1
|
Aalami A, Abdeahad H, Mokhtari A, Aalami F, Amirabadi A, Aliabadi EK, Pirzade O, Sahebkar A. Blood-based microRNAs as Potential Diagnostic Biomarkers for Melanoma: A Meta-Analysis. Curr Med Chem 2024; 31:5083-5096. [PMID: 37165504 DOI: 10.2174/0929867330666230509110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Circulating microRNAs (miRNAs) serve as noninvasive diagnostic markers in many cancers. This meta-analysis aims to evaluate the diagnostic efficacy of circulating microRNAs for melanoma. MATERIALS AND METHODS The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and ROC curve were evaluated using the Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.3.3 software packages. To investigate the heterogeneity, the I2 and Chi-square tests were used. The publishing bias was evaluated using Begg's rank correlation and Egger regression asymmetry tests. RESULTS A total of 9 articles covering 13 studies (more than 50 miRs individually and in combination) were included, containing 1,355 participants (878 cases and 477 controls). The overall pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and AUC were 0.78 (95% CI: 0.76-0.81), 0.80 (95% CI: 0.77-0.83), 4.32 (95% CI: 3.21-5.82), 0.17 (95% CI: 0.09-0.32), 28.0 (95% CI: 15.34-51.09), and 0.91, respectively. According to Begg's and Egger's tests, there was no publication bias (Begg's p = 0.160 and Egger's p = 0.289). CONCLUSION Circulating miRNAs can serve as fair and non-invasive diagnostic biomarkers for melanoma. Additionally, specific miRNAs still need to be discovered for diagnosing melanoma.
Collapse
Affiliation(s)
- AmirHossein Aalami
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Ali Mokhtari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Kargar Aliabadi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Omid Pirzade
- Department of English Language and Literature, Faculty of Literature and Humanities, Hakim Sabzevari University, Sabzevar, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Barbeiro CDO, Fernandes D, Palaçon MP, Castilho RM, de Almeida LY, Bufalino A. Inflammatory Cells Can Alter the Levels of H3K9ac and γH2AX in Dysplastic Cells and Favor Tumor Phenotype. J Pers Med 2023; 13:jpm13040662. [PMID: 37109048 PMCID: PMC10141380 DOI: 10.3390/jpm13040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Oral potentially malignant disorders (OPMD) are clinical presentations that carry an increased risk of cancer development. Currently, epithelial dysplasia grade is based on architectural and cytological epithelial changes and is used to predict the malignant transformation of these lesions. However, predicting which OPMD will progress to a malignant tumor is very challenging. Inflammatory infiltrates can favor cancer development, and recent studies suggest that this association with OPMD lesions may be related to the etiology and/or aggressive clinical behavior of these lesions. Epigenetic changes such as histone modifications may mediate chronic inflammation and also favor tumor cells in immune resistance and evasion. This study aimed to evaluate the relationship between histone acetylation (H3K9ac) and DNA damage in the context of dysplastic lesions with prominent chronic inflammation. Immunofluorescence of "low-risk" and "high-risk" OPMD lesions (n = 24) and inflammatory fibrous hyperplasia (n = 10) as the control group was performed to assess histone acetylation levels and DNA damage through the phosphorylation of H2AX (γH2AX). Cell co-culture assays with PBMCs and oral keratinocyte cell lines (NOK-SI, DOK, and SCC-25) were performed to assess proliferation, adhesion, migration, and epithelial-mesenchymal transition (EMT). Oral dysplastic lesions showed a hypoacetylation of H3K9 and low levels of γH2AX compared to control. The contact of dysplastic oral keratinocytes with PBMCs favored EMT and the loss of cell-cell adhesion. On the other hand, p27 levels increased and cyclin E decreased in DOK, indicating cell cycle arrest. We conclude that the presence of chronic inflammation associated to dysplastic lesions is capable of promoting epigenetic alterations, which in turn can favor the process of malignant transformation.
Collapse
Affiliation(s)
- Camila de Oliveira Barbeiro
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Darcy Fernandes
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Mariana Paravani Palaçon
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, 1011N University Av, Ann Arbor, MI 48109-1078, USA
| | - Luciana Yamamoto de Almeida
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - Andreia Bufalino
- Oral Medicine, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| |
Collapse
|
3
|
De Beck L, Awad RM, Basso V, Casares N, De Ridder K, De Vlaeminck Y, Gnata A, Goyvaerts C, Lecocq Q, San José-Enériz E, Verhulst S, Maes K, Vanderkerken K, Agirre X, Prosper F, Lasarte JJ, Mondino A, Breckpot K. Inhibiting Histone and DNA Methylation Improves Cancer Vaccination in an Experimental Model of Melanoma. Front Immunol 2022; 13:799636. [PMID: 35634329 PMCID: PMC9134079 DOI: 10.3389/fimmu.2022.799636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type, yet overall clinical response rates remain low. Combination therapies could be key to meet this cogent medical need. Because epigenetic hallmarks represent promising combination therapy targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model. Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding with transient tumor growth delay and an IFN-I response in immune-competent mice. In consideration of a potential impact on immune cells, the drug was shown not to interfere with dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice. The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune set-point towards responsiveness to active and adoptive vaccination against melanoma.
Collapse
Affiliation(s)
- Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Noelia Casares
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alessandra Gnata
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Edurne San José-Enériz
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ken Maes
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory of Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Xabier Agirre
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Hemato-Oncology Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
The E3 Ubiquitin Ligase Fbxo4 Functions as a Tumor Suppressor: Its Biological Importance and Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14092133. [PMID: 35565262 PMCID: PMC9101129 DOI: 10.3390/cancers14092133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Fbxo4 is an E3 ubiquitin ligase that requires the formation of a complex with S-phase kinase-associated protein 1 and Cullin1 to catalyze the ubiquitylation of its substrates. Moreover, Fbxo4 depends on the existence of posttranslational modifications and/or co-factor to be activated to perform its biological functions. The well-known Fbxo4 substrates have oncogenic or oncogene-like activities, for example, cyclin D1, Trf1/Pin2, p53, Fxr1, Mcl-1, ICAM-1, and PPARγ; therefore, Fbxo4 is defined as a tumor suppressor. Biologically, Fbxo4 regulates cell cycle progression, DNA damage response, tumor metabolism, cellular senescence, metastasis and tumor cells’ response to chemotherapeutic compounds. Clinicopathologically, the expression of Fbxo4 is associated with patients’ prognosis depending on different tumor types. Regarding to its complicated regulation, more in-depth studies are encouraged to dissect the detailed molecular mechanisms to facilitate developing new treatment through targeting Fbxo4. Abstract Fbxo4, also known as Fbx4, belongs to the F-box protein family with a conserved F-box domain. Fbxo4 can form a complex with S-phase kinase-associated protein 1 and Cullin1 to perform its biological functions. Several proteins are identified as Fbxo4 substrates, including cyclin D1, Trf1/Pin2, p53, Fxr1, Mcl-1, ICAM-1, and PPARγ. Those factors can regulate cell cycle progression, cell proliferation, survival/apoptosis, and migration/invasion, highlighting their oncogenic or oncogene-like activities. Therefore, Fbxo4 is defined as a tumor suppressor. The biological functions of Fbxo4 make it a potential candidate for developing new targeted therapies. This review summarizes the gene and protein structure of Fbxo4, the mechanisms of how its expression and activity are regulated, and its substrates, biological functions, and clinicopathological importance in human cancers.
Collapse
|
5
|
Weidle UH, AuslÄnder S, Brinkmann U. Micro RNAs Promoting Growth and Metastasis in Preclinical In Vivo Models of Subcutaneous Melanoma. Cancer Genomics Proteomics 2021; 17:651-667. [PMID: 33099468 DOI: 10.21873/cgp.20221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years a considerable therapeutic progress in melanoma patients with the RAF V600E mutation via RAF/MEK pathway inhibition and immuno-therapeutic modalities has been witnessed. However, the majority of patients relapse after therapy. Therefore, a deeper understanding of the pathways driving oncogenicity and metastasis of melanoma is of paramount importance. In this review, we summarize microRNAs modulating tumor growth, metastasis, or both, in preclinical melanoma-related in vivo models and possible clinical impact in melanoma patients as modalities and targets for treatment of melanoma. We have identified miR-199a (ApoE, DNAJ4), miR-7-5p (RelA), miR-98a (IL6), miR-219-5p (BCL2) and miR-365 (NRP1) as possible targets to be scrutinized in further target validation studies.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simon AuslÄnder
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Kaufmann C, Kempf W, Mangana J, Cheng P, Emberger M, Lang R, Kaiser AK, Lattmann E, Levesque M, Dummer R, Koelblinger P. The role of cyclin D1 and Ki-67 in the development and prognostication of thin melanoma. Histopathology 2020; 77:460-470. [PMID: 32374893 PMCID: PMC7540531 DOI: 10.1111/his.14139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
AIMS Despite their low individual metastatic potential, thin melanomas (≤1 mm Breslow thickness) contribute significantly to melanoma mortality overall. Therefore, identification of prognostic biomarkers is particularly important in this subgroup of melanoma. Prompted by preclinical results, we investigated cyclin D1 protein and Ki-67 expression in in-situ, metastatic and non-metastatic thin melanomas. METHODS AND RESULTS Immunohistochemistry was performed on 112 melanoma specimens, comprising 22 in situ, 48 non-metastatic and 42 metastatic thin melanomas. Overall, epidermal and dermal cyclin D1 and Ki-67 expression were semiquantitatively evaluated by three independent investigators and compared between groups. Epidermal Ki-67 expression did not differ statistically in in-situ and invasive melanoma (P = 0.7). Epidermal cyclin D1 expression was significantly higher in thin invasive than in in-situ melanoma (P = 0.003). No difference was found in cyclin D1 expression between metastatic and non-metastatic invasive tumours. Metastatic and non-metastatic thin melanomas did not show significant differences in epidermal expression of Ki-67 and cyclin D1 (P = 0.148 and P = 0.611, respectively). In contrast, strong dermal expression of Ki-67 was more frequent in metastatic than non-metastatic samples (28.6 versus 8.3%, respectively, P = 0.001). The prognostic value of dermal Ki-67 expression was confirmed by multivariate analysis (P = 0.047). CONCLUSION We found an increased expression of cyclin D1 in invasive thin melanomas compared to in-situ melanomas, which supports a potential role of this protein in early invasion in melanoma, as suggested by preclinical findings. Moreover, our results confirm that high dermal Ki-67 expression is associated with an increased risk of development of metastasis in thin melanoma and could possibly serve as a prognostic biomarker in clinical practice, especially if combined with additional methods.
Collapse
Affiliation(s)
- Corina Kaufmann
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- University of ZurichZurichSwitzerland
| | - Werner Kempf
- Kempf and Pfaltz Histological DiagnosticsZurichSwitzerland
| | - Joanna Mangana
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Phil Cheng
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | | | - Roland Lang
- Department of Dermatology and AllergologyParacelsus Medical UniversitySalzburgAustria
| | - Andreas K Kaiser
- Department of Clinical PsychologyChristian‐Doppler‐KlinikParacelsus Medical UniversitySalzburgAustria
| | | | - Mitchell Levesque
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Reinhard Dummer
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Peter Koelblinger
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Department of Dermatology and AllergologyParacelsus Medical UniversitySalzburgAustria
| |
Collapse
|
7
|
Ye X, Zhang W, Futamura Y, Sakurai T. Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning. Cells 2020; 9:cells9091938. [PMID: 32825786 PMCID: PMC7563496 DOI: 10.3390/cells9091938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing technologies have enabled the generation of single-cell RNA-seq (scRNA-seq) data, which explore both genetic heterogeneity and phenotypic variation between cells. Some methods have been proposed to detect the related genes causing cell-to-cell variability for understanding tumor heterogeneity. However, most existing methods detect the related genes separately, without considering gene interactions. In this paper, we proposed a novel learning framework to detect the interactive gene groups for scRNA-seq data based on co-expression network analysis and subgraph learning. We first utilized spectral clustering to identify the subpopulations of cells. For each cell subpopulation, the differentially expressed genes were then selected to construct a gene co-expression network. Finally, the interactive gene groups were detected by learning the dense subgraphs embedded in the gene co-expression networks. We applied the proposed learning framework on a real cancer scRNA-seq dataset to detect interactive gene groups of different cancer subtypes. Systematic gene ontology enrichment analysis was performed to examine the detected genes groups by summarizing the key biological processes and pathways. Our analysis shows that different subtypes exhibit distinct gene co-expression networks and interactive gene groups with different functional enrichment. The interactive genes are expected to yield important references for understanding tumor heterogeneity.
Collapse
|
8
|
He Q, Zhang B, Hu F, Long J, Shi Q, Pi X, Chen H, Li J. Triptolide Inhibits the Proliferation of HaCaT Cells Induced by IL22 via Upregulating miR-181b-5p. Drug Des Devel Ther 2020; 14:2927-2935. [PMID: 32801634 PMCID: PMC7383028 DOI: 10.2147/dddt.s254466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/29/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Evidence has been shown that triptolide was effective in the treatment of psoriasis; however, the mechanisms remain poorly understood. Thus, this study aimed to investigate the role of triptolide on the proliferation and differentiation of HaCaT cells which are treated with IL22 to mimic abnormal proliferation/differentiation in keratinocyte of psoriasis. MATERIALS AND METHODS HaCaT cells were transfected with miR-181b-5p antagomir for 24 h, and then exposed to 10 μM Triptolide for 24 h, following by 100 ng/mL of IL22 for 24 h. In addition, the proliferation and cell cycle distribution in HaCaT cells were assessed by immunofluorescence or flow cytometry assays, respectively. RESULTS Triptolide obviously upregulated the level of miR-181b-5p in HaCaT cells. In addition, triptolide significantly inhibited IL22-induced proliferation of HaCaT cells via inducing cell cycle arrest. Moreover, IL22 markedly inhibited the differentiation of HaCaT cells, and this phenomenon was reversed by triptolide treatment. In contrast, the effects of triptolide on the proliferation and differentiation in IL22-stimulated HaCaT cells were notably reversed by miR-181b-5p antagomir. Moreover, dual-luciferase assay showed that E2F5 was the direct target of miR-181b-5p in HaCaT cells. Meanwhile, upregulation of miR-181b-5p obviously decreased the level of E2F5 in HaCaT cells. CONCLUSION In this study, we found that triptolide could inhibit the proliferation and promote the differentiation in IL22-stimulated keratinocytes via upregulating miR-181b-5p. These data indicated that triptolide may be a potential agent for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qi He
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei430061, People’s Republic of China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei430074, People’s Republic of China
| | - Bo Zhang
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei430061, People’s Republic of China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei430074, People’s Republic of China
| | - Feng Hu
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Jianwen Long
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei430061, People’s Republic of China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei430074, People’s Republic of China
| | - Quan Shi
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei430061, People’s Republic of China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei430074, People’s Republic of China
| | - Xianming Pi
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei430061, People’s Republic of China
- Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei430074, People’s Republic of China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| | - Jiawen Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430022, People’s Republic of China
| |
Collapse
|
9
|
Haprolid Inhibits Tumor Growth of Hepatocellular Carcinoma through Rb/E2F and Akt/mTOR Inhibition. Cancers (Basel) 2020; 12:cancers12030615. [PMID: 32155915 PMCID: PMC7139901 DOI: 10.3390/cancers12030615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents a major health burden with limited curative treatment options. There is a substantial unmet need to develop innovative approaches to impact the progression of advanced HCC. Haprolid is a novel natural component isolated from myxobacteria. Haprolid has been reported as a potent selective cytotoxin against a panel of tumor cells in recent studies including HCC cells. The aims of this study are to evaluate the antitumor effect of haprolid in HCC and to understand its underlying molecular mechanisms. METHODS The efficacy of haprolid was evaluated in human HCC cell lines (Huh-7, Hep3B and HepG2) and xenograft tumors (NMRI-Foxn1nu mice with injection of Hep3B cells). Cytotoxic activity of haprolid was determined by the WST-1 and crystal violet assay. Wound healing, transwell and tumorsphere assays were performed to investigate migration and invasion of HCC cells. Apoptosis and cell-cycle distribution were measured by flow cytometry. The effects of haprolid on the Rb/E2F and Akt/mTOR pathway were examined by immunoblotting and immunohistochemistry. RESULTS haprolid treatment significantly inhibited cell proliferation, migration and invasion in vitro. The epithelial-mesenchymal transition (EMT) was impaired by haprolid treatment and the expression level of N-cadherin, vimentin and Snail was downregulated. Moreover, growth of HCC cells in vitro was suppressed by inhibition of G1/S transition, and partially by induction of apoptosis. The drug induced downregulation of cell cycle regulatory proteins cyclin A, cyclin B and CDK2 and induced upregulation of p21 and p27. Further evidence showed that these effects of haprolid were associated with Rb/E2F downregulation and Akt/mTOR inhibition. Finally, in vivo nude mice experiments demonstrated significant inhibition of tumor growth upon haprolid treatment. CONCLUSION Our results show that haprolid inhibits the growth of HCC through dual inhibition of Rb/E2F and Akt/mTOR pathways. Therefore, haprolid might be considered as a new and promising candidate for the palliative therapy of HCC.
Collapse
|
10
|
Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 2020; 67:159-170. [PMID: 32006569 DOI: 10.1016/j.semcancer.2020.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
D cyclins include three isoforms: D1, D2, and D3. D cyclins heterodimerize with cyclin-dependent kinase 4/6 (CDK4/6) to form kinase complexes that can phosphorylate and inactivate Rb. Inactivation of Rb triggers the activation of E2F transcription factors, which in turn regulate the expression of genes whose products drive cell cycle progression. Because D-type cyclins function as mitogenic sensors that link growth factor signaling directly with G1 phase progression, it is not surprising that D cyclin accumulation is dysregulated in a variety of human tumors. Elevated expression of D cyclins results from gene amplification, increased gene transcription and protein translation, decreased microRNA levels, and inefficiency or loss of ubiquitylation-mediated protein degradation. This review focuses on the clinicopathological importance of D cyclins, how dysregulation of Ubiquitin-Proteasome System (UPS) contributes to the overexpression of D cyclins, and the therapeutic potential through targeting D cyclin-related machinery in human tumors.
Collapse
|
11
|
Zheng G, Zhu Q, Dong J, Lin X, Zhu C. Rapid generation and selection of Cas9-engineering TRP53 R172P mice that do not have off-target effects. BMC Biotechnol 2019; 19:74. [PMID: 31703569 PMCID: PMC6839086 DOI: 10.1186/s12896-019-0573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic mutations cause severe human diseases, and suitable animal models to study the regulatory mechanisms involved are required. The CRISPR/Cas9 system is a powerful, highly efficient and easily manipulated tool for genetic modifications. However, utilization of CRISPR/Cas9 to introduce point mutations and the exclusion of off-target effects in mice remain challenging. TP53-R175 is one of the most frequently mutated sites in human cancers, and it plays crucial roles in human diseases, including cancers and diabetes. RESULTS Here, we generated TRP53-R172P mutant mice (C57BL/6 J, corresponding to TP53-R175P in humans) using a single microinjection of the CRISPR/Cas9 system. The optimal parameters comprised gRNA selection, donor designation (silent mutations within gRNA region), the concentration of CRISPR components and the cellular sites of injection. TRP53-R172P conversion was genetically and functionally confirmed. Combination of TA cloning and Sanger sequencing helped identify the correctly targeted mice as well as the off-target effects in the engineered mice, which provide us a strategy to select the on-target mice without off-target effects quickly and efficiently. CONCLUSIONS A single injection of the this optimized CRISPR/Cas9 system can be applied to introduce particular mutations in the genome of mice without off-target effects to model various human diseases.
Collapse
Affiliation(s)
- Guoxing Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Qingqing Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China
| | - Junchao Dong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China
| | - Xin Lin
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.,Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, Guangdong, China.
| |
Collapse
|
12
|
Inherited Melanoma Risk Variants Associated with Histopathologically Amelanotic Melanoma. J Invest Dermatol 2019; 140:918-922.e7. [PMID: 31568773 DOI: 10.1016/j.jid.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 01/26/2023]
|
13
|
dos Santos HT, de Souza do Nascimento J, Meireles F, Scarini JF, Egal ES, Montalli VA, Fonseca FP, Mariano FV, Altemani A. Evaluation of the expression of Bmi-1 stem cell marker in sinonasal melanomas and its correlation with the expression of cell cycle proteins. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sinonasal melanomas (SNM) are aggressive neoplasms, which present distinct clinicopathological and molecular aspects when compared to cutaneous melanomas (CM). B-cell-specific moloney murine leukemia virus integration site-1 (Bmi-1) is a stem cell marker involved in the regulation of the cell cycle and has been found to be expressed in 70% of CM and 100% of benign nevi. Regarding the cell cycle, Bmi-1 is known to be an upstream repressor of p16, which is a tumor suppressor encoded by the INK4a/Arf locus. Considering this, the aim of this study is to evaluate the immunohistochemical expression of Bmi-1 in a series of SNM and its correlation with the expression of cell cycle proteins (p16 and Ki-67, a nuclear antigen of proliferating cells).
Methods
In 16 cases of SNM, nuclear expression of Bmi-1 and nuclear and cytoplasmic of p16 was classified as: absent, low (> 5 to < 50% of cells) and high (≥50%). Ki-67 proliferation index was represented by the ratio positive cells/ total cells.
Results
Histologically, all cases presented varying amount of necrosis and 75% contained undifferentiated cells. Bmi-1 was detected in 6 cases (37.5%) with high level of expression in 2; p16 expression was seen in 10 cases (62.5%) with high level in 7. The frequency of p16 expression did not differ significantly between tumors with or without Bmi-1 expression. Ki-67 index ranged from 8 to 22%. Neither Bmi-1 nor p16 expression showed correlation with Ki-67 index. Bmi-1 negative tumors presented more extensive necrosis (71.4%); no association between Bmi-1 expression and undifferentiated phenotype was observed.
Conclusions
In our SNM series, low immunohistochemical expression of Bmi-1 was a common phenomenon favoring the hypothesis that mucosal melanoma possibly presents molecular pathways different from the cutaneous counterpart. In SNM, Bmi-1 and p16 expression levels did not correlate with each other or with the cell proliferative index.
Collapse
|
14
|
Chang MM, Lai MS, Hong SY, Pan BS, Huang H, Yang SH, Wu CC, Sun HS, Chuang JI, Wang CY, Huang BM. FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 2018; 109:3503-3518. [PMID: 30191630 PMCID: PMC6215879 DOI: 10.1111/cas.13793] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) promotes cancer progression; however, its role in cell proliferation related to tumorigenesis remains elusive. We investigated how FGF9 affected MA‐10 mouse Leydig tumor cell proliferation and found that FGF9 significantly induced cell proliferation by activating ERK1/2 and retinoblastoma (Rb) phosphorylations within 15 minutes. Subsequently, the expressions of E2F1 and the cell cycle regulators: cyclin D1, cyclin E1 and cyclin‐dependent kinase 4 (CDK4) in G1 phase and cyclin A1, CDK2 and CDK1 in S‐G2/M phases were increased at 12 hours after FGF9 treatment; and cyclin B1 in G2/M phases were induced at 24 hours after FGF9 stimulation, whereas the phosphorylations of p53, p21 and p27 were not affected by FGF9. Moreover, FGF9‐induced effects were inhibited by MEK inhibitor PD98059, indicating FGF9 activated the Rb/E2F pathway to accelerate MA‐10 cell proliferation by activating ERK1/2. Immunoprecipitation assay and ChIP‐quantitative PCR results showed that FGF9‐induced Rb phosphorylation led to the dissociation of Rb‐E2F1 complexes and thereby enhanced the transactivations of E2F1 target genes, Cyclin D1, Cyclin E1 and Cyclin A1. Silencing of FGF receptor 2 (FGFR2) using lentiviral shRNA inhibited FGF9‐induced ERK1/2 phosphorylation and cell proliferation, indicating that FGFR2 is the obligate receptor for FGF9 to bind and activate the signaling pathway in MA‐10 cells. Furthermore, in a severe combined immunodeficiency mouse xenograft model, FGF9 significantly promoted MA‐10 tumor growth, a consequence of increased cell proliferation and decreased apoptosis. Conclusively, FGF9 interacts with FGFR2 to activate ERK1/2, Rb/E2F1 and cell cycle pathways to induce MA‐10 cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siou-Ying Hong
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Hsin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hsun Yang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Brożyna AA, Aplin A, Cohen C, Carlson G, Page AJ, Murphy M, Slominski AT, Carlson JA. CKS1 expression in melanocytic nevi and melanoma. Oncotarget 2018; 9:4173-4187. [PMID: 29423113 PMCID: PMC5790530 DOI: 10.18632/oncotarget.23648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, an important G1-S inhibitor, which is up regulated by MAPK pathway activation. In this study, we sought to determine whether Cks1 expression is increased in melanocytic tumors and correlates with outcome and/or other clinicopathologic prognostic markers. Cks1 expression was assessed by immunohistochemistry in 298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear expression was scored as a labeling index and correlated with clinico-pathological data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined as progression from benign nevi to primary melanomas, to melanoma metastases, revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating lymphocytes and gender. However, other well-known prognostic factors (age, anatomic site, and regression) did not correlate with any type of Cks1 expression. Similarly, increasing nuclear expression of Cks1 significantly correlated with worse overall survival. Thus, Cks1 expression appears to play a role in the progression of melanoma, where high levels of expression are associated with poor outcome. Cytoplasmic expression of Cks1 might represent high turnover of protein via the ubiquination/proteosome pathway.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Andrew Aplin
- Department of Cancer Biology, BLSB 524, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cynthia Cohen
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Grant Carlson
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Andrew Joseph Page
- Pancreas, Liver, and Cancer Surgery, Piedmont Healthcare, Atlanta, GA 30309, USA
| | - Michael Murphy
- Department of Dermatology, UConn Health, Farmington, CT 06030, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College MC-81, Albany, NY 12208, USA
| |
Collapse
|
16
|
Rodríguez-Cerdeira C, Molares-Vila A, Carnero-Gregorio M, Corbalán-Rivas A. Recent advances in melanoma research via "omics" platforms. J Proteomics 2017; 188:152-166. [PMID: 29138111 DOI: 10.1016/j.jprot.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/09/2023]
Abstract
Melanoma has a high mortality rate and metastatic melanoma is highly resistant to conventional therapies. "Omics" fields such as proteomics and microRNA and exosome studies have provided new knowledge to complement the information generated by genomic studies. This work aimed to review the current status of biomarker discovery for melanoma through multi-"omics" platforms. A few sets of novel microRNAs and proteins are described, some of them with important implications in suppressing melanoma at different stages. Upregulation of genes involved in angiogenesis, immunosuppressive factors, modification of stroma, capture of melanoma cells in lymph nodes and factors responsible for tumour cell recruitment have been identified in exosomes, among molecules with other functions. A remarkable series of proteins involved in epithelial-mesenchymal/mesenchymal-epithelial transitions, inflammation, motility, proliferation and progression processes, centrosome amplification, aneuploidy, inhibition of CD8+ effector T-cells, and metastasis in general were identified. Genomic and protein-protein interactions or metabolome levels were not analysed. Proteomics tools such as Orbitrap shotgun mass spectrometry or deep mining proteomic analysis utilizing high-resolution reversed phase nanoseparation in combination with mass spectrometry are also discussed. The application of these tools together with bioinformatics approaches applied to the clinical setting will enable the implementation of personalized medicine in the near future.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain.
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Miguel Carnero-Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics & Immunology, Universidade de Vigo (UVIGO), Spain
| | - Alberte Corbalán-Rivas
- Nursery Department, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| |
Collapse
|
17
|
Pham HHT, Seong YA, Ngabire D, Oh CW, Kim GD. Cyperus amuricus induces G1 arrest and apoptosis through endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:157-164. [PMID: 28684299 DOI: 10.1016/j.jep.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Cyperus amuricus (C. amuricus), belongs to the family Cyperaceae, was used to exert wound healing, diuretic, astringent and other intestinal problems in oriental medicine. However, only a few studies have reported its anticancer activities. AIM OF THE STUDY In this study, we determined the activity of C. amuricus on ER stress-induced cell death and G1 cell cycle arrest in human hepatocellular carcinoma (HCC) Hep3B cells. MATERIALS AND METHODS The in vitro cell proliferation assay of C. amuricus was tested on Hep3B and human embryonic kidney HEK293 cells. Subsequently, the cell cycle distribution in the indicated stages using flow cytometric analysis, the expression of cell cycle-related proteins by western blot analysis and immunofluorescence detection of p21CIP1/WAF1 were determined for the comprehensive identification of cell cycle arrest in Hep3B cells. The effect of C. amuricus on the expression of apoptosis-related proteins in Hep3B cells was also performed by western blot analysis. Furthermore, induction of the ER stress mediators in C. amuricus-treated Hep3B cells were observed by western blot analysis, intracellular Ca2+ mobilization assay and immunofluorescence detection of caspase-12. RESULTS C. amuricus strongly exhibited cytotoxic activity on Hep3B cells, but not on HEK293 cells. C. amuricus affected the phosphorylation levels of endoplasmic reticulum sensors and increased the expression of GRP78/BiP and CHOP, resulting in the accumulation of unfolded proteins in the ER and triggering the unfolded protein response. These changes occurred by the elevation of intracellular Ca2+ concentrations, which contributed to ER stress-induced apoptosis in C. amuricus-treated Hep3B cells. C. amuricus also coordinated the stimulation of ER chaperones, which initiated G1 cell cycle arrest through the induction of CDKIs and the inhibition of cyclins and CDKs. Furthermore, C. amuricus triggered apoptosis through the activation of mitochondrial-dependent pathway in Hep3B cells. CONCLUSIONS Our results suggest that C. amuricus is an effective apoptosis inducing agent for Hep3B cells via the G1 arrest, ER stress and mitochondrial mediated apoptotic pathways.
Collapse
Affiliation(s)
- Hai Ha Thi Pham
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeong-Ae Seong
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Daniel Ngabire
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
18
|
Yu SJ, Long ZW. Effect of SOCS1 silencing on proliferation and apoptosis of melanoma cells: An in vivo and in vitro study. Tumour Biol 2017; 39:1010428317694315. [PMID: 28466787 DOI: 10.1177/1010428317694315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effect of SOCS1 silencing on the proliferation and apoptosis of melanoma cells by in vivo and in vitro studies. Immunohistochemical staining was used to detect SOCS1 expression in melanoma tissues and pigmented nevi. Quantitative real-time polymerase chain reaction and western blotting were applied to detect the messenger RNA and protein expressions of SOCS1 in primary human melanocytes and malignant melanoma cell lines (A375, SK-MEL-5, M14, and MV3). Melanoma cells were assigned into mock, negative small interfering RNA, and SOCS1-small interfering RNA groups. The proliferation, cell cycle and apoptosis, and messenger RNA expression of SOCS1 in MV3 and A375 cells were detected using MTT assay, flow cytometry, and quantitative real-time polymerase chain reaction, respectively. The expressions of SOCS1 protein, extracellular signal-regulated kinase, and janus kinase signal transduction and activators of transcription signaling pathways-related proteins were detected using western blotting. After the establishment of subcutaneous xenograft tumor models in nude mice, the latent period, size, volume and growth speed of xenograft tumors in the mock, negative small interfering RNA, and SOCS1-small interfering RNA groups were examined and compared. The results indicated that positive expression rate of SOCS1 was higher in malignant melanoma tissues than in pigmented nevi. MV3 cells had the highest messenger RNA and protein expressions of SOCS1, followed by A357 cells. Compared with the mock and negative small interfering RNA groups, SOCS1-small interfering RNA group showed lower cell viability, elevated cell apoptosis, more cells in G0/G1 phase and less cells in S and G2/M phases, and decreased messenger RNA and protein expressions of SOCS1, p-ERK1/2, p-JAK2, p-STAT1, and p-STAT3. Compared with the mock and negative small interfering RNA groups, the SOCS1-small interfering RNA group showed longer latent period of tumor, smaller tumor size and volume, and smoother tumor growth curve. To conclude, SOCS1 silencing can inhibit proliferation and induce apoptosis of MV3 and A357 melanoma cells in vivo and in vitro by inhibiting extracellular signal-regulated kinase and janus kinase signal transduction and activators of transcription signaling pathways.
Collapse
Affiliation(s)
- Sheng-Jia Yu
- 1 Department of Gastric Cancer and Softtissue Sarcoma Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Wen Long
- 1 Department of Gastric Cancer and Softtissue Sarcoma Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,3 Department of medicine, Shigatse people's hospital, Shigatse 857000, P.R China
| |
Collapse
|
19
|
Watanabe M, Iizumi Y, Sukeno M, Iizuka-Ohashi M, Sowa Y, Sakai T. The pleiotropic regulation of cyclin D1 by newly identified sesaminol-binding protein ANT2. Oncogenesis 2017; 6:e311. [PMID: 28368390 PMCID: PMC5520487 DOI: 10.1038/oncsis.2017.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 02/03/2017] [Accepted: 02/12/2017] [Indexed: 12/14/2022] Open
Abstract
The expression of cyclin D1 is upregulated in various cancer cells by diverse mechanisms, such as increases in mRNA levels, the promotion of the translation by mammalian target of rapamycin complex 1 (mTORC1) signaling and the protein stabilization. We here show that sesaminol, a sesame lignan, reduces the expression of cyclin D1 with decreasing mRNA expression levels, inhibiting mTORC1 signaling and promoting proteasomal degradation. We subsequently generated sesaminol-immobilized FG beads to newly identify sesaminol-binding proteins. As a consequence, we found that adenine nucleotide translocase 2 (ANT2), the inner mitochondrial membrane protein, directly bound to sesaminol. Consistent with the effects of sesaminol, the depletion of ANT2 caused a reduction in cyclin D1 with decreases in its mRNA levels, mTORC1 inhibition and the proteasomal degradation of its protein, suggesting that sesaminol negatively regulates the function of ANT2. Furthermore, we screened other ANT2-binding compounds and found that the proliferator-activated receptor-γ agonist troglitazone also reduced cyclin D1 expression in a multifaceted manner, analogous to that of the sesaminol treatment and ANT2 depletion. Therefore, the chemical biology approach using magnetic FG beads employed in the present study revealed that sesaminol bound to ANT2, which may pleiotropically upregulate cyclin D1 expression at the mRNA level and protein level with mTORC1 activation and protein stabilization. These results suggest the potential of ANT2 as a target against cyclin D1-overexpressing cancers.
Collapse
Affiliation(s)
- M Watanabe
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Y Iizumi
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - M Sukeno
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - M Iizuka-Ohashi
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Division of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Y Sowa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - T Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Niu J, Chu Y, Huang YF, Chong YS, Jiang ZH, Mao ZW, Peng LH, Gao JQ. Transdermal Gene Delivery by Functional Peptide-Conjugated Cationic Gold Nanoparticle Reverses the Progression and Metastasis of Cutaneous Melanoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9388-9401. [PMID: 28252938 DOI: 10.1021/acsami.6b16378] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Permeability barrier imposed by stratum corneum makes an extreme challenge for the topical delivery of plasmid DNA (pDNA), which is widely used in gene therapy. Existing techniques to overcome the skin barrier for bio-macromolecules delivery rely on sophisticated mechanical devices. It is still a big challenge to treat the skin cancer, for example, melanoma, that initiates in the dermal layer by topical gene therapy. To facilitate the skin penetration of pDNA deeply into the melanoma tissues, we here present a cell-penetrating peptide and cationic poly(ethyleneimine) conjugated gold nanoparticle (AuPT) that can compact the pDNAs into cationic nanocomplexes and penetrate through the intact stratum corneum without any additional enhancement used. Moreover, the AuPT is highly efficient in stimulating the intracellular uptake and nuclear targeting of the pDNAs in cells, which guarantees the effective transfection. This study provides evidence that penetrating peptide conjugated cationic gold nanoparticle offers a promising vehicle for both the skin penetration and transfection of pDNAs, possessing great potential in topical gene therapy.
Collapse
Affiliation(s)
- Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yang Chu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yan-Fen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yee-Song Chong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, P. R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| |
Collapse
|
21
|
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94:1313-1326. [PMID: 27695879 PMCID: PMC5145738 DOI: 10.1007/s00109-016-1475-3] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Mammalian cells encode three D cyclins (D1, D2, and D3) that coordinately function as allosteric regulators of cyclin-dependent kinase 4 (CDK4) and CDK6 to regulate cell cycle transition from G1 to S phase. Cyclin expression, accumulation, and degradation, as well as assembly and activation of CDK4/CDK6 are governed by growth factor stimulation. Cyclin D1 is more frequently dysregulated than cyclin D2 or D3 in human cancers, and as such, it has been more extensively characterized. Overexpression of cyclin D1 results in dysregulated CDK activity, rapid cell growth under conditions of restricted mitogenic signaling, bypass of key cellular checkpoints, and ultimately, neoplastic growth. This review discusses cyclin D1 transcriptional, translational, and post-translational regulations and its biological function with a particular focus on the mechanisms that result in its dysregulation in human cancers.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA.
| |
Collapse
|
22
|
Pham HHT, Seong YA, Oh CW, Kim GD. The herbal medicine Cyperus amuricus inhibits proliferation of human hepatocellular carcinoma Hep3B cells by inducing apoptosis and arrest at the G0/G1 cell cycle phase. Int J Oncol 2016; 49:2046-2054. [PMID: 27667556 DOI: 10.3892/ijo.2016.3698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cyperus amuricus (C. amuricus) is one of the most common herbs in Oriental folk medicine for exerting astringent, diuretic, wound healing and other intestinal problems. However, little is known about the molecular mechanism of C. amuricus on anticancer activity. In the present study, the underlying mechanism of the anticancer effect of C. amuricus were elucidated. The methyl alcohol extract from the whole plant of C. amuricus exhibited cytotoxicity against Hep3B cells, but not against A549 and HaCaT cells. Consistent with an acceleration of the sub-G1 phase, downregulation of cdc25A, cyclin D1 and cyclin E, CDK4 and 2 as well as E2F-1, phospho-Rb, with concomitant of upregulation of p21CIP1/WAF1, p27KIPI and p16INK4a proteins, as evidenced by the appearance of cell cycle arrest, were detected in C. amuricus-treated Hep3B cells. Additionally, the sequential activation of various caspases (cleaved caspase-8, -9, -3, -7 and -6, and cleaved PARP) and the changed expression of other proteins related to the apoptosis pathway were observed after C. amuricus exposure. An increment in the pro-apoptotic proteins (Bim, tBid, Bax and Bak) and a reduction of anti-apoptotic protein (Bcl-2) regulate Hep3B cell death by controlling the permeability of mitochondrial membranes and the release of cytochrome c from mitochondria into the cytosol with Apaf-1 after C. amuricus treatment. This is the first study indicating the potential of C. amuricus as a complementary agent for prevention and treatment of human liver cancer.
Collapse
Affiliation(s)
- Hai Ha Thi Pham
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeong-Ae Seong
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
23
|
Augello MA, Berman-Booty LD, Carr R, Yoshida A, Dean JL, Schiewer MJ, Feng FY, Tomlins SA, Gao E, Koch WJ, Benovic JL, Diehl JA, Knudsen KE. Consequence of the tumor-associated conversion to cyclin D1b. EMBO Mol Med 2016; 7:628-47. [PMID: 25787974 PMCID: PMC4492821 DOI: 10.15252/emmm.201404242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Clinical evidence suggests that cyclin D1b, a variant of cyclin D1, is associated with tumor progression and poor outcome. However, the underlying molecular basis was unknown. Here, novel models were created to generate a genetic switch from cyclin D1 to cyclin D1b. Extensive analyses uncovered overlapping but non-redundant functions of cyclin D1b compared to cyclin D1 on developmental phenotypes, and illustrated the importance of the transcriptional regulatory functions of cyclin D1b in vivo. Data obtained identify cyclin D1b as an oncogene, wherein cyclin D1b expression under the endogenous promoter induced cellular transformation and further cooperated with known oncogenes to promote tumor growth in vivo. Further molecular interrogation uncovered unexpected links between cyclin D1b and the DNA damage/PARP1 regulatory networks, which could be exploited to suppress cyclin D1b-driven tumors. Collectively, these data are the first to define the consequence of cyclin D1b expression on normal cellular function, present evidence for cyclin D1b as an oncogene, and provide pre-clinical evidence of effective methods to thwart growth of cells dependent upon this oncogenic variant.
Collapse
Affiliation(s)
- Michael A Augello
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lisa D Berman-Booty
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard Carr
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Akihiro Yoshida
- Medical University of South Carolina, Charleston, SC, USA Hollings Cancer Center, Charleston, SC, USA
| | - Jeffry L Dean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI, USA Comprehensive Cancer Center University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, MI, USA Comprehensive Cancer Center University of Michigan Medical Center, Ann Arbor, MI, USA Department of Urology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Erhe Gao
- Pharmacology & Center for Translational Medicine, Philadelphia, PA, USA
| | - Walter J Koch
- Pharmacology & Center for Translational Medicine, Philadelphia, PA, USA Temple University School of Medicine, Philadelphia, PA, USA
| | - Jeffrey L Benovic
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Alan Diehl
- Medical University of South Carolina, Charleston, SC, USA Hollings Cancer Center, Charleston, SC, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Mirzaei H, Gholamin S, Shahidsales S, Sahebkar A, Jaafari MR, Mirzaei HR, Hassanian SM, Avan A. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2015; 53:25-32. [PMID: 26693896 DOI: 10.1016/j.ejca.2015.10.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Abstract
Melanoma is a life-threatening malignancy with poor prognosis and a relatively high burden of mortality in advanced stages. The efficacy of current available therapeutic strategies is limited, with a survival rate of less than 10%. Despite rapid advances in biomarker-guided drug development in different tumour types, including melanoma, only a very small number of biomarkers have been identified. Recently, microRNAs (miRNAs) have emerged as a molecular regulator in the development and progression of melanoma. Aberrant activation of some known miRNAs, e.g. let-7a and b, miR-148, miR-155, miR-182, miR-200c, miR-211, miR-214, miR-221 and 222, has been recognised to be linked with melanoma-associated genes such as NRAS, microphthalmia-associated transcription factor, receptor tyrosine kinase c-KIT, AP-2 transcription factor, etc. There is accumulating evidence suggesting the potential impact of circulating miRNAs as diagnostic and therapeutic markers in diseases. In addition, miRNAs have turned out to play important roles in drug-resistance mechanisms; suggesting their modulation as a potential approach to overcome chemoresistance. This review highlights recent preclinical and clinical studies on circulating miRNAs and their potential role as diagnosis, and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Soodabeh Shahidsales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Hassanian
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Wang S, Zheng W. Expression of p16 protein in infantile hemangioma. Oncol Lett 2015; 10:1589-1592. [PMID: 26622715 DOI: 10.3892/ol.2015.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression and significance of p16 in the occurrence, development and regression of infantile hemangioma (IH). The expression of p16 was examined in proliferating, involuting hemangioma and normal tissues using immunohistochemical techniques. The expression of p16 was significantly lower in proliferating hemangioma than in involuting hemangioma, and was significantly lower in the involuting hemangioma than in normal tissues. Significant differences were found between the three groups (P<0.05). The results indicate that p16 may be important in the regression of IH endothelial cells and in anti-angiogenesis. There is a certain association between p16 expression and the regression of hemangioma. This provides a theoretical basis for the further study of the pathological mechanisms of p16 in hemangioma and potential gene therapies that may treat this disease.
Collapse
Affiliation(s)
- Shi Wang
- Department of Stomatology, The Third Central Hospital, Tianjin 300170, P.R. China
| | - Wei Zheng
- Department of Orthodontics, Tianjin Stomatological Hospital, Nankai University, Tianjin 300041, P.R. China
| |
Collapse
|
26
|
Kumar R, Rai AK, Das D, Das R, Kumar RS, Sarma A, Sharma S, Kataki AC, Ramteke A. Alcohol and Tobacco Increases Risk of High Risk HPV Infection in Head and Neck Cancer Patients: Study from North-East Region of India. PLoS One 2015; 10:e0140700. [PMID: 26473489 PMCID: PMC4608822 DOI: 10.1371/journal.pone.0140700] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human papilloma virus (HPV) associated Head and Neck Cancers (HNCs) have generated significant amount of research interest in recent times. Due to high incidence of HNCs and lack of sufficient data on high-risk HPV (hr-HPV) infection from North -East region of India, this study was conceived to investigate hr-HPV infection, its types and its association with life style habits such as tobacco, alcohol consumption etc. METHODS A total of one hundred and six primary HNC tumor biopsy specimens were collected. These samples were analyzed for hr-HPV DNA (13 HPV types) using hybrid capture 2 (HC2) assay and genotyping was done by E6 nested multiplex PCR (NMPCR). RESULTS The presence of hr-HPV was confirmed in 31.13% (n = 33) and 24.52% (n = 26) of the HNC patients by nested multiplex PCR (NMPCR) and HC2 assay respectively. Among hr-HPV positive cases, out of thirteen hr- HPV types analyzed, only two prevalent genotypes, HPV-16 (81.81%) followed by HPV-18 (18.18%) were found. Significant association was observed between hr-HPV infection with alcohol consumption (p <0.001) and tobacco chewing (p = 0.02) in HNC cases. Compared to HPV-18 infection the HPV-16 was found to be significantly associated with tobacco chewing (p = 0.02) habit. CONCLUSIONS Our study demonstrated that tobacco chewing and alcohol consumption may act as risk factors for hr-HPV infection in HNCs from the North-East region of India. This was the first study from North-East India which also assessed the clinical applicability of HC2 assay in HNC patient specimens. We suggest that alcohol, tobacco and hr- HPV infection act synergistically or complement each other in the process of HNC development and progression in the present study population.
Collapse
Affiliation(s)
- Rupesh Kumar
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Avdhesh Kumar Rai
- DBT center for Molecular Biology and Cancer Research, Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Debabrata Das
- DBT center for Molecular Biology and Cancer Research, Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Rajjyoti Das
- Department of Head and Neck Oncology, Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - R. Suresh Kumar
- Division of Molecular Genetics, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida, Uttar Pradesh, India
| | - Anupam Sarma
- Department of Pathology, Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Shashi Sharma
- Division of Epidemiology and Biostatistics, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida, Uttar Pradesh, India
| | - Amal Chandra Kataki
- Department of Gynecologic oncology, Dr. B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anand Ramteke
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
27
|
Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage. Cell Death Dis 2015; 6:e1640. [PMID: 25675300 PMCID: PMC4669794 DOI: 10.1038/cddis.2015.3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 02/05/2023]
Abstract
Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development.
Collapse
|
28
|
Srivastava V, Patel B, Kumar M, Shukla M, Pandey M. Cyclin D1, retinoblastoma and p16 protein expression in carcinoma of the gallbladder. Asian Pac J Cancer Prev 2015; 14:2711-5. [PMID: 23803020 DOI: 10.7314/apjcp.2013.14.5.2711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer of the gallbladder is a relatively rare neoplasm with a poor prognosis. The exact mechanisms of its genesis are not known and very little information is available on molecular events leading to labeling this as an orphan cancer. MATERIALS AND METHODS In this prospective case control study we evaluated the expression of p16, pRb and cyclin D1 by immunohistochemistry to study the G1-S cell-cycle check point and its possible role in gallbladder carcinogenesis. A total of 25 patients with gallbladder carcinoma (group I), 25 with cholelithiasis (group II) and 10 normal controls. were enrolled. RESULTS Cyclin D1 expression was seen in 10 (40%) patients each with carcinoma and cholelithiasis while only in 2 (20%) of the normal gallbladders but differences were not statistically significant (p value=0.488). p16 was expressed in 12% patients of carcinoma of the gallbladder and 28% of cholelithiasis, however this difference was not statistically significant (p value=0.095). Retinoblastoma protein was found to be expressed in 50% of normal gallbladders and 6 (24%) of carcinoma and 8 (32%) of gallstones. The present study failed to demonstrate any conclusive role of cyclin D1/RB/ p16 pathway in carcinoma of the gallbladder. CONCLUSIONS The positive relation observed between tumor metastasis and cyclinD1 expression and p16 with nodal metastasis suggested that higher cyclin D1/p16 expression may act as a predictive biomarker for aggressive behavior of gallbladder malignancies.
Collapse
Affiliation(s)
- Vineeta Srivastava
- Department of Surgical Oncology and Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | | | | | | |
Collapse
|
29
|
Calvo N, Martín MJ, de Boland AR, Gentili C. Involvement of ERK1/2, p38 MAPK, and PI3K/Akt signaling pathways in the regulation of cell cycle progression by PTHrP in colon adenocarcinoma cells. Biochem Cell Biol 2014; 92:305-15. [DOI: 10.1139/bcb-2013-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) is distributed in most fetal and adult tissues, and its expression correlates with the severity of colon carcinoma. Recently we obtained evidence that in Caco-2 cells, a cell line from human colorectal adenocarcinoma, exogenous PTHrP increases the number of live cells, via ERK1/2, p38 MAPK, and PI3-kinase and induces the expression of cyclin D1, a cell cycle regulatory protein. In this study, we further investigated the role of PTHrP in the regulation of the cell cycle progression in these intestinal cells. Flow cytometry analysis revealed that PTHrP treatment diminishes the number of cells in the G0/G1 phase and increases the number in both S and G2/M phases. The hormone increases the expression of CDK6 and diminishes the amount of negative cell cycle regulators p27Kip1, p15INK4B, and p53. However, PTHrP does not modify the expression of cyclin D3, CDK4, and p16INK4A. In addition, inhibitors of ERK1/2 (PD98059), p38 MAPK (SB203580), and PI3Kinase (LY294002) reversed PTHrP response in Caco-2 cells. Taken together, our results suggest that PTHrP positively modulates cell cycle progression and changes the expression of proteins involved in cell cycle regulation via ERK1/2, p38 MAPK, and PI3K signaling pathways in Caco-2 cells.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | - Ana Russo de Boland
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| |
Collapse
|
30
|
Puiggròs F, Salvadó MJ, Bladé C, Arola L. Differential modulation of apoptotic processes by proanthocyanidins as a dietary strategy for delaying chronic pathologies. Crit Rev Food Sci Nutr 2014; 54:277-91. [PMID: 24188302 DOI: 10.1080/10408398.2011.565456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.
Collapse
Affiliation(s)
- Francesc Puiggròs
- a Nutrigenomics Group, Department of Biochemistry and Biotechnology , Universitat Rovira i Virgili , Tarragona , Spain
| | | | | | | |
Collapse
|
31
|
Kiszner G, Wichmann B, Nemeth IB, Varga E, Meggyeshazi N, Teleki I, Balla P, Maros ME, Penksza K, Krenacs T. Cell cycle analysis can differentiate thin melanomas from dysplastic nevi and reveals accelerated replication in thick melanomas. Virchows Arch 2014; 464:603-12. [PMID: 24682564 DOI: 10.1007/s00428-014-1570-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022]
Abstract
Cell replication integrates aberrations of cell cycle regulation and diverse upstream pathways which all can contribute to melanoma development and progression. In this study, cell cycle regulatory proteins were detected in situ in benign and malignant melanocytic tumors to allow correlation of major cell cycle fractions (G1, S-G2, and G2-M) with melanoma evolution. Dysplastic nevi expressed early cell cycle markers (cyclin D1 and cyclin-dependent kinase 2; Cdk2) significantly more (p < 0.05) than common nevi. Post-G1 phase markers such as cyclin A, geminin, topoisomerase IIα (peaking at S-G2) and aurora kinase B (peaking at G2-M) were expressed in thin (≤1 mm) melanomas but not in dysplastic nevi, suggesting that dysplastic melanocytes engaged in the cell cycle do not complete replication and remain arrested in G1 phase. In malignant melanomas, the expression of general and post-G1 phase markers correlated well with each other implying negligible cell cycle arrest. Post-G1 phase markers and Ki67 but none of the early markers cyclin D1, Cdk2 or minichromosome maintenance protein 6 (Mcm6) were expressed significantly more often in thick (>1 mm) than in thin melanomas. Marker expression did not differ between metastatic melanomas and thick melanomas, with the exception of aurora kinase A of which the expression was higher in metastatic melanomas. Combined detection of cyclin A (post-G1 phase) with Mcm6 (replication licensing) and Ki67 correctly classified thin melanomas and dysplastic nevi in 95.9 % of the original samples and in 93.2 % of cross-validated grouped cases at 89.5 % sensitivity and 92.6 % specificity. Therefore, cell cycle phase marker detection can indicate malignancy in early melanocytic lesions and accelerated cell cycle progression during vertical melanoma growth.
Collapse
Affiliation(s)
- Gergo Kiszner
- 1st Department of Pathology and Experimental Cancer Research and MTA-SE Tumor Progression Research Group, Semmelweis University, Ulloi ut 26, Budapest, 1085, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bennett PE, Bemis L, Norris DA, Shellman YG. miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genomics 2013; 45:1049-59. [PMID: 24046283 DOI: 10.1152/physiolgenomics.00116.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a very aggressive skin cancer with increasing incidence worldwide. MicroRNAs are small, noncoding RNAs that regulate gene expression of targeted gene(s). The hallmark of cancer model outlined by Hanahan and Weinberg offers a meaningful framework to consider the roles of microRNAs in melanoma development and progression. In this systematic review of the literature, we associate what is known about deregulation of microRNAs and their targeted genes in melanoma development with the hallmarks and characteristics of cancer. The diagnostic and therapeutic potential of microRNAs for future melanoma management will also be discussed.
Collapse
Affiliation(s)
- Paige E Bennett
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | |
Collapse
|
33
|
Dominant effects of Δ40p53 on p53 function and melanoma cell fate. J Invest Dermatol 2013; 134:791-800. [PMID: 24037342 PMCID: PMC3945389 DOI: 10.1038/jid.2013.391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 01/10/2023]
Abstract
The TP53 gene encodes 12 distinct isoforms, some of which can alter p53 activity in the absence of genomic alteration. Endogenous p53 isoforms have been identified in cancers; however, the function of these isoforms remains unclear. In melanoma, the frequency of TP53 mutations is relatively low compared with other cancers, suggesting that these isoforms may have a larger role in regulating TP53 activity. We hypothesized that p53 function and therefore cell fate might be altered by the presence of Δ40p53, an embryonic isoform missing the first 40 N-terminal amino acids of the full-length protein including the transactivation and Mdm2-binding domains. To test this hypothesis, we transduced tumor and normal cells with a lentivirus encoding Δ40p53. We found that exogenous Δ40p53 caused apoptosis and increased the levels of endogenous, activated p53 in both cancerous and non-cancerous cells, which led to significant levels of cell death, particularly in cancer cells. Activated p53 molecules formed nuclear heterotetramers with Δ40p53 and altered downstream p53 transcription target levels including p53-induced protein with death domain and cyclin-dependent kinase inhibitor, p21. Δ40p53 altered the promoter occupancy of these downstream p53 target genes in such a way that it shifted cell fate toward apoptosis and away from cell cycle arrest. We show that tumor suppression by p53 can occur via an alternate route that relies on its interaction with Δ40p53.
Collapse
|
34
|
Scodelaro Bilbao P, Boland R. Extracellular ATP regulates FoxO family of transcription factors and cell cycle progression through PI3K/Akt in MCF-7 cells. Biochim Biophys Acta Gen Subj 2013; 1830:4456-69. [PMID: 23742826 DOI: 10.1016/j.bbagen.2013.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Forkhead Box-O (FoxO) transcription factors regulate the expression of many genes involved in suppression. Released nucleotides can regulate intracellular signaling pathways through membrane-bound purinergic receptors, to promote or prevent malignant cell transformation. We studied the role of extracellular ATP in the modulation of Forkhead Box O (FoxO) transcription factors and of cell cycle progression in MCF-7 breast cancer cells. METHODS Western blot analysis, cell transfections with siRNA against Akt, immunocytochemistry, subcellular fractionation studies and flow cytometry analysis were performed. RESULTS ATP induced the phosphorylation of FoxO1/3a at threonine 24/32, whereas reduced the expression of FoxO1. In addition, ATP increased the expression of the cyclins D1 and D3 and down-regulated the cell cycle inhibitory proteins p21Cip1 and p27Kip1. The use of the phosphatidylinositol 3 kinase (PI3K) inhibitor, Ly294002, and/or of siRNA to reduce the expression of the serine/threonine kinase Akt showed that these effects are mediated by the PI3K/Akt signaling pathway. ATP induced the translocation of FoxO3a from the nucleus to the cytoplasm. Also, ATP increased the number of cells in the S phase of cell cycle; this effect was reverted by the use of Ly294002 and the proteasome inhibitor bortezomib. CONCLUSION Extracellular ATP induces the inactivation of FoxO transcription factors and cell cycle progression through the PI3K/Akt pathway in MCF-7 cells. GENERAL SIGNIFICANCE These findings provide new molecular basis for further understanding the mechanisms involved in ATP signal transduction in breast cancer cells, and should be considered for the development of effective breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Paola Scodelaro Bilbao
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan, Argentina
| | | |
Collapse
|
35
|
Benevenuto-de-Andrade BA, León JE, Carlos R, Delgado-Azañero W, Mosqueda-Taylor A, Paes-de-Almeida O. Immunohistochemical expression of Skp2 protein in oral nevi and melanoma. Med Oral Patol Oral Cir Bucal 2013; 18:e388-91. [PMID: 23385514 PMCID: PMC3668862 DOI: 10.4317/medoral.18781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/11/2012] [Indexed: 11/24/2022] Open
Abstract
Objective: The aim of this study was to analyze the immunohistochemical expression of Skp2 protein in 38 oral nevi and 11 primary oral melanomas.
Study Design: Expression of this ubiquitin protein was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 38 intramucosal nevi and 11 primary oral melanomas. The labeling index (LI) was assessed considering the percentage of cells expressing nuclear positivity out of the total number of cells, counting 1000 cells per slide.
Results: Skp2 protein was rarely expressed in intramucosal nevi, in contrast to oral melanomas, which showed high levels of this protein.
Conclusion: These results indicate that Skp2 protein may play a role in the development and progression of oral melanomas, and it also could be useful as an immunohistochemical marker for differential diagnosis of oral benign and malignant melanocytic lesions.
Key words:Oral melanoma, oral nevi, Skp2, cell cycle, immunohistochemistry.
Collapse
|
36
|
Cell cycle arrest, extracellular matrix changes and intrinsic apoptosis in human melanoma cells are induced by Boron Neutron Capture Therapy. Toxicol In Vitro 2013; 27:1196-204. [PMID: 23462526 DOI: 10.1016/j.tiv.2013.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
Boron Neutron Capture Therapy (BNCT) involves the selective accumulation of boron carriers in tumor tissue followed by irradiation with a thermal or epithermal neutron beam. This therapy is therefore a cellular irradiation suited to treat tumors that have infiltrated into healthy tissues. BNCT has been used clinically to treat patients with cutaneous melanomas which have a high mortality. Human normal melanocytes and melanoma cells were treated with BNCT at different boronophenylalanine concentrations for signaling pathways analysis. BNCT induced few morphological alterations in normal melanocytes, with a negligible increase in free radical production. Melanoma cells treated with BNCT showed significant extracellular matrix (ECM) changes and a significant cyclin D1 decrease, suggesting cell death by necrosis and apoptosis and cell cycle arrest, respectively. BNCT also induced a significant increase in cleaved caspase-3 and a decrease in the mitochondrial electrical potential with selectivity for melanoma cells. Normal melanocytes had no significant differences due to BNCT treatment, confirming the data from the literature regarding the selectivity of BNCT. The results from this study suggest that some signaling pathways are involved in human melanoma treatment by BNCT, such as cell cycle arrest, ECM changes and intrinsic apoptosis.
Collapse
|
37
|
Faião-Flores F, Suarez JAQ, Maria-Engler SS, Soto-Cerrato V, Pérez-Tomás R, Maria DA. The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumour Biol 2013; 34:1119-29. [PMID: 23359272 DOI: 10.1007/s13277-013-0653-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.
Collapse
Affiliation(s)
- Fernanda Faião-Flores
- Laboratory of Biochemistry and Biophysics, Butantan Institute, 1500 Vital Brasil Avenue, 05503-900, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
38
|
Sorbye SW, Kilvaer TK, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT. Prognostic impact of Jab1, p16, p21, p62, Ki67 and Skp2 in soft tissue sarcomas. PLoS One 2012; 7:e47068. [PMID: 23071715 PMCID: PMC3465267 DOI: 10.1371/journal.pone.0047068] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/07/2012] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The purpose of this study is to clarify the prognostic significance of expression of Jab1, p16, p21, p62, Ki67 and Skp2 in soft tissue sarcomas (STS). Optimised treatment of STS requires better identification of high risk patients who will benefit from adjuvant therapy. The prognostic significance of Jab1, p16, p21, p62, Ki67 and Skp2 in STS has not been sufficiently investigated. EXPERIMENTAL DESIGN Tissue microarrays from 193 STS patients were constructed from duplicate cores of viable and representative neoplastic tumor areas. Immunohistochemistry was used to evaluate the expression of Jab1, p16, p21, p62, Ki67 and Skp2. RESULTS In univariate analyses, high tumor expression of Ki67 (P = 0.007) and Skp2 (P = 0.050) correlated with shorter disease-specific survival (DSS). In subgroup analysis, a correlation between Skp2 and DSS was seen in patients with malignancy grade 1 or 2 (P = 0.027), tumor size >5 cm (P = 0.018), no radiotherapy given (P = 0.029) and no chemotherapy given (P = 0.017). No such relationship was apparent for Jab1, p16, p21 and p62; but p62 showed a positive correlation to malignancy grade (P = 0.019). Ki67 was strongly positively correlated to malignancy grade (P = 0.001). In multivariate analyses, Skp2 was an independent negative prognostic factor for DSS in women (P = 0.009) and in patients without administered chemotherapy or radiotherapy (P = 0.026). CONCLUSIONS Increased expression of Skp2 in patients with soft tissue sarcomas is an independent negative prognostic factor for disease-specific survival in women and in patients not administered chemotherapy or radiotherapy. Besides, further studies are warranted to explore if adjuvant chemotherapy or radiotherapy improve the poor prognosis of STS with high Skp2 expression.
Collapse
Affiliation(s)
- Sveinung W Sorbye
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mechanism of growth inhibition of prostate cancer xenografts by valproic acid. J Biomed Biotechnol 2012; 2012:180363. [PMID: 23093837 PMCID: PMC3471003 DOI: 10.1155/2012/180363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022] Open
Abstract
Valproic Acid (VPA), a histone deacetylase inhibitor, has been demonstrated to cause a marked decrease in proliferation of prostate cancer (PCa) cells in vitro and a significant reduction in tumor volume in vivo. The goal of this study is to better understand the VPA-induced growth inhibition in vivo, by studying expression of various markers in PCa xenografts. Methods. For in vitro experiments, PCa cells were treated with 0, 0.6, and 1.2 mM VPA for 14 days. For in vivo models, experimental animals received 0.4% VPA in drinking water for 35 days. Tissue microarray was generated using cell pellets and excised xenografts. Results. VPA treatment causes cell cycle arrest in PCa cells in vivo, as determined by increase in p21 and p27 and decrease in cyclin D1 expression. Increased expression of cytokeratin18 was also seen in xenografts. LNCaP xenografts in treated animals had reduced androgen receptor (AR) expression. While decreased proliferation was found in vitro, increase in apoptosis was found to be the reason for decreased tumor growth in vivo. Also, an anti-angiogenic effect was observed after VPA treatment. Conclusion. VPA inhibits tumor growth by multiple mechanisms including cell cycle arrest, induction of differentiation, and inhibition of growth of tumor vasculature.
Collapse
|
40
|
Abstract
The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10 to 70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, some of which can modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry and reverse transcription-PCR. We found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared with tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions.
Collapse
|
41
|
Magnussen GI, Holm R, Emilsen E, Rosnes AKR, Slipicevic A, Flørenes VA. High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy. PLoS One 2012; 7:e38254. [PMID: 22719872 PMCID: PMC3373567 DOI: 10.1371/journal.pone.0038254] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022] Open
Abstract
Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents.
Collapse
Affiliation(s)
| | - Ruth Holm
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
| | - Elisabeth Emilsen
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Ana Slipicevic
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Vivi Ann Flørenes
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
42
|
6-Gingerol Inhibits Growth of Colon Cancer Cell LoVo via Induction of G2/M Arrest. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:326096. [PMID: 22719783 PMCID: PMC3375166 DOI: 10.1155/2012/326096] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 12/26/2022]
Abstract
6-Gingerol, a natural component of ginger, has been widely reported to possess antiinflammatory and antitumorigenic activities. Despite its potential efficacy against cancer, the anti-tumor mechanisms of 6-gingerol are complicated and remain sketchy. In the present study, we aimed to investigate the anti-tumor effects of 6-gingerol on colon cancer cells. Our results revealed that 6-gingerol treatment significantly reduced the cell viability of human colon cancer cell, LoVo, in a dose-dependent manner. Further flow cytometric analysis showed that 6-gingerol induced significant G2/M phase arrest and had slight influence on sub-G1 phase in LoVo cells. Therefore, levels of cyclins, cyclin-dependent kinases (CDKs), and their regulatory proteins involved in S-G2/M transition were investigated. Our findings revealed that levels of cyclin A, cyclin B1, and CDK1 were diminished; in contrast, levels of the negative cell cycle regulators p27Kip1 and p21Cip1 were increased in response to 6-gingerol treatment. In addition, 6-gingerol treatment elevated intracellular reactive oxygen species (ROS) and phosphorylation level of p53. These findings indicate that exposure of 6-gingerol may induce intracellular ROS and upregulate p53, p27Kip1, and p21Cip1 levels leading to consequent decrease of CDK1, cyclin A, and cyclin B1 as result of cell cycle arrest in LoVo cells. It would be suggested that 6-gingerol should be beneficial to treatment of colon cancer.
Collapse
|
43
|
Zoroquiain P, Fernandes BF, González S, Novais GN, Schalper KA, Burnier MN. p16ink4a Expression in Benign and Malignant Melanocytic Conjunctival Lesions. Int J Surg Pathol 2012; 20:240-245. [DOI: 10.1177/1066896911435697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Acquired conjunctival melanocytic lesions include nevi, primary acquired melanoses (PAMs), and melanomas. Conjunctival melanoma is a malignant melanocytic neoplasm with a high metastasis and mortality rate. Usually, the diagnosis can be achieved only with routine microscopic analysis, but in some cases, the samples are small or have artifacts. In these cases, complementary studies will be helpful, but currently, there are no well-understood or studied complementary methods. Objective. To analyze the immunohistochemical expression of p16 in conjunctival melanocytic lesions and to assess its potential for differentiating between benign and malignant melanocytic lesions. Methods. Immunohistochemical study against p16ink4a (p16) was performed on paraffin-embedded sections on 45 melanocytic lesions (9 melanomas, 19 nevi, and 2 PAMs with atypia and 15 without atypia). Expression was scored according to the German immunoreactive score (IRS). Results. Expression of p16 IRS differed between nevi, PAMs, and melanomas. The mean IRS for melanomas was 3.3 ± 1.8 and was lower than those for nevi (7.63 ± 3.24; P < .05), PAM with atypia (12 ± 0; P < .05), and PAM without atypia (11 ± 1.69; P < .05). Lesions with infiltration depths lower than 2 mm showed higher levels of p16. There were no differences between favorable and unfavorable locations. Conclusion. p16 Expression in conjunctival melanocytic lesions showed an expression similar to that in skin and seems to be a good marker to differentiate nevi and PAMs from melanomas. However, additional studies of larger series and follow-up are needed to confirm these findings.
Collapse
Affiliation(s)
- Pablo Zoroquiain
- The Henry C. Witelson Ocular Pathology Laboratory, Montreal, Canada
- Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
44
|
Analysis of the functional integrity of the p53 tumor-suppressor gene in malignant melanoma. Melanoma Res 2012; 21:380-8. [PMID: 21691232 DOI: 10.1097/cmr.0b013e328347ee04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derogation of the p53 pathway is a hallmark in human malignancies but its implication in melanomas remains unclear. p53 is frequently accumulated in melanomas despite protein stabilizing mutations being rare. For a panel of six melanoma cell lines we performed transcript sequence analysis of the entire coding region and determined p53 protein stability and messenger RNA stability by western blot experiments and quantitative reverse-transcription-PCR, respectively. Transcript levels of p53 modifying genes as well as p53 target genes were investigated after ultraviolet irradiation, interferon-α-2b, and chemotherapy (cisplatin or dacarbazine) by quantitative reverse-transcription-PCR. Transcript sequence analysis identified three aberrations in three of six melanomas. Four of six melanomas showed high-constitutive p53 protein levels. p53 transcripts remained stable in four of six melanomas. All p53-expressing melanomas displayed high p53 protein stability. Constitutively, and after ultraviolet irradiation, mouse double min-2 expression was reduced in melanomas. We detected high homeodomain-interacting protein kinase-2 level in melanomas-expressing mutant p53. Most experimental conditions resulted in lower expression of p21, GADD45A, and PUMA, and a higher expression of CDC2 in melanomas. Altogether, accumulation of p53 protein is due to posttranslational modification or aberrant expression of p53 modifiers. p53 is functionally disrupted although the p53 upstream signaling pathway remains inducible.
Collapse
|
45
|
Immunohistochemical expression of p16, p21, p27 and cyclin D1 in oral nevi and melanoma. Head Neck Pathol 2012; 6:297-304. [PMID: 22311377 PMCID: PMC3422579 DOI: 10.1007/s12105-012-0334-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
The acquisition of abnormalities at G1/S is considered a crucial step in the genesis and progression of melanoma. The expression of cell cycle regulators has also been used in various neoplasms as an adjunct to diagnosis. The aim of this study was to compare the expression of p16, p21, p27 and cyclin D1 in oral nevi and melanomas. Expression of these cell cycle regulatory proteins was evaluated by immunohistochemistry in 51 oral melanocytic lesions, including 38 intramucosal nevi and 13 primary oral melanomas. p16 and p27 were highly expressed in intramucosal nevi, whereas p21 and cyclin D1 expression was higher in oral melanomas. The results indicate that p21 and cyclin D1 may be involved in the development of oral melanomas, and eventually they may be useful in the differential diagnoses of oral benign and malignant melanocytic lesions.
Collapse
|
46
|
Chilampalli C, Guillermo R, Kaushik RS, Young A, Chandrasekher G, Fahmy H, Dwivedi C. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells. Exp Biol Med (Maywood) 2011; 236:1351-9. [DOI: 10.1258/ebm.2011.011030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly ( P < 0.05) and decreased the percentage of cells in the S and G2/M phase. Honokiol down-regulated the expression of cyclin D1, cyclin D2, Cdk2, Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.
Collapse
Affiliation(s)
| | | | - Radhey S Kaushik
- Department of Biology and Microbiology
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2202 C, Brookings, SD 57007, USA
| | - Alan Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2202 C, Brookings, SD 57007, USA
| | | | | | | |
Collapse
|
47
|
Chilampalli C, Guillermo R, Zhang X, Kaushik RS, Young A, Zeman D, Hildreth MB, Fahmy H, Dwivedi C. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer 2011; 11:456. [PMID: 22014088 PMCID: PMC3234292 DOI: 10.1186/1471-2407-11-456] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/20/2011] [Indexed: 11/12/2022] Open
Abstract
Background Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. Methods UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Results Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm2, 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr705), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Conclusions Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various signaling pathways. Magnolol could be a potentially safe and potent anticarcinogenic agent against skin cancer.
Collapse
|
48
|
Chen BB, Glasser JR, Coon TA, Mallampalli RK. FBXL2 is a ubiquitin E3 ligase subunit that triggers mitotic arrest. Cell Cycle 2011; 10:3487-94. [PMID: 22024926 DOI: 10.4161/cc.10.20.17742] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitotic progression is regulated by ubiquitin E3 ligase complexes to carefully orchestrate eukaryotic cell division. Here, we show that a relatively new E3 ligase component belonging to the SCF (Skip-Cullin1-F-box protein) E3 ligase family, SCF (FBXL2) , impairs cell proliferation by mediating cyclin D3 polyubiquitination and degradation. Both cyclin D3 and FBXL2 colocalize within the centrosome. FBXL2 overexpression led to G 2/M-phase arrest in transformed epithelia, resulting in the appearance of supernumerary centrosomes, tetraploidy and nuclei where condensed chromosomes are arranged on circular monopolar spindles typical of mitotic arrest. RNAi-mediated knockdown of cyclin D3 recapitulated effects of SCF (FBXL2) expression. SCF (FBXL2) impaired the ability of cyclin D3 to associate with centrosomal assembly proteins [Aurora A, polo-like kinase 4 (Plk4), CDK11]. Thus, these results suggest a role for SCF (FBXL2) in regulating the fidelity of cellular division.
Collapse
Affiliation(s)
- Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, The University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
49
|
Abusnina A, Keravis T, Yougbaré I, Bronner C, Lugnier C. Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol Nutr Food Res 2011; 55:1677-89. [PMID: 22045655 DOI: 10.1002/mnfr.201100307] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/12/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
SCOPE Curcumin inhibits proliferation of many cancer cells. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic adenosine-3',5'-monophosphate (cAMP) and/or cyclic guanosine-3',5'-monophosphate (cGMP), play a pivotal role in signalling pathways involved in cell proliferation. Therefore, this study investigated PDE1-5 participations in the anti-proliferative properties of curcumin in B16F10 murine melanoma cells. METHODS AND RESULTS We report that curcumin inhibits PDE1-5 activities (IC(50) ≅10(-5) M), indicating that curcumin acts as a non-selective PDE inhibitor. In melanoma cells, PDE4 and PDE1 represent the major cAMP-PDEs and cGMP-PDEs activities, respectively. Curcumin treatment decreased PDE1 and PDE4 activities and dose dependently increased intracellular cGMP levels, whereas cAMP levels were unchanged. Curcumin inhibited cell proliferation and cell cycle progression by accumulating cells in the S- and G2/M-phases with enhanced expressions of cyclin-dependent kinase inhibitors. In contrast, expressions of PDE1A, cyclin A and the epigenetic integrator ubiquitin-like containing PHD and Ring Finger domains 1 (UHRF1) and DNA methyltransferase 1 (DNMT1) were decreased by curcumin. Interestingly, PDE1A overexpression increased UHRF1 and DNMT1 expressions and rescued the B16F10 cells from curcumin anti-proliferative effects. Nimodipine, a PDE1 inhibitor, mimicked the curcumin effects. CONCLUSION Curcumin exerts its anti-cancer property by targeting PDE1 that inhibits melanoma cell proliferation via UHRF1, DNMT1, cyclin A, p21 and p27 regulations. This suggests that natural PDE1 inhibitors present in food might be effective in preventing cancer.
Collapse
Affiliation(s)
- Abdurazzag Abusnina
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | |
Collapse
|
50
|
Chen G, Cheng Y, Zhang Z, Martinka M, Li G. Prognostic significance of cytoplasmic p27 expression in human melanoma. Cancer Epidemiol Biomarkers Prev 2011; 20:2212-21. [PMID: 21828232 DOI: 10.1158/1055-9965.epi-11-0472] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor p27 plays important roles in cell proliferation, cell motility, and apoptosis. Interestingly, the nuclear and cytoplasmic p27 exert opposite biological functions. In this study, we investigated the prognostic impact of subcellular p27 expression. METHODS We constructed melanoma tissue microarrays in a large series of melanoma patients, including 29 normal nevi, 52 dysplastic nevi, 270 primary melanomas, and 148 metastatic melanomas. The expression level of subcellular p27 in different stages of melanocytic lesions and its prognostic significance were evaluated. RESULTS Compared with dysplastic nevi, nuclear p27 expression was remarkably reduced in primary melanomas and further reduced in metastatic melanoma (P < 0.001 for both), whereas cytoplasmic p27 expression is significantly increased from dysplastic nevi to primary melanomas (P = 0.032) and further increased in melanoma metastases (P = 0.037). Although loss of nuclear p27 expression is correlated with a worse 5-year survival of primary melanoma patients in Kaplan-Meier analysis (P = 0.046), it is not a prognostic factor by multivariate Cox regression analysis. On the contrary, Kaplan-Meier analysis showed that gain of cytoplasmic p27 was associated with a poor 5-year survival of metastatic melanoma patients (P < 0.001). Multivariate Cox regression analysis revealed that positive cytoplasmic p27 expression is an independent prognostic factor to predict metastatic melanoma patient outcome. CONCLUSION Cytoplasmic p27 may serve as a promising prognostic marker for metastatic melanoma. IMPACT Because there is no reliable prognostic marker for metastatic melanoma, our finding may have important clinical implications using cytoplasmic p27 as a prognostic biomarker for advanced melanoma.
Collapse
Affiliation(s)
- Guangdi Chen
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|