1
|
Sheikh SY, Hassan F, Shukla D, Bala S, Faruqui T, Akhter Y, Khan AR, Nasibullah M. A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitol Int 2024; 100:102863. [PMID: 38272301 DOI: 10.1016/j.parint.2024.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.
Collapse
Affiliation(s)
- Sabahat Yasmeen Sheikh
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Firoj Hassan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Deepanjali Shukla
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Shashi Bala
- Department of Chemistry, Lucknow University, Lucknow 226026, India
| | - Tabrez Faruqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Dasauli, Kursi road, Lucknow 226026, India.
| |
Collapse
|
2
|
Xu Y, Zhu Z, Zhang M, Chen L, Tian K, Li X. Tubercidin inhibits PRRSV replication via RIG-I/NF-κB pathways and interrupting viral nsp2 synthesis. Microbiol Spectr 2024; 12:e0347923. [PMID: 38299833 PMCID: PMC10913529 DOI: 10.1128/spectrum.03479-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus with constantly emerging recombinant and mutant strains. Because of the high genetic diversity of PRRSV, current vaccines only provide partial protection against the infection of heterologous strains, which makes it a challenge for PRRSV prevention and control. Tubercidin is a naturally extracted compound with potential antiviral properties. However, whether tubercidin has anti-PRRSV ability is unknown. Our study found that tubercidin showed effective antiviral effects on PRRSV replication. In terms of mechanism, tubercidin suppressed PRRSV at the entry, replication, and release steps of the viral life cycle. Additionally, we demonstrated that tubercidin treatment promoted the activation of retinoic acid-inducible gene I and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathway, thus increasing the type I interferon and inflammatory cytokine expression. Furthermore, tubercidin restrained the viral non-structural protein 2 expression and viral dsRNA synthesis and ultimately inhibited PRRSV replication. Hence, our data showed that tubercidin is promising and has potential antiviral ability against PRRSV replication in vitro. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most important swine diseases, which causes huge economic loss worldwide. However, there is no effective therapeutic method for PRRS prevention and control. Here, we found that tubercidin, a naturally extracted adenosine analog, exhibited strong anti-porcine reproductive and respiratory syndrome virus (PRRSV) activity. Mechanically, tubercidin inhibited viral binding, replication, and release. Tubercidin suppressed PRRSV non-structural protein 2 expression, which is important for the formation of replication and transcription complex, leading to the block of viral RNA synthesis and PRRSV replication. Moreover, tubercidin could activate retinoic acid-inducible gene I/nuclear factor kappa-light-chain-enhancer of activated B cell innate immune signaling pathway and increased the expression of interferons and proinflammatory cytokines, which was the other way to inhibit PRRSV replication. Our work evaluated the potential value of tubercidin as an antiviral agent on PRRSV replication and provided a new way to prevent PRRSV replication in vitro.
Collapse
Affiliation(s)
- Yuqian Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Meng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lulu Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Wang T, Zheng G, Chen Z, Wang Y, Zhao C, Li Y, Yuan Y, Duan H, Zhu H, Yang X, Li W, Du W, Li Y, Li D. Drug repurposing screens identify Tubercidin as a potent antiviral agent against porcine nidovirus infections. Virus Res 2024; 339:199275. [PMID: 38008220 PMCID: PMC10730850 DOI: 10.1016/j.virusres.2023.199275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The emergence of new coronaviruses poses a significant threat to animal husbandry and human health. Porcine epidemic diarrhea virus (PEDV) is considered a re-emerging porcine enteric coronavirus, which causes fatal watery diarrhea in piglets. Currently, there are no effective drugs to combat PEDV. Drug repurposing screens have emerged as an attractive strategy to accelerate antiviral drug discovery and development. Here, we screened 206 natural products for antiviral activity using live PEDV infection in Vero cells and identified ten candidate antiviral agents. Among them, Tubercidin, a nucleoside analog derived from Streptomyces tubercidicus, showed promising antiviral activity against PEDV infection. Furthermore, we demonstrated that Tubercidin exhibited significant antiviral activity against both classical and variant PEDV. Time of addition assay showed that Tubercidin displayed a significant inhibitory effect on viral post-entry events but not during other periods. Molecular docking analysis indicated that Tubercidin had better docking efficiency and formed hydrophobic interactions with the active pocket of RNA-dependent RNA polymerase (RdRp) of PEDV and other nidoviruses. Additionally, Tubercidin can effectively suppress other porcine nidoviruses, such as SADS-CoV and PRRSV, demonstrating its broad-spectrum antiviral properties. In summary, our findings provide valuable evidence for the antiviral activity of Tubercidin and offer insights into the development of new strategies for the prevention and treatment of coronavirus infections.
Collapse
Affiliation(s)
- Tianliang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guanmin Zheng
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zilu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixin Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China
| | - Hongsen Zhu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenjuan Du
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CL, the Netherlands
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China.
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
4
|
Sun Q, Liao X, Yan J, Jiang G, Huo F, Wang G, Li H. In vitro activity of tubercidin against Mycobacterium tuberculosis and nontuberculosis Mycobacteria. J Med Microbiol 2023; 72. [PMID: 37910006 DOI: 10.1099/jmm.0.001763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Tubercidin is an adenosine analogue that has been shown to exhibit good activity against some tumours and parasites. In this study, the in vitro activity of tubercidin was evaluated against Mycobacterium tuberculosis (Mtb) and nontuberculosis Mycobacteria (NTM). For determining the MICs of tubercidin, 23 fully drug-sensitive (DS) Mtb strains, 33 multi-drug resistance tuberculosis (MDR-TB) strains, 29 pre-extensively drug-resistant tuberculosis (pre-XDR-TB) strains, 21 extensively drug-resistant tuberculosis (XDR-TB) strains, 17 rapidly growing mycobacteria (RGM) and nine slowly growing mycobacteria (SGM) references strains were tested by microplate-based Alamar Blue assay (MABA) method. The results indicate that tubercidin has high in vitro activity against some drug-resistance Mtb strains and NTM reference strains, which warrants further investigation on the actions of tubercidin and its derivatives as potential drugs for mycobacterial infections.
Collapse
Affiliation(s)
- Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Xinlei Liao
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Jun Yan
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, PR China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, PR China
| |
Collapse
|
5
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
6
|
Ungogo MA, Aldfer MM, Natto MJ, Zhuang H, Chisholm R, Walsh K, McGee M, Ilbeigi K, Asseri JI, Burchmore RJS, Caljon G, Van Calenbergh S, De Koning HP. Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis. Int J Mol Sci 2023; 24:ijms24043144. [PMID: 36834557 PMCID: PMC9960827 DOI: 10.3390/ijms24043144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Manal J. Natto
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hainan Zhuang
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robyn Chisholm
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katy Walsh
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - MarieClaire McGee
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Jamal Ibrahim Asseri
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J. S. Burchmore
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
7
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Bettadapur A, Hunter SS, Suleiman RL, Ruyechan MC, Huang W, Barbieri CG, Miller HW, Tam TSY, Settles ML, Ralston KS. Establishment of quantitative RNAi-based forward genetics in Entamoeba histolytica and identification of genes required for growth. PLoS Pathog 2021; 17:e1010088. [PMID: 34843592 PMCID: PMC8716031 DOI: 10.1371/journal.ppat.1010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/29/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen.
Collapse
Affiliation(s)
- Akhila Bettadapur
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Samuel S. Hunter
- Genome Center, University of California, Davis, California, United States of America
| | - Rene L. Suleiman
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Maura C. Ruyechan
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Wesley Huang
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | | | - Hannah W. Miller
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Tammie S. Y. Tam
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Matthew L. Settles
- Genome Center, University of California, Davis, California, United States of America
| | - Katherine S. Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Horn D. Genome-scale RNAi screens in African trypanosomes. Trends Parasitol 2021; 38:160-173. [PMID: 34580035 DOI: 10.1016/j.pt.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Genome-scale genetic screens allow researchers to rapidly identify the genes and proteins that impact a particular phenotype of interest. In African trypanosomes, RNA interference (RNAi) knockdown screens have revealed mechanisms underpinning drug resistance, drug transport, prodrug metabolism, quorum sensing, genome replication, and gene expression control. RNAi screening has also been remarkably effective at highlighting promising potential antitrypanosomal drug targets. The first ever RNAi library screen was implemented in African trypanosomes, and genome-scale RNAi screens and other related approaches continue to have a major impact on trypanosomatid research. Here, I review those impacts in terms of both discovery and translation.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
10
|
Mabille D, Cardoso Santos C, Hendrickx R, Claes M, Takac P, Clayton C, Hendrickx S, Hulpia F, Maes L, Van Calenbergh S, Caljon G. 4E Interacting Protein as a Potential Novel Drug Target for Nucleoside Analogues in Trypanosoma brucei. Microorganisms 2021; 9:microorganisms9040826. [PMID: 33924674 PMCID: PMC8069773 DOI: 10.3390/microorganisms9040826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human African trypanosomiasis is a neglected parasitic disease for which the current treatment options are quite limited. Trypanosomes are not able to synthesize purines de novo and thus solely depend on purine salvage from the host environment. This characteristic makes players of the purine salvage pathway putative drug targets. The activity of known nucleoside analogues such as tubercidin and cordycepin led to the development of a series of C7-substituted nucleoside analogues. Here, we use RNA interference (RNAi) libraries to gain insight into the mode-of-action of these novel nucleoside analogues. Whole-genome RNAi screening revealed the involvement of adenosine kinase and 4E interacting protein into the mode-of-action of certain antitrypanosomal nucleoside analogues. Using RNAi lines and gene-deficient parasites, 4E interacting protein was found to be essential for parasite growth and infectivity in the vertebrate host. The essential nature of this gene product and involvement in the activity of certain nucleoside analogues indicates that it represents a potential novel drug target.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Camila Cardoso Santos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
- Laboratório de Biologia Celular (LBC), Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia;
- Scientica, Ltd., 83106 Bratislava, Slovakia
| | - Christine Clayton
- DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, 69120 Heidelberg, Germany;
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, 9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, 9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
- Correspondence:
| |
Collapse
|
11
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
12
|
Hulpia F, Mabille D, Campagnaro GD, Schumann G, Maes L, Roditi I, Hofer A, de Koning HP, Caljon G, Van Calenbergh S. Combining tubercidin and cordycepin scaffolds results in highly active candidates to treat late-stage sleeping sickness. Nat Commun 2019; 10:5564. [PMID: 31804484 PMCID: PMC6895180 DOI: 10.1038/s41467-019-13522-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
African trypanosomiasis is a disease caused by Trypanosoma brucei parasites with limited treatment options. Trypanosoma is unable to synthesize purines de novo and relies solely on their uptake and interconversion from the host, constituting purine nucleoside analogues a potential source of antitrypanosomal agents. Here we combine structural elements from known trypanocidal nucleoside analogues to develop a series of 3’-deoxy-7-deazaadenosine nucleosides, and investigate their effects against African trypanosomes. 3’-Deoxytubercidin is a highly potent trypanocide in vitro and displays curative activity in animal models of acute and CNS-stage disease, even at low doses and oral administration. Whole-genome RNAi screening reveals that the P2 nucleoside transporter and adenosine kinase are involved in the uptake and activation, respectively, of this analogue. This is confirmed by P1 and P2 transporter assays and nucleotide pool analysis. 3’-Deoxytubercidin is a promising lead to treat late-stage sleeping sickness. Trypanosoma brucei relies on uptake and conversion of purines from the host, which constitutes a potential drug target. Here, Hulpia et al. combine structural elements from known trypanocidal nucleoside analogues and develop a potent trypanocide with curative activity in animal models of acute and late stage sleeping sickness.
Collapse
Affiliation(s)
- Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Gustavo D Campagnaro
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gabriela Schumann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Harry P de Koning
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium.
| |
Collapse
|
13
|
Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. Eur J Med Chem 2019; 164:689-705. [DOI: 10.1016/j.ejmech.2018.12.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
|
14
|
Liu Y, Gong R, Liu X, Zhang P, Zhang Q, Cai YS, Deng Z, Winkler M, Wu J, Chen W. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090. Microb Cell Fact 2018; 17:131. [PMID: 30153835 PMCID: PMC6112128 DOI: 10.1186/s12934-018-0978-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Tubercidin (TBN), an adenosine analog with potent antimycobacteria and antitumor bioactivities, highlights an intriguing structure, in which a 7-deazapurine core is linked to the ribose moiety by an N-glycosidic bond. However, the molecular logic underlying the biosynthesis of this antibiotic has remained poorly understood. Results Here, we report the discovery and characterization of the TBN biosynthetic pathway from Streptomyces tubercidicus NBRC 13090 via reconstitution of its production in a heterologous host. We demonstrated that TubE specifically utilizes phosphoribosylpyrophosphate and 7-carboxy-7-deazaguanine for the precise construction of the deazapurine nucleoside scaffold. Moreover, we provided biochemical evidence that TubD functions as an NADPH-dependent reductase, catalyzing irreversible reductive deamination. Finally, we verified that TubG acts as a Nudix hydrolase, preferring Co2+ for the maintenance of maximal activity, and is responsible for the tailoring hydrolysis step leading to TBN. Conclusions These findings lay a foundation for the rational generation of TBN analogs through synthetic biology strategy, and also open the way for the target-directed search of TBN-related antibiotics. Electronic supplementary material The online version of this article (10.1186/s12934-018-0978-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoqin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peichao Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Jianguo Wu
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Tyurenkov IN, Kurkin DV, Bakulin DA, Volotova EV, Morkovin EI, Chafeev MA, Karapetian RN. Chemistry and Hypoglycemic Activity of GPR119 Agonist ZB-16. Front Endocrinol (Lausanne) 2018; 9:543. [PMID: 30283402 PMCID: PMC6156125 DOI: 10.3389/fendo.2018.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
This article is to highlight the chemical properties and primary pharmacology of novel GPR119 agonist ZB-16 and its analogs, which were rejected during the screening. Experiments were performed in vitro (specific activity, metabolism and cell toxicity) and in vivo (hypoglycemic activity and pharmacokinetics). ZB-16 exhibits nanomolar activity (EC50 = 7.3-9.7 nM) on target receptor GPR119 in vitro associated with hypoglycemic activity in vivo. In animals with streptozotocin-nicotinamide induced type 2 diabetes mellitus (STZ-NA T2D) daily oral dose of ZB-16 (1 mg/kg) or sitagliptin (10 mg/kg) for 28 days resulted in the reduction of blood glucose levels. The effects of ZB-16 were comparable to the hypoglycemic action of sitagliptin. ZB-16 demonstrated relatively low plasma exposition, high distribution volume, mild clearance and a prolonged half-life (more than 12 h). The present study demonstrates that the targeted search for selective GPR119 receptor agonists is a well-founded approach for developing novel drugs for the therapy of T2D. Based on the combination of high in vitro activity (compared to competitor standards), a useful ADME profile, distinct hypoglycemic activity which is comparable to the efficacy of sitagliptin in rats with experimental T2D, and the acceptable pharmacokinetic profile, we recommend the ZB-16 compound for further research.
Collapse
Affiliation(s)
| | | | - Dmitry A. Bakulin
- Volgograd State Medical University, Volgograd, Russia
- *Correspondence: Dmitry A. Bakulin
| | | | - Evgeny I. Morkovin
- Volgograd State Medical University, Volgograd, Russia
- Volgograd Medical Research Center, Volgograd, Russia
| | | | | |
Collapse
|
16
|
Lin S, Voyton C, Morris MT, Ackroyd PC, Morris JC, Christensen KA. pH regulation in glycosomes of procyclic form Trypanosoma brucei. J Biol Chem 2017; 292:7795-7805. [PMID: 28348078 DOI: 10.1074/jbc.m117.784173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 01/17/2023] Open
Abstract
Here we report the use of a fluorescein-tagged peroxisomal targeting sequence peptide (F-PTS1, acetyl-C{K(FITC)}GGAKL) for investigating pH regulation of glycosomes in live procyclic form Trypanosoma brucei When added to cells, this fluorescent peptide is internalized within vesicular structures, including glycosomes, and can be visualized after 30-60 min. Using F-PTS1 we are able to observe the pH conditions inside glycosomes in response to starvation conditions. Previous studies have shown that in the absence of glucose, the glycosome exhibits mild acidification from pH 7.4 ± 0.2 to 6.8 ± 0.2. Our results suggest that this response occurs under proline starvation as well. This pH regulation is found to be independent from cytosolic pH and requires a source of Na+ ions. Glycosomes were also observed to be more resistant to external pH changes than the cytosol; placement of cells in acidic buffers (pH 5) reduced the pH of the cytosol by 0.8 ± 0.1 pH units, whereas glycosomal pH decreases by 0.5 ± 0.1 pH units. This observation suggests that regulation of glycosomal pH is different and independent from cytosolic pH regulation. Furthermore, pH regulation is likely to work by an active process, because cells depleted of ATP with 2-deoxyglucose and sodium azide were unable to properly regulate pH. Finally, inhibitor studies with bafilomycin and EIPA suggest that both V-ATPases and Na+/H+ exchangers are required for glycosomal pH regulation.
Collapse
Affiliation(s)
- Sheng Lin
- From the Departments of Chemistry and
| | - Charles Voyton
- From the Departments of Chemistry and.,the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Meredith T Morris
- Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634 and
| | - P Christine Ackroyd
- the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - James C Morris
- Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634 and
| | - Kenneth A Christensen
- the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| |
Collapse
|
17
|
Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Chemical Morphing of DNA Containing Four Noncanonical Bases. Angew Chem Int Ed Engl 2016; 55:7515-9. [PMID: 27159019 DOI: 10.1002/anie.201601529] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/04/2023]
Abstract
The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5-chloro-2'-deoxyuridine, 7-deaza-2'-deoxyadenosine, 5-fluoro-2'-deoxycytidine, and 7-deaza-2'deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo-) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo.
Collapse
Affiliation(s)
- Elena Eremeeva
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Michail Abramov
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Valerie Pezo
- ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | - Philippe Marlière
- ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium. .,ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France.
| |
Collapse
|
18
|
Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Chemical Morphing of DNA Containing Four Noncanonical Bases. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Elena Eremeeva
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Michail Abramov
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Lia Margamuljana
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Valerie Pezo
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| | - Philippe Marlière
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| |
Collapse
|
19
|
Skinner-Adams TS, Sumanadasa SD, Fisher GM, Davis RA, Doolan DL, Andrews KT. Defining the targets of antiparasitic compounds. Drug Discov Today 2016; 21:725-39. [DOI: 10.1016/j.drudis.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/04/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
20
|
Genome-scale RNAi screens for high-throughput phenotyping in bloodstream-form African trypanosomes. Nat Protoc 2014; 10:106-33. [PMID: 25502887 DOI: 10.1038/nprot.2015.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability to simultaneously assess every gene in a genome for a role in a particular process has obvious appeal. This protocol describes how to perform genome-scale RNAi library screens in bloodstream-form African trypanosomes, a family of parasites that causes lethal human and animal diseases and also serves as a model for studies on basic aspects of eukaryotic biology and evolution. We discuss strain assembly, screen design and implementation, the RNAi target sequencing approach and hit validation, and we provide a step-by-step protocol. A screen can yield from one to thousands of 'hits' associated with the phenotype of interest. The screening protocol itself takes 2 weeks or less to be completed, and high-throughput sequencing may also be completed within weeks. Pre- and post-screen strain assembly, validation and follow-up can take several months, depending on the type of screen and the number of hits analyzed.
Collapse
|
21
|
Abstract
I knew nothing and had thought nothing about parasites until 1971. In fact, if you had asked me before then, I might have commented that parasites were rather disgusting. I had been at the Johns Hopkins School of Medicine for three years, and I was on the lookout for a new project. In 1971, I came across a paper in the Journal of Molecular Biology by Larry Simpson, a classmate of mine in graduate school. Larry's paper described a remarkable DNA structure known as kinetoplast DNA (kDNA), isolated from a parasite. kDNA, the mitochondrial genome of trypanosomatids, is a DNA network composed of several thousand interlocked DNA rings. Almost nothing was known about it. I was looking for a project on DNA replication, and I wanted it to be both challenging and important. I had no doubt that working with kDNA would be a challenge, as I would be exploring uncharted territory. I was also sure that the project would be important when I learned that parasites with kDNA threaten huge populations in underdeveloped tropical countries. Looking again at Larry's paper, I found the electron micrographs of the kDNA networks to be rather beautiful. I decided to take a chance on kDNA. Little did I know then that I would devote the next forty years of my life to studying kDNA replication.
Collapse
Affiliation(s)
- Paul T Englund
- From the Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
22
|
Drexler J, Groth U. Trifluoromethylated Nucleosides: A Building Block Approach to Cytotoxic Adenosine Analogues. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Smirlis D, Soares MBP. Selection of molecular targets for drug development against trypanosomatids. Subcell Biochem 2014; 74:43-76. [PMID: 24264240 DOI: 10.1007/978-94-007-7305-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.
Collapse
|
24
|
Lüscher A, Lamprea-Burgunder E, Graf FE, de Koning HP, Mäser P. Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:55-63. [PMID: 24596669 PMCID: PMC3940079 DOI: 10.1016/j.ijpddr.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
African trypanosomes possess two distinct adenine phosphoribosyltransferases. Trypanosoma brucei TbAPRT1 is cytosolic, TbAPRT2 localizes to the glycosome. Aprt1,2 null mutants are viable but do not incorporate adenine into nucleotides. Aprt1,2 null mutants are resistant to aminopurinol but still sensitive to adenine. Aminopurinol is a trypanocide with submicromolar activity against T. brucei.
African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.
Collapse
Affiliation(s)
- Alexandra Lüscher
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | | | - Fabrice E Graf
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8RA, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ; University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
25
|
Vande Voorde J, Liekens S, Balzarini J. Mycoplasma hyorhinis-encoded purine nucleoside phosphorylase: kinetic properties and its effect on the cytostatic potential of purine-based anticancer drugs. Mol Pharmacol 2013; 84:865-75. [PMID: 24068428 DOI: 10.1124/mol.113.088625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A mycoplasma-encoded purine nucleoside phosphorylase (designated PNPHyor) has been cloned and characterized for the first time. Efficient phosphorolysis of natural 6-oxopurine and 6-aminopurine nucleosides was observed, with adenosine the preferred natural substrate (Km = 61 µM). Several cytostatic purine nucleoside analogs proved to be susceptible to PNPHyor-mediated phosphorolysis, and a markedly decreased or increased cytostatic activity was observed in Mycoplasma hyorhinis-infected human breast carcinoma MCF-7 cell cultures (MCF-7.Hyor), depending on the properties of the released purine base. We demonstrated an ∼10-fold loss of cytostatic activity of cladribine in MCF-7.Hyor cells and observed a rapid and complete phosphorolysis of this drug when it was exposed to the supernatant of mycoplasma-infected cells. This conversion (inactivation) could be prevented by a specific PNP inhibitor. These findings correlated well with the high efficiency of PNPHyor-catalyzed phosphorolysis of cladribine to its less toxic base 2-chloroadenine (Km = 80 µM). In contrast, the cytostatic activity of nucleoside analogs carrying a highly toxic purine base and being a substrate for PNPHyor, but not human PNP, was substantially increased in MCF-7.Hyor cells (∼130-fold for fludarabine and ∼45-fold for 6-methylpurine-2'-deoxyriboside). Elimination of the mycoplasma from the tumor cell cultures or selective inhibition of PNPHyor by a PNP inhibitor restored the cytostatic activity of the purine-based nucleoside drugs. Since several studies suggest a high and preferential colonization or association of tumor tissue in cancer patients with different prokaryotes (including mycoplasmas), the data presented here may be of relevance for the optimization of purine nucleoside-based anticancer drug treatment.
Collapse
|
26
|
Abstract
The trypanosomes cause two neglected tropical diseases, Chagas disease in the Americas and African trypanosomiasis in sub-Saharan Africa. Over recent years a raft of molecular tools have been developed enabling the genetic dissection of many aspects of trypanosome biology, including the mechanisms underlying resistance to some of the current clinical and veterinary drugs. This has led to the identification and characterization of key resistance determinants, including transporters for the anti-Trypanosoma brucei drugs, melarsoprol, pentamidine and eflornithine, and the activator of nifurtimox-benznidazole, the anti-Trypanosoma cruzi drugs. More recently, advances in sequencing technology, combined with the development of RNA interference libraries in the clinically relevant bloodstream form of T. brucei have led to an exponential increase in the number of proteins known to interact either directly or indirectly with the anti-trypanosomal drugs. In this review, we discuss these findings and the technological developments that are set to further revolutionise our understanding of drug-trypanosome interactions. The new knowledge gained should inform the development of novel interventions against the devastating diseases caused by these parasites.
Collapse
|
27
|
Baker N, de Koning HP, Mäser P, Horn D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 2013; 29:110-8. [PMID: 23375541 PMCID: PMC3831158 DOI: 10.1016/j.pt.2012.12.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
Melarsoprol and pentamidine represent the two main classes of drugs, the arsenicals and diamidines, historically used to treat the diseases caused by African trypanosomes: sleeping sickness in humans and Nagana in livestock. Cross-resistance to these drugs was first observed over 60 years ago and remains the only example of cross-resistance among sleeping sickness therapies. A Trypanosoma brucei adenosine transporter is well known for its role in the uptake of both drugs. More recently, aquaglyceroporin 2 (AQP2) loss of function was linked to melarsoprol-pentamidine cross-resistance. AQP2, a channel that appears to facilitate drug accumulation, may also be linked to clinical cases of resistance. Here, we review these findings and consider some new questions as well as future prospects for tackling the devastating diseases caused by these parasites.
Collapse
Affiliation(s)
- Nicola Baker
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Harry P. de Koning
- University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, Scotland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstr. 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
28
|
Feng X, Rodriguez-Contreras D, Polley T, Lye LF, Scott D, Burchmore RJS, Beverley SM, Landfear SM. 'Transient' genetic suppression facilitates generation of hexose transporter null mutants in Leishmania mexicana. Mol Microbiol 2012; 87:412-29. [PMID: 23170981 DOI: 10.1111/mmi.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
The genome of Leishmania mexicana encompasses a cluster of three glucose transporter genes designated LmxGT1, LmxGT2 and LmxGT3. Functional and genetic studies of a cluster null mutant (Δlmxgt1-3) have dissected the roles of these proteins in Leishmania metabolism and virulence. However, null mutants were recovered at very low frequency, and comparative genome hybridizations revealed that Δlmxgt1-3 mutants contained a linear extrachromosomal 40 kb amplification of a region on chromosome 29 not amplified in wild type parasites. These data suggested a model where this 29-40k amplicon encoded a second site suppressor contributing to parasite survival in the absence of GT1-3 function. To test this, we quantified the frequency of recovery of knockouts in the presence of individual overexpressed open reading frames covering the 29-40k amplicon. The data mapped the suppressor activity to PIFTC3, encoding a component of the intraflagellar transport pathway. We discuss possible models by which PIFTC3 might act to facilitate loss of GTs specifically. Surprisingly, by plasmid segregation we showed that continued PIFTC3 overexpression was not required for Δlmxgt1-3 viability. These studies provide the first evidence that genetic suppression can occur by providing critical biological functions transiently. This novel form of genetic suppression may extend to other genes, pathways and organisms.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
A genome-wide over-expression screen identifies genes involved in phagocytosis in the human protozoan parasite, Entamoeba histolytica. PLoS One 2012; 7:e43025. [PMID: 22905196 PMCID: PMC3419234 DOI: 10.1371/journal.pone.0043025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022] Open
Abstract
Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics.
Collapse
|
30
|
Hu L, Hu H, Li Z. A kinetoplastid-specific kinesin is required for cytokinesis and for maintenance of cell morphology in Trypanosoma brucei. Mol Microbiol 2012; 83:565-78. [PMID: 22168367 DOI: 10.1111/j.1365-2958.2011.07951.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinesins are motor-based transport proteins that play diverse roles in various cellular processes. The trypanosome genome lacks the homologues of many conserved mitotic kinesins, but encodes a number of trypanosome-specific kinesins with unknown function. Here, we report the biochemical and functional characterization of TbKIN-C, a trypanosome-specific kinesin, which was initially identified through an RNAi screen for cytokinesis genes in T. brucei. TbKIN-C possesses in vitro ATPase activity and associates with cytoskeletal tubulin microtubules in vivo. It is distributed throughout the cytoskeleton with a focal enrichment at the posterior end of the cell during early cell cycle stages. RNAi of TbKIN-C resulted in distorted cell shape with an elongated posterior filled with tyrosinated tubulin microtubules. Silencing of TbKIN-C impaired the segregation of organelles and cytoskeletal structures and led to detachment of the new flagellum and a small portion of the cytoplasm. We also show that RNAi of TbKIN-C compromised cytokinesis and abolished the trans-localization of TbCPC1, a subunit of the chromosomal passenger complex, from the central spindle to the initiation site of cytokinesis. Our results suggest an essential role of TbKIN-C in maintaining cell morphology, likely through regulating microtubule dynamics at the posterior end of the cell.
Collapse
Affiliation(s)
- Liu Hu
- Department of Microbiology & Molecular Genetics, University of Texas Medical School at Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Morgan HP, McNae IW, Nowicki MW, Zhong W, Michels PAM, Auld DS, Fothergill-Gilmore LA, Walkinshaw MD. The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. J Biol Chem 2011; 286:31232-40. [PMID: 21733839 PMCID: PMC3173065 DOI: 10.1074/jbc.m110.212613] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/06/2011] [Indexed: 11/06/2022] Open
Abstract
Ehrlich's pioneering chemotherapeutic experiments published in 1904 (Ehrlich, P., and Shiga, K. (1904) Berlin Klin. Wochenschrift 20, 329-362) described the efficacy of a series of dye molecules including trypan blue and trypan red to eliminate trypanosome infections in mice. The molecular structures of the dyes provided a starting point for the synthesis of suramin, which was developed and used as a trypanocidal drug in 1916 and is still in clinical use. Despite the biological importance of these dye-like molecules, the mode of action on trypanosomes has remained elusive. Here we present crystal structures of suramin and three related dyes in complex with pyruvate kinases from Leishmania mexicana or from Trypanosoma cruzi. The phenyl sulfonate groups of all four molecules (suramin, Ponceau S, acid blue 80, and benzothiazole-2,5-disulfonic acid) bind in the position of ADP/ATP at the active sites of the pyruvate kinases (PYKs). The binding positions in the two different trypanosomatid PYKs are nearly identical. We show that suramin competitively inhibits PYKs from humans (muscle, tumor, and liver isoenzymes, K(i) = 1.1-17 μM), T. cruzi (K(i) = 108 μM), and L. mexicana (K(i) = 116 μM), all of which have similar active sites. Synergistic effects were observed when examining suramin inhibition in the presence of an allosteric effector molecule, whereby IC(50) values decreased up to 2-fold for both trypanosomatid and human PYKs. These kinetic and structural analyses provide insight into the promiscuous inhibition observed for suramin and into the mode of action of the dye-like molecules used in Ehrlich's original experiments.
Collapse
Affiliation(s)
- Hugh P. Morgan
- From the Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Iain W. McNae
- From the Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Matthew W. Nowicki
- From the Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Wenhe Zhong
- From the Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Paul A. M. Michels
- the Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium, and
| | - Douglas S. Auld
- the National Institutes of Health Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20850
| | - Linda A. Fothergill-Gilmore
- From the Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Malcolm D. Walkinshaw
- From the Structural Biochemistry Group, Institute of Structural and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
32
|
Dodson HC, Morris MT, Morris JC. Glycerol 3-phosphate alters Trypanosoma brucei hexokinase activity in response to environmental change. J Biol Chem 2011; 286:33150-7. [PMID: 21813651 DOI: 10.1074/jbc.m111.235705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The African trypanosome, Trypanosoma brucei, compartmentalizes some metabolic enzymes within peroxisome-like organelles called glycosomes. The amounts, activities, and types of glycosomal enzymes are modulated coincident with developmental and environmental changes. Pexophagy (fusion of glycosomes with acidic lysosomes) has been proposed to facilitate this glycosome remodeling. Here, we report that, although glycosome-resident enzyme T. brucei hexokinase 1 (TbHK1) protein levels are maintained during pexophagy, acidification inactivates the activity. Glycerol 3-phosphate, which is produced in vivo by a glycosome-resident glycerol kinase, mitigated acid inactivation of lysate-derived TbHK activity. Using recombinant TbHK1, we found that glycerol 3-P influenced enzyme activity at pH 6.5 by preventing substrate and product inhibition by ATP and ADP, respectively. Additionally, TbHK1 inhibition by the flavonol quercetin (QCN) was partially reversed by glycerol 3-P at pH 7.4, whereas at pH 6.5, enzyme activity in the presence of QCN was completely maintained by glycerol 3-P. However, glycerol 3-P did not alter the interaction of QCN with TbHK1, as the lone Trp residue (Trp-177) was quenched under all conditions tested. These findings suggest potential novel mechanisms for the regulation of TbHK1, particularly given the acidification of glycosomes that can be induced under a variety of parasite growth conditions.
Collapse
Affiliation(s)
- Heidi C Dodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
33
|
RNA interference in protozoan parasites: achievements and challenges. EUKARYOTIC CELL 2011; 10:1156-63. [PMID: 21764910 DOI: 10.1128/ec.05114-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool.
Collapse
|
34
|
Coley AF, Dodson HC, Morris MT, Morris JC. Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. Mol Biol Int 2011; 2011:123702. [PMID: 22091393 PMCID: PMC3195984 DOI: 10.4061/2011/123702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 12/16/2022] Open
Abstract
Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.
Collapse
Affiliation(s)
- April F Coley
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
35
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
36
|
Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol 2010; 175:91-4. [PMID: 20851719 DOI: 10.1016/j.molbiopara.2010.09.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/03/2010] [Accepted: 09/08/2010] [Indexed: 11/23/2022]
Abstract
An inducible RNA interference (RNAi) library, consisting of a pool of independent stable transformants with 9-fold genome coverage, was constructed in bloodstream form Trypanosoma brucei using an improved transfection protocol. RNAi induction and selection of resistant parasites was performed in the presence of melarsoprol or eflornithine. The former led to the isolation of the adenosine transporter TbAT1, which is known to be involved in melarsoprol uptake, while the latter identified an amino acid transporter, AAT6. Knockdown of AAT6 reduced mRNA levels to 30-35% in independent clones and increased resistance to eflornithine >5-fold. Genome-wide screens with this library allow an unbiased approach to gene discovery, are extremely rapid and do not exclude essential genes.
Collapse
|
37
|
Abstract
The eukaryotic flagellum is a highly conserved organelle serving motility, sensory, and transport functions. Although genetic, genomic, and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei life cycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins.
Collapse
|
38
|
Cáceres AJ, Michels PAM, Hannaert V. Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 2009; 169:50-4. [PMID: 19748525 DOI: 10.1016/j.molbiopara.2009.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Aldolase (ALD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Trypanosoma brucei are considered to be promising targets for chemotherapeutic treatment of African sleeping sickness, because glycolysis is the single source of ATP for the parasite when living in the human bloodstream. Moreover, these enzymes appeared to possess distinct kinetic and structural properties that have already been exploited for the discovery of effective and selective inhibitors with trypanocidal activity. Here we present an experimental, quantitative assessment of the importance of these enzymes for the glycolytic pathway. This was achieved by decreasing the concentrations of ALD and GAPDH by RNA interference. The effects of these knockdowns on parasite growth, levels of various enzymes and transcripts, enzyme activities and glucose consumption were studied. A partial depletion of ALD and GAPDH was already sufficient to rapidly kill the trypanosomes. An effect was also observed on the activity of some other glycolytic enzymes.
Collapse
Affiliation(s)
- Ana Judith Cáceres
- Centro de Ingeniería Genética, Universidad de Los Andes, Mérida, Venezuela
| | | | | |
Collapse
|
39
|
Vodnala SK, Ferella M, Lundén-Miguel H, Betha E, van Reet N, Amin DN, Öberg B, Andersson B, Kristensson K, Wigzell H, Rottenberg ME. Preclinical assessment of the treatment of second-stage African trypanosomiasis with cordycepin and deoxycoformycin. PLoS Negl Trop Dis 2009; 3:e495. [PMID: 19652702 PMCID: PMC2713411 DOI: 10.1371/journal.pntd.0000495] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 07/01/2009] [Indexed: 01/08/2023] Open
Abstract
Background There is an urgent need to substitute the highly toxic compounds still in use for treatment of the encephalitic stage of human African trypanosomiasis (HAT). We here assessed the treatment with the doublet cordycepin and the deaminase inhibitor deoxycoformycin for this stage of infection with Trypanosoma brucei (T.b.). Methodology/Principal Findings Cordycepin was selected as the most efficient drug from a direct parasite viability screening of a compound library of nucleoside analogues. The minimal number of doses and concentrations of the drugs effective for treatment of T.b. brucei infections in mice were determined. Oral, intraperitoneal or subcutaneous administrations of the compounds were successful for treatment. The doublet was effective for treatment of late stage experimental infections with human pathogenic T.b. rhodesiense and T.b. gambiense isolates. Late stage infection treatment diminished the levels of inflammatory cytokines in brains of infected mice. Incubation with cordycepin resulted in programmed cell death followed by secondary necrosis of the parasites. T.b. brucei strains developed resistance to cordycepin after culture with increasing concentrations of the compound. However, cordycepin-resistant parasites showed diminished virulence and were not cross-resistant to other drugs used for treatment of HAT, i.e. pentamidine, suramin and melarsoprol. Although resistant parasites were mutated in the gene coding for P2 nucleoside adenosine transporter, P2 knockout trypanosomes showed no altered resistance to cordycepin, indicating that absence of the P2 transporter is not sufficient to render the trypanosomes resistant to the drug. Conclusions/Significance Altogether, our data strongly support testing of treatment with a combination of cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT. There is an urgent need to substitute the highly toxic arsenic compounds still in use for treatment of the encephalitic stage of African trypanosomiasis, a disease caused by infection with Trypanosoma brucei. We exploited the inability of trypanosomes to engage in de novo purine synthesis as a therapeutic target. Cordycepin was selected from a trypanocidal screen of a 2200-compound library. When administered together with the adenosine deaminase inhibitor deoxycoformycin, cordycepin cured mice inoculated with the human pathogenic subspecies T. brucei rhodesiense or T. brucei gambiense even after parasites had penetrated into the brain. Successful treatment was achieved by intraperitoneal, oral or subcutaneous administration of the compounds. Treatment with the doublet also diminished infection-induced cerebral inflammation. Cordycepin induced programmed cell death of the parasites. Although parasites grown in vitro with low doses of cordycepin gradually developed resistance, the resistant parasites lost virulence and showed no cross-resistance to trypanocidal drugs in clinical use. Our data strongly support testing cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT.
Collapse
Affiliation(s)
- Suman K. Vodnala
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Marcela Ferella
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hilda Lundén-Miguel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Evans Betha
- Tropical Diseases Research Center, Ndola Central, Ndola, Zambia
| | | | - Daniel Ndem Amin
- Department of Neurosciences, Karolinska Institute, Stockholm, Sweden
| | | | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Hans Wigzell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Martin E. Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
40
|
Grébaut P, Chuchana P, Brizard JP, Demettre E, Seveno M, Bossard G, Jouin P, Vincendeau P, Bengaly Z, Boulangé A, Cuny G, Holzmuller P. Identification of total and differentially expressed excreted-secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity. Int J Parasitol 2009; 39:1137-50. [PMID: 19285981 DOI: 10.1016/j.ijpara.2009.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 12/31/2022]
Abstract
Animal trypanosomosis is a major constraint to livestock productivity in the tropics and has a significant impact on the life of millions of people globally (mainly in Africa, South America and south-east Asia). In Africa, the disease in livestock is caused mainly by Trypanosoma congolense, Trypanosoma vivax, Trypanosoma evansi and Trypanosoma brucei brucei. The extracellular position of trypanosomes in the bloodstream of their host requires consideration of both the parasite and its naturally excreted-secreted factors (secretome) in the course of pathophysiological processes. We therefore developed and standardised a method to produce purified proteomes and secretomes of African trypanosomes. In this study, two strains of T. congolense exhibiting opposite properties of both virulence and pathogenicity were further investigated through their secretome expression and its involvement in host-parasite interactions. We used a combined proteomic approach (one-dimensional SDS-PAGE and two-dimensional differential in-gel electrophoresis coupled to mass spectrometry) to characterise the whole and differentially expressed protein contents of secretomes. The molecular identification of differentially expressed trypanosome molecules and their correlation with either the virulence process or pathogenicity are discussed with regard to their potential as new diagnostic or therapeutic tools against animal trypanosomosis.
Collapse
Affiliation(s)
- Pascal Grébaut
- CIRAD UMR 17 Trypanosomes (UMR 177 IRD-CIRAD Interactions Hôtes-Vecteurs-Parasites dans les Trypanosomoses), TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, Nolan D, Barrett MP, Franconi JM, Bringaud F. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem 2008; 283:16342-54. [PMID: 18430732 DOI: 10.1074/jbc.m709592200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The procyclic form of Trypanosoma brucei is a parasitic protozoan that normally dwells in the midgut of its insect vector. In vitro, this parasite prefers d-glucose to l -proline as a carbon source, although this amino acid is the main carbon source available in its natural habitat. Here, we investigated how l -proline is metabolized in glucose-rich and glucose-depleted conditions. Analysis of the excreted end products of (13)C-enriched l -proline metabolism showed that the amino acid is converted into succinate or l -alanine depending on the presence or absence of d-glucose, respectively. The fact that the pathway of l -proline metabolism was truncated in glucose-rich conditions was confirmed by the analysis of 13 separate RNA interference-harboring or knock-out cell lines affecting different steps of this pathway. For instance, RNA interference studies revealed the loss of succinate dehydrogenase activity to be conditionally lethal only in the absence of d-glucose, confirming that in glucose-depleted conditions, l -proline needs to be converted beyond succinate. In addition, depletion of the F(0)/F(1)-ATP synthase activity by RNA interference led to cell death in glucose-depleted medium, but not in glucose-rich medium. This implies that, in the presence of d-glucose, the importance of the F(0)/F(1)-ATP synthase is diminished and ATP is produced by substrate level phosphorylation. We conclude that trypanosomes develop an elaborate adaptation of their energy production pathways in response to carbon source availability.
Collapse
Affiliation(s)
- Virginie Coustou
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR-5234 CNRS
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chambers JW, Kearns MT, Morris MT, Morris JC. Assembly of heterohexameric trypanosome hexokinases reveals that hexokinase 2 is a regulable enzyme. J Biol Chem 2008; 283:14963-70. [PMID: 18387941 DOI: 10.1074/jbc.m802124200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolysis is essential to Trypanosoma brucei, the protozoan parasite that causes African sleeping sickness in humans and nagana in cattle. Hexokinase (HK), the first enzyme in glycolysis, catalyzes the phosphorylation of glucose to form glucose 6-phosphate. T. brucei harbors two HKs that are 98% identical at the amino acid level, T. brucei hexokinase 1 (TbHK1) and TbHK2. Recombinant TbHK1 (rTbHK1) has HK activity, whereas rTbHK2 does not. Unlike other eukaryotic HKs, TbHK1 is not subject to inhibition by ADP and glucose 6-phosphate. However, TbHK1 is inhibited by myristate, a critical fatty acid in T. brucei biology. We report here that rTbHKs, similar to authentic TbHK, form oligomers. Myristate dissociated these assemblies when incubated with either ATP or glucose. Furthermore, oligomer disruption was reversible by removal of myristate. Mixing of rTbHK1 and rTbHK2 monomers followed by reassembly yielded enzyme with an approximately 3-fold increase in specific activity compared with similarly treated rTbHK1 alone. Surprisingly, reassembly of rTbHK2 with an inactive rTbHK1 variant yielded an active HK, revealing for the first time that rTbHK2 is competent for HK activity. Finally, pyrophosphate inhibits active reassembled rTbHK2 oligomers but not oligomeric rTbHK1, suggesting that the two enzymes have distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Jeremy W Chambers
- Department of Genetics and Biochemistry, Clemson University, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
43
|
Chambers JW, Fowler ML, Morris MT, Morris JC. The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1. Mol Biochem Parasitol 2008; 158:202-7. [PMID: 18262292 DOI: 10.1016/j.molbiopara.2007.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 12/19/2007] [Accepted: 12/27/2007] [Indexed: 11/29/2022]
Abstract
Glycolysis is essential to the parasitic protozoan Trypanosoma brucei. The first step in this metabolic pathway is mediated by hexokinase, an enzyme that transfers the gamma-phosphate of ATP to a hexose. The T. brucei genome (TREU927/4 GUTat10.1) encodes two hexokinases (TbHK1 and TbHK2) that are 98% identical at the amino acid level. Our previous efforts have revealed that TbHK2 is an important regulator of TbHK1 in procyclic form parasites. Here, we have found through RNAi that TbHK1 is essential to the bloodstream form parasite. Silencing the gene for 4 days reduces cellular hexokinase approximately 60% and leads to parasite death. Additionally, we have found that the recombinant enzyme is inhibited by lonidamine (IC(50)=850 microM), an anti-cancer drug that targets tumor hexokinases. This agent also inhibits HK activity from whole parasite lysate (IC(50)=965 microM). Last, lonidamine is toxic to cultured bloodstream form parasites (LD(50)=50 microM) and procyclic form parasites (LD(50)=180 microM). Interestingly, overexpression of TbHK1 protects PF parasites from lonidamine. These studies provide genetic evidence that TbHK1 is a valid therapeutic target while identifying a potential molecular target of the anti-trypanosomal agent lonidamine.
Collapse
Affiliation(s)
- Jeremy W Chambers
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | | | | | | |
Collapse
|
44
|
Too K, Brown DM, Bongard E, Yardley V, Vivas L, Loakes D. Anti-malarial activity of N6-modified purine analogues. Bioorg Med Chem 2007; 15:5551-62. [PMID: 17548196 DOI: 10.1016/j.bmc.2007.05.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 11/16/2022]
Abstract
Plasmodium falciparum causes one of the deadliest forms of malaria and resistance to the currently available drugs makes it imperative to develop new, safe and potent drugs. Parasites such as P. falciparum are unable to synthesise purines de novo and to this end often have multiple purine uptake and salvage systems. With this in mind, we have designed and synthesised libraries of purine analogues as potential anti-malarial agents. Herein, we report three compounds with promising activity against the highly chloroquine-resistant VS1 P. falciparum namely: N(6)-hydroxyadenine (1c), 2-amino-N(6)-aminoadenosine (2b) and 2-amino-N(6)-amino-N(6)-methyladenosine (4b).
Collapse
Affiliation(s)
- Kathleen Too
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
45
|
Laxman S, Riechers A, Sadilek M, Schwede F, Beavo JA. Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci U S A 2006; 103:19194-9. [PMID: 17142316 PMCID: PMC1748198 DOI: 10.1073/pnas.0608971103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
African sleeping sickness is a disease caused by Trypanosoma brucei. T. brucei proliferate rapidly in the mammalian bloodstream as long, slender forms, but at higher population densities they transform into nondividing, short, stumpy forms. This is thought to be a mechanism adopted by T. brucei to establish a stable host-parasite relationship and to allow a transition into the insect stage of its life cycle. Earlier studies have suggested a role for cAMP in mediating this transformation. In this study, using membrane-permeable nucleotide analogs, we show that it is not the cAMP analogs themselves but rather the hydrolyzed products of membrane-permeable cAMP analogs that prevent proliferation of T. brucei. The metabolic products are more potent than the cAMP analogs, and hydrolysis-resistant cAMP analogs are not antiproliferative. We further show that the antiproliferative effect of these membrane-permeable adenosine analogs is caused by transformation into forms resembling short, stumpy bloodstream forms. These data suggest that the slender-to-stumpy transformation of T. brucei may not be mediated directly by cAMP and also raise the possibility of using such adenosine analogs as antitrypanosomal drugs.
Collapse
Affiliation(s)
| | | | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA 98195; and
| | - Frank Schwede
- BIOLOG Life Science Institute, Flughafendamm 9A, D-28199 Bremen, Germany
| | - Joseph A. Beavo
- *Department of Pharmacology
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Morris MT, DeBruin C, Yang Z, Chambers JW, Smith KS, Morris JC. Activity of a second Trypanosoma brucei hexokinase is controlled by an 18-amino-acid C-terminal tail. EUKARYOTIC CELL 2006; 5:2014-23. [PMID: 17028241 PMCID: PMC1694814 DOI: 10.1128/ec.00146-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma brucei expresses two hexokinases that are 98% identical, namely, TbHK1 and TbHK2. Homozygous null TbHK2-/- procyclic-form parasites exhibit an increased doubling time, a change in cell morphology, and, surprisingly, a twofold increase in cellular hexokinase activity. Recombinant TbHK1 enzymatic activity is similar to that of other hexokinases, with apparent Km values for glucose and ATP of 0.09 +/- 0.02 mM and 0.28 +/- 0.1 mM, respectively. The k(cat) value for TbHK1 is 2.9 x 10(4) min(-1). TbHK1 can use mannose, fructose, 2-deoxyglucose, and glucosamine as substrates. In addition, TbHK1 is inhibited by fatty acids, with lauric, myristic, and palmitic acids being the most potent (with 50% inhibitory concentrations of 75.8, 78.4, and 62.4 microM, respectively). In contrast to TbHK1, recombinant TbHK2 lacks detectable enzymatic activity. Seven of the 10 amino acid differences between TbHK1 and TbHK2 lie within the C-terminal 18 amino acids of the polypeptides. Modeling of the proteins maps the C-terminal tails near the interdomain cleft of the enzyme that participates in the conformational change of the enzyme upon substrate binding. Replacing the last 18 amino acids of TbHK2 with the corresponding residues of TbHK1 yields an active recombinant protein with kinetic properties similar to those of TbHK1. Conversely, replacing the C-terminal tail of TbHK1 with the TbHK2 tail inactivates the enzyme. These findings suggest that the C-terminal tail of TbHK1 is important for hexokinase activity. The altered C-terminal tail of TbHK2, along with the phenotype of the knockout parasites, suggests a distinct function for the protein.
Collapse
Affiliation(s)
- Meredith T Morris
- Department of Genetics and Biochemistry, Clemson University, 214 Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
47
|
Djikeng A, Raverdy S, Foster J, Bartholomeu D, Zhang Y, El-Sayed NM, Carlow C. Cofactor-independent phosphoglycerate mutase is an essential gene in procyclic form Trypanosoma brucei. Parasitol Res 2006; 100:887-92. [PMID: 17024352 DOI: 10.1007/s00436-006-0332-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Glycolysis and gluconeogenesis are, in part, driven by the interconversion of 3- and 2-phosphoglycerate (3-PG and 2-PG) which is performed by phosphoglycerate mutases (PGAMs) which can be cofactor dependant (dPGAM) or cofactor independent (iPGAM). The African trypanosome, Trypanosoma brucei, possesses the iPGAM form which is thought to play an important role in glycolysis. Here, we report on the use of RNA interference to down-regulate the T. brucei iPGAM in procyclic form T. brucei and evaluation of the resulting phenotype. We first demonstrated biochemically that depletion of the steady state levels of iPGM mRNA correlates with a marked reduction of enzyme activity. We further show that iPGAM is required for cell growth in procyclic T. brucei.
Collapse
Affiliation(s)
- Appolinaire Djikeng
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Motyka SA, Drew ME, Yildirir G, Englund PT. Overexpression of a cytochrome b5 reductase-like protein causes kinetoplast DNA loss in Trypanosoma brucei. J Biol Chem 2006; 281:18499-506. [PMID: 16690608 DOI: 10.1074/jbc.m602880200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genome of trypanosomes, termed kinetoplast DNA (kDNA), contains thousands of minicircles and dozens of maxicircles topologically interlocked in a network. To identify proteins involved in network replication, we screened an inducible RNA interference-based genomic library for cells that lose kinetoplast DNA. In one cloned cell line with inducible kinetoplast DNA loss, we found that the RNA interference vector had aberrantly integrated into the genome resulting in overexpression of genes down-stream of the integration site (Motyka, S. A., Zhao, Z., Gull, K., and Englund, P. T. (2004) Mol. Biochem. Parasitol. 134, 163-167). We now report that the relevant overexpressed gene encodes a mitochondrial cytochrome b(5) reductase-like protein. This overexpression caused kDNA loss by oxidation/inactivation of the universal minicircle sequence-binding protein, which normally binds the minicircle replication origin and triggers replication. The rapid loss of maxicircles suggests that the universal minicircle sequence-binding protein might also control maxicircle replication. Several lines of evidence indicate that the cytochrome b(5) reductase-like protein controls the oxidization status of the universal minicircle sequence-binding protein via tryparedoxin, a mitochondrial redox protein. For example, overexpression of mitochondrial tryparedoxin peroxidase, which utilizes tryparedoxin, also caused oxidation of the universal minicircle sequence-binding protein and kDNA loss. Furthermore, the growth defect caused by overexpression of cytochrome b(5) reductase-like protein could be partially rescued by simultaneously overexpressing tryparedoxin.
Collapse
Affiliation(s)
- Shawn A Motyka
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
49
|
Abstract
African trypanosomes have a remarkable mitochondrial DNA termed kDNA (kinetoplast DNA) that contains several thousands of topologically interlocked DNA rings. Because of its highly unusual structure, kDNA has a complex replication mechanism. Our approach to understanding this mechanism is to identify the proteins involved and to characterize their function. So far approx. 30 candidate proteins have been discovered and we predict that there are over 100. To identify genes for more kDNA replication proteins, we are using an RNA interference library, which is the first forward genetic approach used for these parasites.
Collapse
|
50
|
Geiser F, Lüscher A, de Koning HP, Seebeck T, Mäser P. Molecular pharmacology of adenosine transport in Trypanosoma brucei: P1/P2 revisited. Mol Pharmacol 2005; 68:589-95. [PMID: 15933219 DOI: 10.1124/mol.104.010298] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei are unicellular parasites that cause sleeping sickness in humans and nagana in livestock. Trypanosomes salvage purines from their hosts through a variety of transporters, of which adenosine permeases deserve particular attention because of their role in drug sensitivity. T. brucei possess two distinct adenosine transport systems, P1 and P2, the latter of which also mediates cellular uptake of the drugs melarsoprol and pentamidine. Loss or mutation of P2 has been associated with drug resistance and sleeping sickness treatment failures. However, genetic disruption in Trypanosoma brucei brucei of the gene encoding P2, TbAT1, reduced the susceptibility to melarsoprol and pentamidine by only a factor of approximately 2. In this study, we show stronger phenotypes of the tbat1 null mutant with respect to its sensitivity toward toxic adenosine analogs. Compared with parental TbAT1+/+ trypanosomes, the tbat1-/- mutant is 77-fold less sensitive to tubercidin and 14-fold less sensitive to cordycepin. Resistance is further increased by the addition of inosine but is reverted by adenine. It is surprising that the tbat1-/- mutant grows faster than TbAT1+/+ trypanosomes and that it overexpresses genes of the TbNT cluster encoding P1-type transporters. These unexpected phenotypes show that there are conditions other than drug pressure under which loss of P2 may confer a selective advantage to bloodstream-form trypanosomes. Overexpression of P1 by trypanosomes after loss of P2 indicates that combinatorial chemotherapy with trypanocidal P1 and P2 substrates may be a promising strategy to prevent drug resistance in sleeping sickness.
Collapse
Affiliation(s)
- Federico Geiser
- Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|