1
|
Du P, He H, Wang J, Wang L, Meng Z, Jin X, Zhang L, Wang F, Li H, Xie Q. Genome-Wide Identification and Characterization of the HMGR Gene Family in Taraxacum kok-saghyz Provide Insights into Its Regulation in Response to Ethylene and Methyl Jsamonate Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2646. [PMID: 39339620 PMCID: PMC11435204 DOI: 10.3390/plants13182646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
HMGR (3-hydroxy-3-methylglutaryl-CoA reductase) plays a crucial role as the first rate-limiting enzyme in the mevalonate (MVA) pathway, which is the upstream pathway of natural rubber biosynthesis. In this study, we carried out whole-genome identification of Taraxacum kok-saghyz (TKS), a novel rubber-producing alternative plant, and obtained six members of the TkHMGR genes. Bioinformatic analyses were performed including gene structure, protein properties, chromosomal localization, evolutionary relationships, and cis-acting element analyses. The results showed that HMGR genes were highly conserved during evolution with a complete HMG-CoA reductase conserved domain and were closely related to Asteraceae plants during the evolutionary process. The α-helix is the most prominent feature of the secondary structure of the TkHMGR proteins. Collinearity analyses demonstrated that a whole-genome duplication (WGD) event and tandem duplication event play a key role in the expansion of this family and TkHMGR1 and TkHMGR6 have more homologous gene between other species. Cis-acting element analysis revealed that the TkHMGR gene family had a higher number of MYB-related, light-responsive, hormone-responsive elements. In addition, we investigated the expression patterns of family members induced by ethylene (ETH) and methyl jasmonate (MeJA), and their expression levels at different stages of T. kok-saghyz root development. Finally, subcellular localization results showed that six TkHMGR members were all located in the endoplasmic reticulum. In conclusion, the results of our study lay a certain theoretical basis for the subsequent improvement of rubber yield, molecular breeding of rubber-producing plants, and genetic improvement of T. kok-saghyz.
Collapse
Affiliation(s)
- Pingping Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Huan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiayin Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Lili Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Liyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
3
|
Yu C, Gao S, Rong M, Xiao M, Xu Y, Wei J. Identification and characterization of novel sesquiterpene synthases TPS9 and TPS12 from Aquilaria sinensis. PeerJ 2023; 11:e15818. [PMID: 37663295 PMCID: PMC10474832 DOI: 10.7717/peerj.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Sesquiterpenes are characteristic components and important quality criterions for agarwood. Although sesquiterpenes are well-known to be biosynthesized by sesquiterpene synthases (TPSs), to date, only a few TPS genes involved in agarwood formation have been reported. Here, two new TPS genes, namely, TPS9 and TPS12, were isolated from Aquilaria sinensis (Lour.) Gilg, and their functions were examined in Escherichia coli BL21(DE3), with farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP) as the substrate of the corresponding enzyme activities. They were both identified as a multiproduct enzymes. After incubation with FPP, TPS9 liberated β-farnesene and cis-sesquisabinene hydrate as main products, with cedrol and another unidentified sesquiterpene as minor products. TPS12 catalyzes the formation of β-farnesene, nerolidol, γ-eudesmol, and hinesol. After incubation with GPP, TPS9 generated citronellol and geraniol as main products, with seven minor products. TPS12 converted GPP into four monoterpenes, with citral as the main product, and three minor products. Both TPS9 and TPS12 showed much higher expression in the two major tissues emitting floral volatiles: flowers and agarwood. Further, RT-PCR analysis showed TPS9 and TPS12 are typical genes mainly expressed during later stages of stress response, which is better known than that of chromone derivatives. This study will advance our understanding of agarwood formation and provide a solid theoretical foundation for clarifying its mechanism in A. sinensis.
Collapse
Affiliation(s)
- Cuicui Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Shixi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Mengjun Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plan, Hainan, China
| |
Collapse
|
4
|
Bilbao A, Munoz N, Kim J, Orton DJ, Gao Y, Poorey K, Pomraning KR, Weitz K, Burnet M, Nicora CD, Wilton R, Deng S, Dai Z, Oksen E, Gee A, Fasani RA, Tsalenko A, Tanjore D, Gardner J, Smith RD, Michener JK, Gladden JM, Baker ES, Petzold CJ, Kim YM, Apffel A, Magnuson JK, Burnum-Johnson KE. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements. Nat Commun 2023; 14:2461. [PMID: 37117207 PMCID: PMC10147702 DOI: 10.1038/s41467-023-37031-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
Collapse
Affiliation(s)
- Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| | - Nathalie Munoz
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Joonhoon Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | | | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Karl Weitz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Meagan Burnet
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Rosemarie Wilton
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Argonne National Laboratory, Lemont, IL, USA
| | - Shuang Deng
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ziyu Dai
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Ethan Oksen
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Gee
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Rick A Fasani
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Anya Tsalenko
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Deepti Tanjore
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James Gardner
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Joshua K Michener
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John M Gladden
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Sandia National Laboratory, Livermore, CA, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher J Petzold
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Alex Apffel
- Agilent Research Laboratories, Agilent Technologies, Santa Clara, CA, USA
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, USA
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Kristin E Burnum-Johnson
- Pacific Northwest National Laboratory, Richland, WA, USA.
- US Department of Energy, Agile BioFoundry, Emeryville, CA, USA.
| |
Collapse
|
5
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
6
|
Kong J, Miao L, Lu Z, Wang S, Zhao B, Zhang C, Xiao D, Teo D, Leong SSJ, Wong A, Yu A. Enhanced production of amyrin in Yarrowia lipolytica using a combinatorial protein and metabolic engineering approach. Microb Cell Fact 2022; 21:186. [PMID: 36085205 PMCID: PMC9463779 DOI: 10.1186/s12934-022-01915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyrin is an important triterpenoid and precursor to a wide range of cosmetic, pharmaceutical and nutraceutical products. In this study, we metabolically engineered the oleaginous yeast, Yarrowia lipolytica to produce α- and β-amyrin on simple sugar and waste cooking oil. RESULTS We first validated the in vivo enzymatic activity of a multi-functional amyrin synthase (CrMAS) from Catharanthus roseus, by expressing its codon-optimized gene in Y. lipolytica and assayed for amyrins. To increase yield, prevailing genes in the mevalonate pathway, namely HMG1, ERG20, ERG9 and ERG1, were overexpressed singly and in combination to direct flux towards amyrin biosynthesis. By means of a semi-rational protein engineering approach, we augmented the catalytic activity of CrMAS and attained ~ 10-folds higher production level on glucose. When applied together, protein engineering with enhanced precursor supplies resulted in more than 20-folds increase in total amyrins. We also investigated the effects of different fermentation conditions in flask cultures, including temperature, volumetric oxygen mass transfer coefficient and carbon source types. The optimized fermentation condition attained titers of at least 100 mg/L α-amyrin and 20 mg/L β-amyrin. CONCLUSIONS The design workflow demonstrated herein is simple and remarkably effective in amplifying triterpenoid biosynthesis in the yeast Y. lipolytica.
Collapse
Affiliation(s)
- Jing Kong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Lin Miao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China
| | - Desmond Teo
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Susanna Su Jan Leong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore.
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
7
|
Recent advances in the microbial production of squalene. World J Microbiol Biotechnol 2022; 38:91. [PMID: 35426523 PMCID: PMC9010451 DOI: 10.1007/s11274-022-03273-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022]
Abstract
Squalene is a triterpene hydrocarbon, a biochemical precursor for all steroids in plants and animals. It is a principal component of human surface lipids, in particular of sebum. Squalene has several applications in the food, pharmaceutical, and medical sectors. It is essentially used as a dietary supplement, vaccine adjuvant, moisturizer, cardio-protective agent, anti-tumor agent and natural antioxidant. With the increased demand for squalene along with regulations on shark-derived squalene, there is a need to find alternatives for squalene production which are low-cost as well as sustainable. Microbial platforms are being considered as a potential option to meet such challenges. Considerable progress has been made using both wild-type and engineered microbial strains for improved productivity and yields of squalene. Native strains for squalene production are usually limited by low growth rates and lesser titers. Metabolic engineering, which is a rational strain engineering tool, has enabled the development of microbial strains such as Saccharomyces cerevisiae and Yarrowia lipolytica, to overproduce the squalene in high titers. This review focuses on key strain engineering strategies involving both in-silico and in-vitro techniques. Emphasis is made on gene manipulations for improved precursor pool, enzyme modifications, cofactor regeneration, up-regulation of limiting reactions, and downregulation of competing reactions during squalene production. Process strategies and challenges related to both upstream and downstream during mass cultivation are detailed.
Collapse
|
8
|
Du MM, Zhu ZT, Zhang GG, Zhao YQ, Gao B, Tao XY, Liu M, Ren YH, Wang FQ, Wei DZ. Engineering Saccharomyces cerevisiae for Hyperproduction of β-Amyrin by Mitigating the Inhibition Effect of Squalene on β-Amyrin Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:229-237. [PMID: 34955018 DOI: 10.1021/acs.jafc.1c06712] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study aims to enhance β-amyrin production in Saccharomyces cerevisiae by peroxisome compartmentalization. First, overaccumulated squalene was determined as a key limiting factor for the production of β-amyrin since it could inhibit the activity of β-amyrin synthase GgbAs1. Second, to mitigate the inhibition effect, the enhanced squalene synthesis pathway was compartmentalized into peroxisomes to insulate overaccumulated squalene from GgbAs1, and thus the specific titer of β-amyrin reached 57.8 mg/g dry cell weight (DCW), which was 2.6-fold higher than that of the cytosol engineering strain. Third, by combining peroxisome compartmentalization with the "push-pull-restrain" strategy (ERG1 and GgbAs1 overexpression and ERG7 weakening), the production of β-amyrin was further increased to 81.0 mg/g DCW (347.0 mg/L). Finally, through fed-batch fermentation in a 5 L fermenter, the titer of β-amyrin reached 2.6 g/L, which is the highest reported to date. The study provides a new perspective to engineering yeasts as a platform for triterpene production.
Collapse
Affiliation(s)
- Meng-Meng Du
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Zhan-Tao Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Ge-Ge Zhang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Qiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Hong Ren
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Zhou X, Huang Y, Wu S, Chen X, Sun W, Gao Y, Zhang W, Gao X. Characterization of Agarwood by Gas Chromatography–Mass Spectrometry and a Random Forest Model. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2005081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanyuan Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenghong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoying Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenxia Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuan Gao
- School of Foreign Languages, Neusoft Institute Guangdong, Guangzhou, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxia Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Zhang N, Xue S, Song J, Zhou X, Zhou D, Liu X, Hong Z, Xu D. Effects of various artificial agarwood-induction techniques on the metabolome of Aquilaria sinensis. BMC PLANT BIOLOGY 2021; 21:591. [PMID: 34903180 PMCID: PMC8667428 DOI: 10.1186/s12870-021-03378-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis. RESULTS The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites. CONCLUSION The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.
Collapse
Affiliation(s)
- Ningnan Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Shiyu Xue
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Jie Song
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Xiuren Zhou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Dahao Zhou
- Huazhou Yuanlai Agarwood Limited Company, Huazhou, 525100 China
| | - Xiaojin Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520 China
| |
Collapse
|
11
|
Cankar K, Bundock P, Sevenier R, Häkkinen ST, Hakkert JC, Beekwilder J, van der Meer IM, de Both M, Bosch D. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2442-2453. [PMID: 34270859 PMCID: PMC8633505 DOI: 10.1111/pbi.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 05/06/2023]
Abstract
Chicory (Cichorium intybus var. sativum) is an industrial crop species cultivated for the production of a fructose polymer inulin, which is used as a low-calorie sweetener and prebiotic. Besides, inulin chicory taproots also accumulate sesquiterpene lactones (STLs). These are bitter tasting compounds, which need to be removed during inulin extraction, resulting in additional costs. In this work, we describe chicory lines where STL accumulation is almost completely eliminated. Genome editing using the CRISPR/Cas9 system was used to inactivate four genes that encode the enzyme that performs the first dedicated step in STL synthesis, germacrene A synthase (CiGAS). Chicory lines were obtained that carried null mutations in all four CiGAS genes. Lines lacking functional CiGAS alleles showed a normal phenotype upon greenhouse cultivation and show nearly complete elimination of the STL synthesis in the roots. It was shown that the reduction in STLs could be attributed to mutations in genetically linked copies of the CiGAS-short gene and not the CiGAS-long gene, which is relevant for breeding the trait into other cultivars. The inactivation of the STL biosynthesis pathway led to increase in phenolic compounds as well as accumulation of squalene in the chicory taproot, presumably due to increased availability of farnesyl pyrophosphate (FFP). These results demonstrate that STLs are not essential for chicory growth and that the inhibition of the STL biosynthesis pathway reduced the STL levels chicory which will facilitate inulin extraction.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | | | | | - Jules Beekwilder
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Dirk Bosch
- Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
12
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
13
|
Wang RQ, Chen G, Chen SN, Zhu HL, Xiong WN, Xu M, Jian SP. Metabolic changes of Neurospora crassa in the presence of oleic acid for promoting lycopene production. J Biosci Bioeng 2021; 132:148-153. [PMID: 33994113 DOI: 10.1016/j.jbiosc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Neurospora crassa has been generally recognized as a safe organism and possesses a remarkable ability to produce yellow-to-orange carotenoids. The present work mainly explored the potential mechanism of exogenous oleic acid on promoting lycopene production in N. crassa. Carbon flux was conducively channelized into the mevalonate metabolic pathway to synthesize more lycopene, associating with the increased levels of acetyl-CoA, NADPH and factors related to the mevalonate pathway. Additionally, exogenous oleic acid boosted the intracellular triacylglycerol production through de novo and ex novo fatty acid synthesis pathways, which contributed to improving the accumulation of lycopene via lipid bodies. Further, the regulated fatty acid profile also enhanced the storage capacity of lipid bodies. Consequently, this study provided an effective strategy to enhance the lycopene production in N. crassa by adding oleic acid to the culture medium and elucidated an extraordinary insight into the potential mechanism.
Collapse
Affiliation(s)
- Rui-Qi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China
| | - Gang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China.
| | - Sun-Ni Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China
| | - Hong-Lin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China
| | - Wen-Neng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China
| | - Mao Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China
| | - Su-Ping Jian
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Qingshanhu District, Nanchang, 330047 Jiangxi, China
| |
Collapse
|
14
|
Bahr T, Butler G, Rock C, Welburn K, Allred K, Rodriguez D. Cholesterol-lowering activity of natural mono- and sesquiterpenoid compounds in essential oils: A review and investigation of mechanisms using in silico protein-ligand docking. Phytother Res 2021; 35:4215-4245. [PMID: 33754393 DOI: 10.1002/ptr.7083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Mono- and sesquiterpenoids are the main chemical constituents of essential oils. Essential oils and their constituents have received increasing attention for lipid-lowering properties in both cell and animal models. Despite the chemical diversity of essential oil compounds, the effects of many of these compounds on cholesterol metabolism are highly similar. In this report, we review the literature regarding the effects of essential oils and their terpenoid constituents on cholesterol homeostasis, and explore likely mechanisms using protein-ligand docking. We identified 98 experimental and seven clinical studies on essential oils, isolated compounds, and blends; 100 of these described improvements either in blood cholesterol levels or in sterol metabolic pathways. Our review and docking analysis confirmed two likely mechanisms common to many essential oil compounds: (1) direct agonism of peroxisome-proliferator-activated receptors, and (2) direct interaction with sterol-sensing domains, motifs found in key sterol regulatory proteins including sterol regulatory element binding protein cleavage activating protein and HMG-CoA reductase. Notably, these direct interactions lead to decreased transcription and accelerated degradation of HMG-CoA reductase. Our work suggests that terpene derivatives in essential oils have cholesterol-lowering activity and could potentially work synergistically with statins, however, further high quality studies are needed to establish their clinical efficacy.
Collapse
Affiliation(s)
- Tyler Bahr
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Gavin Butler
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Christian Rock
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Kyle Welburn
- School of Osteopathic Medicine, University of the Incarnate Word, 7615 Kennedy Hill, San Antonio, Texas, 78235, USA
| | - Kathryn Allred
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| | - Damian Rodriguez
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| |
Collapse
|
15
|
Miao LL, Chi S, Hou TT, Liu ZP, Li Y. The damage and tolerance mechanisms of Phaffia rhodozyma mutant strain MK19 grown at 28 °C. Microb Cell Fact 2021; 20:5. [PMID: 33413415 PMCID: PMC7791638 DOI: 10.1186/s12934-020-01479-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background Phaffia rhodozyma has many desirable properties for astaxanthin production, including rapid heterotrophic metabolism and high cell densities in fermenter culture. The low optimal temperature range (17–21 °C) for cell growth and astaxanthin synthesis in this species presents an obstacle to efficient industrial-scale astaxanthin production. The inhibition mechanism of cell growth at > 21 °C in P. rhodozyma have not been investigated. Results MK19, a mutant P. rhodozyma strain grows well at moderate temperatures, its cell growth was also inhibited at 28 °C, but such inhibition was mitigated, and low biomass 6 g/L was obtained after 100 h culture. Transcriptome analysis indicated that low biomass at 28 °C resulted from strong suppression of DNA and RNA synthesis in MK19. Growth inhibition at 28 °C was due to cell membrane damage with a characteristic of low mRNA content of fatty acid (f.a.) pathway transcripts (acc, fas1, fas2), and consequent low f.a. content. Thinning of cell wall and low mannose content (leading to loss of cell wall integrity) also contributed to reduced cell growth at 28 °C in MK19. Levels of astaxanthin and ergosterol, two end-products of isoprenoid biosynthesis (a shunt pathway of f.a. biosynthesis), reached 2000 µg/g and 7500 µg/g respectively; ~2-fold higher than levels at 21 or 25 °C. Abundance of ergosterol, an important cell membrane component, compensated for lack of f.a., making possible the biomass production of 6 g/L for MK19 at 28 °C. Conclusions Inhibition of growth of P. rhodozyma at 28 °C results from blocking of DNA, RNA, f.a., and cell wall biosynthesis. In MK19, abundant ergosterol made possible biomass production 6 g/L at 28 °C. Significant accumulation of astaxanthin and ergosterol indicated an active MVA pathway in MK19 at 28 °C. Strengthening of the MVA pathway can be a feasible metabolic engineering approach for enhancement of astaxanthin synthesis in P. rhodozyma. The present findings provide useful mechanistic insights regarding adaptation of P. rhodozyma to 28 °C, and improved understanding of feasible metabolic engineering techniques for industrial scale astaxanthin production by this economically important yeast species.
Collapse
Affiliation(s)
- Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Shuang Chi
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ting-Ting Hou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ying Li
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
16
|
Wangeline MA, Hampton RY. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase. J Biol Chem 2020; 296:100063. [PMID: 33184059 PMCID: PMC7948459 DOI: 10.1074/jbc.ra120.015910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023] Open
Abstract
HMG-CoA reductase (HMGR) undergoes feedback-regulated degradation as part of sterol pathway control. Degradation of the yeast HMGR isozyme Hmg2 is controlled by the sterol pathway intermediate GGPP, which causes misfolding of Hmg2, leading to degradation by the HRD pathway; we call this process mallostery. We evaluated the role of the Hmg2 sterol sensing domain (SSD) in mallostery, as well as the involvement of the highly conserved INSIG proteins. We show that the Hmg2 SSD is critical for regulated degradation of Hmg2 and required for mallosteric misfolding of GGPP as studied by in vitro limited proteolysis. The Hmg2 SSD functions independently of conserved yeast INSIG proteins, but its function was modulated by INSIG, thus imposing a second layer of control on Hmg2 regulation. Mutant analyses indicated that SSD-mediated mallostery occurred prior to and independent of HRD-dependent ubiquitination. GGPP-dependent misfolding was still extant but occurred at a much slower rate in the absence of a functional SSD, indicating that the SSD facilitates a physiologically useful rate of GGPP response and implying that the SSD is not a binding site for GGPP. Nonfunctional SSD mutants allowed us to test the importance of Hmg2 quaternary structure in mallostery: a nonresponsive Hmg2 SSD mutant strongly suppressed regulation of a coexpressed, normal Hmg2. Finally, we have found that GGPP-regulated misfolding occurred in detergent-solubilized Hmg2, a feature that will allow next-level analysis of the mechanism of this novel tactic of ligand-regulated misfolding.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Division of Biological Sciences, the Section of Cell and Developmental Biology, UCSD, La Jolla, California, USA
| | - Randolph Y Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, UCSD, La Jolla, California, USA.
| |
Collapse
|
17
|
Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnol Adv 2020; 44:107628. [DOI: 10.1016/j.biotechadv.2020.107628] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
|
18
|
Singh A, Vashistha N, Heck J, Tang X, Wipf P, Brodsky JL, Hampton RY. Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control. Mol Biol Cell 2020; 31:2669-2686. [PMID: 32966159 PMCID: PMC7927186 DOI: 10.1091/mbc.e20-08-0541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chaperones can mediate both protein folding and degradation. This process is referred to as protein triage, which demands study to reveal mechanisms of quality control for both basic scientific and translational purposes. In yeast, many misfolded proteins undergo chaperone-dependent ubiquitination by the action of the E3 ligases Ubr1 and San1, allowing detailed study of protein triage. In cells, both HSP70 and HSP90 mediated substrate ubiquitination, and the canonical ATP cycle was required for HSP70’s role: we have found that ATP hydrolysis by HSP70, the nucleotide exchange activity of Sse1, and the action of J-proteins are all needed for Ubr1-mediated quality control. To discern whether chaperones were directly involved in Ubr1-mediated ubiquitination, we developed a bead-based assay with covalently immobilized but releasable misfolded protein to obviate possible chaperone effects on substrate physical state or transport. In this in vitro assay, only HSP70 was required, along with its ATPase cycle and relevant cochaperones, for Ubr1-mediated ubiquitination. The requirement for the HSP70 ATP cycle in ubiquitination suggests a possible model of triage in which efficiently folded proteins are spared, while slow-folding or nonfolding proteins are iteratively tagged with ubiquitin for subsequent degradation.
Collapse
Affiliation(s)
- Amanjot Singh
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Nidhi Vashistha
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Jarrod Heck
- Adaptive Biotechnologies Corp., Seattle, WA 98102
| | - Xin Tang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92103
| |
Collapse
|
19
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
20
|
Graczyk S, Perlińska-Lenart U, Górka-Nieć W, Lichota R, Piłsyk S, Zembek P, Lenart J, Bernat P, Gryz E, Augustyniak J, Palamarczyk G, Kruszewska JS. Increased activity of the sterol branch of the mevalonate pathway elevates glycosylation of secretory proteins and improves antifungal properties of Trichoderma atroviride. Fungal Genet Biol 2020; 137:103334. [PMID: 31958566 DOI: 10.1016/j.fgb.2020.103334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 11/29/2022]
Abstract
Some Trichoderma spp. have an ability to inhibit proliferation of fungal plant pathogens in the soil. Numerous compounds with a proven antifungal activity are synthesized via the terpene pathway. Here, we stimulated the activity of the mevalonate pathway in T. atroviride P1 by expressing the Saccharomyces cerevisiae ERG20 gene coding for farnesyl pyrophosphate (FPP) synthase, a key enzyme of this pathway. ERG20-expressing Trichoderma strains showed higher activities of FPP synthase and squalene synthase, the principal recipient of FPP in the mevalonate pathway. We also observed activation of dolichyl phosphate mannose (DPM) synthase, an enzyme in protein glycosylation, and significantly increased O- and N-glycosylation of secreted proteins. The hyper-glycosylation of secretory hydrolases could explain their increased activity observed in the ERG20 transformants. Analysis of the antifungal properties of the new strains revealed that the hydrolases secreted by the transformants inhibited growth of a plant pathogen, Pythium ultimum more efficiently compared to the control strain. Consequently, the biocontrol activity of the transgenic strains, determined as their ability to protect bean seeds and seedlings against harmful action of P. ultimum, was also improved substantially.
Collapse
Affiliation(s)
- Sebastian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wioletta Górka-Nieć
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Renata Lichota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Patrycja Zembek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jacek Lenart
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Przemysław Bernat
- Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Elżbieta Gryz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grażyna Palamarczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Arhar S, Natter K. Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158513. [PMID: 31465888 DOI: 10.1016/j.bbalip.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
The biosynthetic pathways for most lipophilic metabolites share several common principles. These substances are built almost exclusively from acetyl-CoA as the donor for the carbon scaffold and NADPH is required for the reductive steps during biosynthesis. Due to their hydrophobicity, the end products are sequestered into the same cellular compartment, the lipid droplet. In this review, we will summarize the efforts in the metabolic engineering of yeasts for the production of two major hydrophobic substance classes, fatty acid-based lipids and isoprenoids, with regard to these common aspects. We will compare and discuss the results of genetic engineering strategies to construct strains with enhanced synthesis of the precursor acetyl-CoA and with modified redox metabolism for improved NADPH supply. We will also discuss the role of the lipid droplet in the storage of the hydrophobic product and review the strategies to either optimize this organelle for higher capacity or to achieve excretion of the product into the medium.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria.
| |
Collapse
|
22
|
Cai Y, Whitehead P, Chappell J, Chapman KD. Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. PLANTA 2019; 250:79-94. [PMID: 30919065 DOI: 10.1007/s00425-019-03148-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Mouse FIT2 protein redirects the cytoplasmic terpene biosynthetic machinery to lipid-droplet-forming domains in the ER and this relocalization supports the efficient compartmentalization and accumulation of sesquiterpenes in plant cells. Mouse (Mus musculus) fat storage-inducing transmembrane protein 2 (MmFIT2), an endoplasmic reticulum (ER)-resident protein with an important role in lipid droplet (LD) biogenesis in mammals, can function in plant cells to promote neutral lipid compartmentalization. Surprisingly, in affinity capture experiments, the Nicotiana benthamiana 5-epi-aristolochene synthase (NbEAS), a soluble cytoplasm-localized sesquiterpene synthase, was one of the most abundant proteins that co-precipitated with GFP-tagged MmFIT2 in transient expression assays in N. benthamiana leaves. Consistent with results of pull-down experiments, the subcellular location of mCherry-tagged NbEAS was changed from the cytoplasm to the LD-forming domains in the ER, only when co-expressed with MmFIT2. Ectopic co-expression of NbEAS and MmFIT2 together with mouse diacylglycerol:acyl-CoA acyltransferase 2 (MmDGAT2) in N. benthamiana leaves substantially increased the numbers of cytoplasmic LDs and supported the accumulation of the sesquiterpenes, 5-epi-aristolochene and capsidiol, up to tenfold over levels elicited by Agrobacterium infection alone. Taken together, our results suggest that MmFIT2 recruits sesquiterpene synthetic machinery to ER subdomains involved in LD formation and that this process can enhance the efficiency of sesquiterpene biosynthesis and compartmentalization in plant cells. Further, MmFIT2 and MmDGAT2 represent cross-kingdom lipogenic protein factors that may be used to engineer terpene accumulation more broadly in the cytoplasm of plant vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Payton Whitehead
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Joe Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kent D Chapman
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA.
| |
Collapse
|
23
|
Wangeline MA, Hampton RY. "Mallostery"-ligand-dependent protein misfolding enables physiological regulation by ERAD. J Biol Chem 2018; 293:14937-14950. [PMID: 30018140 DOI: 10.1074/jbc.ra118.001808] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
HMG-CoA reductase (HMGR) undergoes regulated degradation as part of feedback control of the sterol pathway. In yeast, the stability of the HMGR isozyme Hmg2 is controlled by the 20-carbon isoprenoid geranylgeranyl pyrophosphate (GGPP). Increasing GGPP levels cause more efficient degradation by the HMG-CoA reductase degradation (HRD) pathway, allowing for feedback regulation of HMGR. The HRD pathway is critical for the endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded ER proteins. Here, we have explored GGPP's role in HRD-dependent Hmg2 degradation. We found that GGPP potently regulates Hmg2 levels in vivo and causes reversible Hmg2 misfolding at nanomolar concentrations in vitro These GGPP-mediated effects were absent in several stabilized or nonregulated Hmg2 mutants. Consistent with its high potency, GGPP's effects were highly specific such that other structurally related molecules were ineffective in altering Hmg2 structure. For instance, two closely related GGPP analogues, 2F-GGPP and GGSPP, were completely inactive at all concentrations tested. Furthermore, GGSPP antagonized GGPP's effects in vivo and in vitro Chemical chaperones reversed GGPP's effects on Hmg2 structure and degradation, suggesting that GGPP causes selective Hmg2 misfolding. These results indicate that GGPP functions in a manner similar to an allosteric ligand, causing Hmg2 misfolding through interaction with a reversible, specific binding site. Consistent with this, the Hmg2 protein formed multimers, typical of allosteric proteins. We propose that this "allosteric misfolding," or mallostery, observed here for Hmg2 may be a widely used tactic of biological regulation with potential for development of therapeutic small molecules that induce selective misfolding.
Collapse
Affiliation(s)
- Margaret A Wangeline
- From the Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| | - Randolph Y Hampton
- From the Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
24
|
Jiang Z, Kempinski C, Kumar S, Kinison S, Linscott K, Nybo E, Janze S, Wood C, Chappell J. Agronomic and chemical performance of field-grown tobacco engineered for triterpene and methylated triterpene metabolism. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1110-1124. [PMID: 29069530 PMCID: PMC5978867 DOI: 10.1111/pbi.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/08/2017] [Indexed: 05/13/2023]
Abstract
Squalene is a linear intermediate to nearly all classes of triterpenes and sterols and is itself highly valued for its use in wide range of industrial applications. Another unique linear triterpene is botryococcene and its methylated derivatives generated by the alga Botryococcus braunii race B, which are progenitors to fossil fuel deposits. Production of these linear triterpenes was previously engineered into transgenic tobacco by introducing the key steps of triterpene metabolism into the particular subcellular compartments. In this study, the agronomic characteristics (height, biomass accumulation, leaf area), the photosynthetic capacity (photosynthesis rate, conductance, internal CO2 levels) and triterpene content of select lines grown under field conditions were evaluated for three consecutive growing seasons. We observed that transgenic lines targeting enzymes to the chloroplasts accumulated 50-150 times more squalene than the lines targeting the enzymes to the cytoplasm, without compromising growth or photosynthesis. We also found that the transgenic lines directing botryococcene metabolism to the chloroplast accumulated 10- to 33-fold greater levels than the lines where the same enzymes were targeted to in the cytoplasm. However, growth of these high botryococcene accumulators was highly compromised, yet their photosynthesis rates remained unaffected. In addition, in the transgenic lines targeting a triterpene methyltransferase (TMT) to the chloroplasts of high squalene accumulators, 55%-65% of total squalene was methylated, whereas in the lines expressing a TMT in the cytoplasm, only 6%-13% of squalene was methylated. The growth of these methylated triterpene-accumulating lines was more compromised than that of nonmethylated squalene lines.
Collapse
Affiliation(s)
- Zuodong Jiang
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Chase Kempinski
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Santosh Kumar
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Scott Kinison
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Kristin Linscott
- Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKYUSA
| | - Eric Nybo
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
| | - Sarah Janze
- Department of StatisticsUniversity of KentuckyLexingtonKYUSA
| | - Connie Wood
- Department of StatisticsUniversity of KentuckyLexingtonKYUSA
| | - Joe Chappell
- Plant Biology ProgramUniversity of KentuckyLexingtonKYUSA
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKYUSA
- Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
25
|
Wangeline MA, Vashistha N, Hampton RY. Proteostatic Tactics in the Strategy of Sterol Regulation. Annu Rev Cell Dev Biol 2018; 33:467-489. [PMID: 28992438 DOI: 10.1146/annurev-cellbio-111315-125036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the synthesis and uptake of sterols undergo stringent multivalent regulation. Both individual enzymes and transcriptional networks are controlled to meet changing needs of the many sterol pathway products. Regulation is tailored by evolution to match regulatory constraints, which can be very different in distinct species. Nevertheless, a broadly conserved feature of many aspects of sterol regulation is employment of proteostasis mechanisms to bring about control of individual proteins. Proteostasis is the set of processes that maintain homeostasis of a dynamic proteome. Proteostasis includes protein quality control pathways for the detection, and then the correction or destruction, of the many misfolded proteins that arise as an unavoidable feature of protein-based life. Protein quality control displays not only the remarkable breadth needed to manage the wide variety of client molecules, but also extreme specificity toward the misfolded variants of a given protein. These features are amenable to evolutionary usurpation as a means to regulate proteins, and this approach has been used in sterol regulation. We describe both well-trod and less familiar versions of the interface between proteostasis and sterol regulation and suggest some underlying ideas with broad biological and clinical applicability.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Nidhi Vashistha
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
26
|
Vance JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J Lipid Res 2018; 59:923-944. [PMID: 29661786 DOI: 10.1194/jlr.r084004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
27
|
Comyn SA, Mayor T. A Method to Monitor Protein Turnover by Flow Cytometry and to Screen for Factors that Control Degradation by Fluorescence-Activated Cell Sorting. Methods Mol Biol 2018; 1844:137-153. [PMID: 30242708 DOI: 10.1007/978-1-4939-8706-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The protein quality control network consists of multiple proteins or protein complexes that monitor proteome integrity by mediating protein folding and the removal of proteins that cannot be folded. An integral component of this network is the ubiquitin-proteasome system, which controls the degradation of thousands of cellular proteins. A number of questions remain unanswered regarding the degradation of misfolded proteins. For example, how are substrates recognized and triaged? What are the identities of the components involved? And finally, what substrates are targeted by any given component of the quality control network? Finding answers to these questions is what inspires our work in protein quality control. Further characterization of protein quality control mechanisms requires methods that can reliably quantify turnover rates of model substrates. One such method is based on flow cytometry. Here, we present protocols detailing how to assess protein stability with flow cytometry and how fluorescence-activated cell sorting (FACS) can be used to screen for factors important for protein quality control and protein turnover.
Collapse
Affiliation(s)
- Sophie A Comyn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Gbelcová H, Rimpelová S, Knejzlík Z, Šáchová J, Kolář M, Strnad H, Repiská V, D'Acunto WC, Ruml T, Vítek L. Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells. Lipids Health Dis 2017; 16:250. [PMID: 29262834 PMCID: PMC5738693 DOI: 10.1186/s12944-017-0641-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Statin treatment of hypercholesterolemia is accompanied also with depletion of the mevalonate intermediates, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) necessary for proper function of small GTPases. These include Ras proteins, prevalently mutated in pancreatic cancer. In our study, we evaluated the effect of three key intermediates of the mevalonate pathway on GFP-K-Ras protein localization and the gene expression profile in pancreatic cancer cells after exposure to individual statins. Methods These effects were tested on MiaPaCa-2 human pancreatic cancer cells carrying a K-Ras activating mutation (G12C) after exposure to individual statins (20 μM). The effect of statins (atorvastatin, lovastatin, simvastatin, fluvastatin, cerivastatin, rosuvastatin, and pitavastatin) and mevalonate intermediates on GFP-K-Ras protein translocation was analyzed using fluorescence microscopy. The changes in gene expression induced in MiaPaCa-2 cells treated with simvastatin, FPP, GGPP, and their combinations with simvastatin were examined by whole genome DNA microarray analysis. Results All tested statins efficiently inhibited K-Ras protein trafficking from cytoplasm to the cell membrane of the MiaPaCa-2 cells. The inhibitory effect of statins on GFP-K-Ras protein trafficking was partially prevented by addition of any of the mevalonate pathway’s intermediates tested. Expressions of genes involved in metabolic and signaling pathways modulated by simvastatin treatment was normalized by the concurrent addition of FPP or GGPP. K-Ras protein trafficking within the pancreatic cancer cells is effectively inhibited by the majority of statins; the inhibition is eliminated by isoprenoid intermediates of the mevalonate pathway. Conclusions Our data indicate that the anticancer effects of statins observed in numerous studies to a large extent are mediated through isoprenoid intermediates of the mevalonate pathway, as they influence expression of genes involved in multiple intracellular pathways. Electronic supplementary material The online version of this article (10.1186/s12944-017-0641-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Walter Cosimo D'Acunto
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
29
|
Enhancing carotenoid production in Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1274-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Paramasivan K, Mutturi S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit Rev Biotechnol 2017; 37:974-989. [DOI: 10.1080/07388551.2017.1299679] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Sarma Mutturi
- CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
31
|
Lee SQE, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q 10 production. Microb Cell Fact 2017; 16:39. [PMID: 28253886 PMCID: PMC5335738 DOI: 10.1186/s12934-017-0646-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/10/2017] [Indexed: 04/20/2023] Open
Abstract
Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Tsu Soo Tan
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Makoto Kawamukai
- Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore, Singapore. .,National University Health System (NUHS), Singapore, Singapore. .,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
Avci D, Lemberg MK. Clipping or Extracting: Two Ways to Membrane Protein Degradation. Trends Cell Biol 2016; 25:611-622. [PMID: 26410407 DOI: 10.1016/j.tcb.2015.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022]
Abstract
Protein degradation is a fundamentally important process that allows cells to recognize and remove damaged protein species and to regulate protein abundance according to functional need. A fundamental challenge is to understand how membrane proteins are recognized and removed from cellular organelles. While most of our understanding of this mechanism comes from studies on p97/Cdc48-mediated protein dislocation along the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, recent studies have revealed intramembrane proteolysis to be an additional mechanism that can extract transmembrane segments. Here, we review these two principles in membrane protein degradation and discuss how intramembrane proteolysis, which introduces an irreversible step in protein dislocation, is used to drive regulated protein turnover.
Collapse
Affiliation(s)
- Dönem Avci
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Wadhwa M, Bachhawat A. A genetic screen for increasing metabolic flux in the isoprenoid pathway of Saccharomyces cerevisiae: Isolation of SPT15 mutants using the screen. Metab Eng Commun 2016; 3:164-172. [PMID: 29468122 PMCID: PMC5779727 DOI: 10.1016/j.meteno.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/17/2023] Open
Abstract
A genetic screen to identify mutants that can increase flux in the isoprenoid pathway of yeast has been lacking. We describe a carotenoid-based visual screen built with the core carotenogenic enzymes from the red yeast Rhodosporidium toruloides. Enzymes from this yeast displayed the required, higher capacity in the carotenoid pathway. The development also included the identification of the metabolic bottlenecks, primarily phytoene dehydrogenase, that was subjected to a directed evolution strategy to yield more active mutants. To further limit phytoene pools, a less efficient version of GGPP synthase was employed. The screen was validated with a known flux increasing gene, tHMG1. New mutants in the TATA binding protein SPT15 were isolated using this screen that increased the yield of carotenoids, and an alternate isoprenoid, α-Farnesene confirming increase in overall flux. The findings indicate the presence of previously unknown links to the isoprenoid pathway that can be uncovered using this screen.
Collapse
|
34
|
Ye W, Wu H, He X, Wang L, Zhang W, Li H, Fan Y, Tan G, Liu T, Gao X. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation. PLoS One 2016; 11:e0155505. [PMID: 27182594 PMCID: PMC4868263 DOI: 10.1371/journal.pone.0155505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/30/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. METHODOLOGY/PRINCIPAL FINDINGS A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. CONCLUSIONS/SIGNIFICANCE The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation for elucidating the mechanism of agarwood formation via chemical induction, and thus, enables future improvements in agarwood quality while protecting endangered wild A. sinensis.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Hongqing Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Xin He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
- Guangdong Pharmaceutical University, Guangzhou, 510060, China
| | - Lei Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
- Inner Mongolia Medical University, Hohhot, 010110, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
- * E-mail: (WMZ); (XXG)
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Yunfei Fan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Guohui Tan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Xiaoxia Gao
- Guangdong Pharmaceutical University, Guangzhou, 510060, China
- * E-mail: (WMZ); (XXG)
| |
Collapse
|
35
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
36
|
Majdi M, Ashengroph M, Abdollahi MR. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies. Appl Microbiol Biotechnol 2015; 100:1041-1059. [DOI: 10.1007/s00253-015-7128-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
|
37
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
38
|
Zhuang X, Chappell J. Building terpene production platforms in yeast. Biotechnol Bioeng 2015; 112:1854-64. [DOI: 10.1002/bit.25588] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/04/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Xun Zhuang
- Departments of Plant & Soil Science and Pharmaceutical Sciences; University of Kentucky; Lexington Kentucky
| | - Joe Chappell
- Departments of Plant & Soil Science and Pharmaceutical Sciences; University of Kentucky; Lexington Kentucky
| |
Collapse
|
39
|
Avci D, Fuchs S, Schrul B, Fukumori A, Breker M, Frumkin I, Chen CY, Biniossek M, Kremmer E, Schilling O, Steiner H, Schuldiner M, Lemberg M. The Yeast ER-Intramembrane Protease Ypf1 Refines Nutrient Sensing by Regulating Transporter Abundance. Mol Cell 2014; 56:630-40. [DOI: 10.1016/j.molcel.2014.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/19/2014] [Accepted: 10/09/2014] [Indexed: 02/08/2023]
|
40
|
Upadhyay S, Phukan UJ, Mishra S, Shukla RK. De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics 2014; 15:746. [PMID: 25174837 PMCID: PMC4162912 DOI: 10.1186/1471-2164-15-746] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023] Open
Abstract
Background Saponins are mainly amphipathic glycosides that posses many biological activities and confer potential health benefits to humans. Inspite of its medicinal attributes most of the triterpenes and enzymes involved in the saponin biosynthesis remains uncharacterized at the molecular level. Since the major steroidal components are present in the roots of A. racemosus our study is focussed on the comparative denovo transcriptome analysis of root versus leaf tissue and identifying some root specific transcripts involved in saponin biosynthesis using high-throughput next generation transcriptome sequencing. Results After sequencing, de novo assembly and quantitative assessment, 126861 unigenes were finally generated with an average length of 1200 bp. Then functional annotation and GO enrichment analysis was performed by aligning all-unigenes with public protein databases including NR, SwissProt, and KEGG. Differentially expressed genes in root were initially identified using the RPKM method using digital subtraction between root and leaf. Twenty seven putative secondary metabolite related transcripts were experimentally validated for their expression in root or leaf tissue using q-RT PCR analysis. Most of the above selected transcripts showed preferential expression in root as compared to leaf supporting the digitally subtracted result obtained. The methyl jasmonate application induces the secondary metabolite related gene transcripts leading to their increased accumulation in plants. Therefore, the identified transcripts related to saponin biosynthesis were further analyzed for their induced expression after 3, 5 and 12 hours of exogenous application of Methyl Jasmonate in tissue specific manner. Conclusions In this study, we have identified a large set of cDNA unigenes from A. racemosus leaf and root tissue. This is the first transcriptome sequencing of this non-model species using Illumina, a next generation sequencing technology. The present study has also identified number of root specific transcripts showing homology with saponin biosynthetic pathway. An integrated pathway of identified saponin biosynthesis transcripts their tissue specific expression and induced accumulation after methyl jasmonate treatment was discussed. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-746) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kumar Shukla
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, P,O, CIMAP, Near Kukrail Picnic Spot, Lucknow, U,P, India.
| |
Collapse
|
41
|
Vickers CE, Bongers M, Liu Q, Delatte T, Bouwmeester H. Metabolic engineering of volatile isoprenoids in plants and microbes. PLANT, CELL & ENVIRONMENT 2014; 37:1753-75. [PMID: 24588680 DOI: 10.1111/pce.12316] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 05/09/2023]
Abstract
The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids.
Collapse
Affiliation(s)
- Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
42
|
Piłsyk S, Perlińska-Lenart U, Górka-Nieć W, Graczyk S, Antosiewicz B, Zembek P, Palamarczyk G, Kruszewska JS. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei. Gene 2014; 544:114-22. [PMID: 24793581 DOI: 10.1016/j.gene.2014.04.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
Abstract
The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.
Collapse
Affiliation(s)
- Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wioletta Górka-Nieć
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Sebastian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Beata Antosiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Patrycja Zembek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Grażyna Palamarczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
43
|
Parmar SS, Jaiwal A, Dhankher OP, Jaiwal PK. Coenzyme Q10 production in plants: current status and future prospects. Crit Rev Biotechnol 2013; 35:152-64. [PMID: 24090245 DOI: 10.3109/07388551.2013.823594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.
Collapse
|
44
|
Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Fact 2013; 12:84. [PMID: 24059635 PMCID: PMC3852115 DOI: 10.1186/1475-2859-12-84] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/15/2013] [Indexed: 11/23/2022] Open
Abstract
Background Heterologous microbial production of rare plant terpenoids of medicinal or industrial interest is attracting more and more attention but terpenoid yields are still low. Escherichia coli and Saccharomyces cerevisiae are the most widely used heterologous hosts; a direct comparison of both hosts based on experimental data is difficult though. Hence, the terpenoid pathways of E. coli (via 1-deoxy-D-xylulose 5-phosphate, DXP) and S. cerevisiae (via mevalonate, MVA), the impact of the respective hosts metabolism as well as the impact of different carbon sources were compared in silico by means of elementary mode analysis. The focus was set on the yield of isopentenyl diphosphate (IPP), the general terpenoid precursor, to identify new metabolic engineering strategies for an enhanced terpenoid yield. Results Starting from the respective precursor metabolites of the terpenoid pathways (pyruvate and glyceraldehyde-3-phosphate for the DXP pathway and acetyl-CoA for the MVA pathway) and considering only carbon stoichiometry, the two terpenoid pathways are identical with respect to carbon yield. However, with glucose as substrate, the MVA pathway has a lower potential to supply terpenoids in high yields than the DXP pathway if the formation of the required precursors is taken into account, due to the carbon loss in the formation of acetyl-CoA. This maximum yield is further reduced in both hosts when the required energy and reduction equivalents are considered. Moreover, the choice of carbon source (glucose, xylose, ethanol or glycerol) has an effect on terpenoid yield with non-fermentable carbon sources being more promising. Both hosts have deficiencies in energy and redox equivalents for high yield terpenoid production leading to new overexpression strategies (heterologous enzymes/pathways) for an enhanced terpenoid yield. Finally, several knockout strategies are identified using constrained minimal cut sets enforcing a coupling of growth to a terpenoid yield which is higher than any yield published in scientific literature so far. Conclusions This study provides for the first time a comprehensive and detailed in silico comparison of the most prominent heterologous hosts E. coli and S. cerevisiae as terpenoid factories giving an overview on several promising metabolic engineering strategies paving the way for an enhanced terpenoid yield.
Collapse
Affiliation(s)
- Evamaria Gruchattka
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str, 66, 44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
45
|
Merulla J, Fasana E, Soldà T, Molinari M. Specificity and Regulation of the Endoplasmic Reticulum-Associated Degradation Machinery. Traffic 2013; 14:767-77. [DOI: 10.1111/tra.12068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/18/2013] [Accepted: 03/23/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Elisa Fasana
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | - Tatiana Soldà
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | | |
Collapse
|
46
|
Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W. Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genomics 2013; 14:227. [PMID: 23565705 PMCID: PMC3635961 DOI: 10.1186/1471-2164-14-227] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/22/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Agarwood is an expensive resinous heartwood derived from Aquilaria plants that is widely used in traditional medicines, incense and perfume. Only wounded trees can produce agarwood, and the huge demand for the agarwood products has led all Aquilaria spp. being endangered and listed in the Appendix II of the CITES (http://www.cites.org). The major components of agarwood are sesquiterpenes and phenylethyl chromones. Owing to a lack of genomic information, the molecular basis of wound-induced sesquiterpenes biosynthesis and agarwood formation remains unknown. RESULTS To identify the primary genes that maybe related to agarwood formation, we sequenced 2 cDNA libraries generated from healthy and wounded A. sinensis (Lour.) Gilg. A total of 89,137 unigenes with an average length of 678.65 bp were obtained, and they were annotated in detail at bioinformatics levels. Of those associated with agarwood formation, 30 putatively encoded enzymes in the sesquiterpene biosynthesis pathway, and a handful of transcription factors and protein kinases were related to wound signal transduction. Three full-length cDNAs of sesquiterpene synthases (ASS1-3) were cloned and expressed in Escherichia coli, and enzyme assays revealed that they are active enzymes, with the major products being δ-guaiene. A methyl jasmonate (MJ) induction experiment revealed that the expression of ASS was significantly induced by MJ, and the production of sesquiterpenes was elevated accordingly. The expression of some transcription factors and protein kinases, especially MYB4, WRKY4, MPKK2 and MAPK2, was also induced by MJ and coordinated with ASS expression, suggesting they maybe positive regulators of ASS. CONCLUSIONS This study provides extensive transcriptome information for Aquilaria spp. and valuable clues for elucidating the mechanism of wound-induced agarwood sesquiterpenes biosynthesis and their regulation.
Collapse
|
47
|
Theesfeld CL, Hampton RY. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast. J Biol Chem 2013; 288:8519-8530. [PMID: 23306196 DOI: 10.1074/jbc.m112.404517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-induced gene proteins (INSIGs) function in control of cellular cholesterol. Mammalian INSIGs exert control by directly interacting with proteins containing sterol-sensing domains (SSDs) when sterol levels are elevated. Mammalian 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR) undergoes sterol-dependent, endoplasmic-reticulum (ER)-associated degradation (ERAD) that is mediated by INSIG interaction with the HMGR SSD. The yeast HMGR isozyme Hmg2 also undergoes feedback-regulated ERAD in response to the early pathway-derived isoprene gernanylgeranyl pyrophosphate (GGPP). Hmg2 has an SSD, and its degradation is controlled by the INSIG homologue Nsg1. However, yeast Nsg1 promotes Hmg2 stabilization by inhibiting GGPP-stimulated ERAD. We have proposed that the seemingly disparate INSIG functions can be unified by viewing INSIGs as sterol-dependent chaperones of SSD clients. Accordingly, we tested the role of sterols in the Nsg1 regulation of Hmg2. We found that both Nsg1-mediated stabilization of Hmg2 and the Nsg1-Hmg2 interaction required the early sterol lanosterol. Lowering lanosterol in the cell allowed GGPP-stimulated Hmg2 ERAD. Thus, Hmg2-regulated degradation is controlled by a two-signal logic; GGPP promotes degradation, and lanosterol inhibits degradation. These data reveal that the sterol dependence of INSIG-client interaction has been preserved for over 1 billion years. We propose that the INSIGs are a class of sterol-dependent chaperones that bind to SSD clients, thus harnessing ER quality control in the homeostasis of sterols.
Collapse
Affiliation(s)
- Chandra L Theesfeld
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093.
| |
Collapse
|
48
|
Thibault G, Ng DTW. The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 2012; 4:4/12/a013193. [PMID: 23209158 DOI: 10.1101/cshperspect.a013193] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast.
Collapse
Affiliation(s)
- Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
49
|
Takami T, Fang Y, Zhou X, Jaiseng W, Ma Y, Kuno T. A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast. PLoS One 2012; 7:e49004. [PMID: 23145048 PMCID: PMC3492200 DOI: 10.1371/journal.pone.0049004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.
Collapse
Affiliation(s)
- Tomonori Takami
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Chemical Analysis Section, JCL Bioassay Corporation, Nishiwaki, Japan
| | - Yue Fang
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
- * E-mail:
| | - Xin Zhou
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Wurentuya Jaiseng
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Kampranis SC, Makris AM. Developing a yeast cell factory for the production of terpenoids. Comput Struct Biotechnol J 2012; 3:e201210006. [PMID: 24688666 PMCID: PMC3962098 DOI: 10.5936/csbj.201210006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022] Open
Abstract
Technological developments over the past century have made microbes the work-horses of large scale industrial production processes. Current efforts focus on the metabolic engineering of microbial strains to produce high levels of desirable end-products. The arsenal of the contemporary metabolic engineer contains tools that allow either targeted rational interventions or global screens that combine classical approaches with –omics technologies. Production of terpenoids in S. cerevisiae presents a characteristic example of contemporary biotechnology that integrates all the variety of novel approaches used in metabolic engineering. Terpenoids have attracted significant interest as pharmaceuticals, flavour and fragrance additives, and, more recently, biofuels. The ongoing metabolic engineering efforts, combined with the continuously increasing number of terpene biosynthetic enzymes discovered will enable the economical and environmentally friendly production of a wide range of compounds.
Collapse
Affiliation(s)
| | - Antonios M Makris
- Institute of Applied Biosciences/ CERTH, P.O. Box 60361, Thermi 57001, Thessaloniki, Greece
| |
Collapse
|