1
|
Che Y, Yuan J, Tang D, Guo J. Lipid traits and lipid-lowering drug target genes and risk of melanoma: a mendelian randomization study. Arch Dermatol Res 2024; 316:301. [PMID: 38819656 DOI: 10.1007/s00403-024-03100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Our study aimed to investigate the role of lipids in melanoma risk and the effect of lipid-lowering drug targets on melanoma. Using Mendelian Randomization analysis, we examined the genetic agents of nine lipid-lowering drugs and their association with melanoma risk. We found that genetically proxied inhibition of HMGCR, ABCG5/ABCG8, and ANGPTL3 was associated with a reduced risk of melanoma. On the other hand, inhibition of LPL and Apo-B100 was significantly associated with an increased risk of melanoma. Sensitivity analyses did not reveal any statistical evidence of bias from pleiotropy or genetic confounding. We did not find a robust association between lipid traits NPC1L1, PCSK9, APOC3 inhibition, and melanoma risk. These findings were validated using two independent lipid datasets. Our analysis also revealed that HMGCR, ANGPTL3, and ABCG5/ABCG8 inhibitors reduced melanoma risk independent of their effects on lipids. This suggests that these targets may have potential for melanoma prevention or treatment. In conclusion, our study provides evidence for a causal role of lipids in melanoma risk and highlights specific lipid-lowering drug targets that may be effective in reducing the risk of melanoma. These findings contribute to the understanding of the underlying mechanisms of melanoma development and provide potential avenues for further research and therapeutic interventions.
Collapse
Affiliation(s)
- Yuhui Che
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyao Yuan
- West China Second Hospital of Sichuan University, Chengdu, China
| | - Dadong Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Gretschel J, El Hage R, Wang R, Chen Y, Pietzner A, Loew A, Leineweber CG, Wördemann J, Rohwer N, Weylandt KH, Schmöcker C. Harnessing Oxylipins and Inflammation Modulation for Prevention and Treatment of Colorectal Cancer. Int J Mol Sci 2024; 25:5408. [PMID: 38791445 PMCID: PMC11121665 DOI: 10.3390/ijms25105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, ranking as the third most malignant. The incidence of CRC has been increasing with time, and it is reported that Westernized diet and lifestyle play a significant role in its higher incidence and rapid progression. The intake of high amounts of omega-6 (n - 6) PUFAs and low levels of omega-3 (n - 3) PUFAs has an important role in chronic inflammation and cancer progression, which could be associated with the increase in CRC prevalence. Oxylipins generated from PUFAs are bioactive lipid mediators and have various functions, especially in inflammation and proliferation. Carcinogenesis is often a consequence of chronic inflammation, and evidence has shown the particular involvement of n - 6 PUFA arachidonic acid-derived oxylipins in CRC, which is further described in this review. A deeper understanding of the role and metabolism of PUFAs by their modifying enzymes, their pathways, and the corresponding oxylipins may allow us to identify new approaches to employ oxylipin-associated immunomodulation to enhance immunotherapy in cancer. This paper summarizes oxylipins identified in the context of the initiation, development, and metastasis of CRC. We further explore CRC chemo-prevention strategies that involve oxylipins as potential therapeutics.
Collapse
Affiliation(s)
- Julius Gretschel
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Racha El Hage
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Department of Vascular Surgery, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Fehrbelliner Str. 38, 16816 Neuruppin, Germany
| | - Ruirui Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Yifang Chen
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Andreas Loew
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Can G. Leineweber
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Jonas Wördemann
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Karsten H. Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Christoph Schmöcker
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Li G, Yao J, Lu Z, Yu L, Chen Q, Ding L, Fang Z, Li Y, Xu B. Simvastatin Preferentially Targets FLT3/ITD Acute Myeloid Leukemia by Inhibiting MEK/ERK and p38-MAPK Signaling Pathways. Drugs R D 2023; 23:439-451. [PMID: 37847357 PMCID: PMC10676344 DOI: 10.1007/s40268-023-00442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The FLT3/ITD mutation exists in many acute myeloid leukemia (AML) patients and is related to the poor prognosis of patients. In this study, we attempted to evaluate the antitumor activity of simvastatin, a member of the statin class of drugs, in vitro and in vivo models of FLT3/ITD AML and to identify the potential mechanisms. METHODS Cell Counting Kit-8 (CCK-8) and Annexin V/propidium iodide (PI) staining kits were used to detect cell viability and apoptosis, respectively. Subsequently, Western blot and rescue experiment were applied to explore the potential molecular mechanism. In vivo anti-leukemia activity of simvastatin was evaluated in xenograft mouse models. RESULTS In vitro experiments revealed that simvastatin inhibited AML progression in a dose- and time-dependent manner, while in vivo experiments showed that simvastatin significantly reduced tumor burden in FLT3/ITD xenograft mouse models. After simvastatin treatment of FLT3/ITD AML cells, intracellular Rap1 was downregulated and the phosphorylation levels of its downstream targets MEK, ERK and p38 were significantly inhibited. The rescue experiment showed that mevalonate, an intermediate product of the metabolic pathway of mevalonate, and its downstream geranylgeranyl pyrophosphate (GGPP) played a key role in this process. Finally, we demonstrate that simvastatin can induce apoptosis of primary AML cells, while having no effect on peripheral blood mononuclear cells from normal donors. CONCLUSIONS Simvastatin can selectively and effectively eradicate FLT3/ITD AML cells in vitro and in vivo, and its mechanism may be related to the disruption of the HMG-CoA reductase pathway and the downregulation of the MEK/ERK and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Genhong Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
- Xiamen Key Laboratory of Biomarker Translational Medicine, Medical Laboratory of Xiamen Humanity Hospital Fujian Medical University, Xiamen, 361003, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
| | - Zhen Lu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, People's Republic of China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China
| | - Lihong Ding
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, People's Republic of China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China.
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, People's Republic of China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361003, People's Republic of China.
| |
Collapse
|
4
|
Ediriweera MK. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 2022; 27:103347. [PMID: 36087905 DOI: 10.1016/j.drudis.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Irregularities in cholesterol metabolism occur in a range of human cancers. Cholesterol precursors and derivatives support tumorigenesis and weaken immune responses. Intriguing preclinical and clinical findings demonstrate that cholesterol biosynthesis inhibition achieved by targeting major events and metabolites in cholesterol metabolism is an ideal anti-tumor strategy. Investigations addressing the effects of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), 2,3-oxidosqualene cyclase (OSC), squalene synthase (SQS), liver X receptors (LXR), and cholesterol trafficking and esterification inhibition on cancer progression have shown encouraging results. Notably, manipulation of cholesterol metabolism strengthens the function of immune cells in the tumor microenvironment (TME). In this review, I discuss the role of cholesterol metabolism in cancer progression and the latest research related to cholesterol metabolism-based anti-cancer therapies and intend to bring this stylish biochemistry topic to the Sri Lankan research landscape.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
5
|
Seco J, King CC, Camazzola G, Jansen J, Tirinato L, Marafioti MG, Hanley R, Pagliari F, Beckman SP. Modulating Nucleus Oxygen Concentration by Altering Intramembrane Cholesterol Levels: Creating Hypoxic Nucleus in Oxic Conditions. Int J Mol Sci 2022; 23:ijms23095077. [PMID: 35563465 PMCID: PMC9105739 DOI: 10.3390/ijms23095077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
We propose a novel mechanism by which cancer cells can modulate the oxygen concentration within the nucleus, potentially creating low nuclear oxygen conditions without the need of an hypoxic micro-environment and suited for allowing cancer cells to resist chemo- and radio-therapy. The cells ability to alter intra-cellular oxygen conditions depends on the amount of cholesterol present within the cellular membranes, where high levels of cholesterol can yield rigid membranes that slow oxygen diffusion. The proposed mechanism centers on the competition between (1) the diffusion of oxygen within the cell and across cellular membranes that replenishes any consumed oxygen and (2) the consumption of oxygen in the mitochondria, peroxisomes, endoplasmic reticulum (ER), etc. The novelty of our work centers around the assumption that the cholesterol content of a membrane can affect the oxygen diffusion across the membrane, reducing the cell ability to replenish the oxygen consumed within the cell. For these conditions, the effective diffusion rate of oxygen becomes of the same order as the oxygen consumption rate, allowing the cell to reduce the oxygen concentration of the nucleus, with implications to the Warburg Effect. The cellular and nucleus oxygen content is indirectly evaluated experimentally for bladder (T24) cancer cells and during the cell cycle, where the cells are initially synchronized using hydroxeaurea (HU) at the late G1-phase/early S-phase. The analysis of cellular and nucleus oxygen concentration during cell cycle is performed via (i) RT-qPCR gene analysis of hypoxia inducible transcription factors (HIF) and prolyl hydroxylases (PHD) and (ii) radiation clonogenic assay every 2 h, after release from synchronization. The HIF/PHD genes allowed us to correlate cellular oxygen with oxygen concentration in the nucleus that is obtained from the cells radiation response, where the amount DNA damage due to radiation is directly related to the amount of oxygen present in the nucleus. We demonstrate that during the S-phase cells can become hypoxic in the late S-phase/early G2-phase and therefore the radiation resistance increases 2- to 3-fold.
Collapse
Affiliation(s)
- Joao Seco
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
- Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence:
| | - Clarence C. King
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (C.C.K.); (S.P.B.)
| | - Gianmarco Camazzola
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
| | - Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
| | - Luca Tirinato
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
| | - Maria G. Marafioti
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
| | - Rachel Hanley
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
| | - Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, DKFZ German Cancer Research Center, 69120 Heidelberg, Germany; (G.C.); (J.J.); (L.T.); (M.G.M.); (R.H.); (F.P.)
| | - Scott P. Beckman
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (C.C.K.); (S.P.B.)
| |
Collapse
|
6
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
7
|
Uemura N, Hayashi H, Baba H. Statin as a therapeutic agent in gastroenterological cancer. World J Gastrointest Oncol 2022; 14:110-123. [PMID: 35116106 PMCID: PMC8790423 DOI: 10.4251/wjgo.v14.i1.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, and are widely used as an effective and safe approach handle hypercholesterolemia. The mevalonate pathway is a vital metabolic pathway that uses acetyl-CoA to generate isoprenoids and sterols that are crucial to tumor growth and progression. Multiple studies have indicated that statins improve patient prognosis in various carcinomas. Basic research on the mechanisms underlying the antitumor effects of statins is underway. The development of new anti-cancer drugs is progressing, but increasing medical costs from drug development have become a major obstacle. Readily available, inexpensive and well-tolerated drugs like statins have not yet been successfully repurposed for cancer treatment. Identifying the cancer patients that may benefit from statins is key to improved patient treatment. This review summarizes recent advances in statin research in cancer and suggests important considerations for the clinical use of statins to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Norio Uemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
8
|
Kim H, Lee BH, Do HS, Kim GH, Kang S, Koh KN, Im HJ. Case Report: Mevalonic Aciduria Complicated by Acute Myeloid Leukemia After Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:782780. [PMID: 34950147 PMCID: PMC8691729 DOI: 10.3389/fimmu.2021.782780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Mevalonic aciduria (MA) is the most severe clinical subtype of mevalonate kinase deficiency (MKD) caused by an inherited defect in the mevalonate pathway. The treatment of MKD focuses on the suppression of recurrent hyperinflammatory attacks using anti-inflammatory drugs. Recently, allogeneic hematopoietic stem cell transplantation (HCT) was shown to successfully ameliorate autoinflammatory attacks in patients with MKD. Here, we report a case of an infant who showed severe recurrent systemic inflammation and was diagnosed with MA. Although she responded to steroids, her symptoms relapsed after the dose was tapered, and organ deterioration occurred. Therefore, at the age of 11 months, HCT from a matched, unrelated donor was performed for curative treatment. However, at 50 days after transplantation, acute myeloid leukemia was diagnosed, which was chemo-refractory. A second HCT from her haploidentical father was performed to treat the acute myeloid leukemia, but the patient died of sepsis on day 4 after transplantation. This is the first report of malignancy following HCT for MA. Our findings suggest that normalizing the mevalonate pathway after HCT in patients with MKD impacts patients differently depending on the clinical spectrum and severity of disease.
Collapse
Affiliation(s)
- Hyery Kim
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo-Sang Do
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sunghan Kang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyung-Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ho Joon Im
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Shakartalla SB, Alhumaidi RB, Shammout ODA, Al Shareef ZM, Ashmawy NS, Soliman SSM. Dyslipidemia in breast cancer patients increases the risk of SAR-CoV-2 infection. INFECTION GENETICS AND EVOLUTION 2021; 92:104883. [PMID: 33905884 PMCID: PMC8079327 DOI: 10.1016/j.meegid.2021.104883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most diagnosed and second leading cause of death among women worldwide. Elevated levels of lipids have been reported in BC patients. On the other hand, lipids play an important role in coronavirus infections including the newly emerged disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and designated COVID-19 by WHO. Cancer patients including BC have been reported to be at higher risk of SARS-CoV-2 infection, which is mostly attributed to the chronic immunosuppressive status of cancer patients along with the use of cytotoxic drugs. Here in this review, we highlighted the role of dyslipidemia associated with BC patients in the incidence and severity of SARS-CoV-2 infection. Elevated levels of lipids namely phospholipids, cholesterol, sphingolipids, and eicosanoids in the serum of BC patients and their re-localization to the alveolar spaces can increase susceptibility and/or severity due to SARA-CoV-2 infection. Therefore, manipulation of dyslipidemia in BC patients should be recommended as prophylactic and therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sarra B Shakartalla
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wadmedani, Sudan
| | - Razan B Alhumaidi
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ola D A Shammout
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Zainab M Al Shareef
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Naglaa S Ashmawy
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
10
|
Longo J, van Leeuwen JE, Elbaz M, Branchard E, Penn LZ. Statins as Anticancer Agents in the Era of Precision Medicine. Clin Cancer Res 2020; 26:5791-5800. [PMID: 32887721 DOI: 10.1158/1078-0432.ccr-20-1967] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Statins are widely prescribed cholesterol-lowering drugs that inhibit HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate metabolic pathway. Multiple lines of evidence indicate that certain cancers depend on the mevalonate pathway for growth and survival, and, therefore, are vulnerable to statin therapy. However, these immediately available, well-tolerated, and inexpensive drugs have yet to be successfully repurposed and integrated into cancer patient care. In this review, we highlight recent advances and outline important considerations for advancing statins to clinical trials in oncology.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jenna E van Leeuwen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mohamad Elbaz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Emily Branchard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, Sun PF, Xu YJ, Zhu MM, Jiang N, Zhang J, Zhang JP, Song YL, Ma D, Zhang XP, Miao CH. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun 2020; 11:1869. [PMID: 32313017 PMCID: PMC7170903 DOI: 10.1038/s41467-020-15795-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that fasting exerts extensive antitumor effects in various cancers, including colorectal cancer (CRC). However, the mechanism behind this response is unclear. We investigate the effect of fasting on glucose metabolism and malignancy in CRC. We find that fasting upregulates the expression of a cholesterogenic gene, Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1), during the inhibition of CRC cell aerobic glycolysis and proliferation. In addition, the downregulation of FDFT1 is correlated with malignant progression and poor prognosis in CRC. Moreover, FDFT1 acts as a critical tumor suppressor in CRC. Mechanistically, FDFT1 performs its tumor-inhibitory function by negatively regulating AKT/mTOR/HIF1α signaling. Furthermore, mTOR inhibitor can synergize with fasting in inhibiting the proliferation of CRC. These results indicate that FDFT1 is a key downstream target of the fasting response and may be involved in CRC cell glucose metabolism. Our results suggest therapeutic implications in CRC and potential crosstalk between a cholesterogenic gene and glycolysis. The molecular mechanisms underpinning how fasting inhibits tumourigenesis are not completely elucidated. Here, the authors show that fasting upregulates the cholesterogenic gene FDFT1 which leads to decreased AKT/mTOR/HIF1a signalling and glycolysis reduction in colorectal cancer.
Collapse
Affiliation(s)
- Mei-Lin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wan-Kun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Rong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng-Fei Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ya-Jun Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Min Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jian-Ping Zhang
- Institute of Modern Physics, Fudan University; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuan-Lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China. .,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China. .,Children's Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiao-Ping Zhang
- The Institute of Intervention Vessel, Tongji University School of Medicine, Shanghai, 200092, China. .,Shanghai Center of Thyroid Diseases, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
The effects of statins with a high hepatoselectivity rank on the extra-hepatic tissues; New functions for statins. Pharmacol Res 2019; 152:104621. [PMID: 31891788 DOI: 10.1016/j.phrs.2019.104621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Statins, as the most common treatment for hyperlipidemia, exert effects beyond their lipid-lowering role which are known as pleiotropic effects. These effects are mainly due to the inhibition of isoprenoids synthesis and consequently blocking prenylation of proteins involved in the cellular signaling pathways regulating cell development, growth, and apoptosis. Statins target cholesterol synthesis in the liver as the major source of cholesterol in the body and so reduce whole-body cholesterol. The reduced level of cholesterol forces other organs to an adaptive homeostatic reaction to increase their cholesterol synthesis capacity, however, this only occurs when statins have unremarkable access to the extra-hepatic tissues. In order to reduce the adverse effects of statin on the skeletal muscle, most recent efforts have been towards formulating new statins with the highest level of hepatoselectivity rank and the least level of access to the extra-hepatic tissues; however, the inaccessibility of statins for the extra-hepatic tissues may induce several biological reactions. In this review, we aim to evaluate the effects of statins on the extra-hepatic tissues when statins have unremarkable access to these tissues.
Collapse
|
14
|
|
15
|
Sethunath V, Hu H, De Angelis C, Veeraraghavan J, Qin L, Wang N, Simon LM, Wang T, Fu X, Nardone A, Pereira R, Nanda S, Griffith OL, Tsimelzon A, Shaw C, Chamness GC, Reis-Filho JS, Weigelt B, Heiser LM, Hilsenbeck SG, Huang S, Rimawi MF, Gray JW, Osborne CK, Schiff R. Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Mol Cancer Res 2019; 17:2318-2330. [PMID: 31420371 DOI: 10.1158/1541-7786.mcr-19-0756] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
Despite effective strategies, resistance in HER2+ breast cancer remains a challenge. While the mevalonate pathway (MVA) is suggested to promote cell growth and survival, including in HER2+ models, its potential role in resistance to HER2-targeted therapy is unknown. Parental HER2+ breast cancer cells and their lapatinib-resistant and lapatinib + trastuzumab-resistant derivatives were used for this study. MVA activity was found to be increased in lapatinib-resistant and lapatinib + trastuzumab-resistant cells. Specific blockade of this pathway with lipophilic but not hydrophilic statins and with the N-bisphosphonate zoledronic acid led to apoptosis and substantial growth inhibition of R cells. Inhibition was rescued by mevalonate or the intermediate metabolites farnesyl pyrophosphate or geranylgeranyl pyrophosphate, but not cholesterol. Activated Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and mTORC1 signaling, and their downstream target gene product Survivin, were inhibited by MVA blockade, especially in the lapatinib-resistant/lapatinib + trastuzumab-resistant models. Overexpression of constitutively active YAP rescued Survivin and phosphorylated-S6 levels, despite blockade of the MVA. These results suggest that the MVA provides alternative signaling leading to cell survival and resistance by activating YAP/TAZ-mTORC1-Survivin signaling when HER2 is blocked, suggesting novel therapeutic targets. MVA inhibitors including lipophilic statins and N-bisphosphonates may circumvent resistance to anti-HER2 therapy warranting further clinical investigation. IMPLICATIONS: The MVA was found to constitute an escape mechanism of survival and growth in HER2+ breast cancer models resistant to anti-HER2 therapies. MVA inhibitors such as simvastatin and zoledronic acid are potential therapeutic agents to resensitize the tumors that depend on the MVA to progress on anti-HER2 therapies.
Collapse
Affiliation(s)
- Vidyalakshmi Sethunath
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Huizhong Hu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Lanfang Qin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Nicholas Wang
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine, Portland, Oregon
| | - Lukas M Simon
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tao Wang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiaoyong Fu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Agostina Nardone
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Resel Pereira
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sarmistha Nanda
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Obi L Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Anna Tsimelzon
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Chad Shaw
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Gary C Chamness
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura M Heiser
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine, Portland, Oregon
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Joe W Gray
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine, Portland, Oregon
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
|
17
|
Antoniou SX, Gaude E, Ruparel M, van der Schee MP, Janes SM, Rintoul RC. The potential of breath analysis to improve outcome for patients with lung cancer. J Breath Res 2019; 13:034002. [PMID: 30822771 DOI: 10.1088/1752-7163/ab0bee] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer remains the most common cause of cancer related death in both the UK and USA. Development of diagnostic approaches that have the ability to detect lung cancer early are a research priority with potential to improve survival. Analysis of exhaled breath metabolites, or volatile organic compounds (VOCs) is an area of considerable interest as it could fulfil such requirements. Numerous studies have shown that VOC profiles are different in the breath of patients with lung cancer compared to healthy individuals or those with non-malignant lung diseases. This review provides a scientific and clinical assessment of the potential value of a breath test in lung cancer. It discusses the current understanding of metabolic pathways that contribute to exhaled VOC production in lung cancer and reviews the research conducted to date. Finally, we highlight important areas for future research and discuss how a breath test could be incorporated into various clinical pathways.
Collapse
Affiliation(s)
- S X Antoniou
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom.,Equal contribution
| | - E Gaude
- Owlstone Medical, Cambridge, United Kingdom,Equal contribution
| | - M Ruparel
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | | | - S M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - R C Rintoul
- Papworth Trials Unit Collaboration, Royal Papworth Hospital, Cambridge, United Kingdom,Department of Oncology, University of Cambridge, United Kingdom
| | | |
Collapse
|
18
|
Ma Z, Wang W, Zhang Y, Yao M, Ying L, Zhu L. Inhibitory effect of simvastatin in nasopharyngeal carcinoma cells. Exp Ther Med 2019; 17:4477-4484. [PMID: 31105786 PMCID: PMC6507524 DOI: 10.3892/etm.2019.7525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant head and neck cancers in southern China. Although the local and regional control of NPC has been considerably improved, patients with advanced disease still suffer from poor prognosis. Statins inhibit the mevalonate pathway and play antiproliferative and proapoptotic roles in a number of cancer cells. However, the effects and molecular mechanism of statins in NPC treatment remain unclear. In this study, the cell viability of NPC cell line, C666-1, after simvastatin exposure was determined using the alamarBlue Cell Viability Assay. Cell apoptosis in C666-1 treated with simvastatin was assessed by flow cytometry and TUNEL assay. The expression levels of cell cycle regulatory proteins were determined using western blotting. Simvastatin markedly decreased cell viability in a concentration-dependent manner, increased caspase 3 activity and induced apoptosis in C666-1 cells. Simvastatin induced Bim expression by regulating phosphorylation of transcriptional factor c-Jun. Simvastatin treatment induced cell cycle arrest in the G1 phase in C666-1 cells by inhibiting the expression of cyclin D1 and cyclin-dependent kinase 4, and enhancing p27 expression. Simvastatin treatment inhibited protein kinase B and extracellular signal regulated kinase 1/2 activation. In conclusion, the results of the present study reveal the possible molecular mechanism of simvastatin-induced anti-tumor effects in C666-1 and suggest that simvastatin is a potential chemotherapy agent in NPC treatment.
Collapse
Affiliation(s)
- Zhaoxin Ma
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Weihua Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Min Yao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Liyun Ying
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Liwei Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
19
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
20
|
Göbel A, Breining D, Rauner M, Hofbauer LC, Rachner TD. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis 2019; 10:91. [PMID: 30692522 PMCID: PMC6349912 DOI: 10.1038/s41419-019-1322-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
The mevalonate pathway has emerged as a promising target for several solid tumors. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of this pathway, and are commonly used to treat patients with hypercholesterolemia. Pleiotropic antitumor mechanisms of statins have been demonstrated for several human cancer types. However, cancer cells differ in their individual statin sensitivity and some cell lines have shown relative resistance. In this study we demonstrate, that the human breast cancer cell lines MDA-MB-231, MDA-MB-468, MCF-7, and T47D are differentially affected by statins. Whereas the vitality of MDA-MB-231 and MDA-MB-468 cells was reduced by up to 60% using atorvastatin, simvastatin, or rosuvastatin (p < 0.001), only marginal effects were seen in T47D and MCF-7 cells following exposure to statins. Statin treatment led to an upregulation of HMGCR mRNA and protein expression by up to sixfolds in the statin-resistant cells lines (p < 0.001), but no alterations of HMGCR were observed in the statin-sensitive MDA-MB-231 and MDA-MB-468 cells. The knockdown of HMGCR prior to statin treatment sensitized the resistant cell lines, reflected by a 70% reduction in vitality, increased apoptotic DNA fragmentation (sixfold) and by accumulation of the apoptosis marker cleaved poly-ADP ribose polymerase. Statins induced a cleavage of the sterol-regulatory element-binding protein (SREBP)-2, a transcriptional activator of the HMGCR, in T47D and MCF-7 cells. The inhibition of SREBP-2 activation by co-administration of dipyridamole sensitized MCF-7 and T47D cells for statins (loss of vitality by 80%; p < 0.001). Furthermore, assessment of a statin-resistant MDA-MB-231 clone, generated by long-term sublethal statin exposure, revealed a significant induction of HMGCR expression by up to 12-folds (p < 0.001). Knockdown of HMGCR restored statin sensitivity back to levels of the parental cells. In conclusion, these results indicate a resistance of cancer cells against statins, which is in part due to the induction of HMGCR.
Collapse
Affiliation(s)
- Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dorit Breining
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
22
|
Mahmoud N, Sabbah DA, Abu-Dahab R, Abuarqoub D, Abdallah M, (Hasan Ibrahim) A, Khalil EA. Cholesterol-coated gold nanorods as an efficient nano-carrier for chemotherapeutic delivery and potential treatment of breast cancer: in vitro studies using the MCF-7 cell line. RSC Adv 2019; 9:12718-12731. [PMID: 35515852 PMCID: PMC9063807 DOI: 10.1039/c9ra01041f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/10/2019] [Indexed: 01/15/2023] Open
Abstract
Gold nanorods (GNRs) have a recognized role in treatment of cancers as efficient nanocarriers for chemotherapeutic drug delivery. In this study, GNRs modified with cholesterol-PEG were employed as a nanocarrier for a hydrophobic compound having a promising phosphatidylinositol 3-kinase (PI3Kα) inhibitory activity. The acquired nanocomplex was characterized by optical and infra-red (IR) absorption spectroscopies, in addition to hydrodynamic size and zeta potential. Glide docking and superposing of docked poses of the hydrophobic ligand and cholesterol moiety demonstrated that hydrophobic interactions drive the conjugation and attachment of the ligand to the cholesterol moiety of the nanocarrier. In vitro release study under a cellular environment indicates that the presence of cells has enhanced the release and the cellular uptake of the conjugated ligand. Furthermore, the anti-proliferative assay of the nanocomplex revealed potent cytotoxicity over a low concentration range of the nanocomplex against MCF-7 breast cancer cells compared to the free compound or the nanocarrier alone. Analysis of cellular death modality by flow cytometry showed that the nanocomplex has a rapid effect on cell death, as cells went toward the late apoptotic/necrotic stage rapidly and proportionally to the increase of the nanocomplex concentration. The overall results propose that cholesterol-decorated GNRs could be considered as a promising nanocarrier for hydrophobic drugs to achieve efficient delivery and potential therapy against breast cancer cells. Gold nanorods demonstrate a recognized role in the treatment of breast cancer cell lines as an efficient nanocarrier for chemotherapeutic drug delivery.![]()
Collapse
Affiliation(s)
- Nouf N. Mahmoud
- Faculty of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Dima A. Sabbah
- Faculty of Pharmacy
- Al-Zaytoonah University of Jordan
- Amman 11733
- Jordan
| | - Rana Abu-Dahab
- School of Pharmacy
- The University of Jordan
- Amman 11942
- Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center
- The University of Jordan
- Amman 11942
- Jordan
| | - Maha Abdallah
- School of Pharmacy
- The University of Jordan
- Amman 11942
- Jordan
| | | | - Enam A. Khalil
- School of Pharmacy
- The University of Jordan
- Amman 11942
- Jordan
| |
Collapse
|
23
|
Bhardwaj A, Singh H, Trinidad CM, Albarracin CT, Hunt KK, Bedrosian I. The isomiR-140-3p-regulated mevalonic acid pathway as a potential target for prevention of triple negative breast cancer. Breast Cancer Res 2018; 20:150. [PMID: 30537987 PMCID: PMC6290546 DOI: 10.1186/s13058-018-1074-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Prevention of triple-negative breast cancer (TNBC) is hampered by lack of knowledge about the drivers of tumorigenesis. METHODS To identify molecular markers and their downstream networks that can potentially be targeted for TNBC prevention, we analyzed small RNA and RNA sequencing of a cell line model that represent early stages of TNBC development. We have identified direct gene targets of isomiRNA-140-3p and by using cell-based and in vivo model systems we have demonstrated the utility of targeting downstream pathways for prevention of TNBC. RESULTS These analyses showed that 5'isomiRNA of miR-140-3p (miR-140-3p-1) and its novel direct gene targets, HMG-CoA reductase (HMGCR) and HMG-CoA synthase 1(HMGCS1), key enzymes in the cholesterol biosynthesis pathway, were deregulated in the normal-to-preneoplastic transition. Upregulation in the cholesterol pathway creates metabolic vulnerability that can be targeted. Consistent with this hypothesis, we found direct targeting of miR-140-3p-1 and its downstream pathway by fluvastatin to inhibit growth of these preneoplastic MCF10.AT1 cells. However, although, fluvastatin inhibited the growth of MCF10.AT1-derived xenografts, histological progression remained unchanged. The cholesterol pathway is highly regulated, and HMGCR enzymatic activity inhibition is known to trigger a feedback response leading to restoration of the pathway. Indeed, we found fluvastatin-induced HMGCR transcript levels to be directly correlated with the degree of histological progression of lesions, indicating that the extent of cholesterol pathway suppression directly correlates with abrogation of the tumorigenic process. To block the HMGCR feedback response to statins, we treated resistant preneoplastic cells with an activator of AMP-activated protein kinase (AMPK), a brake in the cholesterol feedback pathway. AMPK activation by aspirin and metformin effectively abrogated the statin-induced aberrant upregulation of HMGCR and sensitized these resistant cells to fluvastatin. CONCLUSIONS These results suggest the potential use of combined treatment with statin and aspirin for prevention of TNBC.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Harpreet Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | | | | | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Tüzmen Ş, Hostetter G, Watanabe A, Ekmekçi C, Carrigan PE, Shechter I, Kallioniemi O, Miller LJ, Mousses S. Characterization of farnesyl diphosphate farnesyl transferase 1 (FDFT1) expression in cancer. Per Med 2018; 16:51-65. [PMID: 30468409 DOI: 10.2217/pme-2016-0058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM To help characterize the FDFT1 gene and protein expression in cancer. Cholesterol represents an important structural component of lipid rafts. These specializations can be involved in pathways stimulating cell growth, survival and other processes active in cancer. This cellular compartment can be expanded by acquisition of cholesterol from the circulation or by its synthesis in a metabolic pathway regulated by the FDFT1 enzyme. Given the critical role this might play in carcinogenesis and in the behavior of cancers, we have examined the level of this enzyme in various types of human cancer. Our demonstration of elevated levels of FDFT1 mRNA and protein in some tumors relative to surrounding normal tissue identifies this as a possible biomarker for disease development and progression, and as a potential new target for the treatment of cancer.
Collapse
Affiliation(s)
- Şükrü Tüzmen
- Department of Biological Sciences, Molecular Biology & Genetics Program, Faculty of Arts & Sciences, Eastern Mediterranean University (EMU), Famagusta, North Cyprus via Mersin 10, 99628, Turkey.,Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Galen Hostetter
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Aprill Watanabe
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Cigna Medical Group, Texas Tech University, Phoenix, AZ, USA
| | - Cumhur Ekmekçi
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Patricia E Carrigan
- Cancer Center & Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA.,Bayer HealthCare, Berlin, Germany
| | - Ishaiahu Shechter
- Department of Surgery, School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Olli Kallioniemi
- Medical Biotechnology Center, VTT Technical Research Centre of Finland & University of Turku, Turku, Finland
| | - Laurence J Miller
- Cancer Center & Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA
| | - Spyro Mousses
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA.,Systems Oncology, Scottsdale, AZ 85260, USA
| |
Collapse
|
25
|
Samadi S, Ghayour-Mobarhan M, Mohammadpour A, Farjami Z, Tabadkani M, Hosseinnia M, Miri M, Heydari-Majd M, Mehramiz M, Rezayi M, Ferns GA, Avan A. High-density lipoprotein functionality and breast cancer: A potential therapeutic target. J Cell Biochem 2018; 120:5756-5765. [PMID: 30362608 DOI: 10.1002/jcb.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.
Collapse
Affiliation(s)
- Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhooshang Mohammadpour
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Tabadkani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hosseinnia
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehri Miri
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Heydari-Majd
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Parrales A, Thoenen E, Iwakuma T. The interplay between mutant p53 and the mevalonate pathway. Cell Death Differ 2017; 25:460-470. [PMID: 29238070 DOI: 10.1038/s41418-017-0026-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Missense mutations in the TP53 gene lead to accumulation of dysfunctional TP53 proteins in tumors, showing oncogenic gain-of-function (GOF) activities. Stabilization of mutant TP53 (mutp53) is required for the GOF; however, the mechanisms by which mutp53 promotes cancer progression and how mutp53 stability is regulated are not completely understood. Recent work from our laboratory has identified statins, inhibitors of the mevalonate pathway, as degraders of conformational mutp53. Specific reduction of mevalonate-5-phosphate (MVP), a metabolic intermediate in the mevalonate pathway, by statins or mevalonate kinase (MVK) knockdown triggers CHIP ubiquitin ligase-mediated degradation of conformational mutp53 by inhibiting interaction between mutp53 and DNAJA1, a Hsp40 family member. Thus, the mevalonate pathway contributes to mutp53 stabilization. Given that mutp53 is shown to promote cancer progression by upregulating mRNA expression of mevalonate pathway enzymes by binding to the sterol regulatory element-binding protein 2 (SREBP2) and subsequently increasing activities of mevalonate pathway-associated oncogenic proteins (e.g., Ras, Rho, YAP/TAZ), there is a positive-feedback loop between mutp53 and the mevalonate pathway. Here, we summarize recent evidence linking the mevalonate pathway-mutp53 axis with cancer progression and further discuss the clinical relevance of this axis.
Collapse
Affiliation(s)
- Alejandro Parrales
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Elizabeth Thoenen
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
27
|
Islam MM, Yang HC, Nguyen PA, Poly TN, Huang CW, Kekade S, Khalfan AM, Debnath T, Li YCJ, Abdul SS. Exploring association between statin use and breast cancer risk: an updated meta-analysis. Arch Gynecol Obstet 2017; 296:1043-1053. [PMID: 28940025 DOI: 10.1007/s00404-017-4533-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE The benefits of statin treatment for preventing cardiac disease are well established. However, preclinical studies suggested that statins may influence mammary cancer growth, but the clinical evidence is still inconsistent. We, therefore, performed an updated meta-analysis to provide a precise estimate of the risk of breast cancer in individuals undergoing statin therapy. METHODS For this meta-analysis, we searched PubMed, the Cochrane Library, Web of Science, Embase, and CINAHL for published studies up to January 31, 2017. Articles were included if they (1) were published in English; (2) had an observational study design with individual-level exposure and outcome data, examined the effect of statin therapy, and reported the incidence of breast cancer; and (3) reported estimates of either the relative risk, odds ratios, or hazard ratios with 95% confidence intervals (CIs). We used random-effect models to pool the estimates. RESULTS Of 2754 unique abstracts, 39 were selected for full-text review, and 36 studies reporting on 121,399 patients met all inclusion criteria. The overall pooled risks of breast cancer in patients using statins were 0.94 (95% CI 0.86-1.03) in random-effect models with significant heterogeneity between estimates (I 2 = 83.79%, p = 0.0001). However, we also stratified by region, the duration of statin therapy, methodological design, statin properties, and individual stain use. CONCLUSIONS Our results suggest that there is no association between statin use and breast cancer risk. However, observational studies cannot clarify whether the observed epidemiologic association is a causal effect or the result of some unmeasured confounding variable. Therefore, more research is needed.
Collapse
Affiliation(s)
- Md Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Phung-Anh Nguyen
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Chih-Wei Huang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Shwetambara Kekade
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | | | - Tonmoy Debnath
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Shabbir Syed Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan. .,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Abdullah MI, Abed MN, Richardson A. Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Sci Rep 2017; 7:8090. [PMID: 28808351 PMCID: PMC5556066 DOI: 10.1038/s41598-017-08649-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022] Open
Abstract
Only 40% of patients with advanced ovarian cancer survive more than 5 years. We have previously shown that pitavastatin induces regression of ovarian cancer xenografts in mice. To evaluate whether the response of ovarian cancer cells to pitavastatin is potentiated by farnesyl diphosphate synthase inhibitors or geranylgeraniol transferase I inhibitors, we evaluated combinations of pitavastatin with zoledronic acid, risedronate and GGTI-2133 in a panel of ovarian cancer cells. Pitavastatin (IC50 = 0.6–14 μM), zoledronic acid (IC50 = 21–57 μM), risedronate (IC50 > 100 μM) or GGTI-2133 (IC50 > 25 μM) inhibited the growth of ovarian cancer cell cultures. Combinations of pitavastatin with zoledronic acid displayed additive or synergistic effects in cell growth assays in 10 of 11 cell lines evaluated as well as in trypan blue exclusion, cellular ATP or caspase 3/7, 8 and 9 assays. Pitavastatin reduced levels of GGT-IIβ and the membrane localization of several small GTPases and this was potentiated by zoledronic acid. siRNA to GGT-Iβ and GGT-IIβ used in combination, but not when used individually, significantly increased the sensitivity of cells to pitavastatin. These data suggest that zoledronic acid, a drug already in clinical use, may be usefully combined with pitavastatin in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Marwan Ibrahim Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Mohammed Najim Abed
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK. .,School of Pharmacy, Keele University, Keele, United Kingdom.
| |
Collapse
|
29
|
Nayir E, Cor S, Altintas ZM, Buyukafsar K, Tiftik RN, Ata A, Arican A. Comparative investigation of antitumoral effectiveness of Rho-kinase inhibitor Y-27632, pravastatin and atorvastatin in anaplastic thyroid cancer cell culture. JOURNAL OF ONCOLOGICAL SCIENCES 2017. [DOI: 10.1016/j.jons.2017.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
30
|
Benedetti E, d'Angelo M, Ammazzalorso A, Gravina GL, Laezza C, Antonosante A, Panella G, Cinque B, Cristiano L, Dhez AC, Astarita C, Galzio R, Cifone MG, Ippoliti R, Amoroso R, Di Cesare E, Giordano A, Cimini A. PPARα Antagonist AA452 Triggers Metabolic Reprogramming and Increases Sensitivity to Radiation Therapy in Human Glioblastoma Primary Cells. J Cell Physiol 2016; 232:1458-1466. [PMID: 27736000 DOI: 10.1002/jcp.25648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the most common cancer in the brain and with an increasing incidence. Despite major advances in the field, there is no curative therapy for GB to date. Many solid tumors, including GB, experienced metabolic reprogramming in order to sustain uncontrolled proliferation, hypoxic conditions, and angiogenesis. PPARs, member of the steroid hormone receptor superfamily, are particularly involved in the control of energetic metabolism, particularly lipid metabolism, which has been reported deregulated in gliomas. PPARα was previously indicated by us as a potential therapeutic target for this neoplasm, due to the malignancy grade dependency of its expression, being particularly abundant in GB. In this work, we used a new PPARα antagonist on patient-derived GB primary cells, with particular focus on the effects on lipid metabolism and response to radiotherapy. The results obtained demonstrated that blocking PPARα results in cell death induction, increase of radiosensitivity, and decrease of migration. Therefore, AA452 is proposed as a new adjuvant for the gold standard therapies for GB, opening the possibility for preclinical and clinical trials for this class of compounds. J. Cell. Physiol. 232: 1458-1466, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisabetta Benedetti
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy
| | - Andrea Antonosante
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gloria Panella
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anne Chloè Dhez
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Astarita
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Renato Galzio
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Gran Sasso National Laboratory (LNGS), National Institute for Nuclear Physics (INFN), Assergi, Italy
| |
Collapse
|
31
|
Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 2016; 16:718-731. [PMID: 27562463 DOI: 10.1038/nrc.2016.76] [Citation(s) in RCA: 431] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate (MVA) pathway is an essential metabolic pathway that uses acetyl-CoA to produce sterols and isoprenoids that are integral to tumour growth and progression. In recent years, many oncogenic signalling pathways have been shown to increase the activity and/or the expression of MVA pathway enzymes. This Review summarizes recent advances and discusses unique opportunities for immediately targeting this metabolic vulnerability in cancer with agents that have been approved for other therapeutic uses, such as the statin family of drugs, to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Peter J Mullen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Rosemary Yu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Michael C Archer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
32
|
Jung YS, Park CH, Eun CS, Park DI, Han DS. Statin use and the risk of colorectal adenoma: A meta-analysis. J Gastroenterol Hepatol 2016; 31:1823-1830. [PMID: 27043957 DOI: 10.1111/jgh.13393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although statin use has been reported to reduce the risk of colorectal cancer beyond its cholesterol-lowering effects, the benefit of statins against colorectal adenoma has not been fully clarified. We aimed to investigate the association between statin use and the risk of colorectal adenoma. METHODS We conducted a systematic literature search on MEDLINE, EMBASE, and the Cochrane Library using the primary keywords "adenoma," "polyp," "colorectal," "colon," "rectal," "rectum," "neoplasia," "neoplasm," "statin," "3-hydroxy-3-methylglutaryl-coenzyme A," and "HMG-CoA." Studies were included if they evaluated the association between statin use and adenoma and reported relative risks (RRs) or odds ratios or provided data for estimation. Pooled estimates were calculated using the random-effects model. RESULTS Six studies including 13 239 patients were analyzed. The median proportion of patients with any adenoma was 29.7% (range, 20.9-38.4%) in patients taking statins and 31.2% (range, 19.6-63.4%) in patients not taking statins across included studies. The median proportion of patients with advanced adenoma in those taking statins was 7.7% (range, 3.1-27.2%), whereas that in patients not taking statins was 11.3% (range, 3.5-32.4%). On meta-analysis, statin use did not significantly affect the risk of any adenoma (pooled RR = 0.901; 95% confidence interval [CI], 0.735-1.104); however, it was associated with a lower risk of advanced adenoma (pooled RR = 0.833; 95% CI, 0.750-0.925). CONCLUSIONS Statin use seems to be associated with a reduced risk of advanced adenoma, but not any adenoma. Statins may prevent neoplastic progression of adenomas rather than the development of adenomas.
Collapse
Affiliation(s)
- Yoon Suk Jung
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| |
Collapse
|
33
|
Statin use and breast cancer survival and risk: a systematic review and meta-analysis. Oncotarget 2016; 6:42988-3004. [PMID: 26472026 PMCID: PMC4767486 DOI: 10.18632/oncotarget.5557] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study is to determine the associations between statin use and breast cancer survival and risk by performing a systematic review and meta-analysis. We searched PubMed, Embase and Web of Science up to August 2015 for identifying relevant prospective or case-control studies, or randomized clinical trials. Five prospective studies involving 60,911 patients reported the association between statin use and breast cancer mortality. Eleven prospective studies, 12 case-control studies and 9 randomized clinical trials involving 83,919 patients reported the association between statin use and breast cancer risk. After pooling estimates from all available studies, there was a significantly negative association between pre-diagnosis statin use and breast cancer mortality (for overall survival (OS): hazard ratio (HR) = 0.68, 95% confidence interval (CI) 0.54–0.84; for disease specific survival (DSS): HR = 0.72, 95% CI 0.53–0.99). There was also a significant inverse association between post-diagnosis statin use and breast cancer DSS (HR = 0.65, 95% CI 0.43–0.98), although the association with breast cancer OS did not reach statistical significance (HR = 0.71, 95% CI 0.48–1.07). Additionally, there was a non-linear relationship for the duration of post-diagnosis statin use with breast cancer specific mortality. On the other hand, with regards to the relationship between statin use and breast cancer risk, no significant association was detected. Our analyses suggest that although statin use may not influence breast cancer risk, the use of statin may be associated with decrease mortality of breast cancer patients. Further large-scale studies are warranted to validate our findings.
Collapse
|
34
|
Ward WO, Delker DA, Hester SD, Thai SF, Wolf DC, Allen JW, Nesnow S. Transcriptional Profiles in Liver from Mice Treated with Hepatotumorigenic and Nonhepatotumorigenic Triazole Conazole Fungicides: Propiconazole, Triadimefon, and Myclobutanil. Toxicol Pathol 2016; 34:863-78. [PMID: 17178688 DOI: 10.1080/01926230601047832] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays ( Allen et al., 2006 ), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-β-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.
Collapse
Affiliation(s)
- William O Ward
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Yokoo M, Kubota Y, Motoyama K, Higashi T, Taniyoshi M, Tokumaru H, Nishiyama R, Tabe Y, Mochinaga S, Sato A, Sueoka-Aragane N, Sueoka E, Arima H, Irie T, Kimura S. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent. PLoS One 2015; 10:e0141946. [PMID: 26535909 PMCID: PMC4633159 DOI: 10.1371/journal.pone.0141946] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin
- Animals
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/toxicity
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cholesterol/analysis
- Cholesterol/metabolism
- Colorimetry
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- G2 Phase Cell Cycle Checkpoints/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myeloid, Acute/drug therapy
- Lung/pathology
- M Phase Cell Cycle Checkpoints/drug effects
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Signal Transduction/drug effects
- Transplantation, Heterologous
- beta-Cyclodextrins/therapeutic use
- beta-Cyclodextrins/toxicity
Collapse
Affiliation(s)
- Masako Yokoo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Department of Transfusion Medicine, Saga University Hospital, Saga, Japan
- * E-mail:
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Taniyoshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Tokumaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rena Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Akemi Sato
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Sueoka-Aragane
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Eisaburo Sueoka
- Department of Transfusion Medicine, Saga University Hospital, Saga, Japan
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
36
|
Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell Signal 2015. [DOI: 10.1016/j.cellsig.2015.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
p53 regulates the mevalonate pathway in human glioblastoma multiforme. Cell Death Dis 2015; 6:e1909. [PMID: 26469958 PMCID: PMC4632304 DOI: 10.1038/cddis.2015.279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 11/30/2022]
Abstract
The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression.
Collapse
|
38
|
Bonovas S. Statins: do they have a potential role in cancer prevention and modifying cancer-related outcomes? Drugs 2015; 74:1841-1848. [PMID: 25288321 DOI: 10.1007/s40265-014-0309-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) are currently among the most commonly prescribed pharmaceutical agents worldwide. Apart from their well-established therapeutic value in cardiovascular disease, there is a long-standing debate on their potential association with cancer. To obtain and discuss the existing clinical evidence, an overview of meta-analysis articles addressing this issue was carried out. As of today, the accumulated evidence does not support the hypothesis that statins affect the risk of developing cancer, when they are taken at low doses for managing hypercholesterolaemia. However, current data cannot exclude an increased cancer risk in elderly patients associated with hydrophilic statin use, or decreases in the risks of certain cancers, such as gastric, oesophageal, liver, colorectal and advanced/aggressive prostate cancer. On the other hand, some recent observational studies have provided evidence that statins might be useful in modifying the prognosis of patients diagnosed with malignancy. Until a definitive benefit is demonstrated in randomized controlled trials, statins cannot be recommended either for cancer prevention or for modifying cancer-related outcomes. Further research is warranted to clarify the potential role(s) of statins in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Stefanos Bonovas
- Department of Pharmacology, School of Medicine, University of Athens, Athens, Greece. .,Laboratory of Drug Regulatory Policies, IRCCS Mario Negri Institute for Pharmacological Research, Via La Masa 19, 20156, Milan, Italy.
| |
Collapse
|
39
|
Licarete E, Sesarman A, Banciu M. Exploitation of pleiotropic actions of statins by using tumour-targeted delivery systems. J Microencapsul 2015; 32:619-31. [PMID: 26299551 DOI: 10.3109/02652048.2015.1073383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins are drugs traditionally used to lower cholesterol levels in blood. At concentrations 100- to 500-fold higher than those needed for reaching cholesterol lowering activity, they have anti-tumour activity. This anti-tumour activity is based on statins pleiotropic effects derived from their ability to inhibit the mevalonate synthesis and include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-inflammatory, anti-metastatic actions and modulatory effects on intra-tumour oxidative stress. Thus, in this review, we summarise the possible pleiotropic actions of statins involved in tumour growth inhibition. Since the administration of these high doses of statins is accompanied by severe side effects, targeted delivery of statins seems to be the appropriate strategy for efficient application of statins in oncology. Therefore, we also present an overview of the current status of targeted delivery systems for statins with possible utilisation in oncology.
Collapse
Affiliation(s)
- Emilia Licarete
- a Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology , Babes-Bolyai University , Cluj-Napoca , Romania and.,b Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca , Romania
| | - Alina Sesarman
- a Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology , Babes-Bolyai University , Cluj-Napoca , Romania and.,b Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca , Romania
| | - Manuela Banciu
- a Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology , Babes-Bolyai University , Cluj-Napoca , Romania and.,b Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University , Cluj-Napoca , Romania
| |
Collapse
|
40
|
Mohammad N, Singh SV, Malvi P, Chaube B, Athavale D, Vanuopadath M, Nair SS, Nair B, Bhat MK. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci Rep 2015; 5:11853. [PMID: 26149967 PMCID: PMC4493576 DOI: 10.1038/srep11853] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/20/2015] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DOX) is one of the preferred drugs for treating breast and liver cancers. However, its clinical application is limited due to severe side effects and the accompanying drug resistance. In this context, we investigated the effect on therapeutic efficacy of DOX by cholesterol depleting agent methyl-β-cyclodextrin (MCD), and explored the involvement of p53. MCD sensitizes MCF-7 and Hepa1–6 cells to DOX, Combination of MCD and marginal dose of DOX reduces the cell viability, and promoted apoptosis through induction of pro-apoptotic protein, Bax, activation of caspase-8 and caspase-7, down regulation of anti-apoptotic protein Bcl-2 and finally promoting PARP cleavage. Mechanistically, sensitization to DOX by MCD was due to the induction of FasR/FasL pathway through p53 activation. Furthermore, inhibition of p53 by pharmacological inhibitor pifithrin-α (PFT-α) or its specific siRNA attenuated p53 function and down-regulated FasR/FasL, thereby preventing cell death. Animal experiments were performed using C57BL/6J mouse isografted with Hepa1–6 cells. Tumor growth was retarded and survival increased in mice administered MCD together with DOX to as compared to either agent alone. Collectively, these results suggest that MCD enhances the sensitivity to DOX for which wild type p53 is an important determinant.
Collapse
Affiliation(s)
- Naoshad Mohammad
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune- 411007, India
| | - Shivendra Vikram Singh
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune- 411007, India
| | - Parmanand Malvi
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune- 411007, India
| | - Balkrishna Chaube
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune- 411007, India
| | - Dipti Athavale
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune- 411007, India
| | | | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kollam-690525, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune- 411007, India
| |
Collapse
|
41
|
Liu X, You W, Cheng H, Zhang Q, Song E, Wan F, Han H, Liu G. Effect of mevalonic acid on cholesterol synthesis in bovine intramuscular and subcutaneous adipocytes. J Appl Genet 2015; 57:113-8. [PMID: 26122311 DOI: 10.1007/s13353-015-0300-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/04/2014] [Accepted: 06/09/2015] [Indexed: 11/30/2022]
Abstract
Mevalonic acid (MVA) is a key material in the synthesis of cholesterol; indeed, intracellular cholesterol synthesis is also called the mevalonic acid pathway. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is an essential enzyme in cholesterol biosynthesis. This study suggests that MVA may play an important role in the differentiation of bovine adipose tissue in vivo. We investigated differential mRNA expression in bovine intramuscular preadipocytes (BIPs) and bovine subcutaneous preadipocytes (BSPs) by culturing cells from the longissimus dorsi muscle and subcutaneous fat tissues of Luxi yellow cattle. The morphology of lipid accumulation of bovine preadipocytes was detected by Oil Red O staining, and total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), and high-density lipoprotein cholesterol (HDLC) levels were measured. Temporospatial expression of HMGR was investigated by real-time quantitative polymerase chain reaction (PCR). The TC, LDLC, and HDLC content did not significantly differ over time but increased slowly with increasing MVA concentration. HMGR expression increased over time and with increasing concentrations of MVA. MVA increased adipose cell proliferation in a dose-dependent and time-dependent manner. MVA stimulated HMGR expression in two cell types and its influence on adipocyte differentiation.
Collapse
Affiliation(s)
- Xiaomu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Haijian Cheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Qingfeng Zhang
- Department of Animal Science, Heze University, Heze, 274015, China
| | - Enliang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Fachun Wan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Hong Han
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road Number 8, Ji'nan City, Shandong Province, 250100, China. .,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China.
| |
Collapse
|
42
|
Lin CJ, Lai CK, Kao MC, Wu LT, Lo UG, Lin LC, Chen YA, Lin H, Hsieh JT, Lai CH, Lin CD. Impact of cholesterol on disease progression. Biomedicine (Taipei) 2015; 5:7. [PMID: 26048694 PMCID: PMC4502043 DOI: 10.7603/s40681-015-0007-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Texas, Dallas, 75235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Matusewicz L, Meissner J, Toporkiewicz M, Sikorski AF. The effect of statins on cancer cells--review. Tumour Biol 2015; 36:4889-904. [PMID: 26002574 DOI: 10.1007/s13277-015-3551-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
Statins [3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, abbreviated HMGCR) inhibitors], are well-known cholesterol-depleting agents. Since the early 1990 s, it has been known that statins could be successfully used in cancer therapy, but the exact mechanism(s) of statin activity remains unclear and is now an extensive focus of investigation. So far, it was proven that there are several mechanisms that are activated by statins in cancer cells; some of them are leading to cell death. Statins exert different effects depending on cell line, statin concentration, duration of exposure of cells to statins, and the type of statin being used. It was shown that statins may inhibit the cell cycle by influence on both expression and activity of proteins involved in cell-cycle progression such as cyclins, cyclin-dependent kinases (CDK), and/or inhibitors of CDK. Also, statins may induce apoptosis by both intrinsic and extrinsic pathways. Statin treatment may lead to changes in molecular pathways dependent on the EGF receptor, mainly via inhibition of isoprenoid synthesis. By inhibition of the synthesis of cholesterol, statins may destabilize the cell membrane. Moreover, statins may change the arrangement of transporter OATP1, the localization of HMGCR, and could induce conformational changes in GLUT proteins. In this review, we have tried to gather and compare most of the recent outcomes of the research in this field. We have also attempted to explain why hydrophilic statins are less effective than hydrophobic statins. Finally, we have gathered results from in vivo experiments, presenting the use of statins in combined therapies and discussed a number of molecular targets that could serve as biomarkers predisposing to statin therapy.
Collapse
Affiliation(s)
- Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | | | | | | |
Collapse
|
44
|
Li W, Wang R, Zhang S, Li X. DAMP, an acidotropic pH indicator, can be used as a tool to visualize non-esterified cholesterol in cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:73-9. [PMID: 25583734 DOI: 10.1093/abbs/gmu123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cholesterol-rich regions are attractive targets for studying metabolic disorders that involve accumulation of cholesterol. Despite efforts to develop probes for labelling cholesterol-rich regions in cells, few of these reagents have a low molecular weight. Previous studies have shown that the acidotropic pH indicator, N-{3-[(2,4-dinitrophenyl)amino]propyl}-N-(3-aminopropyl)methylamine dihydrochloride (DAMP), reacts with cholesterol-rich organelles, such as endocrine secretary granules from endocrine cells. In this study, we demonstrated that DAMP could react with free cholesterol in a dose-dependent manner, and DAMP was able to detect cholesterol-rich subcellular organelles. DAMP was sufficiently potent to detect free cholesterol-enriched organs, but was unable to detect atherosclerotic plaques primarily composed of esterified cholesterol. Taken together, these results demonstrate that DAMP facilitates the study of cholesterol-enriched lipid rafts and disorders which involve cholesterol accumulation.
Collapse
Affiliation(s)
- Weimin Li
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Rong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shaojuan Zhang
- Department of PET-CT, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
45
|
Mohammad N, Malvi P, Meena AS, Singh SV, Chaube B, Vannuruswamy G, Kulkarni MJ, Bhat MK. Cholesterol depletion by methyl-β-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol Cancer 2014; 13:204. [PMID: 25178635 PMCID: PMC4175626 DOI: 10.1186/1476-4598-13-204] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite modern advances in treatment, skin cancer is still one of the most common causes of death in the western countries. Chemotherapy plays an important role in melanoma management. Tamoxifen has been used either alone or in- combination with other chemotherapeutic agents to treat melanoma. However, response rate of tamoxifen as a single agent has been comparatively low. In the present study, we investigated whether treatment with methyl-β-cyclodextrin (MCD), a cholesterol depleting agent, increases the efficacy of tamoxifen in melanoma cells. METHODS This was a two-part study that incorporated in vitro effects of tamoxifen and MCD combination by analyzing cell survival, apoptosis and cell cycle analysis and in vivo antitumor efficacy on tumor isografts in C57BL/6J mice. RESULTS MCD potentiated tamoxifen induced anticancer effects by causing cell cycle arrest and induction of apoptosis. Sensitization to tamoxifen was associated with down regulation of antiapoptotic protein Bcl-2, up-regulation of proapoptotic protein Bax, reduced caveolin-1 (Cav-1) and decreased pAkt/pERK levels. Co-administration of tamoxifen and MCD caused significant reduction in tumor volume and tumor weight in mice due to enhancement of drug uptake in the tumor. Supplementation with cholesterol abrogated combined effect of tamoxifen and MCD. CONCLUSION Our results emphasize a potential synergistic effect of tamoxifen with MCD, and therefore, may provide a unique therapeutic window for improvement in melanoma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manoj Kumar Bhat
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
46
|
Pisanti S, Picardi P, Ciaglia E, D'Alessandro A, Bifulco M. Novel prospects of statins as therapeutic agents in cancer. Pharmacol Res 2014; 88:84-98. [PMID: 25009097 DOI: 10.1016/j.phrs.2014.06.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023]
Abstract
Statins are well known competitive inhibitors of hydroxymethylglutaryl-CoA reductase enzyme (HMG-CoA reductase), thus traditionally used as cholesterol-lowering agents. In recent years, more and more effects of statins have been revealed. Nowadays alterations of lipid metabolism have been increasingly recognized as a hallmark of cancer cells. Consequently, much attention has been directed toward the potential of statins as therapeutic agents in the oncological field. Accumulated in vitro and in vivo clinical evidence point out the role of statins in a variety of human malignancies, in regulating tumor cell growth and anti-tumor immune response. Herein, we summarize and discuss, in light of the most recent observations, the anti-tumor effects of statins, underpinning the detailed mode of action and looking for their true significance in cancer prevention and treatment, to determine if and in which case statin repositioning could be really justified for neoplastic diseases.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy.
| | - Paola Picardi
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy
| | - Alba D'Alessandro
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy
| | - Maurizio Bifulco
- Department of Medicine and Surgery, University of Salerno, Italy; Department of Pharmacy, University of Salerno, Italy.
| |
Collapse
|
47
|
Abstract
The antitumour effect of statins has already been proven in animal experiments and human cancer cell lines in several gastrointestinal cancers. The chemopreventive mechanism is not completely clarified but the enhancement of oxidative stress, increased autophagy, altered expression of pro- and antiproliferative proteins and their influence on intracellular signaling pathways may play a role. Randomized studies, however, failed to confirme the expected results obtained from experimental studies. The goal of this review is to summarize the data available in the literature regarding the chemopreventive effects of statins on several gastrointestinal cancers. Results of clinical trials suggest that 10-20 mg statin daily has no or minimal antitumour effect. Chemopreventive effect of hydrophilic statins could not be detected but it seems to be significant in the case of hydrophobic statins. There are only few data available on the long-term daily use of 30-40 mg statins. Further long-term evaluation of the effect of statins regarding gastrointestinal cancers is needed, and an analysis of compound- and dose-related subgroups would be beneficial. Chemoprevention with statins cannot yet be accepted as standard medical practice. Use of statins as chemopreventive agents cannot be a substitute for regular oncological screening or surveillance.
Collapse
Affiliation(s)
- Veronika Sági
- Zala Megyei Kórház Belgyógyászati Osztály Zalaegerszeg Zrínyi M. u. 1. 8900
| | - László Herszényi
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest
| | - Zsolt Tulassay
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest
| | - Beáta Gasztonyi
- Zala Megyei Kórház Belgyógyászati Osztály Zalaegerszeg Zrínyi M. u. 1. 8900
| |
Collapse
|
48
|
Kim JD, Chaudhary N, Seo HJ, Kim MY, Shin TS. Theasaponin E₁ as an effective ingredient for anti-angiogenesis and anti-obesity effects. Biosci Biotechnol Biochem 2014; 78:279-87. [PMID: 25036682 DOI: 10.1080/09168451.2014.893183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Theasaponin E₁ (TSE₁) has been suggested to have higher biological activity than other saponins present in tea seed. Saponins have recently been considered as a potential chemotherapeutic agent for treating cancer. We examined the anti-angiogenic and anti-obesity properties of TSE₁ contributing to anti-cancer efficacy. Treating with a 10 μg/mL concentration of TSE₁ completely inhibited tube formation in human umbilical vein endothelial cells (HUVECs). TSE₁ showed toxicity toward cancer cells and inhibited in vivo growth of the tumor. The vascular endothelial growth factor (VEGF) receptor complex was suppressed, leading to the inhibition of protein kinase B (Akt) expression and down-regulation of nuclear factor-kappa B (NF-kB) activation. The differentiating 3T3-L₁ cells treated with TSE₁ had decreased lipid droplet formation measured by Oil Red O staining. Reduced weight was measured in mice fed with a TSE₁ plus high-fat diet. The results taken together, and particularly the NF-kB inhibition, suggest that TSE₁ may have multi-target action for treating cancer as a novel chemotherapeutic agent.
Collapse
Affiliation(s)
- Jong-Deog Kim
- a Department of Biotechnology , Chonnam National University , Yeosu , Korea
| | | | | | | | | |
Collapse
|
49
|
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014; 143:87-110. [PMID: 24582968 DOI: 10.1016/j.pharmthera.2014.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022]
Abstract
The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Emilia Wiechec
- Dept. Clinical & Experimental Medicine, Division of Cell Biology & Integrative Regenerative Med. Center (IGEN), Linköping University, Sweden
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 4C46 HRIC, 3280 Hospital Drive NW, Calgary, Alberta, Canada
| | - Adel Rezaei Moghadam
- Scientific Association of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Martin Post
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Darren H Freed
- Department of Physiology, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir A Zeki
- U.C. Davis, School of Medicine, U.C. Davis Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA, USA.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Manitoba Institute of Child Health, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
50
|
Simvastatin enhances the chemotherapeutic efficacy of S-1 against bile duct cancer. Anticancer Drugs 2013; 24:1020-9. [DOI: 10.1097/cad.0b013e328364f935] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|