1
|
Damanti S, Senini E, De Lorenzo R, Merolla A, Santoro S, Festorazzi C, Messina M, Vitali G, Sciorati C, Rovere-Querini P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024; 16:3428. [PMID: 39458423 PMCID: PMC11510680 DOI: 10.3390/nu16203428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Acute sarcopenia refers to the swift decline in muscle function and mass following acute events such as illness, surgery, trauma, or burns that presents significant challenges in hospitalized older adults. METHODS narrative review to describe the mechanisms and management of acute sarcopenia. RESULTS The prevalence of acute sarcopenia ranges from 28% to 69%, likely underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings. Systemic inflammation, immune-endocrine dysregulation, and anabolic resistance are identified as key pathophysiological factors. Interventions include early mobilization, resistance exercise, neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation, leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceuticals show variable efficacy. CONCLUSIONS Future research should prioritize serial monitoring of muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to improve outcomes and prevent long-term disability associated with acute sarcopenia.
Collapse
Affiliation(s)
- Sarah Damanti
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Eleonora Senini
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Aurora Merolla
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Simona Santoro
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Costanza Festorazzi
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Marco Messina
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Giordano Vitali
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| | - Patrizia Rovere-Querini
- Internal Medicine Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.D.); (G.V.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, 20100 Milan, Italy; (E.S.); (R.D.L.); (A.M.); (S.S.); (C.F.); (M.M.)
| |
Collapse
|
2
|
Martínez-Alarcón L, Martínez-Nicolás A, Jover-Aguilar M, López-López V, Alconchel-Gago F, Ríos A, Madrid JA, de los Ángeles Rol M, Ramírez P, Ramis G. Relationship between Circadian System Status, Child-Pugh Score, and Clinical Outcome in Cirrhotic Patients on Waiting Lists for Liver Transplantation. J Clin Med 2024; 13:4529. [PMID: 39124795 PMCID: PMC11313636 DOI: 10.3390/jcm13154529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Many patients suffering from liver cirrhosis are eventually added to waiting lists for liver transplantation whose priority is established based on scales such as the Child-Pugh score. However, two marker rhythms of the circadian system, motor activity and distal temperature, are not evaluated. Methods: To determine the relationship between the functional status of the circadian system and the Child-Pugh scale in patients awaiting liver transplantation, distal temperature, motor activity, and light exposure rhythms were monitored for a full week using a wrist device (Kronowise 6.0) in 63 patients (17 women, 46 men) aged between 20 and 76 years. Results: Circadian parameters (amplitude, regularity, and fragmentation) of motor activity rhythms, distal temperature, and light exposure worsen in close association with liver disease severity as assessed by using the Child-Pugh score. Likewise, the worsening of rhythmic parameters and liver disease is associated with a deterioration in the markers of the red series: count, hemoglobin, and hematocrit. Conclusions: These results indicate the utility of ambulatory monitoring of marker rhythms to complement the clinical information provided by the Child-Pugh scale and to help establish nutrition, physical exercise, and sleep guidelines that promote better survival and quality of life in these patients.
Collapse
Affiliation(s)
- Laura Martínez-Alarcón
- Departamento de Producción Animal, Hospital Clínico Universitario Virgen de la Arrixaca (UDICA), 30120 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain; (A.M.-N.); (M.J.-A.); (J.A.M.); (M.d.l.Á.R.)
| | - Antonio Martínez-Nicolás
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain; (A.M.-N.); (M.J.-A.); (J.A.M.); (M.d.l.Á.R.)
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, 30100 Murcia, Spain
- Human Physiology Area, Faculty of Sport Sciences, University of Murcia, Santiago de la Ribera-San Javier, 30720 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Marta Jover-Aguilar
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain; (A.M.-N.); (M.J.-A.); (J.A.M.); (M.d.l.Á.R.)
| | - Víctor López-López
- Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain; (V.L.-L.); (F.A.-G.); (A.R.); (P.R.)
| | - Felipe Alconchel-Gago
- Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain; (V.L.-L.); (F.A.-G.); (A.R.); (P.R.)
| | - Antonio Ríos
- Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain; (V.L.-L.); (F.A.-G.); (A.R.); (P.R.)
| | - Juan Antonio Madrid
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain; (A.M.-N.); (M.J.-A.); (J.A.M.); (M.d.l.Á.R.)
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - María de los Ángeles Rol
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain; (A.M.-N.); (M.J.-A.); (J.A.M.); (M.d.l.Á.R.)
- Chronobiology Laboratory, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Pablo Ramírez
- Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain; (V.L.-L.); (F.A.-G.); (A.R.); (P.R.)
| | - Guillermo Ramis
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain; (A.M.-N.); (M.J.-A.); (J.A.M.); (M.d.l.Á.R.)
- Departamento de Producción Animal, Facultad de Veterinaria, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
3
|
Endo Y, Zhu C, Giunta E, Guo C, Koh DJ, Sinha I. The Role of Hypoxia and Hypoxia Signaling in Skeletal Muscle Physiology. Adv Biol (Weinh) 2024; 8:e2200300. [PMID: 37817370 DOI: 10.1002/adbi.202200300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/06/2023] [Indexed: 10/12/2023]
Abstract
Hypoxia and hypoxia signaling play an integral role in regulating skeletal muscle physiology. Environmental hypoxia and tissue hypoxia in muscles cue for their appropriate physiological response and adaptation, and cause an array of cellular and metabolic changes. In addition, muscle stem cells (satellite cells), exist in a hypoxic state, and this intrinsic hypoxic state correlates with their quiescence and stemness. The mechanisms of hypoxia-mediated regulation of satellite cells and myogenesis are yet to be characterized, and their seemingly contradicting effects reported leave their exact roles somewhat perplexing. This review summarizes the recent findings on the effect of hypoxia and hypoxia signaling on the key aspects of muscle physiology, namely, stem cell maintenance and myogenesis with a particular attention given to distinguish the intrinsic versus local hypoxia in an attempt to better understand their respective regulatory roles and how their relationship affects the overall response. This review further describes their mechanistic links and their possible implications on the relevant pathologies and therapeutics.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - Elena Giunta
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Cynthia Guo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Daniel J Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Ichii S, Matsuoka I, Okazaki F, Shimada Y. Zebrafish Models for Skeletal Muscle Senescence: Lessons from Cell Cultures and Rodent Models. Molecules 2022; 27:molecules27238625. [PMID: 36500717 PMCID: PMC9739860 DOI: 10.3390/molecules27238625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Human life expectancy has markedly increased over the past hundred years. Consequently, the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction into differentiated myotubes is also promising. In rodents, several models have been reported that reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models. Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models have been reported in recent years with the development of CRISPR/Cas9 technology, and further advancements in the field using zebrafish models are expected in the future.
Collapse
Affiliation(s)
- Shogo Ichii
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Izumi Matsuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan
| | - Fumiyoshi Okazaki
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-592-31-5411
| |
Collapse
|
5
|
Lee HY, Suh SW, Hwang JH, Shin J. Responsiveness to an erythropoiesis-stimulating agent is correlated with body composition in patients undergoing chronic hemodialysis. Front Nutr 2022; 9:1044895. [PMID: 36532527 PMCID: PMC9755720 DOI: 10.3389/fnut.2022.1044895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Resistance to erythropoiesis-stimulating agents (ESA) is associated with adverse outcomes in patients undergoing chronic hemodialysis. However, the impact of body composition on ESA response remains uncertain. This study retrospectively investigated whether there is an association between the ESA resistance index (ERI) and body composition in patients undergoing chronic hemodialysis. METHODS Multifrequency bioelectrical impedance analysis was used to measure body composition every six months. The ERI was calculated by dividing the weekly body weight-adjusted erythropoietin dose by the hemoglobin concentration. The ERI values were recorded every three months. RESULTS A total of 123 patients were followed up for 24 (interquartile range 5, 75) months. The ERI was negatively correlated with body mass index, arm circumference, arm muscle circumference, body fat percentage, and visceral fat area (P = 0.057, 0.001, 0.017, 0.063, and 0.041, respectively). Patients with a higher mean ERI during the study period had an increased risk of all-cause mortality, cardiovascular events, and infection requiring hospitalization than those with a lower mean ERI (P = 0.027, 0.021, and 0.037, respectively). We also evaluated the association between the slope of body composition parameters and the ERI trend over time and found that the ERI increased over time in patients who had an increased ratio of extracellular water to total body water (P = 0.002) as well as decreased arm circumference, arm muscle circumference, visceral fat area, and phase angle (P = 0.001, P < 0.001, P = 0.036, and 0.002). CONCLUSION ESA responsiveness appears to be associated with body composition in patients undergoing chronic hemodialysis. Therefore, measures improving body composition, such as nutrition and exercise, may have a favorable effect on the response to ESA.
Collapse
Affiliation(s)
- Hyang Yun Lee
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Suk-Won Suh
- Department of Surgery, Chung-Ang University Hospital, Seoul, South Korea
| | - Jin Ho Hwang
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Jungho Shin
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| |
Collapse
|
6
|
Protection of insect neurons by erythropoietin/CRLF3-mediated regulation of pro-apoptotic acetylcholinesterase. Sci Rep 2022; 12:18565. [PMID: 36329181 PMCID: PMC9633726 DOI: 10.1038/s41598-022-22035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is a conserved but largely uncharacterized orphan cytokine receptor of eumetazoan animals. CRLF3-mediated neuroprotection in insects can be stimulated with human erythropoietin. To identify mechanisms of CRLF3-mediated neuroprotection we studied the expression and proapoptotic function of acetylcholinesterase in insect neurons. We exposed primary brain neurons from Tribolium castaneum to apoptogenic stimuli and dsRNA to interfere with acetylcholinesterase gene expression and compared survival and acetylcholinesterase expression in the presence or absence of the CRLF3 ligand erythropoietin. Hypoxia increased apoptotic cell death and expression of both acetylcholinesterase-coding genes ace-1 and ace-2. Both ace genes give rise to single transcripts in normal and apoptogenic conditions. Pharmacological inhibition of acetylcholinesterases and RNAi-mediated knockdown of either ace-1 or ace-2 expression prevented hypoxia-induced apoptosis. Activation of CRLF3 with protective concentrations of erythropoietin prevented the increased expression of acetylcholinesterase with larger impact on ace-1 than on ace-2. In contrast, high concentrations of erythropoietin that cause neuronal death induced ace-1 expression and hence promoted apoptosis. Our study confirms the general proapoptotic function of AChE, assigns a role of both ace-1 and ace-2 in the regulation of apoptotic death and identifies the erythropoietin/CRLF3-mediated prevention of enhanced acetylcholinesterase expression under apoptogenic conditions as neuroprotective mechanism.
Collapse
|
7
|
Awida Z, Hiram-Bab S, Bachar A, Saed H, Zyc D, Gorodov A, Ben-Califa N, Omari S, Omar J, Younis L, Iden JA, Graniewitz Visacovsky L, Gluzman I, Liron T, Raphael-Mizrahi B, Kolomansky A, Rauner M, Wielockx B, Gabet Y, Neumann D. Erythropoietin Receptor (EPOR) Signaling in the Osteoclast Lineage Contributes to EPO-Induced Bone Loss in Mice. Int J Mol Sci 2022; 23:ijms231912051. [PMID: 36233351 PMCID: PMC9570419 DOI: 10.3390/ijms231912051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby implicating a contribution by EPOR on other cell lineages. This study was designed to define the role of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion of EPOR in the monocytic lineage. Low-dose EPO attenuated the reduction in bone volume (BV/TV) in Cx3cr1Cre EPORf/f female mice (27.05%) compared to controls (39.26%), but the difference was not statistically significant. To validate these findings, we increased the EPO dose in LysMCre model mice, a model more commonly used to target preosteoclasts. There was a significant reduction in both the increase in the proportion of bone marrow preosteoclasts (CD115+) observed following high-dose EPO administration and the resulting bone loss in LysMCre EPORf/f female mice (44.46% reduction in BV/TV) as compared to controls (77.28%), without interference with the erythropoietic activity. Our data suggest that EPOR in the monocytic lineage is at least partially responsible for driving the effect of EPO on bone mass.
Collapse
Affiliation(s)
- Zamzam Awida
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Almog Bachar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hussam Saed
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dan Zyc
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anton Gorodov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sewar Omari
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jana Omar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liana Younis
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jennifer Ana Iden
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liad Graniewitz Visacovsky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ida Gluzman
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Liron
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bitya Raphael-Mizrahi
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Albert Kolomansky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Medicine A, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (Y.G.); (D.N.); Tel.: +972-3-6407684 (Y.G.); +972-3-6407256 (D.N.)
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (Y.G.); (D.N.); Tel.: +972-3-6407684 (Y.G.); +972-3-6407256 (D.N.)
| |
Collapse
|
8
|
Benjanuwattra J, Apaijai N, Chunchai T, Singhanat K, Arunsak B, Intachai K, Chattipakorn SC, Chattipakorn N. The temporal impact of erythropoietin administration on mitochondrial function and dynamics in cardiac ischemia/reperfusion injury. Exp Mol Pathol 2022; 127:104802. [DOI: 10.1016/j.yexmp.2022.104802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/24/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
|
9
|
Chiang WF, Hsiao PJ, Wu KL, Chen HM, Chu CM, Chan JS. Investigation of the Relationship between Lean Muscle Mass and Erythropoietin Resistance in Maintenance Haemodialysis Patients: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095704. [PMID: 35565102 PMCID: PMC9100199 DOI: 10.3390/ijerph19095704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022]
Abstract
Each patient undergoing maintenance haemodialysis (MHD) has a different response to erythropoiesis-stimulating agents (ESAs). Haemodilution due to fluid overload has been shown to contribute to anaemia. Body mass index (BMI) has been shown to influence ESA response in dialysis patients; however, BMI calculation does not distinguish between fat and lean tissue. The association between lean muscle mass and erythropoietin hyporesponsiveness is still not well-known among MHD patients. We designed a cross-sectional study and used bioimpedance spectroscopy (BIS) to analyse the relationship between body composition, haemoglobin level, and erythropoietin resistance index (ERI) in MHD patients. Seventy-seven patients were enrolled in the study group. Compared with patients with haemoglobin ≥ 10 g/dL, those with haemoglobin < 10 g/dL had higher serum ferritin levels, malnutrition−inflammation scores (MIS), relative overhydration, ESA doses, and ERIs. In multivariate logistic regression, higher ferritin levels and MIS were the only predictors of lower haemoglobin levels. The ERI was significantly positively correlated with age, Kt/V, ferritin levels, and MIS and negatively correlated with albumin levels, BMI, and lean tissue index (LTI). Multivariate linear regression analysis revealed that ferritin levels, BMI, and LTI were the most important predictors of ERI. In MHD patients, using BIS to measure body composition can facilitate the development of early interventions that aim to prevent sarcopenia, support ESA responsiveness, and, consequently, improve anaemia management.
Collapse
Affiliation(s)
- Wen-Fang Chiang
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan; (W.-F.C.); (K.-L.W.)
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan; (W.-F.C.); (K.-L.W.)
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Correspondence: or (P.-J.H.); (J.-S.C.); Tel.: +886-3-4799595 (ext. 325823) (P.-J.H. & J.-S.C.)
| | - Kun-Lin Wu
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan; (W.-F.C.); (K.-L.W.)
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Hung-Ming Chen
- Division of Haematology and Oncology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan;
| | - Chi-Ming Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Department of Public Health, School of Public Health, China Medical University, Taichung 404, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Big Data Research Center, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Division of Biostatistics and Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan; (W.-F.C.); (K.-L.W.)
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: or (P.-J.H.); (J.-S.C.); Tel.: +886-3-4799595 (ext. 325823) (P.-J.H. & J.-S.C.)
| |
Collapse
|
10
|
Cheng CY, Kuo YJ. Single-centre cross-sectional study on the impact of cumulative erythropoietin on bone mineral density in maintenance dialysis patients. BMJ Open 2022; 12:e056390. [PMID: 35414556 PMCID: PMC9006825 DOI: 10.1136/bmjopen-2021-056390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Numerous factors are associated with the risk of osteoporosis in patients with chronic kidney disease, including vitamin D deficiency, hypocalcaemia, hyperphosphataemia and secondary hyperparathyroidism. This study aimed to assess the correlation between cumulative erythropoietin (EPO) doses and osteoporosis risk in patients on chronic dialysis. A further objective was to determine the bone mineral density (BMD) of patients undergoing dialysis and its correlation with specific clinical and biochemical factors. SETTING The study was undertaken at a tertiary care centre within the southern region of the Taipei Metropolitan area. PARTICIPANTS This cross-sectional study included 165 participants aged 41-90 years. Dual-energy X-ray absorptiometry was used to measure BMD. A total of 108 age-matched and sex-matched participants were selected for further analysis. Stepwise multiple regression analysis was used to investigate the relationship between bone measurements and bone diseases' risk factors. PRIMARY AND SECONDARY OUTCOMES The primary outcome of this study was to assess the T-scores of the participants who received dialysis for more than 3 months in our institution. The secondary outcome was using a receiver operating curve to predict osteoporosis development in patients on dialysis who received EPO treatments. RESULTS The mean age of the participants was 66.6±11.1 years. A total of 99 (60%) participants (41 men, 58 women) were diagnosed as having osteoporosis. Fifty-four (32.7%) participants with T-scores >-2.5 but <-1.0 were diagnosed as having osteopenia. Osteoporotic participants received 1.61±1.52 million units EPO compared with nonosteoporotic participants, who received 1.01±0.64 million units (EPO1 model), p=0.015. The cumulative EPO dose negatively correlated with the T-scores of participants (p<0.0001). CONCLUSION On the basis of the results of the study, cumulative EPO doses show a negative correlation with BMD development in patients on chronic dialysis.
Collapse
Affiliation(s)
- Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. Comprehensive Analysis of mRNA, lncRNA, circRNA, and miRNA Expression Profiles and Their ceRNA Networks in the Longissimus Dorsi Muscle of Cattle-Yak and Yak. Front Genet 2021; 12:772557. [PMID: 34966412 PMCID: PMC8710697 DOI: 10.3389/fgene.2021.772557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens), demonstrates obvious heterosis in production performance. Male hybrid sterility has been focused on for a long time; however, the mRNAs and non-coding RNAs related to muscle development as well as their regulatory networks remain unclear. The phenotypic data showed that the production performance (i.e., body weight, withers height, body length, and chest girth) of cattle-yak was significantly better than that of the yak, and the economic benefits of the cattle-yak were higher under the same feeding conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of cattle-yak and yak to systematically reveal the molecular basis using the high-throughput sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were identified to be differentially expressed between cattle-yaks and yaks in the longissimus dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were significantly enriched in myoblast differentiation and some signaling pathways related to muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway). We constructed a competing endogenous RNA (ceRNA) network and found that some non-coding RNAs differentially expressed may be involved in the regulation of muscle traits. Taken together, this study may be used as a reference tool to provide the molecular basis for studying muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Renqing Dingkao
- Livestock Institute of Gannan Tibetan Autonomous Prefecture, Hezuo, China
| | - Zhuoma Zhaxi
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Getu Burenchao
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
12
|
Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes (Basel) 2021; 13:genes13010081. [PMID: 35052420 PMCID: PMC8774514 DOI: 10.3390/genes13010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.
Collapse
|
13
|
Zhang H, Wang S, Liu D, Gao C, Han Y, Guo X, Qu X, Li W, Zhang S, Geng J, Zhang L, Mendelson A, Yazdanbakhsh K, Chen L, An X. EpoR-tdTomato-Cre mice enable identification of EpoR expression in subsets of tissue macrophages and hematopoietic cells. Blood 2021; 138:1986-1997. [PMID: 34098576 PMCID: PMC8767788 DOI: 10.1182/blood.2021011410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022] Open
Abstract
The erythropoietin receptor (EpoR) has traditionally been thought of as an erythroid-specific gene. Notably, accumulating evidence suggests that EpoR is expressed well beyond erythroid cells. However, the expression of EpoR in non-erythroid cells has been controversial. In this study, we generated EpoR-tdTomato-Cre mice and used them to examine the expression of EpoR in tissue macrophages and hematopoietic cells. We show that in marked contrast to the previously available EpoR-eGFPcre mice, in which a very weak eGFP signal was detected in erythroid cells, tdTomato was readily detectable in both fetal liver (FL) and bone marrow (BM) erythroid cells at all developmental stages and exhibited dynamic changes during erythropoiesis. Consistent with our recent finding that erythroblastic island (EBI) macrophages are characterized by the expression of EpoR, tdTomato was readily detected in both FL and BM EBI macrophages. Moreover, tdTomato was also detected in subsets of hematopoietic stem cells, progenitors, megakaryocytes, and B cells in BM as well as in spleen red pulp macrophages and liver Kupffer cells. The expression of EpoR was further shown by the EpoR-tdTomato-Cre-mediated excision of the floxed STOP sequence. Importantly, EPO injection selectively promoted proliferation of the EpoR-expressing cells and induced erythroid lineage bias during hematopoiesis. Our findings imply broad roles for EPO/EpoR in hematopoiesis that warrant further investigation. The EpoR-tdTomato-Cre mouse line provides a powerful tool to facilitate future studies on EpoR expression and regulation in various non-hematopoietic cells and to conditionally manipulate gene expression in EpoR-expressing cells for functional studies.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
- Laboratory of Membrane Biology and
| | - Shihui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
- Laboratory of Membrane Biology and
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | | | | | | | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Wei Li
- Laboratory of Membrane Biology and
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Jingyu Geng
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Linlin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Avital Mendelson
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | | | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China; and
| | - Xiuli An
- Laboratory of Membrane Biology and
| |
Collapse
|
14
|
Martínez-Bautista G, Martínez-Burguete T, Peña-Marín ES, Jiménez-Martínez LD, Martínez-García R, Camarillo-Coop S, Burggren WW, Álvarez-González CA. Hypoxia- and hyperoxia-related gene expression dynamics during developmental critical windows of the tropical gar Atractosteus tropicus. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111093. [PMID: 34626804 DOI: 10.1016/j.cbpa.2021.111093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/21/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Aquatic hypoxia is both a naturally-occurring and anthropogenically-generated event. Fish species have evolved different adaptations to cope with hypoxic environments, including gill modifications and air breathing. However, little is known about the molecular mechanisms involved in the respiration of embryonic and larval fishes during critical windows of development. We assessed expression of the genes hif-1α, fih-1, nhe1, epo, gr and il8 using the developing tropical gar as a piscine model during three developmental periods (fertilization to hatch, 1 to 6 days post hatch (dph) and 7 to 12 dph) when exposed to normoxia (~7.43 mg/L DO), hypoxia (~2.5 mg/L DO) or hyperoxia (~9.15 mg/L DO). All genes had higher expression when fish were exposed to either hypoxia or hyperoxia during the first two developmental periods. However, fish continuously exposed to hypoxia had increased expression of the six genes by hatching and 6 dph, and by 12 dph only hif-1α still had increased expression. The middle developmental period was the most hypoxia-sensitive, coinciding with several changes in physiology and morphology. The oldest larvae were the most resilient to gene expression change, with little variation in expression of the six genes compared. This study is the first to relate the molecular response of an air-breathing fish to oxygen availability to developmental critical windows and contributes to our understanding of some molecular responses of developing fish to changes in oxygen availability.
Collapse
Affiliation(s)
- Gil Martínez-Bautista
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico; Developmental Physiology Laboratory, Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States.
| | - Talhia Martínez-Burguete
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Emyr Saul Peña-Marín
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Luis Daniel Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Rafael Martínez-García
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Susana Camarillo-Coop
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Warren W Burggren
- Developmental Physiology Laboratory, Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Carlos Alfonso Álvarez-González
- Laboratorio de Acuacultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
15
|
Dey S, Lee J, Noguchi CT. Erythropoietin Non-hematopoietic Tissue Response and Regulation of Metabolism During Diet Induced Obesity. Front Pharmacol 2021; 12:725734. [PMID: 34603036 PMCID: PMC8479821 DOI: 10.3389/fphar.2021.725734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) receptor (EPOR) determines EPO response. High level EPOR on erythroid progenitor cells gives rise to EPO regulated production of red blood cells. Animal models provide evidence for EPO activity in non-hematopoietic tissue mediated by EPOR expression. Beyond erythropoiesis, EPO activity includes neuroprotection in brain ischemia and trauma, endothelial nitric oxide production and cardioprotection, skeletal muscle wound healing, and context dependent bone remodeling affecting bone repair or bone loss. This review highlights examples of EPO protective activity in select non-hematopoietic tissue with emphasis on metabolic response mediated by EPOR expression in fat and brain and sex-specific regulation of fat mass and inflammation associated with diet induced obesity. Endogenous EPO maintains glucose and insulin tolerance and protects against fat mass accumulation and inflammation. Accompanying the increase in erythropoiesis with EPO treatment is improved glucose tolerance and insulin response. During high fat diet feeding, EPO also decreases fat mass accumulation in male mice. The increased white adipose tissue inflammation and macrophage infiltration associated with diet induced obesity are also reduced with EPO treatment with a shift toward an anti-inflammatory state and decreased inflammatory cytokine production. In female mice the protective effect of estrogen against obesity supersedes EPO regulation of fat mass and inflammation, and requires estrogen receptor alpha activity. In brain, EPOR expression in the hypothalamus localizes to proopiomelanocortin neurons in the arcuate nucleus that promotes a lean phenotype. EPO stimulation of proopiomelanocortin neurons increases STAT3 signaling and production of proopiomelanocortin. Cerebral EPO contributes to metabolic response, and elevated brain EPO reduces fat mass and hypothalamus inflammation during diet induced obesity in male mice without affecting EPO stimulated erythropoiesis. Ovariectomy abrogates the sex-specific metabolic response of brain EPO. The sex-dimorphic EPO metabolic response associated with fat mass accumulation and inflammation during diet induced obesity provide evidence for crosstalk between estrogen and EPO in their anti-obesity potential in female mice mediated in part via tissue specific response in brain and white adipose tissue. Endogenous and exogenous EPO response in non-hematopoietic tissue demonstrated in animal models suggests additional activity by which EPO treatment may affect human health beyond increased erythropoiesis.
Collapse
Affiliation(s)
- Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
17
|
Nijholt KT, Meems LMG, Ruifrok WPT, Maass AH, Yurista SR, Pavez-Giani MG, Mahmoud B, Wolters AHG, van Veldhuisen DJ, van Gilst WH, Silljé HHW, de Boer RA, Westenbrink BD. The erythropoietin receptor expressed in skeletal muscle is essential for mitochondrial biogenesis and physiological exercise. Pflugers Arch 2021; 473:1301-1313. [PMID: 34142210 PMCID: PMC8302562 DOI: 10.1007/s00424-021-02577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Erythropoietin (EPO) is a haematopoietic hormone that regulates erythropoiesis, but the EPO-receptor (EpoR) is also expressed in non-haematopoietic tissues. Stimulation of the EpoR in cardiac and skeletal muscle provides protection from various forms of pathological stress, but its relevance for normal muscle physiology remains unclear. We aimed to determine the contribution of the tissue-specific EpoR to exercise-induced remodelling of cardiac and skeletal muscle. Baseline phenotyping was performed on left ventricle and m. gastrocnemius of mice that only express the EpoR in haematopoietic tissues (EpoR-tKO). Subsequently, mice were caged in the presence or absence of a running wheel for 4 weeks and exercise performance, cardiac function and histological and molecular markers for physiological adaptation were assessed. While gross morphology of both muscles was normal in EpoR-tKO mice, mitochondrial content in skeletal muscle was decreased by 50%, associated with similar reductions in mitochondrial biogenesis, while mitophagy was unaltered. When subjected to exercise, EpoR-tKO mice ran slower and covered less distance than wild-type (WT) mice (5.5 ± 0.6 vs. 8.0 ± 0.4 km/day, p < 0.01). The impaired exercise performance was paralleled by reductions in myocyte growth and angiogenesis in both muscle types. Our findings indicate that the endogenous EPO-EpoR system controls mitochondrial biogenesis in skeletal muscle. The reductions in mitochondrial content were associated with reduced exercise capacity in response to voluntary exercise, supporting a critical role for the extra-haematopoietic EpoR in exercise performance.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Willem P T Ruifrok
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Salva R Yurista
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Belend Mahmoud
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, HPC AB31, 9700 RB, P.O. Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
18
|
Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021; 12:684899. [PMID: 34248671 PMCID: PMC8260947 DOI: 10.3389/fphys.2021.684899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.
Collapse
Affiliation(s)
- Tamara Pircher
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Henning Wackerhage
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
19
|
Takata T, Mae Y, Yamada K, Taniguchi S, Hamada S, Yamamoto M, Iyama T, Isomoto H. Skeletal muscle mass is associated with erythropoietin response in hemodialysis patients. BMC Nephrol 2021; 22:134. [PMID: 33863297 PMCID: PMC8052822 DOI: 10.1186/s12882-021-02346-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/01/2021] [Indexed: 01/25/2023] Open
Abstract
Background Hyporesponsiveness to erythropoietin stimulating agent (ESA) is associated with poor outcomes in patients with chronic kidney disease. Although ESA hyporesponsiveness and sarcopenia have a common pathophysiological background, clinical evidence linking them is scarce. The purpose of the study was to investigate the relationship between ESA responsiveness and skeletal muscle mass in hemodialysis patients. Methods This cross-sectional study analyzed 70 patients on maintenance hemodialysis who were treated with ESA. ESA responsiveness was evaluated by erythropoietin resistance index (ERI), calculated as a weekly dose of ESA divided by body weight and hemoglobin (IU/kg/week/dL), and a weekly dose of ESA/hemoglobin (IU/week/dL). A dose of ESA is equivalated to epoetin β. Correlations between ESA responsiveness and clinical parameters including skeletal muscle mass were analyzed. Results Among the 70 patients, ERI was positively correlated to age (p < 0.002) and negatively correlated to height (p < 0.001), body weight (p < 0.001), BMI (p < 0.001), skeletal muscle mass (p < 0.001), transferrin saturation (TSAT) (p = 0.049), and zinc (p = 0.006). In the multiple linear regression analysis, TSAT, zinc, and skeletal muscle mass were associated with ERI and weekly ESA dose/hemoglobin. Conclusions Skeletal muscle mass was the independent predictor for ESA responsiveness as well as TSAT and zinc. Sarcopenia is another target for the management of anemia in patients with hemodialysis.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan.
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan
| | - Kentaro Yamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan
| | | | - Shintaro Hamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan
| | - Marie Yamamoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, , Tottori University, 36-1 Nishimachi, Tottori , 683-8504, Yonago, Japan
| |
Collapse
|
20
|
Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int J Mol Sci 2020; 21:ijms21218131. [PMID: 33143240 PMCID: PMC7662373 DOI: 10.3390/ijms21218131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Collapse
|
21
|
Avola M, Mangano GRA, Testa G, Mangano S, Vescio A, Pavone V, Vecchio M. Rehabilitation Strategies for Patients with Femoral Neck Fractures in Sarcopenia: A Narrative Review. J Clin Med 2020; 9:E3115. [PMID: 32993140 PMCID: PMC7600322 DOI: 10.3390/jcm9103115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is defined as a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength. It has been identified as one of the most common comorbidities associated with femoral neck fracture (FNF). The aim of this review was to evaluate the impact of physical therapy on FNF patients' function and rehabilitation. The selected articles were randomized controlled trials (RCTs), published in the last 10 years. Seven full texts were eligible for this review: three examined the impact of conventional rehabilitation and nutritional supplementation, three evaluated the effects of rehabilitation protocols compared to new methods and a study explored the intervention with erythropoietin (EPO) in sarcopenic patients with FNF and its potential effects on postoperative rehabilitation. Physical activity and dietary supplementation are the basic tools of prevention and rehabilitation of sarcopenia in elderly patients after hip surgery. The most effective physical therapy seems to be exercise of progressive resistance. Occupational therapy should be included in sarcopenic patients for its importance in cognitive rehabilitation. Erythropoietin and bisphosphonates could represent medical therapy resources.
Collapse
Affiliation(s)
- Marianna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University Hospital Policlinico-San Marco University of Catania, 95123 Catania, Italy; (M.A.); (G.R.A.M.); (M.V.)
| | - Giulia Rita Agata Mangano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University Hospital Policlinico-San Marco University of Catania, 95123 Catania, Italy; (M.A.); (G.R.A.M.); (M.V.)
| | - Gianluca Testa
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-San Marco, University of Catania, 95123 Catania, Italy; (S.M.); (A.V.); (V.P.)
| | - Sebastiano Mangano
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-San Marco, University of Catania, 95123 Catania, Italy; (S.M.); (A.V.); (V.P.)
| | - Andrea Vescio
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-San Marco, University of Catania, 95123 Catania, Italy; (S.M.); (A.V.); (V.P.)
| | - Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-San Marco, University of Catania, 95123 Catania, Italy; (S.M.); (A.V.); (V.P.)
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University Hospital Policlinico-San Marco University of Catania, 95123 Catania, Italy; (M.A.); (G.R.A.M.); (M.V.)
| |
Collapse
|
22
|
Noguchi CT. Erythropoietin regulates metabolic response in mice via receptor expression in adipose tissue, brain, and bone. Exp Hematol 2020; 92:32-42. [PMID: 32950599 DOI: 10.1016/j.exphem.2020.09.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Erythropoietin (EPO) acts by binding to erythroid progenitor cells to regulate red blood cell production. While EPO receptor (Epor) expression is highest on erythroid tissue, animal models exhibit EPO activity in nonhematopoietic tissues, mediated, in part, by tissue-specific Epor expression. This review describes the metabolic response in mice to endogenous EPO and EPO treatment associated with glucose metabolism, fat mass accumulation, and inflammation in white adipose tissue and brain during diet-induced obesity and with bone marrow fat and bone remodeling. During high-fat diet-induced obesity, EPO treatment improves glucose tolerance, decreases fat mass accumulation, and shifts white adipose tissue from a pro-inflammatory to an anti-inflammatory state. Fat mass regulation by EPO is sex dimorphic, apparent in males and abrogated by estrogen in females. Cerebral EPO also regulates fat mass and hypothalamus inflammation associated with diet-induced obesity in males and ovariectomized female mice. In bone, EPO contributes to the balance between adipogenesis and osteogenesis in both male and female mice. EPO treatment promotes bone loss mediated via Epor in osteoblasts and reduces bone marrow adipocytes before and independent of change in white adipose tissue fat mass. EPO regulation of bone loss and fat mass is independent of EPO-stimulated erythropoiesis. EPO nonhematopoietic tissue response may relate to the long-term consequences of EPO treatment of anemia in chronic kidney disease and to the alternative treatment of oral hypoxia-inducible factor prolyl hydroxylase inhibitors that increase endogenous EPO production.
Collapse
Affiliation(s)
- Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
23
|
Suresh S, Lee J, Noguchi CT. Erythropoietin signaling in osteoblasts is required for normal bone formation and for bone loss during erythropoietin-stimulated erythropoiesis. FASEB J 2020; 34:11685-11697. [PMID: 32671900 DOI: 10.1096/fj.202000888r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/02/2023]
Abstract
Erythropoietin (EPO) regulates erythropoiesis by binding to erythropoietin receptor (Epor) on erythroid progenitor cells. Epor is also expressed on bone forming osteoblasts and bone loss accompanies EPO-stimulated erythropoiesis in mice. Mice with Epor restricted to erythroid tissue exhibit reduced bone and increased marrow adipocytes; in contrast, transgenic mice (Tg) with osteoblastic-specific deletion of Epor exhibit reduced trabecular bone with age without change in marrow adipocytes. By 12 weeks, male Tg mice had 22.2% and female Tg mice had 29.6% reduced trabecular bone volume (BV) compared to controls. EPO administration (1200 U/kg) for 10 days reduced trabecular bone in control mice but not in Tg mice. There were no differences in numbers of osteoblasts, osteoclasts, and marrow adipocytes in Tg mice, suggesting independence of EPO signaling in mature osteoblasts, osteoclasts, and adipocytes. Female Tg mice had increased number of dying osteocytes and male Tg mice had a trend for more empty lacunae. Osteogenic cultures from Tg mice had reduced differentiation and mineralization with reduced Alpl and Runx2 transcripts. In conclusion, endogenous EPO-Epor signaling in osteoblasts is important in bone remodeling, particularly trabecular bone and endogenous Epor expression in osteoblasts is required for bone loss accompanying EPO-stimulated erythropoiesis.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
25
|
Suresh S, Rajvanshi PK, Noguchi CT. The Many Facets of Erythropoietin Physiologic and Metabolic Response. Front Physiol 2020; 10:1534. [PMID: 32038269 PMCID: PMC6984352 DOI: 10.3389/fphys.2019.01534] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
In mammals, erythropoietin (EPO), produced in the kidney, is essential for bone marrow erythropoiesis, and hypoxia induction of EPO production provides for the important erythropoietic response to ischemic stress, such as during blood loss and at high altitude. Erythropoietin acts by binding to its cell surface receptor which is expressed at the highest level on erythroid progenitor cells to promote cell survival, proliferation, and differentiation in production of mature red blood cells. In addition to bone marrow erythropoiesis, EPO causes multi-tissue responses associated with erythropoietin receptor (EPOR) expression in non-erythroid cells such neural cells, endothelial cells, and skeletal muscle myoblasts. Animal and cell models of ischemic stress have been useful in elucidating the potential benefit of EPO affecting maintenance and repair of several non-hematopoietic organs including brain, heart and skeletal muscle. Metabolic and glucose homeostasis are affected by endogenous EPO and erythropoietin administration affect, in part via EPOR expression in white adipose tissue. In diet-induced obese mice, EPO is protective for white adipose tissue inflammation and gives rise to a gender specific response in weight control associated with white fat mass accumulation. Erythropoietin regulation of fat mass is masked in female mice due to estrogen production. EPOR is also expressed in bone marrow stromal cells (BMSC) and EPO administration in mice results in reduced bone independent of the increase in hematocrit. Concomitant reduction in bone marrow adipocytes and bone morphogenic protein suggests that high EPO inhibits adipogenesis and osteogenesis. These multi-tissue responses underscore the pleiotropic potential of the EPO response and may contribute to various physiological manifestations accompanying anemia or ischemic response and pharmacological uses of EPO.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen Kumar Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci 2020; 17:33-44. [PMID: 31929736 PMCID: PMC6945565 DOI: 10.7150/ijms.38590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO could attenuate burn-induced muscle fiber atrophy. Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn. Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the level of the protective effect was no significant difference between two EPO-treated groups (p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated burn group but not weekly EPO group. Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chee-Yin Chai
- Departments of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
27
|
Zhang Y, Chen L, Wu P, Lang J, Chen L. Intervention with erythropoietin in sarcopenic patients with femoral intertrochanteric fracture and its potential effects on postoperative rehabilitation. Geriatr Gerontol Int 2019; 20:150-155. [PMID: 31837195 DOI: 10.1111/ggi.13845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
AIM To explore the intervention with erythropoietin (EPO) in sarcopenic patients with femoral intertrochanteric fractures, and its potential effects on postoperative rehabilitation. METHODS A total of 141 patients with femoral intertrochanteric fracture were selected from January 2018 to January 2019. Patients (aged ≥60 years) with indications for EPO use, but without significant medical history, were selected in the present study. All patients were screened for sarcopenia, and divided into the intervention group and control group according to whether they took EPO. The intervention groups received EPO postoperatively every day for 10 days, whereas the control groups received an equal dose of normal saline. Patients' handgrip strength, appendicular skeletal muscle, duration of hospitalization and postoperative infection rate were assessed by analysis. RESULTS Among sarcopenic women, the handgrip strength was higher in the intervention group than in the control group after a week (P < 0.05). However, no significant effect was found in men (P > 0.05). The appendicular skeletal muscle increment of the intervention group with sarcopenia was markedly increased regardless of sex (P < 0.001). In addition, the postoperative infection rate was lower in the intervention group than the control group (P < 0.05), accompanied by a shorter hospital stay due to EPO administration (P < 0.05). CONCLUSIONS EPO can improve the muscle strength of female patients with sarcopenia during the perioperative period, and increase muscle mass both of women and men. It can improve the symptoms of sarcopenia, but cannot reverse sarcopenia. Additionally, it can reduce the postoperative complications of patients with hip fracture and shorten the length of hospital stay. Therefore, postoperative administration of EPO might potentially promote rapid postoperative rehabilitation. Geriatr Gerontol Int 2020; 20: 150-155.
Collapse
Affiliation(s)
- Yiou Zhang
- Wenzhou Medical University Affiliated Cixi Hospital, Ningbo, China
| | - Li Chen
- University of Melbourne Medical School, Melbourne, Victoria, Australia
| | - Peng Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Suresh S, de Castro LF, Dey S, Robey PG, Noguchi CT. Erythropoietin modulates bone marrow stromal cell differentiation. Bone Res 2019; 7:21. [PMID: 31666996 PMCID: PMC6804931 DOI: 10.1038/s41413-019-0060-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Erythropoietin is essential for bone marrow erythropoiesis and erythropoietin receptor on non-erythroid cells including bone marrow stromal cells suggests systemic effects of erythropoietin. Tg6 mice with chronic erythropoietin overexpression have a high hematocrit, reduced trabecular and cortical bone and bone marrow adipocytes, and decreased bone morphogenic protein 2 driven ectopic bone and adipocyte formation. Erythropoietin treatment (1 200 IU·kg–1) for 10 days similarly exhibit increased hematocrit, reduced bone and bone marrow adipocytes without increased osteoclasts, and reduced bone morphogenic protein signaling in the bone marrow. Interestingly, endogenous erythropoietin is required for normal differentiation of bone marrow stromal cells to osteoblasts and bone marrow adipocytes. ΔEpoRE mice with erythroid restricted erythropoietin receptor exhibit reduced trabecular bone, increased bone marrow adipocytes, and decreased bone morphogenic protein 2 ectopic bone formation. Erythropoietin treated ΔEpoRE mice achieved hematocrit similar to wild-type mice without reduced bone, suggesting that bone reduction with erythropoietin treatment is associated with non-erythropoietic erythropoietin response. Bone marrow stromal cells from wild-type, Tg6, and ΔEpoRE-mice were transplanted into immunodeficient mice to assess development into a bone/marrow organ. Like endogenous bone formation, Tg6 bone marrow cells exhibited reduced differentiation to bone and adipocytes indicating that high erythropoietin inhibits osteogenesis and adipogenesis, while ΔEpoRE bone marrow cells formed ectopic bones with reduced trabecular regions and increased adipocytes, indicating that loss of erythropoietin signaling favors adipogenesis at the expense of osteogenesis. In summary, endogenous erythropoietin signaling regulates bone marrow stromal cell fate and aberrant erythropoietin levels result in their impaired differentiation.
Collapse
Affiliation(s)
- Sukanya Suresh
- 1Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Luis Fernandez de Castro
- 2Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Soumyadeep Dey
- 1Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Pamela G Robey
- 2Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Constance Tom Noguchi
- 1Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
29
|
Macias-Velez RJ, Fukushima-Díaz de León L, Beas-Zárate C, Rivera-Cervantes MC. Intranasal Erythropoietin Protects CA1 Hippocampal Cells, Modulated by Specific Time Pattern Molecular Changes After Ischemic Damage in Rats. J Mol Neurosci 2019; 68:590-602. [PMID: 31054091 DOI: 10.1007/s12031-019-01308-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Erythropoietin, a multitarget molecule exhibited neuroprotective properties, especially against cerebral ischemia. However, little effort has been made to determinate both the administration pathway and doses that diminishes neuronal damage. In this study, we investigate the effect on CA1 region of different intranasal doses of rHuEPO (500, 1000 and 2500 IU/kg) applied in distinct post-damage times (1, 6, and 24 h) against ischemic cellular damage. Furthermore, most effective dose and time were used to evaluate gen and protein expression changes in 3 key molecules (EPO, EPOR, and βcR). We established that CA1-region present histopathological damage in this ischemia model and that rHuEPO protects cells against damage, particularly at 1000 IU dose. Molecular data shows that EPO and EPOR gene expression are upregulated in a short term after damage treatment with rHuEPO (1 h); oppositely, BcR is upregulated in ischemic and Isc + EPO. Protein expression data displays no changes on EPO expression in evaluated times after treatment, but a tendency to increase 24 h after damage; in the opposite way, EPOR is upregulated significantly 6 h after treatment and this effect last until 24 h. So, our data suggest that a single intranasal dose of rHuEPO (1 h post-injury) provides histological neurorestoration in CA1 hippocampal region, even if we did not observe a dose-dependent dose effect, the medium dose evaluated (1000 UI/kg of b.w.) was more effective and sufficient for induces molecular changes that provides a platform for neuroprotection.
Collapse
Affiliation(s)
- R J Macias-Velez
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - L Fukushima-Díaz de León
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - C Beas-Zárate
- Laboratorio de Regeneración Neural y Desarrollo Neural, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - M C Rivera-Cervantes
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
30
|
Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya A. Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structure and synthesis of Erythropoietin: Erythropoietin (EPO) is a glycoprotein hormone.Recombinant Erythropoietin (Epoetin): Human recombinant erythropoietin is characterised as a factor which stimulates differentiation and proliferation of erythroid precursor cells, and as a tissue protective factor.Anti-ischemic effects of recombinant Erythropoietin: Erythropoietin is one of the most perspective humoral agents which are involved in the preconditioning phenomenon.Erythropoietin receptors and signal transduction pathways: Erythropoietin effects on cells through their interconnection with erythropoietin receptors, which triggers complex intracellular signal cascades, such as JAK2/STAT signaling pathway, phosphatidylinositol 3-kinase (PI3K), protein kinase C, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB signaling pathways.Mechanisms of the effect of Erythropoietin on hematopoietic and non-hematopoietic cells and tissues: In addition to regulation of haemopoiesis, erythropoietin mediates bone formation as it has an effect on hematopoietic stem cells and osteoblastic niche, and this illustrates connection between the processes of haematopoiesis and osteopoiesis which take place in the red bone marrow.The effect of Erythropoietin on mesenchymal stem cells and process of bone tissue formation: Erythropoietin promotes mesenchymal stem cells proliferation, migration and differentiation in osteogenic direction. The evidence of which is expression of bone phenotype by cells under the influence of EPO, including activation of bone specific transcription factors Runx2, osteocalcin and bone sialoprotein.Conclusion: Erythropoietin has a pleiotropic effect on various types of cells and tissues. But the mechanisms which are involved in the process of bone tissue restoration via erythropoietin are still poorly understood.
Collapse
|
31
|
Ossetrova NI, Stanton P, Krasnopolsky K, Ismail M, Doreswamy A, Hieber KP. Comparison of Biodosimetry Biomarkers for Radiation Dose and Injury Assessment After Mixed-Field (Neutron and Gamma) and Pure Gamma Radiation in the Mouse Total-Body Irradiation Model. HEALTH PHYSICS 2018; 115:743-759. [PMID: 33289997 DOI: 10.1097/hp.0000000000000939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The detonation of a nuclear weapon and the occurrence of a nuclear accident represent possible mass-casualty events with significant exposure to mixed neutron and gamma radiation fields in the first few minutes after the event with the ensuing fallout, extending for miles from the epicenter, that would result primarily in photon (gamma- and/or x-ray) exposure. Circulating biomarkers represent a crucial source of information in a mass-casualty radiation exposure triage scenario. We evaluated multiple blood biodosimetry and organ-specific biomarkers for early-response assessment of radiation exposure using a mouse (B6D2F1, males and females) total-body irradiation model exposed to Co gamma rays over a broad dose range (3-12 Gy) and dose rates of either 0.6 or 1.9 Gy min and compared the results with those obtained after exposure of mice to a mixed field (neutrons and gamma rays) using the Armed Forces Radiobiology Research Institute Co gamma-ray source and TRIGA Mark F nuclear research reactor. The mixed-field studies were performed previously over a broad dose range (1.5-6 Gy), with dose rates of either 0.6 or 1.9 Gy min, and using different proportions of neutrons and gammas: either (67% neutrons + 33% gammas) or (30% neutrons + 70% gammas). Blood was collected 1, 2, 4, and 7 d after total-body irradiation. Results from Co gamma-ray studies demonstrate: (1) significant dose- and time-dependent reductions in circulating mature hematopoietic cells; (2) dose- and time-dependent changes in fms-related tyrosine kinase 3 ligand, interleukins IL-5, IL-10, IL-12, and IL-18, granulocyte colony-stimulating factors, thrombopoietin, erythropoietin, acute-phase proteins (serum amyloid A and lipopolysaccharide binding protein), surface plasma neutrophil (CD45) and lymphocyte (CD27) markers, ratio of CD45 to CD27, procalcitonin but not in intestinal fatty acid binding protein; (3) no significant differences were observed between dose-rate groups in hematological and protein profiles (fms-related tyrosine kinase 3 ligand, IL-5, IL-12, IL-18, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, CD27, CD45, and ratio of CD45 to CD27) for any radiation dose at any time after exposure (p > 0.148); (4) no significant differences were observed between sex groups in hematological and protein profiles (fms-related tyrosine kinase 3 ligand, IL-18, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, serum amyloid A, CD45) for any radiation dose at any time after exposure (p > 0.114); and (5) PCT level significantly increased (p < 0.008) in mice irradiated with 12 Gy on day 7 post-total-body irradiation without significant differences between groups irradiated at dose rates of either 0.6 or 1.9 Gy min (p > 0.287). Radiation-quality comparison results demonstrate that: (1) equivalent doses of pure gamma rays and mixed-field radiation do not produce equivalent biological effects, and hematopoietic syndrome occurs at lower doses of mixed-field radiation; (2) ratios of hematological and protein biomarker means in the Co study compared to mixed-field studies using 2× Co doses vs. 1× TRIGA radiation doses (i.e., 3 Gy Co vs. 1.5 Gy TRIGA) ranged from roughly 0.2 to as high as 26.5 but 57% of all ratios fell within 0.7 and 1.3; and (3) in general, biomarker results are in agreement with the relative biological effectiveness = 1.95 (Dn/Dt = 0.67) reported earlier by Armed Forces Radiobiology Research Institute scientists in mouse survival countermeasure studies.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- 1Uniformed Services University, Armed Forces Radiobiology Research Institute, Scientific Research Department, 4555 South Palmer Road Bethesda, MD 20889-5648
| | | | | | | | | | | |
Collapse
|
32
|
Yan YQ, Pang QJ, Xu RJ. Effects of erythropoietin for precaution of steroid-induced femoral head necrosis in rats. BMC Musculoskelet Disord 2018; 19:282. [PMID: 30086737 PMCID: PMC6081914 DOI: 10.1186/s12891-018-2208-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Steroids such as glucocorticoid have been widely used for their excellent anti-inflammatory, anti-immune, and anti-shock properties. However, the long-term use in high doses has been found to cause necrosis of femoral head and other serious adverse reactions. Thus, it is of great importance to safely use these medications on patients without inducing bone necrosis. METHODS In this preclinical study, we examined the effects of erythropoietin (EPO) to attenuate the induction of steroid-induced femoral bone necrosis using rats to build up the in-vivo models. Rats were randomly divided into three groups: negative control group (group A), disease group (group B), and EPO group (group C). 20 mg/kg methylprednisolone was administrated into group B and group C for 6 weeks with two intramuscular injections per week per rat. Group C was further given daily intraperitoneal injections of rHuEPO during this period. Group A received only injection of saline at the same schedule. 12 weeks after the initial drug administration, the rats' femoral tissues were harvested for HE staining, immunohistochemistry studies for PECAM-1(also CD31) expression and Western Blotting for VEGF expression. RESULTS Histology studies showed that compared with the disease group, EPO group had significant improvement and bone morphology being much closer to the negative control group. Immunohistochemical studies revealed that EPO group had statistically much more expression of PECAM-1 than the other groups did. Western Blot demonstrated that the EPO group had significantly higher VEGF expression than the disease group. CONCLUSION Results suggested that simultaneous injection of EPO could partially prevent steroid-induced ANFH.
Collapse
Affiliation(s)
- Yong-Qing Yan
- Department of Orthopaedics, Ningbo No.2 Hospital, Xibei Street No.41 Ningbo, 315010 Zhejiang, People’s Republic of China
| | - Qing-Jiang Pang
- Department of Orthopaedics, Ningbo No.2 Hospital, Xibei Street No.41 Ningbo, 315010 Zhejiang, People’s Republic of China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital/The Affiliated Hospital of Nanjing Medical University, No 26, Daoqian Street, Suzhou, 215000 Jiangsu People’s Republic of China
- Department of Orthopaedics, the First Affiliated Hospital, Orthopaedic Institute, Soochow University, Suzhou, 215000 Jiangsu People’s Republic of China
| |
Collapse
|
33
|
Yashiro M, Ohya M, Mima T, Ueda Y, Nakashima Y, Kawakami K, Ishizawa Y, Yamamoto S, Kobayashi S, Yano T, Tanaka Y, Okuda K, Sonou T, Shoshihara T, Iwashita Y, Iwashita Y, Tatsuta K, Matoba R, Negi S, Shigematsu T. FGF23 modulates the effects of erythropoietin on gene expression in renal epithelial cells. Int J Nephrol Renovasc Dis 2018; 11:125-136. [PMID: 29670389 PMCID: PMC5894721 DOI: 10.2147/ijnrd.s158422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background FGF23 plays an important role in calcium–phosphorus metabolism. Other roles of FGF23 have recently been reported, such as commitment to myocardium enlargement and immunological roles in the spleen. In this study, we aimed to identify the roles of FGF23 in the kidneys other than calcium–phosphorus metabolism. Methods DNA microarrays and bioinformatics tools were used to analyze gene expression in mIMCD3 mouse renal tubule cells following treatment with FGF23, erythropoietin and/or an inhibitor of ERK. Results Three protein-coding genes were upregulated and 12 were downregulated in response to FGF23. Following bioinformatics analysis of these genes, PPARγ and STAT3 were identified as candidate transcript factors for mediating their upregulation, and STAT1 as a candidate for mediating their downregulation. Because STAT1 and STAT3 also mediate erythropoietin signaling, we investigated whether FGF23 and erythropoietin might show interactive effects in these cells. Of the 15 genes regulated by FGF23, 11 were upregulated by erythropoietin; 10 of these were downregulated following cotreatment with FGF23. Inhibition of ERK, an intracellular mediator of FGF23, reversed the effects of FGF23. However, FGF23 did not influence STAT1 phosphorylation, suggesting that it impinges on erythropoietin signaling through other mechanisms. Conclusion Our results suggest cross talk between erythropoietin and FGF23 signaling in the regulation of renal epithelial cells.
Collapse
Affiliation(s)
- Mitsuru Yashiro
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Masaki Ohya
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Toru Mima
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Yumi Ueda
- DNA Chip Research Inc., Minato, Japan
| | - Yuri Nakashima
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Kazuki Kawakami
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | | | - Shuto Yamamoto
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Sou Kobayashi
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Takurou Yano
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Tanaka
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Kouji Okuda
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Tomohiro Sonou
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | | | - Yuko Iwashita
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Yu Iwashita
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Kouichi Tatsuta
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | | | - Shigeo Negi
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | | |
Collapse
|
34
|
Kuo SC, Li Y, Cheng KC, Niu CS, Cheng JT, Niu HS. Investigation of the pronounced erythropoietin-induced reduction in hyperglycemia in type 1-like diabetic rats. Endocr J 2018; 65:181-191. [PMID: 29109360 DOI: 10.1507/endocrj.ej17-0353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Erythropoietin (EPO) is known to stimulate erythropoiesis after binding with its specific receptor. In clinics, EPO is widely used in hemodialyzed patients with diabetes. However, changes in the expression of the erythropoietin receptor (EPOR) under diabetic conditions are still unclear. Therefore, we investigated EPOR expression both in vivo and in vitro. Streptozotocin-induced type 1-like diabetic rats (STZ rats) were used to evaluate the blood glucose-lowering effects of EPO. The expression and activity of the transducer and activator of transcription 3 (STAT3), the potential signaling molecule, was investigated in cultured rat skeletal myoblast (L6) cells incubated in high-glucose (HG) medium to mimic the in vivo changes. The EPO-induced reduction in hyperglycemia was more pronounced in diabetic rats. The increased EPOR expression in the soleus muscle of diabetic rats was reversed by the reduction in hyperglycemia. Glucose uptake was also increased in high-glucose (HG)-treated L6 cells. Western blotting results indicated that the EPO-induced hyperglycemic activity was enhanced mainly through an increase in EPOR expression. Increased EPOR expression was associated with the enhanced nuclear expression of STAT3 in HG-exposed L6 cells. In addition, treatment with siRNA specific to STAT3 reversed the increased expression of EPOR observed in these cells. Treatment with Stattic at a dose sufficient to inhibit STAT3 reduced the expression level of EPOR in STZ rats. In conclusion, the increased expression of EPOR by hyperglycemia is mainly associated with an augmented expression of nuclear STAT3, which was identified both in vivo and in vitro in the present study.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/physiopathology
- Erythropoiesis/drug effects
- Erythropoietin/therapeutic use
- Hyperglycemia/etiology
- Hyperglycemia/prevention & control
- Male
- Rats
- Rats, Wistar
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Streptozocin
Collapse
Affiliation(s)
- Shu-Chun Kuo
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71701, Taiwan
- Department of Ophthalmology, Chi-Mei Medical Center, Tainan 71003, Taiwan
| | - Yingxiao Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan 71003, Taiwan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan 71003, Taiwan
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan
| |
Collapse
|
35
|
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System. J Clin Med 2018; 7:E24. [PMID: 29393890 PMCID: PMC5852440 DOI: 10.3390/jcm7020024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biology, Truman State University, Kirksville, MO 63501, USA.
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
36
|
Abstract
Several substances such as growth hormone (GH), erythropoietin (Epo), and anabolic steroids (AS) are improperly utilized to increase the performance of athletes. Evaluating the potential cancer risk associated with doping agents is difficult since these drugs are often used at very high doses and in combination with other licit or illicit drugs. The GH, via its mediator, the insulin-like growth factor 1 (IGF-1), is involved in the development and progression of cancer. Animal studies suggested that high levels of GH/IGF-1 increase progression of androgen-independent prostate cancer. Clinical data regarding prostate cancer are mostly based on epidemiological studies or indirect data such as IGF-1 high levels in patients with prostate cancer. Even if experimental studies showed a correlation between Epo and cancer, no clinical data are currently available on cancer development related to Epo as a doping agent. Androgens are involved in prostate carcinogenesis modulating genes that regulate cell proliferation, apoptosis and angiogenesis. Most information on AS is anecdotal (case reports on prostate, kidney and testicular cancers). Prospective epidemiologic studies failed to support the hypothesis that circulating androgens are positively associated with prostate cancer risk. Currently, clinical and epidemiological studies supporting association between doping and urological neoplasias are not available. Nowadays, exposure to doping agents starts more prematurely with a consequent longer exposition period; drugs are often used at very high doses and in combination with other licit or illicit drugs. Due to all these elements it is impossible to predict all the side effects, including cancer; more detailed studies are therefore necessary.
Collapse
|
37
|
Kuo SC, Li Y, Cheng KC, Niu CS, Cheng JT, Niu HS. Increase in renal erythropoietin receptors in diabetic rats is mainly mediated by hyperglycemia associated with the STAT3/GATA-1 signaling pathway. Biomed Pharmacother 2017; 96:1094-1102. [DOI: 10.1016/j.biopha.2017.11.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022] Open
|
38
|
Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2308-2321. [DOI: 10.1016/j.bbamcr.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
|
39
|
Pan Y, Yang XH, Guo LL, Gu YH, Qiao QY, Jin HM. Erythropoietin Reduces Insulin Resistance via Regulation of Its Receptor-Mediated Signaling Pathways in db/db Mice Skeletal Muscle. Int J Biol Sci 2017; 13:1329-1340. [PMID: 29104499 PMCID: PMC5666531 DOI: 10.7150/ijbs.19752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Erythropoietin (EPO) can reduce insulin resistance (IR) in adipocytes; however, it is unknown whether EPO can decrease IR in skeletal muscle. Here we investigated whether EPO could reduce IR in type 2 diabetic mouse skeletal muscle and its possible signaling mechanisms of action. Twelve-week-old db/db diabetic mice were employed in this study. Systemic use of EPO improved glucose profiles in type 2 diabetic mice after 4 and 8 weeks treatment. EPO up-regulated EPOR protein expression in skeletal muscle, and subsequently activated downstream signaling molecules such as JAK2, IRS-1, PI3K, AKT, and eNOS. We next constructed lentivirally-delivered shRNAs against EPOR and transfected skeletal muscle cells to knockdown EPOR. EPOR knockdown inhibited EPO induced JAK2, IRS-1, PI3K, AKT, eNOS signaling transduction, autophagy and Glut 4 translocation, as well as promoted apoptosis in skeletal muscle. Thus, EPO reduces skeletal muscle IR in type 2 diabetic mice via its specific receptor, EPOR. Possible mechanisms involved in its action may include increased autophagy and reduced apoptosis in type 2 diabetic skeletal muscles, which provides a new strategy for the treatment of IR.
Collapse
Affiliation(s)
- Yu Pan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiu Hong Yang
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Li Li Guo
- Hemodialysis Center, Baoshan Branch of Shanghai No.1 People's Hospital, Shanghai, China
| | - Yan Hong Gu
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qing Yan Qiao
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hui Min Jin
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
40
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
41
|
Ilkovičová L, Trošt N, Szentpéteriová E, Solár P, Komel R, Debeljak N. Overexpression of the erythropoietin receptor in RAMA 37 breast cancer cells alters cell growth and sensitivity to tamoxifen. Int J Oncol 2017; 51:737-746. [PMID: 28714517 DOI: 10.3892/ijo.2017.4061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) is the main regulator of erythropoiesis, and its receptor (EPOR) is expressed in various tissues, including tumors. Expression of EPOR in breast cancer tissue has been shown to correlate with expression of the estrogen receptor (ER). However, EPOR promotes proliferation in an EPO-independent manner. In patients with breast cancer, EPOR is associated with impaired tamoxifen response in ER-positive tumors, but not in ER-negative tumors. Furthermore, a positive correlation between EPOR/ER status and increased local cancer recurrence has been demonstrated, and EPOR expression is associated with G-protein coupled ER (GPER). Herein, we assessed the effects of EPOR on cell physiology and tamoxifen response in the absence of EPO stimulation using two cell lines that differ only in their EPOR expression status: RAMA 37 cells (low EPOR expression) and RAMA 37-28 cells (high EPOR expression). Alterations in cell growth, morphology, response to tamoxifen cytotoxicity, and EPOR-activated signal transduction were observed. RAMA 37 cells showed higher proliferation capacity without tamoxifen treatment, while RAMA 37-28 cells were more resistant to tamoxifen and proliferated more rapidly in the presence of tamoxifen. EPOR overexpression induced cell-morphology changes upon tamoxifen treatment, which resulted in the production of cell protrusions and subsequent cell death. Short-term treatment with tamoxifen (6 h) prompted RAMA 37 cells to acquired longer protrusions than RAMA 37-28 cells, which indicated a pre-apoptotic stage. Furthermore, prolonged treatment with tamoxifen (72 h) caused a greater reduction in RAMA 37 cell numbers, which indicated a higher rate of cell death. RAMA 37-28 cells showed prolonged activation of AKT signaling. We propose sustained AKT phosphorylation in EPOR-overexpressing cells as a mechanism that can lead to EPOR-induced tamoxifen resistance.
Collapse
Affiliation(s)
- Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Nina Trošt
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Parent VA, Tremblay JP, Garnier A. Rational design of a serum-free culture medium for the growth of human myoblasts destined to cell therapy. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jacques P. Tremblay
- Département de Médecine Moléculaire, Faculté de Médecine, and Centre de Recherche du CHU de Québec; 2705 Laurier blv., room P09300; Québec, QC G1V 4G2 Canada
| | - Alain Garnier
- Département de génie chimique, Faculté des sciences et de génie; Université Laval, 1065, avenue de la médecine; Québec, QC G1V 0A6 Canada
| |
Collapse
|
43
|
Erythropoietin accelerates tumor growth through increase of erythropoietin receptor (EpoR) as well as by the stimulation of angiogenesis in DLD-1 and Ht-29 xenografts. Mol Cell Biochem 2016; 421:1-18. [PMID: 27543111 PMCID: PMC5021757 DOI: 10.1007/s11010-016-2779-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022]
Abstract
Anemia is a relatively common symptom coexisting with colorectal carcinoma. Besides having a positive impact on hematological parameters, erythropoietin (Epo) has the serious adverse effect of promoting the neoplastic process. The role of Epo in colon cancer has not been clearly shown. The aim of this study was to assess the effects of Epo therapy on colorectal carcinoma cells both in in vitro and in animal models. Human colon adenocarcinoma cells DLD-1 and Ht-29 were cultured in medium with Epo beta in normoxia. Cell proliferation was measured with an automated cell counter. Expression of erythropoietin receptor (EpoR) mRNA, Akt mRNA, and their proteins were assessed by RT-PCR and confocal microscopy, respectively. Nude mice were inoculated with adenocarcinoma cells and treated with a therapeutic dose of Epo. Expression of EpoR, VEGF, Flt-1 and CD31 was evaluated in xenograft tumors. We identified that Epo through EpoR activates Akt, which promotes colon cancer cell growth and proliferation. Epo, and high levels of phosphorylated EpoR, directly accelerates tumor growth through its proliferative and proangiogenic effects. This study demonstrated that Epo had enhanced carcinogenesis through increase of EpoR and Flt-1 expression, and thereby contributed to tumor development. These results suggest that both EpoR-positive and EpoR-negative cancer cells could be regulated by exogenous Epo. However, an increased response to erythropoietin was observed in the EpoR-positive cells. Thus, erythropoietin increases the risk of tumor progression in colon cancer and should not be used to treat anemia in this type of cancer.
Collapse
|
44
|
A Nonhematopoietic Erythropoietin Analogue, ARA 290, Inhibits Macrophage Activation and Prevents Damage to Transplanted Islets. Transplantation 2016; 100:554-62. [PMID: 26683514 DOI: 10.1097/tp.0000000000001026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Erythropoietin exerts anti-inflammatory, antiapoptotic, and cytoprotective effects in addition to its hematopoietic action. A nonhematopoietic erythropoietin analogue, ARA 290, has similar properties. The efficacy of pancreatic islet transplantation (PITx) is reduced due to islet damage that occurs during isolation and from the severe inflammatory reactions caused by the transplantation procedure. We investigated whether ARA 290 protects islets and ameliorates inflammatory responses following PITx thus improving engraftment. METHODS The effects of ARA 290 on pancreatic islets of C57BL/6J (H-2) mice and on murine macrophages were investigated using an in vitro culture model. As a marginal PITx, 185 islets were transplanted into the liver of streptozotocin-induced diabetic mice (H-2) via the portal vein. Recipients were given ARA 290 (120 μg/kg) intraperitoneally just before and at 0, 6, and 24 hours after PITx. Liver samples were obtained at 12 hours after PITx, and expression levels of proinflammatory cytokines were assessed. RESULTS ARA 290 protected islets from cytokine-induced damage and apoptosis. Secretion of pro-inflammatory cytokines (IL-6, IL-12, and TNF-α) from macrophages was significantly inhibited by ARA 290. After the marginal PITx, ARA 290 treatment significantly improved the blood glucose levels when compared to those of control animals (P < 0.001). Upregulation of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, IL-1β, and IL-6 messenger RNA expression within the liver was suppressed by ARA 290 treatment. CONCLUSIONS ARA 290 protected pancreatic islets from cytokine-induced damage and apoptosis and ameliorated the inflammatory response after PITx. ARA 290 appears to be a promising candidate for improvement of PITx.
Collapse
|
45
|
Niu HS, Chang CH, Niu CS, Cheng JT, Lee KS. Erythropoietin ameliorates hyperglycemia in type 1-like diabetic rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1877-84. [PMID: 27350742 PMCID: PMC4902144 DOI: 10.2147/dddt.s105867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Erythropoietin (EPO) is widely used in diabetic patients receiving hemodialysis. The role of EPO in glucose homeostasis remains unclear. Therefore, we investigated the effect of EPO on hyperglycemia in rats with type 1-like diabetes. Methods Rats with streptozotocin-induced type 1-like diabetes (STZ rats) were used to estimate the blood glucose-lowering effects of EPO, and changes in the expression levels of glucose transporter 4 (GLUT4) and the hepatic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were identified by Western blot analysis. Results EPO attenuated the hyperglycemia in the STZ rats in a dose-dependent manner without altering the hematopoietic parameters, including the hematocrit and number of red blood cells. The involvement of the EPO receptor (EPOR) was identified using EPOR-specific antibodies. In addition, injection of EPO enhanced the glucose utilization, which was assessed using an intravenous glucose tolerance test in rats. However, blood insulin was not changed by EPO in this assay, showing the insulinotropic action of EPO. Moreover, EPO treatment increased the insulin sensitivity. Western blots indicated that the phosphorylation of AMP-activated protein kinase was enhanced by EPO to support the signaling caused by EPOR activation. Furthermore, the decrease in the GLUT4 level in skeletal muscle was reversed by EPO, and the increase in the PEPCK expression in liver was reduced by EPO, as shown in STZ rats. Conclusion Taken together, the results show that EPO injection may reduce hyperglycemia in diabetic rats through activation of EPO receptors. Therefore, EPO is useful for managing diabetic disorders, particularly hyperglycemia-associated changes. In addition, EPO receptor will be a good target for the development of antihyperglycemic agent(s) in the future.
Collapse
Affiliation(s)
- Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, Republic of China
| | - Chin-Hong Chang
- Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, Republic of China; Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, Republic of China
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, Republic of China
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, Republic of China; Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, Taiwan, Republic of China
| | - Kung-Shing Lee
- Department of Surgery, Division of Neurosurgery, Pingtung Hospital, Pingtung, Taiwan, Republic of China; Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung City, Taiwan, Republic of China; School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
| |
Collapse
|
46
|
Erythropoietin Pathway: A Potential Target for the Treatment of Depression. Int J Mol Sci 2016; 17:ijms17050677. [PMID: 27164096 PMCID: PMC4881503 DOI: 10.3390/ijms17050677] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022] Open
Abstract
During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment.
Collapse
|
47
|
Pichon A, Jeton F, El Hasnaoui-Saadani R, Hagström L, Launay T, Beaudry M, Marchant D, Quidu P, Macarlupu JL, Favret F, Richalet JP, Voituron N. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice. HYPOXIA 2016; 4:29-39. [PMID: 27800506 PMCID: PMC5085313 DOI: 10.2147/hp.s83540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection.
Collapse
Affiliation(s)
- Aurélien Pichon
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris; Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France
| | - Florine Jeton
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | | | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil
| | - Thierry Launay
- Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole , University Sorbonne-Paris-Cité, Paris, France
| | - Michèle Beaudry
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Dominique Marchant
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Patricia Quidu
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Jose-Luis Macarlupu
- High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fabrice Favret
- Laboratory "Mitochondrie, Stress Oxydant et Protection Musculaire" EA 3072, University of Strasbourg, Strasbourg, France
| | - Jean-Paul Richalet
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | - Nicolas Voituron
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| |
Collapse
|
48
|
Nakamura S, Sho M, Koyama F, Ueda T, Nishigori N, Inoue T, Nakamoto T, Fujii H, Yoshikawa S, Inatsugi N, Nakajima Y. Erythropoietin attenuates intestinal inflammation and promotes tissue regeneration. Scand J Gastroenterol 2016; 50:1094-102. [PMID: 25861881 DOI: 10.3109/00365521.2015.1020861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of inflammatory bowel disease (IBD) is increasing. Since patients usually need long-term treatment and suffer from reduced quality of life, there is a need to develop new therapeutic strategy. The aim of this study was to investigate the therapeutic potential of erythropoietin (EPO) for the treatment of IBD. METHODS Murine colitis was induced by 3.0% Dextran Sulfate Sodium (DSS). Recombinant human EPO (rhEPO) was given to evaluate the anti-inflammatory and regenerative effects on intestinal inflammation. The effect of rhEPO on human colon epithelial cells was also evaluated. Immunohistochemical analysis of EPO receptor was performed in human IBD tissues. RESULTS While about 62% of control mice with severe colitis induced by 5-day DSS died, 85% of mice treated with rhEPO survived. Histological analysis confirmed that EPO treatment reduced the colonic inflammation. Furthermore, EPO treatment significantly downregulated the local expressions of IFN-γ, TNF-α and E-selectin in the colon, suggesting that the effect was associated with inhibiting local immune activation. In a 4-day DSS-induced colitis model, rhEPO significantly improved the recovery of body weight loss compared to controls. Furthermore, proliferating cell nuclear antigen expression was significantly upregulated in the colon tissue from mice treated with rhEPO compared to controls. In addition, rhEPO increased the growth of cultured human colon epithelial cells in a dose-dependent manner. Furthermore, EPO-receptor expression was confirmed in human IBD colon tissues. CONCLUSION Three major functions of EPO, hematopoiesis, anti-inflammation and regeneration, may produce significant effects on intestinal inflammation, therefore suggesting that rhEPO might be useful for IBD.
Collapse
Affiliation(s)
- Shinji Nakamura
- Department of Surgery, Nara Medical University , Nara , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
50
|
Hoedt A, Christensen B, Nellemann B, Mikkelsen UR, Hansen M, Schjerling P, Farup J. Satellite cell response to erythropoietin treatment and endurance training in healthy young men. J Physiol 2015; 594:727-43. [PMID: 26607845 DOI: 10.1113/jp271333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINT Erythropoietin (Epo) treatment may induce myogenic differentiation factor (MyoD) expression and prevent apoptosis in satellite cells (SCs) in murine and in vitro models. Endurance training stimulates SC proliferation in vivo in murine and human skeletal muscle. In the present study, we show, in human skeletal muscle, that treatment with an Epo-stimulating agent (darbepoetin-α) in vivo increases the content of MyoD(+) SCs in healthy young men. Moreover, we report that Epo receptor mRNA is expressed in adult human SCs, suggesting that Epo may directly target SCs through ligand-receptor interaction. Moreover, endurance training, but not Epo treatment, increases the SC content in type II myofibres, as well as the content of MyoD(+) SCs. Collectively, our results suggest that Epo treatment can regulate human SCs in vivo, supported by Epo receptor mRNA expression in human SCs. In effect, long-term Epo treatment during disease conditions involving anaemia may impact SCs and warrants further investigation. Satellite cell (SC) proliferation is observed following erythropoitin treatment in vitro in murine myoblasts and endurance training in vivo in human skeletal muscle. The present study aimed to investigate the effects of prolonged erythropoiesis-stimulating agent (ESA; darbepoetin-α) treatment and endurance training, separately and combined, on SC quantity and commitment in human skeletal muscle. Thirty-five healthy, untrained men were randomized into four groups: sedentary-placebo (SP, n = 9), sedentary-ESA (SE, n = 9), training-placebo (TP, n = 9) or training-ESA (TE, n = 8). ESA/placebo was injected once weekly and training consisted of ergometer cycling three times a week for 10 weeks. Prior to and following the intervention period, blood samples and muscle biopsies were obtained and maximal oxygen uptake (V̇O2, max) was measured. Immunohistochemical analyses were used to quantify fibre type specific SCs (Pax7(+)), myonuclei and active SCs (Pax7(+)/MyoD(+)). ESA treatment led to elevated haematocrit, whereas endurance training increased V̇O2, max. Endurance training led to an increase in SCs associated with type II fibres (P < 0.05), whereas type I fibres showed no changes. Both ESA treatment and endurance training increased Pax7(+)/MyoD(+) cells, whereas only ESA treatment increased the total content of MyoD(+) cells. Epo-R mRNA presence in adult SC was tested with real-time RT-PCR using fluorescence-activated cell sorting (CD56(+)/CD45(-)/CD31(-)) to isolate cells from a human rectus abdominis muscle and was found to be considerably higher than in whole muscle. In conclusion, endurance training and ESA treatment may separately stimulate SC commitment to the myogenic program. Furthermore, ESA-treatment may alter SC activity by direct interaction with the Epo-R expressed on SCs.
Collapse
Affiliation(s)
- Andrea Hoedt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratories, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Ramer Mikkelsen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark.,Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Centre for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Centre for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean Farup
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|