(2+): the EC50 of adhesion was not affected by phosphorylation or glycosylation status. Thrombin cleavage of OPN at the C-terminus of the α4 integrin-binding site also did not affect binding affinity. THP-1 cells express a low-affinity conformation of the integrin and adhered to OPN only in the presence of Mn(2+) plus PMA or an activating antibody. This was in contrast to VCAM and fibronectin: THP-1 cells adhered to these ligands without integrin activation. Studies with ligand-induced binding site antibodies demonstrated that the SVVYGLR peptide of OPN bound to the α4 integrin with a similar affinity as the LDV peptide of fibronectin, suggesting that a high off-rate is responsible for the reduced binding of OPN to the low-affinity forms of this integrin. Together, the results suggest OPN has very low affinity for the α4 integrin on human leukocytes under physiological conditions.
Collapse
|
44
|
Oh Y, Oh I, Morimoto J, Uede T, Morimoto A. Osteopontin has a crucial role in osteoclast-like multinucleated giant cell formation. J Cell Biochem 2014; 115:585-95. [PMID: 24129963 DOI: 10.1002/jcb.24695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/10/2013] [Indexed: 01/05/2023]
Abstract
The osteoclast (OC) is a major player in the pathogenic bone destruction of inflammatory bone diseases such as rheumatoid arthritis and Langerhans cell histiocytosis. Recently, it was shown that immature dendritic cells (iDC) fuse faster and more efficiently than monocytes in forming OC-like multinucleated giant cells (MGCs), and that osteopontin (OPN) is involved in the pathogenesis of inflammatory bone diseases. In this study, we hypothesized that OPN is a key factor for generation of OC-like MGCs from iDCs. We used an in vitro culture system to differentiate iDCs, derived from monocytes obtained from the blood of healthy donors, into OC-like MGCs. We evaluated OPN levels and expression of OPN receptors during the course of differentiation. OPN has an arginine-glycine-aspartic acid (RGD) motif, and protease cleavage reveals a SVVYGLR motif. The concentrations of both full-length and cleaved forms of OPN increased during the course of OC-like MGC formation. Expression of OPN RGD- and SVVYGLR-recognizing receptors also increased at later stages. We analyzed whether blocking OPN binding to its receptors affected OC-like MGC formation. Monocytes treated with OPN siRNA were able to differentiate into iDCs effectively; however, differentiation of these iDCs into OC-like MGCs was significantly reduced. The formation of OC-like MGCs was not significantly reduced by RGD synthetic peptide. By contrast, SVVYGLR synthetic peptide caused a significant reduction. These data suggest that the cleaved form of OPN plays a critical role in driving iDC differentiation into OC-like MGCs in the early phase of differentiation, in an autocrine and/or paracrine fashion.
Collapse
Affiliation(s)
- Yukiko Oh
- Department of Pediatrics, Jichi Medical University School of Medicine, 3311-1, Yakushi-ji, Shimotsuke, Tochigi, 329-0498, Japan
| | | | | | | | | |
Collapse
|
45
|
Pamuk GE, Uyanik MS, Pamuk ON, Maden M, Tapan U. Decreased dickkopf-1 levels in chronic lymphocytic leukemia and increased osteopontin levels in non-Hodgkin's lymphoma at initial diagnosis: Could they be playing roles in pathogenesis? ACTA ACUST UNITED AC 2014; 20:267-71. [PMID: 25271869 DOI: 10.1179/1607845414y.0000000205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims We determined plasma levels of dickkopf-1 (DKK-1) and osteopontin (OPN) which have roles in the Wnt pathway in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL) patients and in healthy controls. We also tested whether DKK-1 and OPN levels could be of clinical or prognostic significance in CLL and NHL. Methods We included 36 CLL, 24 NHL patients, and 21 healthy controls. Patients' clinical and demographic features, treatment modalities, and response to treatment were recorded. DKK-1 and OPN levels in plasma obtained at initial diagnosis were determined with enzyme-linked immunosorbent assay. Results CLL patients had significantly lower DKK-1 levels than NHL and control groups (P levels, respectively, 0.048 and 0.017). OPN level was significantly higher in NHL group than in CLL and control groups (P values, 0.017 and <0.001). CLL patients with early and late Rai stages of disease had similar DKK-1 and OPN levels. After a median follow-up of 48 months, 13 CLL patients died. Univariate analysis showed that advanced Rai stages and older age were significantly poor prognostic factors. DKK-1 level in CLL patients who have died was significantly lower than those who were alive (P = 0.035). NHL patients with extranodal involvement had significantly higher OPN levels than those with no involvement (P = 0.04). Conclusions Our results demonstrated that the Wnt pathway inhibitor DKK-1 was decreased in CLL. OPN was increased in NHL and associated with extranodal involvement. In order to reveal the pathogenic and clinical roles of DKK-1 and OPN in CLL and NHL, larger studies need to be conducted.
Collapse
MESH Headings
- Adult
- Aged
- Case-Control Studies
- Female
- Humans
- Intercellular Signaling Peptides and Proteins/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Lymphoma, Non-Hodgkin/blood
- Lymphoma, Non-Hodgkin/diagnosis
- Lymphoma, Non-Hodgkin/mortality
- Male
- Middle Aged
- Neoplasm Staging
- Odds Ratio
- Osteopontin/blood
- ROC Curve
- Survival Analysis
Collapse
|
46
|
Broom L, Jenner P, Rose S. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity. Exp Neurol 2014; 263:1-7. [PMID: 25218309 DOI: 10.1016/j.expneurol.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/13/2023]
Abstract
The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation.
Collapse
Affiliation(s)
- Lauren Broom
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK.
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| | - Sarah Rose
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| |
Collapse
|
47
|
Zhang F, Luo W, Li Y, Gao S, Lei G. Role of osteopontin in rheumatoid arthritis. Rheumatol Int 2014; 35:589-95. [PMID: 25163663 DOI: 10.1007/s00296-014-3122-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint swelling, joint tenderness, and destruction of synovial joints, leading to severe disability and premature mortality. RA is a multifactorial disease with genetic, environmental, and stochastic components related to its susceptibility. It has been demonstrated that the expression of osteopontin (OPN) is upregulated in the RA patients. Numerous studies have indicated that the full-length OPN or even OPN fragments, such as thrombin-cleaved OPN and its receptors, play the key roles in RA pathogenesis. Therapeutic application of siRNA to target OPN or neutralizing antibodies related to OPN epitopes in RA animal models are in progress, and some results are encouraging. However, there is a long way to go along with the clinical trials. This review focuses on the recent development in research associated with the OPN role in the pathogenesis of RA and provides insights concerning the OPN targeting as therapeutic approaches for patients with RA.
Collapse
Affiliation(s)
- Fangjie Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China
| | | | | | | | | |
Collapse
|
48
|
Kaleta B. Role of osteopontin in systemic lupus erythematosus. Arch Immunol Ther Exp (Warsz) 2014; 62:475-82. [PMID: 24917428 PMCID: PMC4244532 DOI: 10.1007/s00005-014-0294-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic disease, caused by a variety of factors, which lead to immunological abnormalities. Osteopontin (OPN) is a pleiotropic protein, important in bone remodeling and immune system signaling. OPN, produced by various cells, including immune cells, plays a key role in regulating T-helper 1/T-helper 2 balance, stimulating B lymphocytes to produce antibodies, regulating macrophages, neutrophils and inducing dendritic cells. OPN expression is influenced by genetic polymorphisms of its promoter, hormones and cytokines. Over expression of OPN has been associated with the pathogenesis of immune-mediated diseases. OPN has been implicated in the development of murine model of lupus and in humans with SLE. In this review, I will present current state of research on the role of OPN and OPN gene polymorphisms in pathogenesis and clinical course of SLE. A better understanding of the role of OPN in SLE will contribute to more precise diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006, Warsaw, Poland,
| |
Collapse
|
49
|
Liu Y, You R, Liu G, Li X, Sheng W, Yang J, Li M. Antheraea pernyi silk fibroin-coated PEI/DNA complexes for targeted gene delivery in HEK 293 and HCT 116 cells. Int J Mol Sci 2014; 15:7049-63. [PMID: 24776757 PMCID: PMC4057661 DOI: 10.3390/ijms15057049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023] Open
Abstract
Polyethylenimine (PEI) has attracted much attention as a DNA condenser, but its toxicity and non-specific targeting limit its potential. To overcome these limitations, Antheraea pernyi silk fibroin (ASF), a natural protein rich in arginyl-glycyl-aspartic acid (RGD) peptides that contains negative surface charges in a neutral aqueous solution, was used to coat PEI/DNA complexes to form ASF/PEI/DNA ternary complexes. Coating these complexes with ASF caused fewer surface charges and greater size compared with the PEI/DNA complexes alone. In vitro transfection studies revealed that incorporation of ASF led to greater transfection efficiencies in both HEK (human embryonic kidney) 293 and HCT (human colorectal carcinoma) 116 cells, albeit with less electrostatic binding affinity for the cells. Moreover, the transfection efficiency in the HCT 116 cells was higher than that in the HEK 293 cells under the same conditions, which may be due to the target bonding affinity of the RGD peptides in ASF for integrins on the HCT 116 cell surface. This result indicated that the RGD binding affinity in ASF for integrins can enhance the specific targeting affinity to compensate for the reduction in electrostatic binding between ASF-coated PEI carriers and cells. Cell viability measurements showed higher cell viability after transfection of ASF/PEI/DNA ternary complexes than after transfection of PEI/DNA binary complexes alone. Lactate dehydrogenase (LDH) release studies further confirmed the improvement in the targeting effect of ASF/PEI/DNA ternary complexes to cells. These results suggest that ASF-coated PEI is a preferred transfection reagent and useful for improving both the transfection efficiency and cell viability of PEI-based nonviral vectors.
Collapse
Affiliation(s)
- Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Renchuan You
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Guiyang Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Xiufang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Weihua Sheng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Jicheng Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
50
|
Therapeutic effect of anti-αv integrin mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neuroimmunol 2014; 268:25-34. [DOI: 10.1016/j.jneuroim.2013.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022]
|