1
|
Lymer J, Bergman H, Yang S, Mallick R, Galea LAM, Choleris E, Fergusson D. The effects of estrogens on spatial learning and memory in female rodents - A systematic review and meta-analysis. Horm Behav 2024; 164:105598. [PMID: 38968677 DOI: 10.1016/j.yhbeh.2024.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Estrogens have inconsistent effects on learning and memory in both the clinical and preclinical literature. Preclinical literature has the advantage of investigating an array of potentially important factors contributing to the varied effects of estrogens on learning and memory, with stringently controlled studies. This study set out to identify specific factors in the animal literature that influence the effects of estrogens on cognition, for possible translation back to clinical practice. The literature was screened and studies meeting strict inclusion criteria were included in the analysis. Eligible studies included female ovariectomized rodents with an adequate vehicle for the estrogen treatment, with an outcome of spatial learning and memory in the Morris water maze. Training days of the Morris water maze were used to assess acquisition of spatial learning, and the probe trial was used to evaluate spatial memory recall. Continuous outcomes were pooled using a random effects inverse variance method and reported as standardized mean differences with 95 % confidence intervals. Subgroup analyses were developed a priori to assess important factors. The overall analysis favoured treatment for the later stages of training and for the probe trial. Factors including the type of estrogen, route, schedule of administration, age of animals, timing relative to ovariectomy, and duration of treatment were all found to be important. The subgroup analyses showed that chronic treatment with 17β-estradiol, either cyclically or continuously, to young animals improved spatial recall. These results, observed in animals, can inform and guide further clinical research on hormone replacement therapy for cognitive benefits.
Collapse
Affiliation(s)
- Jennifer Lymer
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| | - Hailey Bergman
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Sabrina Yang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Jiang Y, Horkeby K, Henning P, Wu J, Lawenius L, Engdahl C, Gupta P, Movérare-Skrtic S, Nilsson KH, Levin E, Ohlsson C, Lagerquist MK. Membrane estrogen receptor α signaling modulates the sensitivity to estradiol treatment in a dose- and tissue- dependent manner. Sci Rep 2023; 13:9046. [PMID: 37270592 DOI: 10.1038/s41598-023-36146-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.05 μg/mouse/day (low); 0.6 μg/mouse/day (medium)) or supraphysiological (6 μg/mouse/day (high)) doses of E2 (17β-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mERα signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mERα, suggesting a protective effect of mERα signaling in this tissue against supraphysiological E2 levels.
Collapse
Affiliation(s)
- Yiwen Jiang
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Karin Horkeby
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden.
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Lina Lawenius
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Priti Gupta
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| | - Ellis Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Vita Stråket 11, S-413 45, Göteborg, Sweden
| |
Collapse
|
3
|
Gupta P, Horkeby K, Carlsten H, Henning P, Engdahl C. Bazedoxifene does not share estrogens effects on IgG sialylation. PLoS One 2023; 18:e0285755. [PMID: 37200319 DOI: 10.1371/journal.pone.0285755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The incidence of rheumatoid arthritis (RA) increases at the same time as menopause when estrogen level decreases. Estrogen treatment is known to reduce the IgG pathogenicity by increasing the sialylation grade on the terminal glycan chain of the Fc domain, inhibiting the binding ability to the Fc gamma receptor. Therefore, treatment with estrogen may be beneficial in pre-RA patients who have autoantibodies and are prone to get an autoimmune disease. However, estrogen treatment is associated with negative side effects, therefore selective estrogen receptor modulators (SERMs) have been developed that have estrogenic protective effects with minimal side effects. In the present study, we investigated the impact of the SERM bazedoxifene on IgG sialylation as well as on total serum protein sialylation. C57BL6 mice were ovariectomized to simulate postmenopausal status, followed by ovalbumin immunization, and then treated with estrogen (estradiol), bazedoxifene, or vehicle. We found that estrogen treatment enhanced IgG levels and had a limited effect on IgG sialylation. Treatment with bazedoxifene increased the sialic acids in plasma cells in a similar manner to E2 but did not reach statistical significance. However, we did not detect any alteration in IgG-sialylation with bazedoxifene treatment. Neither estrogen nor bazedoxifene showed any significant alteration in serum protein sialylation but had a minor effect on mRNA expression of glycosyltransferase in the bone marrow, gonadal fat, and liver.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Kaur S, Hickman TM, Lopez-Ramirez A, McDonald H, Lockhart LM, Darwish O, Averitt DL. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha. Pain 2022; 163:e899-e916. [PMID: 35121697 PMCID: PMC9288423 DOI: 10.1097/j.pain.0000000000002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The role of the major estrogen estradiol (E2) on orofacial pain conditions remains controversial with studies reporting both a pronociceptive and antinociceptive role of E2. E2 modulation of peripheral serotonergic activity may be one mechanism underlying the female prevalence of orofacial pain disorders. We recently reported that female rats in proestrus and estrus exhibit greater serotonin (5HT)-evoked orofacial nocifensive behaviors compared with diestrus and male rats. Further coexpression of 5HT 2A receptor mRNA in nociceptive trigeminal sensory neurons that express transient receptor potential vanilloid 1 ion channels contributes to pain sensitization. E2 may exacerbate orofacial pain through 5HT-sensitive trigeminal nociceptors, but whether low or high E2 contributes to orofacial pain and by what mechanism remains unclear. We hypothesized that steady-state exposure to a proestrus level of E2 exacerbates 5HT-evoked orofacial nocifensive behaviors in female rats, explored the transcriptome of E2-treated female rats, and determined which E2 receptor contributes to sensitization of female trigeminal sensory neurons. We report that a diestrus level of E2 is protective against 5HT-evoked orofacial pain behaviors, which increase with increasing E2 concentrations, and that E2 differentially alters several pain genes in the trigeminal ganglia. Furthermore, E2 receptors coexpressed with 5HT 2A and transient receptor potential vanilloid 1 and enhanced capsaicin-evoked signaling in the trigeminal ganglia through estrogen receptor α. Overall, our data indicate that low, but not high, physiological levels of E2 protect against orofacial pain, and we provide evidence that estrogen receptor α receptor activation, but not others, contributes to sensitization of nociceptive signaling in trigeminal sensory neurons.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | | | - Hanna McDonald
- Department of Biology, Texas Woman’s University, Denton, TX 76204
| | | | - Omar Darwish
- Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204
| | | |
Collapse
|
5
|
Jdidi H, Ghorbel Koubaa F, Aoiadni N, Elleuch A, Makni-Ayadi F, El Feki A. Effect of Medicago sativa compared To 17β-oestradiol on osteoporosis in ovariectomized mice. Arch Physiol Biochem 2022; 128:951-958. [PMID: 32193946 DOI: 10.1080/13813455.2020.1741644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phytoestrogens, with a wide range of beneficial effects, prevent bone loss caused by oestrogen deficiency.The purpose of this study was to evaluate the effect of Medicago sativa ethanol extract compared to 17β-oestradiol on osteoporosis in ovariectomized mice.The study was carried out on female mice, divided into five groups: control mice (GI), Medicago sativa treated mice (0.75 g/kg BW/day) (GII), ovariectomized mice (GIII) and ovariectomized mice treated either with Medicago sativa (GIV) or with 17β-oestradiol (50 µg/Kg BW/day) (GV).Our results showed that Medicago sativa or 17β-oestradiol treatments significantly attenuated perturbations of mineral levels, histological changes and oxidative stress in the femurs of ovariectomized mice.Medicago sativa prevented bone loss induced by oestrogen deficiency, which could be attributed to its richness in kaempferol, syringic acid, naringenin and myrictin. Its effects were more beneficial or similar compared to 17β-oestradiol.
Collapse
Affiliation(s)
- Hajer Jdidi
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Nissaf Aoiadni
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Aida Elleuch
- Biochemistry Laboratory, CHU H. Bourguiba, Sfax, Tunisia
| | | | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
6
|
Silva SB, Honorato-Sampaio K, Costa SP, Domingues TE, da Cruz TMM, Rodrigues CM, Costa KB, Dos Santos JM, da Silva Lage VK, Gaiad TP, Santos AP, Dias-Peixoto MF, Coimbra CC, Dos Reis AM, Szawka RE, Figueiredo PHS, Costa HS, Oliveira MX, Mendonça VA, Lacerda ACR. The superior beneficial effects of exercise training versus hormone replacement therapy on skeletal muscle of ovariectomized rats. Sci Rep 2022; 12:8764. [PMID: 35610295 PMCID: PMC9130272 DOI: 10.1038/s41598-022-12739-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
Previous studies have highlighted the positive effects of Estradiol (E2) replacement therapy and physical exercise on skeletal muscle during menopause. However, the comparison effects of exercise training (ET) and estradiol replacement therapy during menopause on skeletal muscle have not been investigated to date. This study aimed to compare the effects of endurance exercise training versus E2 replacement therapy on mitochondrial density, redox status, and inflammatory biomarkers in the skeletal muscle of ovariectomized rats. Thirty female Wistar rats (12-week-old) were randomly assigned into three groups: Untrained ovariectomized rats (UN-OVX, n = 10); untrained ovariectomized rats treated with estradiol replacement therapy (E2-OVX); and, trained ovariectomized rats (TR-OVX). After ovariectomy, the E2-OVX rats were treated subcutaneously with E2 (implanted Silastic® capsule containing 360 μg of 17β-estradiol/mL) while the TR-OVX group performed an exercise training protocol (50–70% of maximal running speed on a treadmill, 60 min/day, 5 days/week for 8 weeks). After euthanasia, the soleus muscle was processed for histological and biochemical evaluations. Only exercise prevented the reduction of maximal oxygen consumption and increased mechanical efficiency (ME). While mitochondrial muscle density, total antioxidant capacity (FRAP), catalase (CAT) activity, and interleukin 10 levels were higher in TR-OVX, only OVX-E2 presented higher CAT activity and lower interleukin 6 levels. Endurance exercise training compared with E2 replacement therapy maintains the aerobic capacity improving the ME of OVX rats. In addition, only endurance exercise training raises the skeletal muscle mitochondrial content and tends to balance the redox and inflammatory status in the skeletal muscle of OVX rats.
Collapse
Affiliation(s)
- Sara Barros Silva
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato-Sampaio
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Sabrina Paula Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Timilly Mayra Martins da Cruz
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Cíntia Maria Rodrigues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Karine Beatriz Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Jousielle Márcia Dos Santos
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Vanessa Kelly da Silva Lage
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil
| | - Thais Peixoto Gaiad
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Adelina Martha Dos Reis
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Scheidt Figueiredo
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Henrique Silveira Costa
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil.,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil.,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK-Highway MGT-367-Km 583, N°. 5000-Alto da Jacuba, Diamantina, 39100-000, Brazil. .,Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil. .,Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas (PPGMCF), Sociedade Brasileira de Fisiologia (SBFis), Diamantina, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil. .,Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Liu X, Song M, Chen X, Sun Y, Fan R, Wang L, Lin W, Hu Z, Zhao H. Activation of Estrogen Receptor β in the Lateral Habenula Improves Ovariectomy-Induced Anxiety-Like Behavior in Rats. Front Behav Neurosci 2022; 16:817859. [PMID: 35615566 PMCID: PMC9126050 DOI: 10.3389/fnbeh.2022.817859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Loss of estrogen due to menopause or ovarian resection is involved in the development of anxiety, which negatively impacts work productivity and quality of life. Estrogen modulates mood by binding to estrogen receptors in the brain. Estrogen receptor beta (ERβ) is highly expressed in the lateral habenula (LHb), a key site for controlling the activities of dopaminergic neurons in the ventral tegmental area (VTA) and serotoninergic neurons in the dorsal raphe nucleus (DRN) that are known to be involved in anxiety. Methods In this study, we examined the role of LHb in the anxiolytic-like effect of estrogen in ovariectomized (OVX) rats. The establishment of OVX anxiety model was validated in behavioral tests, including elevated plus maze (EPM) and mirror chamber maze (MCM) tasks. The expression of c-Fos in the LHb neurons was analyzed by immunohistochemistry, and monoamine neurotransmitter levels in related nuclei were analyzed using high-performance liquid chromatography (HPLC). Results Estrogen-treated OVX rats showed a lower degree of anxiety-like behavior than OVX rats. OVX rats showed anxiety-like behavior and low monoamine levels in the DRN and VTA compared with sham operated and estrogen-treated OVX rats. c-Fos expression in the LHb was higher than that in the sham operated and estrogen-treated OVX rats. Intra-LHb injection of the ERβ-selective agonist diarylprepionitrile (DPN) reduced expression of c-Fos (a neuronal activity marker) and anxiety-like behavior in OVX rats, but not in normal rats, as evidenced by increased time spent in EPM open areas and the MCM mirror chamber. These changes coincided with higher levels of serotonin and dopamine in the DRN and higher dopamine levels in the VTA in OVX rats receiving intra-LHb DPN compared with those receiving vehicle injection. Conclusion These results suggest that OVX-induced anxiety-like behavior may be associated with increased LHb activity. DPN may inhibit LHb activity to improve anxiety-like behavior in OVX rats by increasing monoamine neurotransmitter levels in the DRN and VTA.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Meiying Song
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaowei Chen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Renfei Fan
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liping Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weihong Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- *Correspondence: Zheng Hu,
| | - Hua Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Hua Zhao,
| |
Collapse
|
8
|
Gustafsson KL, Movérare-Skrtic S, Farman HH, Engdahl C, Henning P, Nilsson KH, Scheffler JM, Sehic E, Islander U, Levin E, Ohlsson C, Lagerquist MK. A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs. J Endocrinol 2022; 253:75-84. [PMID: 35256537 PMCID: PMC9066589 DOI: 10.1530/joe-21-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
Collapse
Affiliation(s)
- Karin L Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Correspondence should be addressed to K L Gustafsson:
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Julia M Scheffler
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Edina Sehic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ellis Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marie K Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Rehnström M, Ahnstedt H, Krause DN, Edvinsson ML, Haanes KA, Edvinsson L. Ovariectomy Reduces Vasocontractile Responses of Rat Middle Cerebral Arteries After Focal Cerebral Ischemia. J Cardiovasc Pharmacol 2022; 79:e122-e128. [PMID: 34654785 DOI: 10.1097/fjc.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Effects of sex hormones on stroke outcome are not fully understood. A deleterious consequence of cerebral ischemia is upregulation of vasoconstrictor receptors in cerebral arteries that exacerbate stroke injury. Here, we tested the hypothesis that female sex hormones alter vasocontractile responses after experimental stroke in vivo or after organ culture in vitro, a model of vasocontractile receptor upregulation. Female rats with intact ovaries and ovariectomized (OVX) females treated with 17β-estradiol, progesterone, or placebo were subjected to transient, unilateral middle cerebral artery occlusion followed by reperfusion (I/R). The maximum contractile response, measured my wire myography, in response to the endothelin B receptor agonist sarafotoxin 6c was increased in female arteries after I/R, but the maximum response was significantly lower in arteries from OVX females. Maximum contraction mediated by the serotonin agonist 5-carboxamidotryptamine was diminished after I/R, with arteries from OVX females showing a greater decrease in maximum contractile response. Contraction elicited by angiotensin II was similar in all arteries. Neither estrogen nor progesterone treatment of OVX females affected I/R-induced changes in endothelin B- and 5-carboxamidotryptamine-induced vasocontraction. These findings suggest that sex hormones do not directly influence vasocontractile alterations that occur after ischemic stroke; however, loss of ovarian function does impact this process.
Collapse
Affiliation(s)
- Mimmi Rehnström
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
| | - Hilda Ahnstedt
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
| | - Diana N Krause
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA
| | | | | | - Lars Edvinsson
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
- Department of Clinical and Experimental Research, Rigshospitalet Glostrup, Denmark
| |
Collapse
|
10
|
Corciulo C, Scheffler JM, Gustafsson KL, Drevinge C, Humeniuk P, del Carpio Pons AM, Poutanen M, Ohlsson C, Lagerquist MK, Islander U. Pulsed administration for physiological estrogen replacement in mice. F1000Res 2021; 10:809. [PMID: 34868559 PMCID: PMC8609397 DOI: 10.12688/f1000research.54501.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Estrogens are important regulators of body physiology and have major effects on metabolism, bone, the immune- and central nervous systems. The specific mechanisms underlying the effects of estrogens on various cells, tissues and organs are unclear and mouse models constitute a powerful experimental tool to define the physiological and pathological properties of estrogens. Menopause can be mimicked in animal models by surgical removal of the ovaries and replacement therapy with 17β-estradiol in ovariectomized (OVX) mice is a common technique used to determine specific effects of the hormone. However, these studies are complicated by the non-monotonic dose-response of estradiol, when given as therapy. Increased knowledge of how to distribute estradiol in terms of solvent, dose, and administration frequency, is required in order to accurately mimic physiological conditions in studies where estradiol treatment is performed. In this study, mice were OVX and treated with physiological doses of 17β-estradiol-3-benzoate (E2) dissolved in miglyol or PBS. Subcutaneous injections were performed every 4 days to resemble the estrus cycle in mice. Results show that OVX induces an osteoporotic phenotype, fat accumulation and impairment of the locomotor ability, as expected. Pulsed administration of physiological doses of E2 dissolved in miglyol rescues the phenotypes induced by OVX. However, when E2 is dissolved in PBS the effects are less pronounced, possibly due to rapid wash out of the steroid.
Collapse
Affiliation(s)
- Carmen Corciulo
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Julia M. Scheffler
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Karin L. Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Christina Drevinge
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Piotr Humeniuk
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Alicia M. del Carpio Pons
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Matti Poutanen
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Kiinamyllynkatu 10, FI-20520, Finland
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, 41345, Sweden
| | - Marie K. Lagerquist
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| | - Ulrika Islander
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 413 45, Sweden
| |
Collapse
|
11
|
Rabiant K, Antol J, Naassila M, Pierrefiche O. Sex difference in the vulnerability to hippocampus plasticity impairment after binge-like ethanol exposure in adolescent rat: Is estrogen the key? Addict Biol 2021; 26:e13002. [PMID: 33511744 DOI: 10.1111/adb.13002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 02/01/2023]
Abstract
Binge drinking during adolescence induces memory impairments, and evidences suggest that females are more vulnerable than males. However, the reason for such a difference is unclear, whereas preclinical studies addressing this question are lacking. Here we tested the hypothesis that endogenous estrogen level (E2) may explain sex differences in the effects of ethanol on hippocampus plasticity, the cellular mechanism of memory. Long-term depression (LTD) in hippocampus slice of pubertal female rats was recorded 24 h after two ethanol binges (3 g/kg, i.p., 9 h apart). Neither the estrous cycle nor ethanol altered LTD. However, if ethanol was administered during proestrus (i.e., at endogenous E2 peak), LTD was abolished 24 h later, whereas NMDA-fEPSPs response to a GluN2B antagonist increased. The abolition of LTD was not observed in adult female rats. Exogenous E2 combined with ethanol replicated LTD abolition in pubertal, prepubertal female, and in pubertal male rats without changes in ethanol metabolism. In male rats, a higher dose of ethanol was required to abolish LTD at 24-h delay. In pubertal female rats, tamoxifen, an antagonist of estrogen receptors, blocked the impairing effects of endogenous and exogenous E2 on LTD, suggesting estrogen interacts with ethanol through changes in gene expression. In addition, tamoxifen prevented LTD abolition at 24 h but not at 48-h delay. In conclusion, estrogen may explain the increased vulnerability to ethanol-induced plasticity impairment seen in females compared with males. This increased vulnerability of female rats is likely due to changes in the GluN2B subunit that represent a common target between ethanol and estrogen.
Collapse
Affiliation(s)
- Kevin Rabiant
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Johan Antol
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Mickael Naassila
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| | - Olivier Pierrefiche
- INSERM, UMR 1247 GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances Univ Picardie Jules Verne, Centre Universitaire de Recherche en Santé (CURS) Amiens France
| |
Collapse
|
12
|
Carrasco-Ruiz Á, Sánchez-García O, Pacheco P, Martínez-Gómez M, Cuevas-Romero E, Castelán F. Differential estrogen-related responses in myofiber cross-sectional area of pelvic floor muscles in female rats. Gynecol Endocrinol 2021; 37:528-533. [PMID: 33501865 DOI: 10.1080/09513590.2021.1875427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To determine the role of estrogens in myofiber cross-sectional area (CSA) of the pubococcyegeus (Pcm) and iliococcygeus muscles (Icm). METHODS In Experiment 1, we excised the Pcm and Icm during the metestrus and proestrus stages of the estrous cycle to measure the myofiber CSA. In Experiment 2, we allocated other rats into the following groups: sham (Sh), ovariectomized (OVX), OVX plus 1,4,6-androstatriene-3,17-dione (ATD; OVX + ATD), an aromatase inhibitor, and OVX plus estradiol benzoate (OVX + EB). We carried out appropriate statistical tests to determine significant differences (p ≤ 0.05) in variables measured for both Experiments. RESULTS The Pcm myofiber CSA at proestrus was higher than at metestrus, while the Icm myofiber CSA did not change. Ovariectomy increased the Pcm myofiber CSA, which was exacerbated with the ATD administration. The EB supplementation successfully reversed the ovariectomy-induced enlargement of the CSA. No significant changes were detected for the Icm myofiber CSA. CONCLUSIONS Fluctuating ovarian steroid levels at the estrus cycle significantly influence the CSA myofiber of the Pcm but not that of the Icm. Estrogen actions, having a gonadal or extragonadal origin, influence importantly the CSA of the Pcm.
Collapse
Affiliation(s)
- Ángeles Carrasco-Ruiz
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Octavio Sánchez-García
- Programa Educativo de Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Pablo Pacheco
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, México
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, México
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, México
| |
Collapse
|
13
|
Jdidi H, Kouba FG, Aoiadni N, Abdennabi R, Turki M, Makni-Ayadi F, El Feki A. Effects of estrogen deficiency on liver function and uterine development: assessments of Medicago sativa's activities as estrogenic, anti-lipidemic, and antioxidant agents using an ovariectomized mouse model. Arch Physiol Biochem 2021; 127:170-181. [PMID: 31210545 DOI: 10.1080/13813455.2019.1625927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated the effects of Medicago sativa supplementation on the lipid profiles and antioxidant capacities of ovariectomized mice.The study was performed on white Swiss female mice that were divided into five groups: control, treated with Medicago sativa (0.75 g/kg/day), ovariectomized, ovariectomized treated with β-estradiol (1 μg/day) or with Medicago sativa. The mice were sacrificed after 3 and 8 weeks of treatment.Ovariectomy induced a decrease in overall growth, uterine atrophy, and hyperlipidemia demonstrated by increased cholesterol, triglycerides, and decreased HDL. We have shown the involvement of oxidative stress in this hepatic lesion proven by increased levels of TBARS, GPX, and GSH, and decreased levels of SOD and catalase.Treatment with Medicago sativa restores lipid balance, the activity of antioxidant enzymes and improves lipid peroxidation. This is probably due to the richness of this plant in polyphenols and flavonoids considered as an antioxidant and phytoestrogenic elements.
Collapse
Affiliation(s)
- Hajer Jdidi
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Fatma Ghorbel Kouba
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Nissaf Aoiadni
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science of Sfax, Sfax University, Sfax, Tunisia
- Laboratory of Pharmacognosy and Natural Products Chemistry, Athens, Greece
| | - Mouna Turki
- Biochemistry Laboratory, CHU H. Bourguiba, Sfax, Tunisia
| | | | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
14
|
Rabin BM, Miller MG, Larsen A, Spadafora C, Zolnerowich NN, Dell'Acqua LA, Shukitt-Hale B. Effects of exposure to 12C and 4He particles on cognitive performance of intact and ovariectomized female rats. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:47-54. [PMID: 31421848 DOI: 10.1016/j.lssr.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Exposure to the types of radiation encountered outside the magnetic field of the earth can disrupt cognitive performance. Exploratory class missions to other planets will include both male and female astronauts. Because estrogen can function as a neuroprotectant, it is possible that female astronauts may be less affected by exposure to space radiation than male astronauts. To evaluate the effectiveness of estrogen to protect against the disruption of cognitive performance by exposure to space radiation intact and ovariectomized female rats with estradiol or vehicle implants were tested on novel object performance and operant responding on an ascending fixed-ratio reinforcement schedule following exposure to 12C (290 MeV/n) or 4He (300 MeV/n) particles. The results indicated that exposure to carbon or helium particles did not disrupt cognitive performance in the intact rats. Estradiol implants in the ovariectomized subjects exacerbated the disruptive effects of space radiation on operant performance. Although estrogen does not appear to function as a neuroprotectant following exposure to space radiation, the present data suggest that intact females may be less responsive to the deleterious effects of exposure to space radiation on cognitive performance, possibly due to the effects of estrogen on cognitive performance.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Marshall G Miller
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| | - Alison Larsen
- Department of Psychology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Christina Spadafora
- Department of Psychology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Nicholas N Zolnerowich
- Department of Psychology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Lorraine A Dell'Acqua
- Department of Psychology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| |
Collapse
|
15
|
Angiogenesis Changes in Ovariectomized Rats with Osteoporosis Treated with Estrogen Replacement Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1283717. [PMID: 31355247 PMCID: PMC6637705 DOI: 10.1155/2019/1283717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
To investigate whether angiogenesis changes in early menopausal osteoporosis treated with estrogen replacement therapy, 120 rats were randomly divided into five groups: sham operation group (SHAM), ovariectomy group (OVX), and ovariectomy plus three different estrogen doses replacement therapy groups (OVX + E2). We detected the bone microarchitecture and measured the expression levels of estrogen receptor beta (ERβ), vascular endothelial growth factor (VEGF), osteoprotegerin (OPG), and receptor activator of NF-κB ligand (RANKL). CD31 immunofluorescence and silica gel perfusion imaging were used to analyze the vascular distribution. We confirmed that the femur BMD of ovariectomized rats was significantly lower than SHAM group and OVX+E2 groups. After estrogen therapy, the local microvascular formation increased after estrogen treatment in a dose dependent manner. ERβ was downregulated and VEGF was upregulated, positively correlated with estrogen dosage. We successfully constructed an osteoporosis model of ovariectomized rats with estrogen replacement therapy. We also found angiogenesis changed in early menopausal osteoporosis treated with estrogen replacement therapy. We indicated that estrogen replacement therapy increased angiogenesis through VEGF upregulation. However, we observed that, at the highest doses of estrogen studied, increased angiogenesis was associated with a decrease in BMD, the underlying mechanisms of which remain unclear.
Collapse
|
16
|
Hilderbrand ER, Lasek AW. Studying Sex Differences in Animal Models of Addiction: An Emphasis on Alcohol-Related Behaviors. ACS Chem Neurosci 2018; 9:1907-1916. [PMID: 29227676 DOI: 10.1021/acschemneuro.7b00449] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal models are essential for understanding the biological factors that contribute to drug and alcohol addiction and discovering new pharmacotherapies to treat these disorders. Alcohol (ethanol) is the most commonly abused drug in the world, and as the prevalence of alcohol use disorder (AUD) increases, so does the need for effective pharmacotherapies. In particular, treatments with high efficacy in the growing number of female AUD sufferers are needed. Female animals remain underrepresented in biomedical research and sex differences in the brain's response to alcohol are poorly understood. To help bridge the gender gap in addiction research, this Review discusses strategies that researchers can use to examine sex differences in the context of several common animal models of AUD. Self-administration, two-bottle choice, drinking in the dark, and conditioned place preference are discussed, with a focus on the role of estrogen as a mediator of sex differences in alcohol-related behaviors.
Collapse
|
17
|
Krajewski-Hall SJ, Blackmore EM, McMinn JR, Rance NE. Estradiol alters body temperature regulation in the female mouse. Temperature (Austin) 2017; 5:56-69. [PMID: 29687044 DOI: 10.1080/23328940.2017.1384090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022] Open
Abstract
Hot flushes are due to estrogen withdrawal and characterized by the episodic activation of heat dissipation effectors. Recent studies (in humans and rats) have implicated neurokinin 3 (NK3) receptor signaling in the genesis of hot flushes. Although transgenic mice are increasingly used for biomedical research, there is limited information on how 17β-estradiol and NK3 receptor signaling alters thermoregulation in the mouse. In this study, a method was developed to measure tail skin temperature (TSKIN) using a small data-logger attached to the surface of the tail, which, when combined with a telemetry probe for core temperature (TCORE), allowed us to monitor thermoregulation in freely-moving mice over long durations. We report that estradiol treatment of ovariectomized mice reduced TCORE during the light phase (but not the dark phase) while having no effect on TSKIN or activity. Estradiol also lowered TCORE in mice exposed to ambient temperatures ranging from 20 to 36°C. Unlike previous studies in the rat, estradiol treatment of ovariectomized mice did not reduce TSKIN during the dark phase. Subcutaneous injections of an NK3 receptor agonist (senktide) in ovariectomized mice caused an acute increase in TSKIN and a reduction in TCORE, consistent with the activation of heat dissipation effectors. These changes were reduced by estradiol, suggesting that estradiol lowers the sensitivity of central thermoregulatory pathways to NK3 receptor activation. Overall, we show that estradiol treatment of ovariectomized mice decreases TCORE during the light phase, reduces the thermoregulatory effects of senktide and modulates thermoregulation differently than previously described in the rat.
Collapse
Affiliation(s)
- Sally J Krajewski-Hall
- Departments of Pathology (S.J.K-H., E.M.B., J.R.M. and N.E.R.), Cellular and Molecular Medicine (N.E.R.), Neurology (N.E.R.) and the Evelyn F. McKnight Brain Institute (N.E.R.) University of Arizona College of Medicine, Tucson, AZ, USA
| | - Elise M Blackmore
- Departments of Pathology (S.J.K-H., E.M.B., J.R.M. and N.E.R.), Cellular and Molecular Medicine (N.E.R.), Neurology (N.E.R.) and the Evelyn F. McKnight Brain Institute (N.E.R.) University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jessi R McMinn
- Departments of Pathology (S.J.K-H., E.M.B., J.R.M. and N.E.R.), Cellular and Molecular Medicine (N.E.R.), Neurology (N.E.R.) and the Evelyn F. McKnight Brain Institute (N.E.R.) University of Arizona College of Medicine, Tucson, AZ, USA
| | - Naomi E Rance
- Departments of Pathology (S.J.K-H., E.M.B., J.R.M. and N.E.R.), Cellular and Molecular Medicine (N.E.R.), Neurology (N.E.R.) and the Evelyn F. McKnight Brain Institute (N.E.R.) University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
18
|
Pajarillo E, Johnson J, Kim J, Karki P, Son DS, Aschner M, Lee E. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 2017; 65:280-288. [PMID: 29183790 DOI: 10.1016/j.neuro.2017.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023]
Abstract
Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States
| | - James Johnson
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| | - Judong Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States
| | - Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College Nashville, TN 37208, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, NY 10461, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, United States.
| |
Collapse
|
19
|
Gérard C, Gallez A, Dubois C, Drion P, Delahaut P, Quertemont E, Noël A, Pequeux C. Accurate Control of 17β-Estradiol Long-Term Release Increases Reliability and Reproducibility of Preclinical Animal Studies. J Mammary Gland Biol Neoplasia 2017; 22:1-11. [PMID: 27889857 PMCID: PMC5310554 DOI: 10.1007/s10911-016-9368-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
Estrogens are the subject of intensive researches aiming to elucidate their mechanism of action on the various tissues they target and especially on mammary gland and breast cancer. The use of ready-to-use slow releasing devices to administer steroids, especially estrogens, to small experimental animals remains the method of choice in terms of animal well-being and of safety for both the researcher and the animal. In this study, we evaluated and compared, in vitro and in vivo, the release kinetic of estradiol (E2) over sixty days from two different slow-releasing systems: the matrix pellet (MP) and the reservoir implant (RI). We compared the impact of these systems in three E2-sensitive mouse models : mammary gland development, human MCF7 adenocarcinoma xenograft and mouse melanoma progression. The real amount of E2 that is released from both types of devices could differ from manufacturer specifications due to inadequate release for MP and initial burst effect for RI. Compared to MP, the interindividual variability was reduced with RI thanks to a superior control of the E2 release. Depending on the dose-dependent sensitivity of the physiological or pathological readout studied, this could lead to an improvement of the statistical power of in vivo experiments and thus to a reduction of the required animal number. Altogether, our data draw attention on the importance to adequately select the slow-releasing device that is the most appropriated to a specific experiment to better fulfill the 3Rs rule (Replacement, Reduction, Refinement) related to animal welfare and protection.
Collapse
Affiliation(s)
- Céline Gérard
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, CHU-B23, Hippocrate avenue 13, B-4000, Liège, Belgium
| | - Anne Gallez
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, CHU-B23, Hippocrate avenue 13, B-4000, Liège, Belgium
| | - Charline Dubois
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, CHU-B23, Hippocrate avenue 13, B-4000, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liege, 4000, Liège, Belgium
| | | | - Etienne Quertemont
- Department of Psychology, Cognition and Behavior, University of Liege, 4000, Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, CHU-B23, Hippocrate avenue 13, B-4000, Liège, Belgium
| | - Christel Pequeux
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, CHU-B23, Hippocrate avenue 13, B-4000, Liège, Belgium.
| |
Collapse
|
20
|
Stires H, Saboya M, Globerman SP, Cohick WS. Peroral Estradiol Is Sufficient to Induce Carcinogen-Induced Mammary Tumorigenesis in Ovariectomized Rats without Progesterone. PLoS One 2016; 11:e0162662. [PMID: 27611094 PMCID: PMC5017759 DOI: 10.1371/journal.pone.0162662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/28/2016] [Indexed: 12/02/2022] Open
Abstract
A role for estrogens in breast cancer is widely accepted, however, recent evidence highlights that timing and exposure levels are important in determining whether they elicit harmful versus beneficial effects. The rat chemical carcinogen model has been widely used to study the effects of estrogens but conclusions on the levels that lead to tumor development and an absolute requirement for progesterone (P4) are lacking. A newer method of hormone administration mixes hormones with nut butter for peroral consumption allowing for a less stressful method of long-term administration with lower spikes in serum estradiol (E2) levels. The present study was designed to determine if estrogens alone at a physiological dose can drive carcinogen-induced tumors in ovariectomized (OVX) rats or if P4 is also required using this method of hormone administration. Short-term studies were conducted to determine the dose of estrogen (E) that would lead to increased uterine weight following OVX. Subsequently, rats were OVX on postnatal day (PND) 40 then treated daily with E (600 μg/kg/day), P4 (15 mg/kg/day), or the combination. On PND 50, all rats were injected with nitrosomethylurea to induce mammary tumors. Uterine weights, body weights, and serum E2 levels were measured to demonstrate the efficacy of the method for increasing E2 levels during long-term treatment. After 26 weeks, tumor incidence was similar in Sham, E, and E + P4 animals indicating that E was sufficient to induce tumorigenesis when hormone levels were normalized by this method. This study demonstrates peroral administration can be used in long-term studies to elucidate relationships between different types and levels of steroid hormones.
Collapse
Affiliation(s)
- Hillary Stires
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Mariana Saboya
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Samantha P. Globerman
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Wendie S. Cohick
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
- * E-mail:
| |
Collapse
|
21
|
Robarge JD, Duarte DB, Shariati B, Wang R, Flockhart DA, Vasko MR. Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons. Exp Neurol 2016; 281:53-65. [PMID: 27072527 DOI: 10.1016/j.expneurol.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000nmol of adenosine 5'-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats.
Collapse
Affiliation(s)
- Jason D Robarge
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Djane B Duarte
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Laboratório de Farmacologia Molecular, Faculdade de Ciências da Saúde, Universidade de Brasília, Brazil.
| | - Behzad Shariati
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Ruizhong Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - David A Flockhart
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
22
|
Carpenter RS, Iwuchukwu I, Hinkson CL, Reitz S, Lee W, Kukino A, Zhang A, Pike MM, Ardelt AA. High-dose estrogen treatment at reperfusion reduces lesion volume and accelerates recovery of sensorimotor function after experimental ischemic stroke. Brain Res 2016; 1639:200-13. [PMID: 26995494 DOI: 10.1016/j.brainres.2016.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/03/2015] [Accepted: 01/17/2016] [Indexed: 01/15/2023]
Abstract
Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Sydney Reitz
- The College, University of Chicago, Chicago, IL, USA
| | - Wonhee Lee
- The College, University of Chicago, Chicago, IL, USA
| | - Ayaka Kukino
- Advanced Imaging Research Center, Oregon Health Sciences University, Portland, OR, USA
| | - An Zhang
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health Sciences University, Portland, OR, USA
| | | |
Collapse
|
23
|
Pinkham MI, Barrett CJ. Estradiol alters the chemosensitive cardiac afferent reflex in female rats by augmenting sympathoinhibition and attenuating sympathoexcitation. Clin Exp Pharmacol Physiol 2016; 42:622-31. [PMID: 25810130 DOI: 10.1111/1440-1681.12392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 01/26/2023]
Abstract
The chemosensitive cardiac vagal and sympathetic afferent reflexes are implicated in driving pathophysiological changes in sympathetic nerve activity (SNA) in cardiovascular disease states. This study investigated the impact of sex and ovarian hormones on the chemosensitive cardiac afferent reflex. Experiments were performed in anaesthetized, sinoaortic baroreceptor denervated male, female and ovariectomized female (OVX) Wistar rats with either intact cardiac innervation or bilateral vagotomy. To investigate the chemosensitive cardiac afferent reflexes renal SNA, heart rate (HR) and arterial pressure (AP) were recorded before and following application of capsaicin onto the epicardial surface of the left ventricle. Compared to males, ovary-intact females displayed similar cardiac afferent reflex mediated changes in renal SNA albeit with a reduced maximum sympathetic reflex driven increase in renal SNA. In females, ovariectomy significantly attenuated the cardiac vagal afferent reflex mediated inhibition of renal SNA (renal SNA decreased 2 ± 17% in OVX versus -50 ± 4% in ovary-intact females, P < 0.05) and augmented cardiac sympathetic afferent reflex mediated sympathoexcitation (renal SNA increased 91 ± 11% in OVX vs 62 ± 9% in ovary-intact females, P < 0.05) so that overall increases in reflex driven sympathoexcitation were significantly enhanced. Chronic estradiol replacement, but not progesterone replacement, begun at time of ovariectomy restored cardiac afferent reflex responses to be similar as ovary-intact females. Vagal denervation eliminated all group differences. The current findings show ovariectomy in female rats, mimicking menopause in women, results in greater chemosensitive cardiac afferent reflex driven sympathoexcitation and does so, at least partly, via the loss of estradiols actions on the cardiac vagal afferent reflex pathway.
Collapse
Affiliation(s)
- Maximilian I Pinkham
- Circulatory Control Laboratory, Department of Physiology and Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Circulatory Control Laboratory, Department of Physiology and Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Ortiz-Pérez A, Espinosa-Raya J, Picazo O. An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 2016; 17:15-25. [DOI: 10.1007/s10339-015-0746-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023]
|
25
|
Ingberg E, Theodorsson E, Theodorsson A, Ström JO. Effects of high and low 17β-estradiol doses on focal cerebral ischemia in rats. Sci Rep 2016; 6:20228. [PMID: 26839007 PMCID: PMC4738304 DOI: 10.1038/srep20228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
The majority of the numerous animal studies of the effects of estrogens on cerebral ischemia have reported neuroprotective results, but a few have shown increased damage. Differences in hormone administration methods, resulting in highly different 17β-estradiol levels, may explain the discrepancies in previously reported effects. The objective of the present study was to test the hypothesis that it is the delivered dose per se, and not the route and method of administration, that determines the effect, and that high doses are damaging while lower doses are protective. One hundred and twenty ovariectomized female Wistar rats (n = 40 per group) were randomized into three groups, subcutaneously administered different doses of 17β-estradiol and subjected to transient middle cerebral artery occlusion. The modified sticky tape test was performed after 24 h and the rats were subsequently sacrificed for infarct size measurements. In contrast to our hypothesis, a significant negative correlation between 17β-estradiol dose and infarct size was found (p = 0.018). Thus, no support was found for the hypothesis that 17β-estradiol can be both neuroprotective and neurotoxic merely depending on dose. In fact, on the contrary, the findings indicate that the higher the dose of 17β-estradiol, the smaller the infarct.
Collapse
Affiliation(s)
- Edvin Ingberg
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Annette Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Division of Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Jakob O Ström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, Region Örebro Län, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
26
|
Gualberto EC, Theodoro LH, Longo M, Novaes VCN, Nagata MJH, Ervolino E, Garcia VG. Antimicrobial photodynamic therapy minimizes the deleterious effect of nicotine in female rats with induced periodontitis. Lasers Med Sci 2015; 31:83-94. [DOI: 10.1007/s10103-015-1820-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
|
27
|
Duarte-Guterman P, Yagi S, Chow C, Galea LAM. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav 2015; 74:37-52. [PMID: 26122299 DOI: 10.1016/j.yhbeh.2015.05.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Shunya Yagi
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Carmen Chow
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Liisa A M Galea
- Department of Psychology, Centre for Brain Health, Program in Neuroscience, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
28
|
Mosquera L, Shepherd L, Torrado AI, Torres-Diaz YM, Miranda JD, Segarra AC. Comparison of Two Methods of Estradiol Replacement: their Physiological and Behavioral Outcomes. ACTA ACUST UNITED AC 2015; 6:276. [PMID: 26962471 DOI: 10.4172/2157-7579.1000276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluctuating sex steroids during the estrous or menstrual cycle of mammalian females make it difficult to determine their role on behaviors and physiology. To avoid this, many investigators ovariectomize their animals and administer progesterone, estradiol or a combination of both. Several different strategies are used to administer estradiol, which confounds interpretation of results. This study compared two methods of estradiol replacement implants: Silastic tubes filled with crystalline estradiol benzoate (E2) and commercially available estradiol benzoate pellets. Implants were placed subcutaneously in adult ovariectomized (OVX) rats and blood samples obtained weekly. Control OVX rats received empty Silastic tubes or placebo pellets. Our data shows that E2 plasma levels from rats with Silastic implants peaked after one week and decreased slowly thereafter. In contrast, plasma E2 from commercial pellets peaked after two weeks, increasing and decreasing over time. To validate hormone release, body weight was monitored. All E2 treated animals maintained a similar body weight over the four weeks period whereas an increase in body weight over time was observed in the OVX group that received empty implants, confirming E2 release and supporting the role of E2 in the regulation of body weight. Furthermore, the effects of E2 on basal locomotor activity were assessed using animal activity cages. Results showed no difference between E2 and control group in several locomotor activities. These results indicate that Silastic implants achieve more stable plasma estradiol levels than pellets and thus are a better alternative for studies of estradiol on brain function and behavior.
Collapse
Affiliation(s)
- Laurivette Mosquera
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Luz Shepherd
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Aranza I Torrado
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Yvonne M Torres-Diaz
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Jorge D Miranda
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Annabell C Segarra
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| |
Collapse
|
29
|
PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 2014; 39:1614-23. [PMID: 24434744 PMCID: PMC4023158 DOI: 10.1038/npp.2014.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
Recent gene association studies have implicated pituitary adenylate cyclase-activating peptide (PACAP) systems in several psychiatric disorders associated with stressor exposure, and we have argued that many of the behavioral consequences of repeated stressor exposure may depend on the expression of PACAP in the bed nucleus of the stria terminalis (BNST). One behavioral consequence of the activation of stress systems can be anorexia and subsequent weight loss, and both the activation of central PACAP systems as well as neuronal activity in the BNST have also been associated with anorexic states in rodents. Hence, we investigated the regulation of food and water intake and weight loss following BNST PACAP infusion. BNST PACAP38 dose-dependently decreased body weight, as well as food and water intake in the first 24 h following infusion. Because different BNST subregions differentially regulate stress responding, we further examined the effects of PACAP38 in either the anterior or posterior BNST. Anterior BNST PACAP38 infusion did not alter weight gain, whereas posterior PACAP38 infusion resulted in weight loss. PACAP38 infused into the lateral ventricles did not alter weight, suggesting that the effects of BNST-infused PACAP were not mediated by leakage into the ventricular system. These data suggest that PACAP receptor activation in posterior BNST subregions can produce anorexia and weight loss, and corroborate growing data implicating central PACAP activation in mediating the consequences of stressor exposure.
Collapse
|
30
|
Acosta-Cota SJ, Sánchez-López A, Molina-Muñoz T, Gómez-Viquez NL, Centurión D. Evidence that chronic administration of 17β-oestradiol decreases the vasopressor responses to adrenergic system stimulation in streptozotocin-diabetic female rats. Steroids 2014; 83:1-9. [PMID: 24513052 DOI: 10.1016/j.steroids.2014.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 01/02/2023]
Abstract
In vitro studies have indicated that 17β-oestradiol exerts beneficial effects on the cardiovascular system by activating the nitric oxide pathway. However, these effects have not been demonstrated in vivo in the systemic vasculature of rats made diabetic through streptozotocin induction. Therefore, the goal of this study was to determine the effect of 17β-oestradiol on vasopressor responses induced by sympathetic stimulation or i.v. injections of noradrenaline, methoxamine and B-HT 933 in sham-operated or ovariectomised, diabetic or non-diabetic female rats. Thus, rats were ovariectomised or sham-operated for this experiment. One week later, the animals were treated with streptozotocin (60mg/kg, i.p.) or its vehicle. Two weeks later, these rats were treated daily with 17β-oestradiol (10μg/kg, s.c.) or its vehicle for five weeks. Next, under anaesthesia, the animals were pithed and prepared for blood pressure and heart rate measurements. 17β-oestradiol failed to modify the vasopressor responses to (i) sympathetic stimulation, noradrenaline, methoxamine or B-HT 933 in sham-operated non-diabetic rats; (ii) sympathetic stimulation or B-HT 933 in sham-operated diabetic rats; (iii) noradrenaline or methoxamine in ovariectomised non-diabetic rats. In contrast, 17β-oestradiol significantly decreased the vasopressor responses to (i) noradrenaline and methoxamine in sham-operated diabetic rats; (ii) sympathetic stimulation or B-HT 933 in ovariectomised non-diabetic rats; and (iii) sympathetic stimulation, noradrenaline, methoxamine or B-HT 933 in ovariectomised diabetic rats. These results suggest that chronic administration of 17β-oestradiol decreases the vasopressor responses to adrenergic system stimulation in streptozotocin-induced diabetic rats. This report describes the first in vivo study reporting this effect of 17β-oestradiol in diabetes.
Collapse
Affiliation(s)
- Selene J Acosta-Cota
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, C.P. 14330 México D.F., Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, C.P. 14330 México D.F., Mexico
| | - Tzindilu Molina-Muñoz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, C.P. 14330 México D.F., Mexico
| | - Norma L Gómez-Viquez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, C.P. 14330 México D.F., Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas Coapa, Deleg. Tlalpan, C.P. 14330 México D.F., Mexico.
| |
Collapse
|
31
|
Ström JO, Ingberg E. Impact of methodology on estrogens' effects on cerebral ischemia in rats: an updated meta-analysis. BMC Neurosci 2014; 15:22. [PMID: 24495535 PMCID: PMC3975994 DOI: 10.1186/1471-2202-15-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
Background Although most animal stroke studies have demonstrated potent neuroprotective effects of estrogens, there are a number of articles reporting the opposite. In 2009, we made the case that this dichotomy was related to administered estrogen dose. Several other suggestions for the discordant results have also been propagated, including the age of the experimental animals and the length of hypoestrogenicity prior to estrogen administration. These two suggestions have gained much popularity, probably because of their kinship with the window of opportunity hypothesis, which is commonly used to explain the analogous dichotomy among human studies. We were therefore encouraged to perform an updated meta-analysis, and to improve it by including all relevant variables in a large multiple regression model, where the impact of confounders could be controlled for. Results The multiple regression model revealed an indisputable impact of estrogen administration mode on the effects of estrogens in ischemic stroke. Subcutaneous slow-release pellets differed from the injection and silastic capsule treatments in terms of impact of estrogens on ischemic stroke, showing that the first mentioned were more prone to render estrogens damaging. Neither the use of elderly animals nor the adoption of longer wash-out periods influenced estrogens’ effects on experimental ischemic stroke in rats. Conclusions We conclude that the discordant results regarding estrogens’ effects in rat models of ischemic stroke are a consequence of differences in estrogen administration modes. These results are not only of importance for the ongoing debate regarding menopausal hormone therapy, but also have an important bearing on experimental stroke methodology and the apparent translational roadblock for suggested stroke interventions.
Collapse
Affiliation(s)
- Jakob O Ström
- Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro SE-703 62, Sweden.
| | | |
Collapse
|
32
|
Babb JA, Masini CV, Day HEW, Campeau S. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry. Stress 2013; 16:664-77. [PMID: 23992519 PMCID: PMC8162912 DOI: 10.3109/10253890.2013.840282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.
Collapse
Affiliation(s)
- Jessica A Babb
- Department of Psychology and Neuroscience, University of Colorado at Boulder , Boulder, CO , USA
| | | | | | | |
Collapse
|
33
|
Strom JO, Ingberg E, Theodorsson E, Theodorsson A. Effects of high and low 17β-estradiol doses on focal cerebral ischemia: negative results. Sci Rep 2013; 3:3111. [PMID: 24177749 PMCID: PMC6505964 DOI: 10.1038/srep03111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023] Open
Abstract
The reasons why some animal studies indicate that estrogens increase focal cerebral ischemic damage while others show estrogen-induced neuroprotection has hitherto not been fully elucidated. Recent evidence indicates that discrepancies in hormone administration paradigms, resulting in highly different serum hormone concentrations, may account for the dichotomy. The current study aimed to test this hypothesis. Sixty ovariectomized female rats were randomized into three groups differing in 17β-estradiol regimens, and transient focal cerebral ischemia was subsequently induced. All animals were subjected to a small functional testing battery, and three days after MCAo they were sacrificed for infarct size assessment. Infarct sizes did not differ between groups, however clear discrepancies were seen in body weight and feeding behavior. In comparison to sham-operated animals, ovariectomized rats rapidly increased in body weight, whereas the opposite was seen in rats receiving 17beta-estradiol. The weight gain in the ovariectomized rats was paralleled by an increased food intake.
Collapse
Affiliation(s)
- Jakob O Strom
- Clinical Chemistry, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Department of Clinical Chemistry, County Council of Östergötland, Linköping, Sweden
| | | | | | | |
Collapse
|
34
|
Wibowo E, Wassersug RJ. The effect of estrogen on the sexual interest of castrated males: Implications to prostate cancer patients on androgen-deprivation therapy. Crit Rev Oncol Hematol 2013; 87:224-38. [DOI: 10.1016/j.critrevonc.2013.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/09/2012] [Accepted: 01/16/2013] [Indexed: 11/30/2022] Open
|
35
|
Sahores A, Luque GM, Wargon V, May M, Molinolo A, Becu-Villalobos D, Lanari C, Lamb CA. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS One 2013; 8:e64049. [PMID: 23691144 PMCID: PMC3655057 DOI: 10.1371/journal.pone.0064049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/07/2013] [Indexed: 11/18/2022] Open
Abstract
The basic component of Silastic® glue (Dow Corning) used to prepare Silastic® pellets is polydimethylsiloxane. This compound is also present in other commercial adhesives such as FASTIX® (Akapol SA) that are available in any store for that category. In the present study we developed low cost, easy to prepare handmade steroid pellets (HMSP) by mixing 17β-estradiol, progesterone or other synthetic steroids with FASTIX® adhesive. We assessed serum levels of 17β-estradiol, progesterone, prolactin and luteinizing hormone in ovariectomized mice treated for 24 and 48 h or 7, 14 and 28 days with 20 µg or 5 mg of 17β-estradiol or 5 mg progesterone HMSP. We found a time dependent and significant increase in the levels of both natural hormones, and a downregulation of serum luteinizing hormone levels, while both 17β-estradiol doses increased serum prolactin. Uterine weights at sacrifice and histological examination of the uteri and the mammary glands correlated with estrogen or progestin action. Finally, we evaluated the biological effects of HMSP compared to commercial pellets or daily injections in the stimulation or inhibition of hormone dependent mammary tumor growth, and found that HMSP were as effective as the other methods of hormone administration. These data show that HMSP represent a useful, low cost, easily accessible method for administering steroids to mice.
Collapse
Affiliation(s)
- Ana Sahores
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Victoria Wargon
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - María May
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Alfredo Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Claudia Lanari
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Caroline A. Lamb
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
36
|
Strom JO, Nilsson T, Theodorsson E. Effects of 17β-estradiol on galanin(1-29)- and galanin(1-16)-like immunoreactivities. Peptides 2013; 43:1-7. [PMID: 23402789 DOI: 10.1016/j.peptides.2013.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/21/2022]
Abstract
There are reasons to believe that the galanin neuropeptide family could include more than the two hitherto known members (galanin(1-29) and galanin-like peptide), such as the existence of at least three galanin receptors and the fact that synthetic short-chain homologues have effects and binding sites that are distinct from those of galanin(1-29). The current study uses a radioimmunoassay based on a polyclonal rabbit antiserum raised against galanin(1-16) to study the concentrations of galanin(1-16) like immunoreactivity (LI) in the various parts of the brain and gut of ovariectomized female rats, and investigates the effects of different concentrations of estradiol on these concentrations in relation to galanin(1-29)-LI. Galanin(1-29) concentrations were increased by 17β-estradiol administration in almost all examined tissues whereas galanin(1-16)-LI was increased by 17β-estradiol treatment in most of the gut, but only in the pituitary of the brain. Furthermore, the relation between galanin(1-29)-LI and galanin(1-16)-LI varied substantially from tissue to tissue. The main hypothesis, that galanin(1-16)-LI would be affected by 17β-estradiol in brain and/or gut, was confirmed in addition to the secondary hypothesis, stating that the pattern of galanin(1-16)-LI changes would differ from that of galanin(1-29). The study indicates that galanin(1-16)-LI is estrogen-responsive but that its concentrations are regulated differently from that of galanin(1-29). This is strongly indicative of a biological relevance of this potentially new member of the galanin neuropeptide family.
Collapse
Affiliation(s)
- Jakob O Strom
- Clinical Chemistry, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
37
|
Bone morphogenetic protein 4 mediates estrogen-regulated sensory axon plasticity in the adult female reproductive tract. J Neurosci 2013; 33:1050-61a. [PMID: 23325243 DOI: 10.1523/jneurosci.1704-12.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral axons are structurally plastic even in the adult, and altered axon density is implicated in many disorders and pain syndromes. However, mechanisms responsible for peripheral axon remodeling are poorly understood. Physiological plasticity is characteristic of the female reproductive tract: vaginal sensory innervation density is low under high estrogen conditions, such as term pregnancy, whereas density is high in low-estrogen conditions, such as menopause. We exploited this system in rats to identify factors responsible for adult peripheral neuroplasticity. Calcitonin gene-related peptide-immunoreactive sensory innervation is distributed primarily within the vaginal submucosa. Submucosal smooth muscle cells express bone morphogenetic protein 4 (BMP4). With low estrogen, BMP4 expression was elevated, indicating negative regulation by this hormone. Vaginal smooth muscle cells induced robust neurite outgrowth by cocultured dorsal root ganglion neurons, which was prevented by neutralizing BMP4 with noggin or anti-BMP4. Estrogen also prevented axon outgrowth, and this was reversed by exogenous BMP4. Nuclear accumulation of phosphorylated Smad1, a primary transcription factor for BMP4 signaling, was high in vagina-projecting sensory neurons after ovariectomy and reduced by estrogen. BMP4 regulation of innervation was confirmed in vivo using lentiviral transduction to overexpress BMP4 in an estrogen-independent manner. Submucosal regions with high virally induced BMP4 expression had high innervation density despite elevated estrogen. These findings show that BMP4, an important factor in early nervous system development and regeneration after injury, is a critical mediator of adult physiological plasticity as well. Altered BMP4 expression may therefore contribute to sensory hyperinnervation, a hallmark of several pain disorders, including vulvodynia.
Collapse
|
38
|
Doss ALN, Smith PG. Nerve-Langerhans cell interactions in diabetes and aging. Histol Histopathol 2013; 27:1589-98. [PMID: 23059889 DOI: 10.14670/hh-27.1589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cutaneous infections are a leading cause of hospitalization of diabetic patients. Langerhans cells (LCs) are antigen-presenting cutaneous dendritic cells that protect against infections, and effects of diabetes and aging on these cells are unclear. We examined LCs in footpads of rats with streptozotocin-induced diabetes at 3 months of age following 4 weeks of diabetes, and at 6 months following 16 weeks of diabetes. Immunostaining of LCs using the selective marker protein langerin showed cutaneous LC composition increased between 3 and 6 months of age owing to increased LC numbers and size in control rats. In diabetic rats, LC numbers increased with age but, unlike 6 month old controls, cell size did not, suggesting that diabetes impairs the increase in cell size that is a hallmark of LC maturation. Diabetes reduced LC numbers after 4 weeks and numbers and sizes following 16 weeks. We examined the relation between LC and innervation and found that, while axon density decreased with aging, it was not affected by 16 weeks of diabetes. However, LCs expressing the neuronal marker PGP9.5 represented a source of error in axonal counts. These findings support the hypothesis that diabetes substantially impacts LC proliferation and maturation independent of effects on cutaneous innervation. Accordingly, the interactions of diabetes and aging on LCs may be important factors in predisposing diabetic patients to cutaneous ulcers and infections.
Collapse
Affiliation(s)
- A L N Doss
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
39
|
Babb JA, Masini CV, Day HEW, Campeau S. Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience 2013; 234:40-52. [PMID: 23305762 DOI: 10.1016/j.neuroscience.2012.12.051] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids.
Collapse
Affiliation(s)
- J A Babb
- Department of Psychology and Neuroscience, University of Colorado at Boulder, USA
| | | | | | | |
Collapse
|
40
|
Rabin BM, Carrihill-Knoll KL, Long LV, Pitts SC, Hale BS. Effects of 17<i>β</i>-Estradiol on Cognitive Performance of Ovariectomized Female Rats Exposed to Space Radiation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbbs.2013.31007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Ström JO, Theodorsson A, Ingberg E, Isaksson IM, Theodorsson E. Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp 2012:e4013. [PMID: 22710371 DOI: 10.3791/4013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations. This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures.
Collapse
Affiliation(s)
- Jakob O Ström
- Clinical Chemistry and Neurosurgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University.
| | | | | | | | | |
Collapse
|
42
|
Walker QD, Johnson ML, Van Swearingen AED, Arrant AE, Caster JM, Kuhn CM. Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy. Neuropharmacology 2012; 62:2267-77. [PMID: 22342988 DOI: 10.1016/j.neuropharm.2012.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
Abstract
Ovarian hormones modulate the pharmacological effects of psychostimulants and may enhance vulnerability to drug addiction. Female rats have more midbrain dopamine neurons than males and greater dopamine uptake and release rates. Cocaine stimulates motor behavior and dopamine efflux more in female than male rats, but the mediating mechanisms are unknown. This study investigated individual differences in anatomic, neurochemical, and behavioral measures in female rats to understand how ovarian hormones affect the relatedness of these endpoints. Ovarian hormone effects were assessed by comparing individual responses in ovariectomized (OVX) and sham adult female rats. Locomotion was determined before and following 10mg/kg cocaine. Electrically-stimulated dopamine efflux was assessed using fast cyclic voltammetry in vivo. Dopamine neuron number and density in substantia nigra (SN) and ventral tegmental area (VTA) were determined in the same animals using tyrosine-hydroxylase immunohistochemistry and unbiased stereology. Locomotor behavior and dopamine efflux did not differ at baseline but were greater in sham than OVX following cocaine. Cocaine increased dopamine release rates in both groups but uptake inhibition (K(m)) was greater in sham than OVX. Dopamine neuron number and density in SN and VTA were greater in shams. Sham females with the largest uterine weights exhibited the highest density of dopamine neurons in the SN, and the most cocaine-stimulated behavior and dopamine efflux. Ovariectomy eliminated these relationships. We postulate that SN density could link ovarian hormones and high-psychostimulant responses in females. Similar mechanisms may be involved in individual differences in the addiction vulnerability of women.
Collapse
Affiliation(s)
- Q David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Ingberg E, Theodorsson A, Theodorsson E, Strom JO. Methods for long-term 17β-estradiol administration to mice. Gen Comp Endocrinol 2012; 175:188-93. [PMID: 22137913 DOI: 10.1016/j.ygcen.2011.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/28/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
Rodent models constitute a cornerstone in the elucidation of the effects and biological mechanisms of 17β-estradiol. However, a thorough assessment of the methods for long-term administration of 17β-estradiol to mice is lacking. The fact that 17β-estradiol has been demonstrated to exert different effects depending on dose emphasizes the need for validated administration regimens. Therefore, 169 female C57BL/6 mice were ovariectomized and administered 17β-estradiol using one of the two commonly used subcutaneous methods; slow-release pellets (0.18 mg, 60-day release pellets; 0.72 mg, 90-day release pellets) and silastic capsules (with/without convalescence period, silastic laboratory tubing, inner/outer diameter: 1.575/3.175 mm, filled with a 14 mm column of 36 μg 17β-estradiol/mL sesame oil), or a novel peroral method (56 μg 17β-estradiol/day/kg body weight in the hazelnut cream Nutella). Forty animals were used as ovariectomized and intact controls. Serum samples were obtained weekly for five weeks and 17β-estradiol concentrations were measured using radioimmunoassay. The peroral method resulted in steady concentrations within--except on one occasion--the physiological range and the silastic capsules produced predominantly physiological concentrations, although exceeding the range by maximum a factor three during the first three weeks. The 0.18 mg pellet yielded initial concentrations an order of magnitude higher than the physiological range, which then decreased drastically, and the 0.72 mg pellet produced between 18 and 40 times higher concentrations than the physiological range during the entire experiment. The peroral method and silastic capsules described in this article constitute reliable modes of administration of 17β-estradiol, superior to the widely used commercial pellets.
Collapse
Affiliation(s)
- E Ingberg
- Department of Clinical and Experimental Medicine/Clinical Chemistry, Linkoping University, Linkoping SE-581 85, Sweden.
| | | | | | | |
Collapse
|
44
|
Pinto-Almazán R, Calzada-Mendoza CC, Campos-Lara MG, Guerra-Araiza C. Effect of chronic administration of estradiol, progesterone, and tibolone on the expression and phosphorylation of glycogen synthase kinase-3β and the microtubule-associated protein tau in the hippocampus and cerebellum of female rat. J Neurosci Res 2011; 90:878-86. [DOI: 10.1002/jnr.22808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/25/2011] [Accepted: 09/01/2011] [Indexed: 01/26/2023]
|
45
|
McHale MJ, Sarwar ZU, Cardenas DP, Porter L, Salinas AS, Michalek JE, McManus LM, Shireman PK. Increased fat deposition in injured skeletal muscle is regulated by sex-specific hormones. Am J Physiol Regul Integr Comp Physiol 2011; 302:R331-9. [PMID: 22116509 DOI: 10.1152/ajpregu.00427.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E(2) replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury.
Collapse
Affiliation(s)
- Matthew J McHale
- Department of Surgery, University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Isaksson IM, Theodorsson A, Theodorsson E, Strom JO. Methods for 17β-oestradiol administration to rats. Scandinavian Journal of Clinical and Laboratory Investigation 2011; 71:583-92. [DOI: 10.3109/00365513.2011.596944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Dacks PA, Krajewski SJ, Rance NE. Ambient temperature and 17β-estradiol modify Fos immunoreactivity in the median preoptic nucleus, a putative regulator of skin vasomotion. Endocrinology 2011; 152:2750-9. [PMID: 21521752 PMCID: PMC3115603 DOI: 10.1210/en.2010-1230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
Estrogen has pronounced effects on thermoregulation, but the anatomic sites of integration between the reproductive and thermoregulatory axes are unknown. In this study, we tested whether estradiol-17β (E(2)) treatment would alter the activity of thermoregulatory brain regions responding to mild changes in ambient temperature (T(AMBIENT)). Core and tail skin temperatures were recorded at the ambient temperatures of 20, 24, or 31 C in ovariectomized (OVX) rats with and without E(2). Neuronal activity was evaluated by counting the number of Fos-immunoreactive cells in the brains of rats killed 90 min after exposure to one of the three ambient temperatures. Of 14 brain areas examined, the median preoptic nucleus (MnPO) was the only site that exhibited increased Fos immunoreactivity at the high T(AMBIENT) of 31 C. At 24 C, OVX rats exhibited increased numbers of MnPO Fos-immunoreactive cells, compared with OVX + E(2) rats. Interestingly, tail skin vasomotion and MnPO Fos expression were affected in a similar manner by T(AMBIENT) and E(2) treatment. In the arcuate nucleus and anteroventral periventricular nucleus (AVPV), Fos immunoreactivity was highest at the low T(AMBIENT) of 20 C, with inhibitory (arcuate nucleus) and stimulatory (AVPV) effects of E(2). No other areas responded to both T(AMBIENT) and E(2) treatment. These results implicate the MnPO, the arcuate nucleus, and the AVPV as sites of integration between the reproductive and thermoregulatory axes. Combined with studies showing the importance of MnPO neurons in heat-defense pathways, the MnPO emerges as a likely site for E(2) modulation of thermoregulatory vasomotion.
Collapse
Affiliation(s)
- Penny A Dacks
- Department of Pathology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
48
|
Estradiol suppresses recovery of REM sleep following sleep deprivation in ovariectomized female rats. Physiol Behav 2011; 104:962-71. [PMID: 21722658 DOI: 10.1016/j.physbeh.2011.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Sleep complaints such as insufficient sleep and insomnia are twice as prevalent in women. Symptoms of sleep disruption are often coincident with changes in the gonadal hormone profile across a women's lifespan. Data from a number of different species, including humans, non-human primates and rodents strongly implicate a role for gonadal hormones in the modulation of sleep. In female rats, increased levels of circulating estradiol increase wakefulness and reduce sleep in the dark phase. In this study, we asked whether this reduction in sleep is driven by estradiol-dependent reduction in sleep need during the dark phase by assessing sleep before and after sleep deprivation (SD). Ovariectomized rats implanted with EEG telemetry transmitters were given Silastic capsules containing either 17-β estradiol in sesame oil (E2) or sesame oil alone. After a 24-hour baseline, animals were sleep-deprived via gentle handling for the entire 12-hour light phase, and then allowed to recover. E2 treatment suppressed baseline REM sleep duration in the dark phase, but not NREM or Wake duration, within three days. While SD induced a compensatory increase in REM duration in both groups, this increase was smaller in E2-treated rats compared to oils, as measured in absolute duration as well as by relative increase over baseline. Thus, E2 suppressed REM sleep in the dark phase both before and after SD. E2 also suppressed NREM and increased waking in the early- to mid-dark phase on the day after SD. NREM delta power tracked NREM sleep before and after SD, with small hormone-dependent reductions in delta power in recovery, but not spontaneous sleep. These results demonstrate that E2 powerfully and specifically suppresses spontaneous and recovery REM sleep in the dark phase, and suggest that ovarian steroids may consolidate circadian sleep-wake rhythms.
Collapse
|
49
|
Short- and long-term treatment with estradiol or progesterone modifies the expression of GFAP, MAP2 and Tau in prefrontal cortex and hippocampus. Life Sci 2011; 89:123-8. [PMID: 21683086 DOI: 10.1016/j.lfs.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 11/21/2022]
Abstract
AIMS We analyzed the effects of the short- and long-term administration of estradiol (E2) or progesterone (P4) after ovariectomy on the expression of MAP2, Tau and GFAP in prefrontal cortex and hippocampus. MAIN METHODS Sprague Dawley rats were ovariectomized and immediately treated with E2 or P4 for 2 or 18 weeks. At the end of treatments, hippocampus and prefrontal cortex were excised, proteins were extracted and MAP2, Tau and GFAP were analyzed by Western blot. KEY FINDINGS MAP2 and Tau content was not modified by E2 in the prefrontal cortex. On the contrary, P4 decreased MAP2 content after a short-term treatment, while it increased that of MAP2 and TAU in this brain region after a long-term treatment. E2 increased MAP2 content in hippocampus. In this region, short-term administration of P4 increased that of MAP2. GFAP content was diminished after a long-term administration of P4 in hippocampus. SIGNIFICANCE Current data emphasize the importance of short- and long-term sex steroid treatment on neuronal and glial cytoskeletal proteins expression.
Collapse
|
50
|
Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301:R905-15. [PMID: 21632848 DOI: 10.1152/ajpregu.00800.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.
Collapse
Affiliation(s)
- Andre S Mecawi
- Faculty of Medicine of Ribeirao Preto, Department of Physiology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|