1
|
Zamanian MY, Golmohammadi M, Amin RS, Bustani GS, Romero-Parra RM, Zabibah RS, Oz T, Jalil AT, Soltani A, Kujawska M. Therapeutic Targeting of Krüppel-Like Factor 4 and Its Pharmacological Potential in Parkinson's Disease: a Comprehensive Review. Mol Neurobiol 2024; 61:3596-3606. [PMID: 37996730 PMCID: PMC11087351 DOI: 10.1007/s12035-023-03800-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
| |
Collapse
|
2
|
Gabriela R, Vera V, Pavel R, Helena R, Igor S, Marie D, Marketa M, Alena MF, Ales T. Discovering the Radiation Biomarkers in the Plasma of Total-Body Irradiated Leukemia Patients. Radiat Res 2024; 201:418-428. [PMID: 38315067 DOI: 10.1667/rade-23-00137.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.
Collapse
Affiliation(s)
- Rydlova Gabriela
- Department of Radiobiology
- Department of Biology, Faculty of Natural Sciences, University of Hradec Králové, Czech Republic, Hradec Králové, Czech Republic
| | | | | | - Rehulkova Helena
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Sirak Igor
- Department of Oncology and Radiotherapy and 4th Department of Internal Medicine - Haematology, University Hospital, Hradec Kralove, Czech Republic
| | - Davidkova Marie
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markova Marketa
- Department of Haematology and Blood Transfusion, University Hospital Na Bulovce, Prague, Czech Republic
| | - Myslivcova-Fucikova Alena
- Department of Biology, Faculty of Natural Sciences, University of Hradec Králové, Czech Republic, Hradec Králové, Czech Republic
| | | |
Collapse
|
3
|
Um YW, Kwon WY, Seong SY, Suh GJ. Protective role of kallistatin in oxygen-glucose deprivation and reoxygenation in human umbilical vein endothelial cells. Clin Exp Emerg Med 2024; 11:43-50. [PMID: 38204159 PMCID: PMC11009709 DOI: 10.15441/ceem.23.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Ischemia-reperfusion (IR) injury is implicated in various clinical diseases. Kallistatin attenuates oxidative stress, and its deficiency has been associated with poor neurological outcomes after cardiac arrest. The present study investigated the antioxidant mechanism through which kallistatin prevents IR injury. METHODS Human umbilical vein endothelial cells (HUVECs) were transfected with small interfering RNA (siRNA) targeting the human kallistatin gene (SERPINA4). Following SERPINA4 knockdown, the level of kallistatin expression was measured. To induce IR injury, HUVECs were exposed to 24 h of oxygen-glucose deprivation and reoxygenation (OGD/R). To evaluate the effect of SERPINA4 knockdown on OGD/R, cell viability and the concentration of kallistatin, endothelial nitric oxide synthase (eNOS) and total NO were measured. RESULTS SERPINA4 siRNA transfection suppressed the expression of kallistatin in HUVECs. Exposure to OGD/R reduced cell viability, and this effect was more pronounced in SERPINA4 knockdown cells compared with controls. SERPINA4 knockdown significantly reduced kallistatin concentration regardless of OGD/R, with a more pronounced effect observed without OGD/R. Furthermore, SERPINA4 knockdown significantly decreased eNOS concentrations induced by OGD/R (P<0.01) but did not significantly affect the change in total NO concentration (P=0.728). CONCLUSION The knockdown of SERPINA4 resulted in increased vulnerability of HUVECs to OGD/R and significantly affected the change in eNOS level induced by OGD/R. These findings suggest that the protective effect of kallistatin against IR injury may contribute to its eNOS-promoting effect.
Collapse
Affiliation(s)
- Young Woo Um
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Korea
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
4
|
Kim H, Suh GJ, Kwon WY, Kim KS, Jung YS, Kim T, Park H. Kallistatin deficiency exacerbates neuronal damage after cardiac arrest. Sci Rep 2024; 14:4279. [PMID: 38383562 PMCID: PMC10881987 DOI: 10.1038/s41598-024-54415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of study was to evaluate that kallistatin deficiency causes excessive production of reactive oxygen species and exacerbates neuronal injury after cardiac arrest. For in vitro study, kallistatin knockdown human neuronal cells were given ischemia-reperfusion injury, and the oxidative stress and apoptosis were evaluated. For clinical study, cardiac arrest survivors admitted to the ICU were divided into the good (CPC 1-2) and poor (CPC 3-5) 6-month neurological outcome groups. The serum level of kallistatin, Nox-1, H2O2 were measured. Nox-1 and H2O2 levels were increased in the kallistatin knockdown human neuronal cells with ischemia-reperfusion injury (p < 0.001) and caspase-3 was elevated and apoptosis was promoted (SERPINA4 siRNA: p < 0.01). Among a total of 62 cardiac arrest survivors (16 good, 46 poor), serum kallistatin were lower, and Nox-1 were higher in the poor neurological group at all time points after admission to the ICU (p = 0.013 at admission; p = 0.020 at 24 h; p = 0.011 at 72 h). At 72 h, H2O2 were higher in the poor neurological group (p = 0.038). Kallistatin deficiency exacerbates neuronal ischemia-reperfusion injury and low serum kallistatin levels were associated with poor neurological outcomes in cardiac arrest survivors.
Collapse
Affiliation(s)
- Hayoung Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heesu Park
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Huang Z, Yang Y, Ma S, Li J, Ye H, Chen Q, Li Z, Deng J, Tan C. KLF4 down-regulation underlies placental angiogenesis impairment induced by maternal glucose intolerance in late pregnancy. J Nutr Biochem 2024; 124:109509. [PMID: 37907170 DOI: 10.1016/j.jnutbio.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Department of Animal Science, Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Shuo Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongxuan Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiling Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhishan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Chengquan Tan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Faysal M, Khan J, Zehravi M, Nath N, Singh LP, Kakkar S, Perusomula R, Khan PA, Nainu F, Asiri M, Khan SL, Das R, Emran TB, Wilairatana P. Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint. Chin Med 2023; 18:154. [PMID: 38001538 PMCID: PMC10668527 DOI: 10.1186/s13020-023-00846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram, (Rohtas), Bihar, 821305, India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajashekar Perusomula
- Cognitive Science Research Initiative Lab, Vishnu Institute of Pharmaceutical Education & Research, Narsapur, India
| | - Pathan Amanulla Khan
- Department of Pharmacy Practice, Anwar Ul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Maharashtra, 413520, India
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Søland TM, Solhaug MB, Bjerkli IH, Schreurs O, Sapkota D. The prognostic role of combining Krüppel-like factor 4 score and grade of inflammation in a Norwegian cohort of oral tongue squamous cell carcinomas. Eur J Oral Sci 2022; 130:e12866. [PMID: 35363406 PMCID: PMC9321830 DOI: 10.1111/eos.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 11/27/2022]
Abstract
Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor involved in inflammation, cancer development, and progression. However, the relationship between KLF4, inflammation, and prognosis in oral cancer is not fully understood. KLF4 expression levels were examined in a multicenter cohort of 128 oral squamous cell carcinoma (OSCC) specimens from the tongue (OTSCC) using immunohistochemistry. In two external KLF4 mRNA datasets (The Cancer Genome Atlas/The Genotype-Tissue Expression Portal), lower KLF4 mRNA expression was found in OSCC and head and neck squamous cell carcinomas (HNSCC) than in control oral epithelium. These data indicate that down-regulation of KLF4 mRNA is linked to OSCC/HNSCC progression. Using Cox-multivariate analysis, a significantly favorable 5-year disease-specific survival rate was observed for a subgroup of patients with a combination of high levels of KLF4 expression and inflammation. OSCC cell lines exposed to IFN-γ showed a significant upregulation of nuclear KLF4 expression, indicating a link between inflammation and KLF4 expression in OSCC. Overall, the current data suggest a functional link between KLF4 and inflammation. The combination of high KLF4 nuclear expression and marked/moderate stromal inflammation might be useful as a favorable prognostic marker for a subgroup of OTSCC patients.
Collapse
Affiliation(s)
- Tine M Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Maren B Solhaug
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Inger-Heidi Bjerkli
- Department of Otorhinolaryngology, University Hospital of North Norway, Tromsø, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Olav Schreurs
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Angolano C, Kaczmarek E, Essayagh S, Daniel S, Choi LY, Tung B, Sauvage G, Lee A, Kipper FC, Arvelo MB, Moll HP, Ferran C. A20/TNFAIP3 Increases ENOS Expression in an ERK5/KLF2-Dependent Manner to Support Endothelial Cell Health in the Face of Inflammation. Front Cardiovasc Med 2021; 8:651230. [PMID: 34026871 PMCID: PMC8138474 DOI: 10.3389/fcvm.2021.651230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Decreased expression and activity of endothelial nitric oxide synthase (eNOS) in response to inflammatory and metabolic insults is the hallmark of endothelial cell (EC) dysfunction that preludes the development of atherosclerosis and hypertension. We previously reported the atheroprotective properties of the ubiquitin-editing and anti-inflammatory protein A20, also known as TNFAIP3, in part through interrupting nuclear factor-kappa B (NF-κB) and interferon signaling in EC and protecting these cells from apoptosis. However, A20's effect on eNOS expression and function remains unknown. In this study, we evaluated the impact of A20 overexpression or knockdown on eNOS expression in EC, at baseline and after tumor necrosis factor (TNF) treatment, used to mimic inflammation. Methods and Results: A20 overexpression in human coronary artery EC (HCAEC) significantly increased basal eNOS mRNA (qPCR) and protein (western blot) levels and prevented their downregulation by TNF. Conversely, siRNA-induced A20 knockdown decreased eNOS mRNA levels, identifying A20 as a physiologic regulator of eNOS expression. By reporter assays, using deletion and point mutants of the human eNOS promoter, and knockdown of eNOS transcriptional regulators, we demonstrated that A20-mediated increase of eNOS was transcriptional and relied on increased expression of the transcription factor Krüppel-like factor (KLF2), and upstream of KLF2, on activation of extracellular signal-regulated kinase 5 (ERK5). Accordingly, ERK5 knockdown or inhibition significantly abrogated A20's ability to increase KLF2 and eNOS expression. In addition, A20 overexpression in HCAEC increased eNOS phosphorylation at Ser-1177, which is key for the function of this enzyme. Conclusions: This is the first report demonstrating that overexpression of A20 in EC increases eNOS transcription in an ERK5/KLF2-dependent manner and promotes eNOS activating phosphorylation. This effect withstands eNOS downregulation by TNF, preventing EC dysfunction in the face of inflammation. This novel function of A20 further qualifies its therapeutic promise to prevent/treat atherosclerosis.
Collapse
Affiliation(s)
- Cleide Angolano
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Elzbieta Kaczmarek
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sanah Essayagh
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Soizic Daniel
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Lynn Y. Choi
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Brian Tung
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gabriel Sauvage
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Andy Lee
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Franciele C. Kipper
- The Division of Neurosurgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Maria B. Arvelo
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Herwig P. Moll
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- The Transplant Institute and the Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Nicoleau S, Fellows A, Wojciak-Stothard B. Role of Krüppel-like factors in pulmonary arterial hypertension. Int J Biochem Cell Biol 2021; 134:105977. [PMID: 33839307 DOI: 10.1016/j.biocel.2021.105977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/04/2023]
Abstract
Pulmonary arterial hypertension is a rare but deadly disease with a complex pathogenesis. Recent evidence demonstrates that Krüppel-like factors, a diverse family of transcription factors, are involved in several key disease processes such as the phenotypic transition of endothelial cells and smooth muscle cells. Importantly, manipulation of certain Krüppel-like factors enables protection or attenuation against pulmonary arterial hypertension in both animal models and preliminary human studies. In this review, we discuss how Krüppel-like factors, in particular Krüppel-like factors 2, 4 and 5 contribute to the pathological phenomena seen in pulmonary arterial hypertension and how associated signaling and microRNA pathways may be suitable targets for new therapies.
Collapse
Affiliation(s)
- Salina Nicoleau
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN, London, United Kingdom
| | - Adam Fellows
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN, London, United Kingdom
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN, London, United Kingdom.
| |
Collapse
|
11
|
Su T, Yang Y, Lai S, Jeong J, Jung Y, McConnell M, Utsumi T, Iwakiri Y. Single-Cell Transcriptomics Reveals Zone-Specific Alterations of Liver Sinusoidal Endothelial Cells in Cirrhosis. Cell Mol Gastroenterol Hepatol 2020; 11:1139-1161. [PMID: 33340713 PMCID: PMC7903131 DOI: 10.1016/j.jcmgh.2020.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dysfunction of liver sinusoidal endothelial cells (LSECs) is permissive for the progression of liver fibrosis and cirrhosis and responsible for its clinical complications. Here, we have mapped the spatial distribution of heterogeneous liver ECs in normal vs cirrhotic mouse livers and identified zone-specific transcriptomic changes of LSECs associated with liver cirrhosis using scRNA-seq technology. APPROACH & RESULTS Cirrhosis was generated in endothelial specific green fluorescent protein (GFP) reporter mice through carbon tetrachloride inhalation for 12 weeks. GFP-positive liver EC populations were isolated from control and cirrhotic mice by FACS. We identified 6 clusters of liver EC populations including 3 clusters of LSECs, 2 clusters of vascular ECs and 1 cluster of lymphatic ECs. Based on previously reported LSEC-landmarks, we mapped the 3 clusters of LSECs in zones 1, 2, and 3, and determined phenotypic changes in each zone between control and cirrhotic mice. We found genes representing capillarization of LSECs (eg, CD34) as well as extracellular matrix genes were most upregulated in LSECs of zone 3 in cirrhotic mice, which may contribute to the development of basement membranes. LSECs in cirrhotic mice also demonstrated decreased expression of endocytic receptors, most remarkably in zone 3. Transcription factors (Klf2 [Kruppel-like factor-2], Klf4 [Kruppel-like factor-4], and AP-1) that induce nitric oxide production in response to shear stress were downregulated in LSECs of all zones in cirrhotic mice, implying increased intrahepatic vascular resistance. CONCLUSION This study deepens our knowledge of the pathogenesis of liver cirrhosis at a spatial, cell-specific level, which is indispensable for the development of novel therapeutic strategies to target the most dysfunctional liver ECs.
Collapse
Affiliation(s)
- Tingting Su
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut; Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yilin Yang
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Sanchuan Lai
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Yirang Jung
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Matthew McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
12
|
Yang C, Xiao X, Huang L, Zhou F, Chen LH, Zhao YY, Qu SL, Zhang C. Role of Kruppel-like factor 4 in atherosclerosis. Clin Chim Acta 2020; 512:135-141. [PMID: 33181148 DOI: 10.1016/j.cca.2020.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is one of the chronic progressive diseases, which is caused by vascular injury and promoted by the interaction of various inflammatory factors and inflammatory cells. In recent years, kruppel-like factor 4 (KLF4), a significant transcription factor that participated in cell growth, differentiation and proliferation, has been proved to cause substantial impacts on regulating cardiovascular disease. This paper will give a comprehensive summary to highlight KLF4 as a crucial regulator of foam cell formation, vascular smooth muscle cells (VSMCs) phenotypic transformation, macrophage polarization, endothelial cells inflammation, lymphocyte differentiation and cell proliferation in the process of atherosclerosis. Recent studies show that KLF4 may be an important "molecular switch" in the process of improving vascular injury and inflammation under harmful stimulation, suggesting that KLF4 is a latent disease biomarker for the therapeutic target of atherosclerosis and vascular disease.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Fan Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
13
|
Güralp O, Tüten N, Gök K, Hamzaoglu K, Bulut H, Schild-Suhren M, Malik E, Tüten A. Serum kallistatin level is decreased in women with preeclampsia. J Perinat Med 2020; 49:60-66. [PMID: 32866127 DOI: 10.1515/jpm-2020-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate the serum levels of the serine proteinase inhibitor kallistatin in women with preeclampsia (PE). METHODS The clinical and laboratory parameters of 55 consecutive women with early-onset PE (EOPE) and 55 consecutive women with late-onset PE (LOPE) were compared with 110 consecutive gestational age (GA)-matched (±1 week) pregnant women with an uncomplicated pregnancy and an appropriate for gestational age fetus. RESULTS Mean serum kallistatin was significantly lower in women with PE compared to the GA-matched-controls (27.74±8.29 ng/mL vs. 37.86±20.64 ng/mL, p<0.001); in women with EOPE compared to that of women in the control group GA-matched for EOPE (24.85±6.65 ng/mL vs. 33.37±17.46 ng/mL, p=0.002); and in women with LOPE compared to that of women in the control group GA-matched for LOPE (30.87±8.81 ng/mL vs. 42.25±22.67 ng/mL, p=0.002). Mean serum kallistatin was significantly lower in women with EOPE compared to LOPE (24.85±6.65 ng/mL vs. 30.87±8.81 ng/mL, p<0.001). Serum kallistatin had negative correlations with systolic and diastolic blood pressure, creatinine, and positive correlation with GA at sampling and GA at birth. CONCLUSIONS Serum kallistatin levels are decreased in preeclamptic pregnancies compared to the GA-matched-controls. This decrease was also significant in women with EOPE compared to LOPE. Serum kallistatin had negative correlation with systolic and diastolic blood pressure, creatinine and positive correlation with GA at sampling and GA at birth.
Collapse
Affiliation(s)
- Onur Güralp
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Nevin Tüten
- Obstetrics and Gynecology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Koray Gök
- Obstetrics and Gynecology, Sakarya University, Education and Research Hospital, Sakarya, Turkey
| | - Kübra Hamzaoglu
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Huri Bulut
- Medical Biochemistry Department, Istinye University, Faculty of Medicine, Istanbul, Turkey
| | - Meike Schild-Suhren
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Eduard Malik
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Abdullah Tüten
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| |
Collapse
|
14
|
Wu B, Jiang M, Liu X, Huang C, Gu Z, Cao Y. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells in vitro and blood vessels in vivo. Nanotoxicology 2020; 14:1017-1038. [PMID: 32574508 DOI: 10.1080/17435390.2020.1780642] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomaterials (NMs) with tubular structures, such as halloysite nanotubes (HNTs), have potential applications in biomedicine. Although the biocompatibility of HNTs has been investigated before, the toxicity of HNTs to blood vessels is rarely systemically evaluated. Herein, we compared the toxicity of HNTs and multi-walled carbon nanotubes (MWCNTs) to human umbilical vein endothelial cells (HUVECs) in vitro and blood vessels of mice in vivo. HUVECs internalized HNTs and MWCNTs, but the uptake of HNTs was not obviously changed by clathrin inhibitor. Exposure to NMs decreased cellular viability, activated apoptotic proteins and up-regulated adhesion molecules, including soluble vascular cell adhesion molecule 1 (sVCAM-1) and VCAM-1. As the mechanisms, NMs decreased NO levels, eNOS mRNA and eNOS/p-eNOS proteins. Meanwhile, NMs promoted intracellular ROS and autophagy dysfunction, shown as decreased protein levels of LC3, beclin-1 and ATG5. The eNOS regulator Kruppel-like factor 4 (KLF4) was inhibited, but another eNOS regulator KLF4 was surprisingly up-regulated. Under in vivo conditions, ICR mice intravenously injected with NMs (50 μg/mouse, once a day for 5 days) showed an increased percentage of neutrophils, monocytes and basophils. Meanwhile, autophagy dysfunction, eNOS uncoupling, activation of apoptotic proteins and alteration of KLF proteins were also observed in mouse aortas. All of the toxic effects were more pronounced for MWCNTs in comparison with HNTs based on the same mass concentrations. Our results may provide novel insights about the toxicity of NMs with tubular structures to blood vessels. Considering the toxicological data reported here, HNTs are probably safer nanocarriers compared with MWCNTs.
Collapse
Affiliation(s)
- Bihan Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Mengdie Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Xuewu Liu
- Hunan Laboratory Animal Center, Hunan Drug Safety Evaluation Center, Liuyang, P.R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, P.R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| |
Collapse
|
15
|
Wang G, Zou J, Yu X, Yin S, Tang C. The antiatherogenic function of kallistatin and its potential mechanism. Acta Biochim Biophys Sin (Shanghai) 2020; 52:583-589. [PMID: 32393963 DOI: 10.1093/abbs/gmaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Kallistatin, originally discovered in human serum, is a tissue-kallikrein-binding protein and a unique serine proteinase inhibitor. Upon binding to its receptor integrin β3, lipoprotein receptor-related protein 6, nucleolin, or Krüppel-like factor 4, kallistatin can modulate various signaling pathways and affect multiple biological processes, including angiogenesis, inflammatory response, oxidative stress, and tumor growth. Circulating kallistatin levels are significantly decreased in patients with coronary artery disease and show an inverse correlation with its severity. Importantly, both in vitro and in vivo experiments have demonstrated that kallistatin reduces atherosclerosis by inhibiting vascular inflammation, antagonizing endothelial dysfunction, and improving lipid metabolism. Thus, kallistatin may be a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases. In this review, we focus on the antiatherogenic function of kallistatin and its potential mechanism.
Collapse
Affiliation(s)
- Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Jin Zou
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Xiaohua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Shanhui Yin
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Chaoke Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| |
Collapse
|
16
|
Muhammad F, Avalos PN, Mursalin MH, Ma JX, Callegan MC, Lee DJ. Kallistatin Attenuates Experimental Autoimmune Uveitis by Inhibiting Activation of T Cells. Front Immunol 2020; 11:975. [PMID: 32508841 PMCID: PMC7253575 DOI: 10.3389/fimmu.2020.00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis. EAU spontaneously resolves and is marked by ocular autoantigen-specific regulatory immunity in the spleen. Kallikrein binding protein (KBP) or kallistatin is a serine proteinase inhibitor that inhibits angiogenesis and inflammation, but its role in autoimmune uveitis has not been explored. We report that T cells activation is inhibited and EAU is attenuated in human KBP (HKBP) mice with no significant difference in the Treg population that we previously identified both before and after recovery from EAU. Moreover, following EAU immunization HKBP mice have potent ocular autoantigen specific regulatory immunity that is functionally suppressive.
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Priscilla N Avalos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - M H Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michelle C Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Darren J Lee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Guragain D, Gurung P, Chang JH, Katila N, Chang HW, Jeong BS, Choi DY, Kim JA. AMPK is essential for IL-10 expression and for maintaining balance between inflammatory and cytoprotective signaling. Biochim Biophys Acta Gen Subj 2020; 1864:129631. [PMID: 32418902 DOI: 10.1016/j.bbagen.2020.129631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) exerts its anti-inflammatory effects by suppressing redox-sensitive nuclear factor kappa B (NF-κB) and pro-inflammatory cytokines including TNF-α. However, it is unclear whether AMPK regulates anti-inflammatory cytokine expressions in the presence of oxidative stress-induced inflammation. We sought to elucidate the mechanisms whereby AMPK regulates inflammatory cytokine expressions under NADPH oxidase (NOX)-induced oxidative stress. METHODS HT-29 human colonic epithelial cells transfected with AMPKα shRNA and mouse models with AMPKα knocked out in epithelial cells (AMPKαfl/fl-Vil-Cre) or macrophages (AMPKαfl/fl-Lyz2-Cre) were used to examine the effects of AMPK and NOX on signaling pathways and cytokine expressions. RESULTS In HT-29 cells, 5-hydroxytryptamine (5-HT)-induced NOX activity was enhanced by AMPKα silencing, and resulted in inflammatory cell death. AMPKα deletion specific for colon epithelial cells (AMPKαfl/fl-Vil-Cre) or macrophages (AMPKαfl/fl-Lyz2-Cre) intensified 5-HT- or dextran sulfate sodium (DSS)-induced upregulations of NOX2, TNF-α, and IL-6, but completely abolished basal and 5-HT- or DSS-induced upregulation of IL-10 in colon epithelium. Furthermore, 5-HT- and DSS-induced changes were accompanied by marked upregulations of increased inflammatory signaling pathways linked to NF-κB, AP-1, and STAT3 transcription factors, and to GATA, a cell fate-directing signaling. In addition, AMPKα deletion significantly fortified 5-HT- or DSS-induced downregulations of cytoprotective signaling pathways (Nrf2, HIF-1α, and KLF4). CONCLUSION Basal AMPKα maintains an anti-inflammatory state by inhibiting NOX, balancing pro-/anti-inflammatory signaling pathways, and directing IL-10 production. When these regulatory roles of AMPK are diminished by oxidative stress, colon epithelium undergoes inflammation despite IL-10 production.
Collapse
Affiliation(s)
- Diwakar Guragain
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Pallavi Gurung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nikita Katila
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
18
|
Zhang J, He Y, Yan X, Chen S, He M, Lei Y, Zhang J, Gongol B, Gu M, Miao Y, Bai L, Cui X, Wang X, Zhang Y, Fan F, Li Z, Shen Y, Chou C, Huang H, Malhotra A, Rabinovitch M, Jing Z, Shyy JY. MicroRNA-483 amelioration of experimental pulmonary hypertension. EMBO Mol Med 2020; 12:e11303. [PMID: 32324970 PMCID: PMC7207157 DOI: 10.15252/emmm.201911303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), β-catenin, connective tissue growth factor (CTGF), interleukin-1β (IL-1β), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-β, TGFBR2, β-catenin, CTGF, IL-1β, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses.
Collapse
Affiliation(s)
- Jin Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Yangyang He
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiaosong Yan
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Ming He
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Yuyang Lei
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Jiao Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
- Department of CardiologyFirst Affiliated HospitalXi'an Jiaotong UniversityXianChina
| | - Brendan Gongol
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Mingxia Gu
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Yifei Miao
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Liang Bai
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Xiaopei Cui
- Department of Geriatric MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Xiaojian Wang
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yixin Zhang
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fenling Fan
- Department of CardiologyFirst Affiliated HospitalXi'an Jiaotong UniversityXianChina
| | - Zhao Li
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Yuan Shen
- Department of Epidemiology and Health StatisticsSchool of Public HealthXi'an Jiaotong UniversityXianChina
| | - Chih‐Hung Chou
- Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Hsien‐Da Huang
- Warshel Institute for Computational BiologySchool of Life and Health SciencesThe Chinese University of Hong KongShenzhenChina
| | - Atul Malhotra
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Marlene Rabinovitch
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Zhi‐Cheng Jing
- Department of Cardiology & Key Lab of Pulmonary Vascular MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - John Y‐J Shyy
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| |
Collapse
|
19
|
He Y, Han Y, Xing J, Zhai X, Wang S, Xin S, Zhang J. Kallistatin correlates with inflammation in abdominal aortic aneurysm and suppresses its formation in mice. Cardiovasc Diagn Ther 2020; 10:107-123. [PMID: 32420091 DOI: 10.21037/cdt.2019.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Kallistatin (KS), encoded by SERPINA4, was suggested to play a protective role in many cardiovascular diseases. However, its role in the pathogenesis of abdominal aortic aneurysm (AAA) remains unclear. The aim of this study was to examine the potential association of KS with AAA pathogenesis. Methods We examined KS (SERPINA4) expression in human AAA by PCR, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) and analyzed correlations between kallistain and clinical data. We then analyzed the effect of recombinant KS on AAA formation and the Wingless (Wnt) signaling pathway in a mouse AAA model developed by angiotensin II (AngII) infusion to apolipoprotein E-deficient (ApoE-/-) mice. Results In AAA tissue samples, KS was significantly increased compared with samples from the control group (P<0.001, P<0.001, respectively). Clinically, decreased SERPINA4 expression in AAA tissue samples represented an increased rate of iliac artery aneurysm [odds ratio (OR): 0.017; P=0.040]. And decreased plasma KS level represented a high risk for rupture (OR: 0.837; P=0.034). KS inhibited AAA formation and blocked the Wnt signaling pathway in AngII-infused ApoE-/- mice. Conclusions The present study demonstrates that aberrant changes in KS expression occur in AAA. KS plays an important anti-inflammatory role and showed important clinical correlations in AAA. Decreased KS (SERPINA4) level is a risk factor of AAA rupture. Our pre-clinical animal experiments indicate that treatment with recombination KS suppresses AngII-induced aortic aneurysm formation and might be a new target for the drug therapy of AAA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia Xing
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Shiyue Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
20
|
Wang C, Cao H, Gu S, Shi C, Chen X, Han X. Expression analysis of microRNAs and mRNAs in myofibroblast differentiation of lung resident mesenchymal stem cells. Differentiation 2019; 112:10-16. [PMID: 31838455 DOI: 10.1016/j.diff.2019.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious lung disease that involved the myofibroblast differentiation of lung resident mesenchymal stem cells (LR-MSCs). However, the specific molecular mechanisms of myofibroblast differentiation of LR-MSCs still remain a mystery. In this study, a comprehensive analysis of miRNAs and mRNAs changes in LR-MSCs treated with TGF-β1 was performed. Through computational approaches, the pivotal roles of differentially expressed miRNAs that were associated with tight junction, pathways in cancer, focal adhesion, and cytokine-cytokine receptor interaction were shown. Kruppel-like factor 4 (Klf4) and inhibitor of growth family, member 5 (Ing5) may be the targets for the therapy of pulmonary fibrosis by inhibiting myofibroblast differentiation of LR-MSCs and EMT. Collectively, a molecular paradigm for understanding myofibroblast differentiation of LR-MSCs in IPF was provided by the integrated miRNA/mRNA analyses.
Collapse
Affiliation(s)
- Cong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shen Gu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Chaowen Shi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
21
|
Vascular Wall as Source of Stem Cells Able to Differentiate into Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31797283 DOI: 10.1007/5584_2019_421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The traditional view of the vascular biology is changed by the discovery of vascular progenitor cells in bone marrow or peripheral blood Further complexity is due to the findings that the vessel walls harbor progenitor and stem cells, called vascular wall-resident vascular stem cells (VW-VSCs), able to differentiate to mature vascular wall cells. These immature stem/progenitor cell populations and multipotent mesenchymal lineage participate in postnatal neovascularization and vascular wall remodeling. Further studies are necessary to deepen the knowledge on characterization and biology of VW-VSCs, in particular of endothelial progenitor cells (EPCs) in order to improve their use in clinical settings for regenerative approaches.
Collapse
|
22
|
Lu Q, Meng Q, Qi M, Li F, Liu B. Shear-Sensitive lncRNA AF131217.1 Inhibits Inflammation in HUVECs via Regulation of KLF4. Hypertension 2019; 73:e25-e34. [PMID: 30905197 DOI: 10.1161/hypertensionaha.118.12476] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherosclerosis is one of the most common vascular diseases, and inflammation participates in all stages of its progression. Laminar shear stress protects arteries from atherosclerosis and reduces endothelial inflammation. Long noncoding RNAs have emerged as critical regulators in many diseases, including atherosclerosis. However, the expression and functions of long noncoding RNAs subjected to laminar shear stress in endothelial cells remain unclear. This study aimed to reveal the mechanism by which shear stress-regulated long noncoding RNAs contribute to anti-inflammation. In this study, we identified a novel long noncoding RNA AF131217.1, which was upregulated after laminar shear stress treatment in human umbilical vein endothelial cells. Knockdown of AF131217.1 inhibited flow-mediated reduction of monocyte adhesion VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression and inhibited flow-mediated enhancement of flow-responsive expression of KLF (Kruppel-like factor) 2 and eNOS (endothelial NO synthase). Furthermore, TNF-α (tumor necrosis factor-α) was used to induce an inflammatory response in human umbilical vein endothelial cells. Knockdown of AF131217.1 promoted ICAM-1 and VCAM-1 expression, as well as changes in monocyte adhesion and KLF2 and eNOS expression induced by TNF-α. Mechanistic investigations indicated that AF131217.1 acted as a competing endogenous RNA for miR-128-3p, leading to regulation of its target gene KLF4. In conclusion, our study demonstrates for the first time that laminar shear stress regulates the expression of AF131217.1 in human umbilical vein endothelial cells, and the AF131217.1/miR-128-3p/KLF4 axis plays a vital role in atherosclerosis development.
Collapse
Affiliation(s)
- Qing Lu
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Qingyu Meng
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Mingran Qi
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Fan Li
- From the Department of Pathogenobiology, Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China (Q.L., Q.M., M.Q., F.L.)
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, Jilin, China (B.L.)
| |
Collapse
|
23
|
Wu D, Birukov K. Endothelial Cell Mechano-Metabolomic Coupling to Disease States in the Lung Microvasculature. Front Bioeng Biotechnol 2019; 7:172. [PMID: 31380363 PMCID: PMC6658821 DOI: 10.3389/fbioe.2019.00172] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Lungs are the most vascular part of humans, accepting the totality of cardiac output in a volume much smaller than the body itself. Due to this cardiac output, the lung microvasculature is subject to mechanical forces including shear stress and cyclic stretch that vary with the cardiac and breathing cycle. Vessels are surrounded by extracellular matrix which dictates the stiffness which endothelial cells also sense and respond to. Shear stress, stiffness, and cyclic stretch are known to influence endothelial cell state. At high shear stress, endothelial cells exhibit cell quiescence marked by low inflammatory markers and high nitric oxide synthesis, whereas at low shear stress, endothelial cells are thought to "activate" into a pro-inflammatory state and have low nitric oxide. Shear stress' profound effect on vascular phenotype is most apparent in the arterial vasculature and in the pathophysiology of vascular inflammation. To conduct the flow of blood from the right heart, the lung microvasculature must be rigid yet compliant. It turns out that excessive substrate rigidity or stiffness is important in the development of pulmonary hypertension and chronic fibrosing lung diseases via excessive cell proliferation or the endothelial-mesenchymal transition. Recently, a new body of literature has evolved that couples mechanical sensing to endothelial phenotypic changes through metabolic signaling in clinically relevant contexts such as pulmonary hypertension, lung injury syndromes, as well as fibrosis, which is the focus of this review. Stretch, like flow, has profound effect on endothelial phenotype; metabolism studies due to stretch are in their infancy.
Collapse
Affiliation(s)
- David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Konstantin Birukov
- Department of Anesthesia, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
24
|
Shaverdashvili K, Padlo J, Weinblatt D, Jia Y, Jiang W, Rao D, Laczkó D, Whelan KA, Lynch JP, Muir AB, Katz JP. KLF4 activates NFκB signaling and esophageal epithelial inflammation via the Rho-related GTP-binding protein RHOF. PLoS One 2019; 14:e0215746. [PMID: 30998758 PMCID: PMC6472825 DOI: 10.1371/journal.pone.0215746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulatory mechanisms within esophageal epithelia is essential to gain insight into the pathogenesis of esophageal diseases, which are among the leading causes of morbidity and mortality throughout the world. The zinc-finger transcription factor Krüppel-like factor (KLF4) is implicated in a large number of cellular processes, such as proliferation, differentiation, and inflammation in esophageal epithelia. In murine esophageal epithelia, Klf4 overexpression causes chronic inflammation which is mediated by activation of NFκB signaling downstream of KLF4, and this esophageal inflammation produces epithelial hyperplasia and subsequent esophageal squamous cell cancer. Yet, while NFκB activation clearly promotes esophageal inflammation, the mechanisms by which NFκB signaling is activated in esophageal diseases are not well understood. Here, we demonstrate that the Rho-related GTP-binding protein RHOF is activated by KLF4 in esophageal keratinocytes, leading to the induction of NFκB signaling. Moreover, RHOF is required for NFκB activation by KLF4 in esophageal keratinocytes and is also important for esophageal keratinocyte proliferation and migration. Finally, we find that RHOF is upregulated in eosinophilic esophagitis, an important esophageal inflammatory disease in humans. Thus, RHOF activation of NFκB in esophageal keratinocytes provides a potentially important and clinically-relevant mechanism for esophageal inflammation and inflammation-mediated esophageal squamous cell cancer.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Jennie Padlo
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Daniel Weinblatt
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Yang Jia
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Wenpeng Jiang
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Divya Rao
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Dorottya Laczkó
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Kelly A. Whelan
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - John P. Lynch
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, United States of America
| | - Jonathan P. Katz
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Protective Role of Endogenous Kallistatin in Vascular Injury and Senescence by Inhibiting Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4138560. [PMID: 30622668 PMCID: PMC6304815 DOI: 10.1155/2018/4138560] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Kallistatin was identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin exerts pleiotropic effects on angiogenesis, oxidative stress, inflammation, apoptosis, fibrosis, and tumor growth. Kallistatin levels are markedly reduced in patients with coronary artery disease, sepsis, diabetic retinopathy, inflammatory bowel disease, pneumonia, and cancer. Moreover, plasma kallistatin levels are positively associated with leukocyte telomere length in young African Americans, indicating the involvement of kallistatin in aging. In addition, kallistatin treatment promotes vascular repair by increasing the migration and function of endothelial progenitor cells (EPCs). Kallistatin via its heparin-binding site antagonizes TNF-α-induced senescence and superoxide formation, while kallistatin's active site is essential for inhibiting miR-34a synthesis, thus elevating sirtuin 1 (SIRT1)/eNOS synthesis in EPCs. Kallistatin inhibits oxidative stress-induced cellular senescence by upregulating Let-7g synthesis, leading to modulate Let-7g-mediated miR-34a-SIRT1-eNOS signaling pathway in human endothelial cells. Exogenous kallistatin administration attenuates vascular injury and senescence in association with increased SIRT1 and eNOS levels and reduced miR-34a synthesis and NADPH oxidase activity, as well as TNF-α and ICAM-1 expression in the aortas of streptozotocin- (STZ-) induced diabetic mice. Conversely, endothelial-specific depletion of kallistatin aggravates vascular senescence, oxidative stress, and inflammation, with further reduction of Let-7g, SIRT1, and eNOS and elevation of miR-34a in mouse lung endothelial cells. Furthermore, systemic depletion of kallistatin exacerbates aortic injury, senescence, NADPH oxidase activity, and inflammatory gene expression in STZ-induced diabetic mice. These findings indicate that endogenous kallistatin displays a novel role in protection against vascular injury and senescence by inhibiting oxidative stress and inflammation.
Collapse
|
27
|
Li B, Sheng Z, Liu C, Qian L, Wu Y, Wu Y, Ma G, Yao Y. Kallistatin Inhibits Atherosclerotic Inflammation by Regulating Macrophage Polarization. Hum Gene Ther 2018; 30:339-351. [PMID: 30205711 DOI: 10.1089/hum.2018.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kallistatin (KS) has been recognized as a plasma protein with anti-inflammatory functions. Macrophages are the primary inflammatory cells in atherosclerotic plaques. However, it is unknown whether KS plays a role in macrophage development and the pathogenesis of atherosclerosis. This study investigated the role of KS in macrophage development, a key pathological process in atherosclerosis. An atherosclerosis model was established in ApoE-/- mice via partial left carotid artery (PLCA) ligation. An adenovirus vector (Ad. HKS) containing the human KS gene was delivered via the tail vein before PLCA ligation. The mice were divided into two groups: the PLCA + Ad. HKS and PLCA + adenovirus vector (Ad. Null) groups and followed for 2 and 4 weeks. Human KS was expressed in the mice after KS gene delivery. In addition, KS significantly inhibited plaque formation and reduced inflammation in the plaques and liver 4 weeks after gene delivery. Moreover, KS gene delivery significantly increased the expression of interleukin-10 and Arginase 1, which are M2 macrophage markers, and reduced the expression of inducible nitric oxide synthase and monocyte chemotactic protein 1, which are M1 macrophage markers. Furthermore, in cultured RAW 264.7 macrophages, KS significantly stimulated M2 marker expression and differentiation and decreased M1 marker expression, as determined by flow cytometry and real-time polymerase chain reaction. These effects were blocked by Krüppel-like factor 4 small-interfering RNA oligonucleotides. These findings demonstrate that KS inhibits atherosclerotic plaque formation and regulates M1/M2 macrophage polarization via Krüppel-like factor 4 activation.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Zulong Sheng
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Chang Liu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Linglin Qian
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Yuehuan Wu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Yanping Wu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| |
Collapse
|
28
|
Frühbeck G, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Valentí V, Moncada R, Becerril S, Unamuno X, Silva C, Salvador J, Catalán V. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress. Metabolism 2018; 87:123-135. [PMID: 29679615 DOI: 10.1016/j.metabol.2018.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. METHODS Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. RESULTS We show that the reduced (P < 0.00001) circulating levels of kallistatin in obese patients increased (P < 0.00001) after RYGB. Moreover, gene expression levels of SERPINA4, the gene coding for kallistatin, were downregulated (P < 0.01) in the liver from obese subjects with non-alcoholic fatty liver disease. Additionally, we revealed that kallistatin reduced (P < 0.05) the expression of inflammation-related genes (CCL2, IL1B, IL6, IL8, TNFA, TGFB) and, conversely, upregulated (P < 0.05) mRNA levels of ADIPOQ and KLF4 in human adipocytes in culture. Kallistatin inhibited (P < 0.05) LPS- and TNF-α-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Furthermore, kallistatin also blocked (P < 0.05) TNF-α-mediated lipid peroxidation as well as NOX2 and HIF1A expression while stimulating (P < 0.05) the expression of SIRT1 and FOXO1. CONCLUSIONS These findings provide, for the first time, evidence of a novel role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
29
|
Rickert U, Cossais F, Heimke M, Arnold P, Preuße-Prange A, Wilms H, Lucius R. Anti-inflammatory properties of Honokiol in activated primary microglia and astrocytes. J Neuroimmunol 2018; 323:78-86. [DOI: 10.1016/j.jneuroim.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 01/24/2023]
|
30
|
Kim T, Suh GJ, Kwon WY, Kim KS, Jung YS, Shin SM. Lower serum kallistatin level is associated with 28-day mortality in patients with septic shock. J Crit Care 2018; 48:328-333. [PMID: 30286402 DOI: 10.1016/j.jcrc.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Investigation for whether serum levels of kallistatin, vascular cell adhesion molecule-1 (VCAM-1), and E-selectin are associated with outcomes in patients with septic shock MATERIAL AND METHODS: Biomarker levels were measured using blood samples from patients with septic shock at admission, 24 h, and 72 h and from healthy volunteers. The primary outcome was 28-day mortality. RESULTS Fifty-eight survivors, fourteen non-survivors, and six healthy volunteers were enrolled. Serum kallistatin level was lower and serum VCAM-1 and E-selectin levels were higher in patients at admission compared with healthy volunteers. Serum kallistatin levels were higher in survivors compared with non-survivors at all time points (4.4 μg/mL [2.9-6.1] vs. 2.5 μg/mL [2.1-5.0], P = 0.019 at admission; 4.3 μg/mL [3.3-5.2] vs. 3.2 μg/mL [2.2-3.8], P = 0.004 at 24 h; 3.1 μg/mL [2.5-4.2] vs. 2.3 μg/mL [1.7-3.1], P = 0.012 at 72 h), while VCAM-1 and E-selectin levels showed no difference. In the multivariable analysis, serum kallistatin level at 24 h was independently associated with 28-day mortality (OR, 0.29; 95% CI, 0.08-0.69, P = 0.024). CONCLUSIONS Lower serum kallistatin level at 24 h was independently associated with 28-day mortality in patients with septic shock.
Collapse
Affiliation(s)
- Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yoon Sun Jung
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - So Mi Shin
- Division of Critical Care Medicine, Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
31
|
Guo Y, Chao L, Chao J. Kallistatin attenuates endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway. J Cell Mol Med 2018; 22:4387-4398. [PMID: 29992759 PMCID: PMC6111868 DOI: 10.1111/jcmm.13734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023] Open
Abstract
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2 O2 -induced senescence in human endothelial cells, as indicated by reduced senescence-associated-β-galactosidase activity, p16INK4a and plasminogen activator inhibitor-1 expression, and elevated telomerase activity. Kallistatin blocked H2 O2 -induced superoxide formation, NADPH oxidase levels and VCAM-1, ICAM-1, IL-6 and miR-34a synthesis. Kallistatin reversed H2 O2 -mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)-2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti-senescence and anti-oxidant effects were attributed to SIRT1-mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up-regulated Let-7g, whereas Let-7g inhibitor abolished kallistatin's effects on miR-34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium-specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild-type mouse endothelial cells, and H2 O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let-7g, SIRT1, eNOS, catalase and SOD-1 mRNA levels, and elevated miR-34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway.
Collapse
Affiliation(s)
- Youming Guo
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| | - Lee Chao
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| | - Julie Chao
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
32
|
Chang SF, Huang KC, Chang HI, Lee KC, Su YP, Chen CN. 2 dyn/cm 2 shear force upregulates kruppel-like factor 4 expression in human chondrocytes to inhibit the interleukin-1β-activated nuclear factor-κB. J Cell Physiol 2018; 234:958-968. [PMID: 30132856 DOI: 10.1002/jcp.26924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
The shear force effect on human chondrocytes is time and magnitude dependent. Recently, kruppel-like factor (KLF) 4 has been identified as a pleiotropic protein and its activity in cells is dependent on different stimuli and/or cell types. The role of KLF4 in chondrocytes is still unclear and there has been no report determining whether shear force regulates KLF4 levels in chondrocytes. Hence, this study was carried out to investigate the role of KLF4 in human chondrocytes under shear force stimulation and the underlying mechanism. Human primary and SW1353 chondrocytes were used in this study. The shear forces at 2, 5, or 15 dyn/cm2 intensity were applied to both types of human chondrocytes. The specific small interfering RNAs, activators, and inhibitors were used to study the detailed mechanism of shear force. The presented results showed that 2, but not 5 and 15, dyn/cm2 shear force increases KLF4 expression in human primary and SW1353 chondrocytes. Extracellular signal-regulated kinase 5 induced peroxisome proliferator-activated receptor γ transcription activity to increase KLF4 transcription. Moreover, the KLF4 induction in human chondrocytes in response to 2 dyn/cm2 shear force could attenuate interleukin (IL)-1β-stimulated nuclear factor-κB activation. These results elucidate the role of KLF4 in antagonizing the effect of IL-1β in human chondrocytes under 2 dyn/cm2 shear force stimulation and provide a possible mechanism to demonstrate the protection of moderate forces or exercises in cartilage.
Collapse
Affiliation(s)
- Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Kuo-Chin Huang
- Department of Orthopaedics, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Yu-Ping Su
- Department of Orthopaedics and Traumatology, Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
33
|
Jiang ZS, Zhang JR. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. Int J Biol Macromol 2018; 120:66-72. [PMID: 30076931 DOI: 10.1016/j.ijbiomac.2018.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
This study aims to explore the role and mechanism of lncRNA SNHG5 in spinal cord injury (SCI). The interaction between SNHG5 and Krüppel-like factor 4 (KLF4) was verified by RNA pull-down and RNA immunoprecipitation (RIP) assay. Rat neural function was evaluated by BBB and BMS scores. Results showed that GFAP and Iba-1 (specific proteins for astrocytes and microglia respectively) were upregulated in spinal cord of SCI rats. Simultaneously, spinal cord also expressed substantially higher levels of SNHG5, KLF4 and eNOS (endothelial Nitric Oxide Synthase) than sham group. In traumatically injured astrocytes and microglia, SNHG5 overexpression increased cells viability, which was significantly inhibited by SNHG5 knockdown. KLF4 is a directly target for SNHG5 and is positively regulated by SNHG5. The knockdown of KLF4 effectively decreased astrocytes and microglia viability induced by SHNG5 overexpression and attenuated the pcDNA-SNHG5-mediated repression of the apoptosis. In SCI rats, the injection of Lenti-SNHG5 reduced BBB and BMS scores and also enhanced the protein expression of KLF4, eNOS, GFAP and Iba-1. In summary, our data suggested that SNHG5 promotes SCI via increasing the viability of astrocytes and microglia. The mechanism by which SNHG5 works is its directive interaction to KLF4 and contribution to eNOS upregulation.
Collapse
Affiliation(s)
- Zhen-Song Jiang
- Department of Spinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250014, PR China.
| | - Jian-Ru Zhang
- Department of Health Examination, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, PR China
| |
Collapse
|
34
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
35
|
|
36
|
Cell surface expression of nucleolin mediates the antiangiogenic and antitumor activities of kallistatin. Oncotarget 2017; 9:2220-2235. [PMID: 29416766 PMCID: PMC5788634 DOI: 10.18632/oncotarget.23346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Kallistatin is a unique serine proteinase inhibitor and heparin-binding protein. A previous study conducted by our group indicated that kallistatin has antiangiogenic and antitumoral activities. In the present study, we report that kallistatin specifically binds to membrane surface-expressed nucleolin with high affinity. Antibody-mediated neutralization or siRNA-induced nucleolin knockdown results in loss of kallistatin suppression of endothelial cell proliferation and migration in vitro and tumor angiogenesis and growth in vivo. In addition, we show that kallistatin is internalized and transported into cell nuclei of endothelial cells via nucleolin. Within the nucleus, kallistatin inhibits the phosphorylation of nucleolin, which is a critical step required for cell proliferation. Thus, we demonstrate that nucleolin is a novel functional receptor of kallistatin that mediates its antiangiogenic and antitumor activities. These findings provide mechanistic insights into the inhibitory effects of kallistatin on endothelial cell growth, tumor cell proliferation, and tumor-related angiogenesis.
Collapse
|
37
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
38
|
Li Z, Martin M, Zhang J, Huang HY, Bai L, Zhang J, Kang J, He M, Li J, Maurya MR, Gupta S, Zhou G, Sangwung P, Xu YJ, Lei T, Huang HD, Jain M, Jain MK, Subramaniam S, Shyy JYJ. Krüppel-Like Factor 4 Regulation of Cholesterol-25-Hydroxylase and Liver X Receptor Mitigates Atherosclerosis Susceptibility. Circulation 2017; 136:1315-1330. [PMID: 28794002 DOI: 10.1161/circulationaha.117.027462] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atherosclerosis is a multifaceted inflammatory disease involving cells in the vascular wall (eg, endothelial cells [ECs]), as well as circulating and resident immunogenic cells (eg, monocytes/macrophages). Acting as a ligand for liver X receptor (LXR), but an inhibitor of SREBP2 (sterol regulatory element-binding protein 2), 25-hydroxycholesterol, and its catalyzing enzyme cholesterol-25-hydroxylase (Ch25h) are important in regulating cellular inflammatory status and cholesterol biosynthesis in both ECs and monocytes/macrophages. METHODS Bioinformatic analyses were used to investigate RNA-sequencing data to identify cholesterol oxidation and efflux genes regulated by Krüppel-like factor 4 (KLF4). In vitro experiments involving cultured ECs and macrophages and in vivo methods involving mice with Ch25h ablation were then used to explore the atheroprotective role of KLF4-Ch25h/LXR. RESULTS Vasoprotective stimuli increased the expression of Ch25h and LXR via KLF4. The KLF4-Ch25h/LXR homeostatic axis functions through suppressing inflammation, evidenced by the reduction of inflammasome activity in ECs and the promotion of M1 to M2 phenotypic transition in macrophages. The increased atherosclerosis in apolipoprotein E-/-/Ch25h-/- mice further demonstrates the beneficial role of the KLF4-Ch25h/LXR axis in vascular function and disease. CONCLUSIONS KLF4 transactivates Ch25h and LXR, thereby promoting the synergistic effects between ECs and macrophages to protect against atherosclerosis susceptibility.
Collapse
Affiliation(s)
- Zhao Li
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Marcy Martin
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Jin Zhang
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Hsi-Yuan Huang
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Liang Bai
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Jiao Zhang
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Jian Kang
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Ming He
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Jie Li
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Mano R Maurya
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Shakti Gupta
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Guangjin Zhou
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Panjamaporn Sangwung
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Yong-Jiang Xu
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Ting Lei
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Hsien-Da Huang
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Mohit Jain
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Mukesh K Jain
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - Shankar Subramaniam
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.)
| | - John Y-J Shyy
- From Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China (Z.L., Jin Zhang, L.B., Jiao Zhang, M.H., J.L., T.L., J.Y.-J.S.); Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (M.M., Jin Zhang, J.K., M.H., Y.-J.X., M.J., J.Y.-J.S.);Department of Bioengineering, University of California, San Diego, La Jolla (M.R.M., S.G.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); Institute of Bioinformatics and Systems Biology and Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan (H.-Y.H., H.-D.H.); and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH (G.Z., P.S., M.K.J.).
| |
Collapse
|
39
|
Mo X, Chen J, Wang X, Pan Z, Ke Y, Zhou Z, Xie J, Lv G, Luo X. Krüppel-like factor 4 regulates the expression of inducible nitric oxide synthase induced by TNF-α in human fibroblast-like synoviocyte MH7A cells. Mol Cell Biochem 2017; 438:77-84. [PMID: 28744810 DOI: 10.1007/s11010-017-3115-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/15/2017] [Indexed: 12/01/2022]
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, has been implicated in the inflammation mediated by macrophages and endothelial cells by regulating the expression of inflammatory mediators. Here, we investigated whether KLF4 affects the expression of inducible nitric oxide synthase (iNOS), an important inflammatory mediator, in the human RA fibroblast-like synovial cell line MH7A. A pcDNA3.1-KLF4 plasmid or short interfering RNA KLF4 was transfected into MH7A cells, and the iNOS expression and nitric oxide (NO) production were analyzed by quantitative PCR, immunoblotting, and nitrite measurement. The iNOS promoter activity was determined by luciferase assay. The results showed overexpression of KLF4 increased iNOS expression and NO production in the presence or absence of TNF-α. Conversely, KLF4 knockdown markedly reduced iNOS expression and NO production induced by TNF-α. KLF4 activated the transcription activity of iNOS promoter in MH7A cells stimulated by TNF-α. This study indicates that KLF4 is important for regulating the expression of iNOS by TNF-α in human synoviocytes.
Collapse
Affiliation(s)
- Xuanrong Mo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Jie Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xinjuan Wang
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyu Pan
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yuping Ke
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhidong Zhou
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Jiangwen Xie
- Department of Cardiology, Yingzhou District Second people's Hospital, Ningbo, 315000, China
| | - Guoju Lv
- Department of Cardiology, Yingzhou District Second people's Hospital, Ningbo, 315000, China
| | - Xinjing Luo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
40
|
Li H, Zhang C, Shen H, Shen Z, Wu L, Mo F, Li M. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 2017; 7:5745. [PMID: 28720846 PMCID: PMC5515979 DOI: 10.1038/s41598-017-06058-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022] Open
Abstract
Iron overload has attracted much attention because of its adverse effect in increasing the risk of developing several neurodegenerative disorders. Under various pathologic conditions, a lot of heme are released. The aggregation of heme is more neurotoxic than that of iron released from the heme breakdown. Our previous studies demonstrated that psychological stress (PS) is a risk factor of cerebral iron metabolism disorders, thus causing iron accumulation in rat brains. In the present study, we found PS could increase heme uptake via heme carrier protein 1 (HCP1) in rat brains. We demonstrated that Glucocorticoid (GC), which is largely secreted under stress, could up-regulate HCP1 expression, thus promoting heme uptake in neurons. We also ascertained that HCP1 expression can be induced by GC through a transcription factor, Krüppel-like factor 4 (KLF4). These results may gain new insights into the etiology of heme uptake and iron accumulation in PS rats, and find new therapeutic targets of iron accumulation in Parkinson’s disease or Alzheimer’s disease.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Caixia Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.,Department of Nursing, People's Libration Army of 266 Hospital, Chengde City, Hubei, 067000, China
| | - Hui Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhilei Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Lusha Wu
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Min Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
41
|
Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5025610. [PMID: 28744338 PMCID: PMC5506461 DOI: 10.1155/2017/5025610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Kallistatin is an endogenous protein that regulates differential signaling pathways and a wide spectrum of biological activities via its two structural elements: an active site and a heparin-binding domain. Kallistatin via its heparin-binding site inhibits vascular inflammation and oxidative stress by antagonizing TNF-α-induced NADPH oxidase activity, NF-κB activation, and inflammatory gene expression in endothelial cells. Moreover, kallistatin via its active site inhibits microRNA-34a (miR-34a) synthesis and stimulates eNOS and SIRT1 expression in endothelial progenitor cells, whereas its heparin-binding site is crucial for blocking TNF-α-induced miR-21 expression and oxidative stress, thus reducing cellular senescence. By downregulating miR-34a and miR-21 expression, kallistatin treatment attenuates oxidative damage and aortic senescence in streptozotocin-induced diabetic mice and extends Caenorhabditis elegans lifespan under stress conditions. Likewise, kallistatin through the heparin-binding site inhibits TGF-β-induced miR-21 synthesis and oxidative stress in endothelial cells, resulting in inhibition of endothelial-mesenchymal transition, a process contributing to fibrosis and cancer. Furthermore, kallistatin's active site is essential for stimulating miR-34a and p53 expression and inhibiting the miR-21-Akt-Bcl-2 signaling pathway, thus inducing apoptosis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in protection against senescence, aging, and cancer development by modulating miR-34a and miR-21 levels and inhibiting oxidative stress.
Collapse
|
42
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
43
|
Huang X, Wang X, Xie X, Zeng S, Li Z, Xu X, Yang H, Qiu F, Lin J, Diao Y. Kallistatin protects against bleomycin-induced idiopathic pulmonary fibrosis by inhibiting angiogenesis and inflammation. Am J Transl Res 2017; 9:999-1011. [PMID: 28386328 PMCID: PMC5375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 06/07/2023]
Abstract
Aberrant angiogenesis and vascular remodeling are the main features of idiopathic pulmonary fibrosis. Kallistatin is an anti-angiogenic peptide with known effects on endothelial cells. This study aimed to demonstrate that kallistatin has beneficial effects on bleomycin (BLM)-induced pulmonary fibrosis in a rat model by inhibiting angiogenesis. Twenty-five rats were randomly divided into five experimental groups: (A) Saline only (SA)-as the negative control, (B) BLM only (BLM)-as the model group, (C) BLM and 0.1 mg/kg kallistatin (L-Kal), (D) BLM and 0.5 mg/kg kallistatin (M-Kal), and (E) BLM and 2.5 mg/kg kallistatin (H-Kal). Fibrillar collagen was quantified by Masson's trichrome and hematoxylin-eosin staining. Transforming growth factor-β1 (TGF-β1), α-smooth-muscle-actin (α-SMA) and microvascular density (MVD) were measured by immunohistochemistry. Vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), and tumor necrosis factor-α (TNF-α) were assayed by Western immunoblotting or ELISA. Daily administration of kallistatin attenuated fibrosis in BLM-induced pulmonary fibrosis, as shown by histology. During inflammation from BLM-induced pulmonary fibrosis, kallistatin reduced the number of inflammatory cells infiltrating the bronchoalveolar lavage fluid. Kallistatin also inhibited VEGF expression and phosphorylation of VEGFR2 (Flk-1). In vitro, kallistatin blocked tube formation by inhibiting Flk-1 and GSK-3β phosphorylation. The results demonstrated that continuous administration of kallistatin attenuated BLM-induced pulmonary fibrosis and improved survival of BLM rats. Reducing pulmonary fibrosis was achieved by partial inhibition of pulmonary inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiaoping Huang
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal UniversityQuanzhou 326000, China
| | - Xiao Wang
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal UniversityQuanzhou 326000, China
| | - Shulan Zeng
- School of Chemistry & Chemical Engineering of Guangxi Normal UniversityGuilin 541004, China
| | - Zhaofa Li
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| | - Xianxiang Xu
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| | - Huiyong Yang
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| | - Fei Qiu
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| | - Junsheng Lin
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| | - Yong Diao
- Institute of Molecular Medicine, Huaqiao UniversityQuanzhou 362021, China
| |
Collapse
|
44
|
Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37. [PMID: 28237823 DOI: 10.1016/j.gene.2017.02.025] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
45
|
He M, Chen Z, Martin M, Zhang J, Sangwung P, Woo B, Tremoulet AH, Shimizu C, Jain MK, Burns JC, Shyy JYJ. miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition: Therapeutic Implications in Kawasaki Disease. Circ Res 2017; 120:354-365. [PMID: 27923814 PMCID: PMC5391835 DOI: 10.1161/circresaha.116.310233] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Endothelial-mesenchymal transition (EndoMT) is implicated in myofibroblast-like cell-mediated damage to the coronary arterial wall in acute Kawasaki disease (KD) patients, as evidenced by positive staining for connective tissue growth factor (CTGF) and EndoMT markers in KD autopsy tissues. However, little is known about the molecular basis of EndoMT involved in KD. OBJECTIVE We investigated the microRNA (miRNA) regulation of CTGF and the consequent EndoMT in KD pathogenesis. As well, the modulation of this process by statin therapy was studied. METHODS AND RESULTS Sera from healthy children and KD subjects were incubated with human umbilical vein endothelial cells. Cardiovascular disease-related miRNAs, CTGF, and EndoMT markers were quantified using reverse transcriptase quantitative polymerase chain reaction, ELISA, and Western blotting. Compared with healthy controls, human umbilical vein endothelial cell incubated with sera from acute KD patients had decreased miR-483, increased CTGF, and increased EndoMT markers. Bioinformatics analysis followed by functional validation demonstrated that Krüppel-like factor 4 (KLF4) transactivates miR-483, which in turn targets the 3' untranslated region of CTGF mRNA. Overexpression of KLF4 or pre-miR-483 suppressed, whereas knockdown of KLF4 or anti-miR-483 enhanced, CTGF expression in endothelial cells in vitro and in vivo. Furthermore, atorvastatin, currently being tested in a phase I/IIa clinical trial in KD children, induced KLF4-miR-483, which suppressed CTGF and EndoMT in endothelial cells. CONCLUSIONS KD sera suppress the KLF4-miR-483 axis in endothelial cells, leading to increased expression of CTGF and induction of EndoMT. This detrimental process in the endothelium may contribute to coronary artery abnormalities in KD patients. Statin therapy may benefit acute KD patients, in part, through the restoration of KLF4-miR-483 expression. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01431105.
Collapse
Affiliation(s)
- Ming He
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Zhen Chen
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Marcy Martin
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Jin Zhang
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Panjamaporn Sangwung
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Brian Woo
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Adriana H Tremoulet
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Chisato Shimizu
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Mukesh K Jain
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Jane C Burns
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.).
| | - John Y-J Shyy
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.).
| |
Collapse
|
46
|
Eckard AR, Cho S, O'Riordan MA, McComsey GA. Kallistatin levels in HIV-infected patients and effects of statin therapy. Biomarkers 2016; 22:55-62. [PMID: 27326658 DOI: 10.1080/1354750x.2016.1204002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Kallistatin, a serine proteinase inhibitor, has vasodilatory and anti-inflammatory properties and is increased in other inflammatory conditions. We measured kallistatin in HIV for the first time, examined its relationship with inflammation, and determined if statin therapy affected levels. METHODS Kallistatin levels were measured in subjects from a randomized, double-blinded, placebo-controlled trial. RESULTS One hundred and thirty-five HIV-infected subjects were included. Kallistatin levels were 28.4 μg/mL at baseline and not affected by rosuvastatin. Levels were correlated with high-sensitivity C-reactive protein (hsCRP), interleukin-6, fibrinogen and insulin resistance. CONCLUSIONS Kallistatin levels were correlated with some markers of systemic inflammation and should be further explored in the HIV population.
Collapse
Affiliation(s)
- Allison Ross Eckard
- a Department of Medicine, Division of Pediatric Infectious Diseases, Emory University School of Medicine , Atlanta , GA , USA.,b Departments of Medicine and Pediatrics, Divisions of Infectious Diseases, Medical University of South Carolina , Charleston , SC , USA
| | - Soohee Cho
- a Department of Medicine, Division of Pediatric Infectious Diseases, Emory University School of Medicine , Atlanta , GA , USA
| | - Mary Ann O'Riordan
- c Departments of Medicine and Pediatrics, Divisions of Infectious Diseases, Case Western Reserve University and University Hospitals Case Medical Center , Cleveland , OH , USA
| | - Grace A McComsey
- c Departments of Medicine and Pediatrics, Divisions of Infectious Diseases, Case Western Reserve University and University Hospitals Case Medical Center , Cleveland , OH , USA
| |
Collapse
|
47
|
Li J, Krishna SM, Golledge J. The Potential Role of Kallistatin in the Development of Abdominal Aortic Aneurysm. Int J Mol Sci 2016; 17:ijms17081312. [PMID: 27529213 PMCID: PMC5000709 DOI: 10.3390/ijms17081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular condition that causes permanent dilation of the abdominal aorta, which can lead to death due to aortic rupture. The only treatment for AAA is surgical repair, and there is no current drug treatment for AAA. Aortic inflammation, vascular smooth muscle cell apoptosis, angiogenesis, oxidative stress and vascular remodeling are implicated in AAA pathogenesis. Kallistatin is a serine proteinase inhibitor, which has been shown to have a variety of functions, potentially relevant in AAA pathogenesis. Kallistatin has been reported to have inhibitory effects on tumor necrosis factor alpha (TNF-α) signaling induced oxidative stress and apoptosis. Kallistatin also inhibits vascular endothelial growth factor (VEGF) and Wnt canonical signaling, which promote inflammation, angiogenesis, and vascular remodeling in various pre-clinical experimental models. This review explores the potential protective role of kallistatin in AAA pathogenesis.
Collapse
Affiliation(s)
- Jiaze Li
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 4811 Townsville, Australia.
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, 4811 Townsville, Australia.
| |
Collapse
|
48
|
Affiliation(s)
- Julie Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.).
| | - Grant Bledsoe
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| | - Lee Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| |
Collapse
|
49
|
Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression. Mediators Inflamm 2016; 2016:1062586. [PMID: 27413250 PMCID: PMC4928008 DOI: 10.1155/2016/1062586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/09/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA). Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α.
Collapse
|
50
|
Czepluch FS, Vogler M, Kuschicke H, Meier J, Gogiraju R, Katschinski DM, Riggert J, Hasenfuss G, Schäfer K. Circulating Endothelial Cells Expressing the Angiogenic Transcription Factor Krüppel-Like Factor 4 are Decreased in Patients with Coronary Artery Disease. Microcirculation 2015. [DOI: 10.1111/micc.12226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Frauke S. Czepluch
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Melanie Vogler
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
- Institute of Cardiovascular Physiology; University Medical Center Göttingen; Göttingen Germany
| | - Hendrik Kuschicke
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Julia Meier
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Dörthe M. Katschinski
- Institute of Cardiovascular Physiology; University Medical Center Göttingen; Göttingen Germany
| | - Joachim Riggert
- Department of Transfusion Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Katrin Schäfer
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
- Medical Clinic 2; Department of Cardiology; University Medical Center Mainz; Mainz Germany
| |
Collapse
|