1
|
Boyle GE, Sitko KA, Galloway JG, Haddox HK, Bianchi AH, Dixon A, Wheelock MK, Vandi AJ, Wang ZR, Thomson RES, Garge RK, Rettie AE, Rubin AF, Geck RC, Gillam EMJ, DeWitt WS, Matsen FA, Fowler DM. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. Genetics 2024; 228:iyae156. [PMID: 39319420 PMCID: PMC11538415 DOI: 10.1093/genetics/iyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
The cytochrome P450s enzyme family metabolizes ∼80% of small molecule drugs. Variants in cytochrome P450s can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across cytochrome P450s is challenging. Even closely related cytochrome P450s like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using variant abundance by massively parallel sequencing, we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for cytochrome P450 function, and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple wild type amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the 2 homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.
Collapse
Affiliation(s)
- Gabriel E Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine A Sitko
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aisha Haley Bianchi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ajeya Dixon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melinda K Wheelock
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allyssa J Vandi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ziyu R Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - William S DeWitt
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Frederick A Matsen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Wang Q, Liu X, Zhang H, Chu H, Shi C, Zhang L, Bai J, Liu P, Li J, Zhu X, Liu Y, Chen Z, Huang R, Chang H, Liu T, Chang Z, Cheng J, Jiang H. Cytochrome P450 Enzyme Design by Constraining the Catalytic Pocket in a Diffusion Model. RESEARCH (WASHINGTON, D.C.) 2024; 7:0413. [PMID: 38979516 PMCID: PMC11227911 DOI: 10.34133/research.0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024]
Abstract
Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaonan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hejian Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- College of Biotechnology,
Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huanyu Chu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- College of Life Science and Technology,
Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jie Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Pi Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jing Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Nankai University, Tianjin 300071, China
- College of Life Science,
Nankai University, Tianjin 300071, China
| | - Xiaoxi Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yuwan Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Rong Huang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hong Chang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Tian Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology,
Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Doğru EK, Sakallı T, Liu G, Sayers Z, Surmeli NB. Small angle X-ray scattering analysis of thermophilic cytochrome P450 CYP119 and the effects of the N-terminal histidine tag. Int J Biol Macromol 2024; 265:131026. [PMID: 38522710 DOI: 10.1016/j.ijbiomac.2024.131026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.
Collapse
Affiliation(s)
- Ekin Kestevur Doğru
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Tuğçe Sakallı
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye
| | - Goksin Liu
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Zehra Sayers
- Sabancı University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla 34956, Istanbul, Türkiye
| | - Nur Basak Surmeli
- İzmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35430 Urla, Izmir, Türkiye.
| |
Collapse
|
4
|
Fu T, Zhang H, Zheng Q. Assessing the role of residue Phe108 of cytochrome P450 3A4 in allosteric effects of midazolam metabolism. Phys Chem Chem Phys 2024; 26:8807-8814. [PMID: 38421040 DOI: 10.1039/d3cp05270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more drugs in clinical use than any other xenobiotic-metabolizing enzyme. CYP3A4-mediated drug metabolism is usually allosterically modulated by substrate concentration (homotropic allostery) and other drugs (heterotropic allostery), exhibiting unusual kinetic profiles and regiospecific metabolism. Recent studies suggest that residue Phe108 (F108) of CYP3A4 may have an important role in drug metabolism. In this work, residue mutations were coupled with well-tempered metadynamics simulations to assess the importance of F108 in the allosteric effects of midazolam metabolism. Comparing the simulation results of the wild-type and mutation systems, we identify that the π-π interaction and steric effect between the F108 side chain and midazolam is favorable for the stable binding of substrate in the active site. F108 also plays an important role in the transition of substrate binding mode, which mainly induces the transition of substrate binding mode by forming π-π interactions with multiple aromatic rings of the substrate. Moreover, the side chain of F108 is closely related to the radius and depth of the 2a and 2f channels, and F108 may further regulate drug metabolism by affecting the pathway, orientation, or time of substrate entry into the CYP3A4 active site or product egress from the active site. Altogether, we suggest that F108 affects drug metabolism and regulatory mechanisms by affecting substrate binding stability, binding mode transition, and channel characteristics of CYP3A4. Our findings could promote the understanding of complicated allosteric mechanisms in CYP3A4-mediated drug metabolism, and the knowledge could be used for drug development and disease treatment.
Collapse
Affiliation(s)
- Tingting Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Hongxing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| |
Collapse
|
5
|
Guvench O. Water Exchange from the Buried Binding Sites of Cytochrome P450 Enzymes 1A2, 2D6, and 3A4 Correlates with Conformational Fluctuations. Molecules 2024; 29:494. [PMID: 38276571 PMCID: PMC10820051 DOI: 10.3390/molecules29020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Human cytochrome P450 enzymes (CYPs) are critical for the metabolism of small-molecule pharmaceuticals (drugs). As such, the prediction of drug metabolism by and drug inhibition of CYP activity is an important component of the drug discovery and design process. Relative to the availability of a wide range of experimental atomic-resolution CYP structures, the development of structure-based CYP activity models has been limited. To better characterize the role of CYP conformational fluctuations in CYP activity, we perform multiple microsecond-scale all-atom explicit-solvent molecular dynamics (MD) simulations on three CYP isoforms, 1A2, 2D6, and 3A4, which together account for the majority of CYP-mediated drug metabolism. The MD simulations employ a variety of positional restraints, ranging from keeping all CYP atoms close to their experimentally determined coordinates to allowing full flexibility. We find that, with full flexibility, large fluctuations in the CYP binding sites correlate with efficient water exchange from these buried binding sites. This is especially true for 1A2, which, when restrained to its crystallographic conformation, is unable to exchange water between the binding site and bulk solvent. These findings imply that, in addition to crystal structures, a representative ensemble of conformational states ought to be included when developing structure-based CYP activity models.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
6
|
Dudas B, Miteva MA. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction. Trends Pharmacol Sci 2024; 45:39-55. [PMID: 38072723 DOI: 10.1016/j.tips.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Drug metabolism and transport, orchestrated by drug-metabolizing enzymes (DMEs) and drug transporters (DTs), are implicated in drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Reliable and precise predictions of DDIs and ADRs are critical in the early stages of drug development to reduce the rate of drug candidate failure. A variety of experimental and computational technologies have been developed to predict DDIs and ADRs. Recent artificial intelligence (AI) approaches offer new opportunities for better predicting and understanding the complex processes related to drug metabolism and transport. We summarize the role of major DMEs and DTs, and provide an overview of current progress in computational approaches for the prediction of drug metabolism, transport, and DDIs, with an emphasis on AI including machine learning (ML) and deep learning (DL) modeling.
Collapse
Affiliation(s)
- Balint Dudas
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France.
| |
Collapse
|
7
|
Nair PC, Burns K, Chau N, McKinnon RA, Miners JO. The molecular basis of dapsone activation of CYP2C9-catalyzed nonsteroidal anti-inflammatory drug oxidation. J Biol Chem 2023; 299:105368. [PMID: 37866634 PMCID: PMC10696402 DOI: 10.1016/j.jbc.2023.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Kushari Burns
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
8
|
Yu X, Li Y, Tian X, Zang X, Yang S, Qiao H, Zhu C, Moussian B, Wang Y. Pb exposure causes non-linear accumulation of Pb in D. melanogaster controlled by metallothionein B and exerts ecological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165680. [PMID: 37499811 DOI: 10.1016/j.scitotenv.2023.165680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Pb pollution can harm human health and the ecosystem. Therefore, it is worthwhile to study the metabolic processes of heavy metals in individual bodies and their influence on ecological systems. In this work, we analyzed the genetic responses and physiological changes of D. melanogaster which took diets exposed to different doses of Pb using transcriptomic analysis, ICP-MS, and various other physiological methods. We found that the Pb accumulated in D. melanogaster in a nonlinear pattern with the increase of Pb content in food. Metallothioneins (Mtns), especially the MtnB directly affects the accumulation and excretion of metal Pb in D. melanogaster, and causes the nonlinear accumulation. Metal regulatory transcription factor-1 (MTF-1) is involved in the regulation of Pb-induced high expressions of Mtns. Furthermore, an interaction between the metal metabolism pathway and xenobiotic response pathway leads to the cross-tolerances of Pb-exposed D. melanogaster to insecticides and other toxins. The oxidative stress induced by Pb toxicity may be the bridge between them. Our findings provide a physiological and molecular genetic basis for further study of the accumulation and metabolism of Pb in D. melanogaster.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Xiaohan Tian
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Shuyu Yang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chunfeng Zhu
- School of Life Sciences, Tianjin University, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
9
|
Liu S, Zheng Q, Bai F. Differences of Atomic-Level Interactions between Midazolam and Two CYP Isoforms 3A4 and 3A5. Molecules 2023; 28:6900. [PMID: 37836743 PMCID: PMC10574787 DOI: 10.3390/molecules28196900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
CYP 3A4 and CYP 3A5 are two important members of the human cytochrome P450 family. Although their overall structures are similar, the local structures of the active site are different, which directly leads to obvious individual differences in drug metabolic efficacy and toxicity. In this work, midazolam (MDZ) was selected as the probe substrate, and its interaction with two proteins, CYP 3A4 and CYP 3A5, was studied by molecular dynamics simulation (MD) along with the calculation of the binding free energy. The results show that two protein-substrate complexes have some similarities in enzyme-substrate binding; that is, in both complexes, Ser119 forms a high occupancy hydrogen bond with MDZ, which plays a key role in the stability of the interaction between MDZ and the enzymes. However, the complex formed by CYP 3A4 and MDZ is more stable, which may be attributed to the sandwich structure formed by the fluorophenyl group of the substrate with Leu216 and Leu482. Our study interprets the binding differences between two isoform-substrate complexes and reveals a structure-function relationship from the atomic perspective, which is expected to provide a theoretical basis for accurately measuring the effectiveness and toxicity of drugs for individuals in the era of precision medicine.
Collapse
Affiliation(s)
- Shuhui Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
- School and Hospital of Stomatology, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| | - Fuquan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| |
Collapse
|
10
|
Dutkiewicz Z, Mikstacka R. Hydration and Structural Adaptations of the Human CYP1A1, CYP1A2, and CYP1B1 Active Sites by Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:11481. [PMID: 37511239 PMCID: PMC10380238 DOI: 10.3390/ijms241411481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cytochromes CYP1A1, CYP1A2, and CYP1B1, the members of the cytochrome P450 family 1, catalyze the metabolism of endogenous compounds, drugs, and non-drug xenobiotics which include substances involved in the process of carcinogenesis, cancer chemoprevention, and therapy. In the present study, the interactions of three selected polymethoxy-trans-stilbenes, analogs of a bioactive polyphenol trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) with the binding sites of CYP1 isozymes were investigated with molecular dynamics (MD) simulations. The most pronounced structural changes in the CYP1 binding sites were observed in two substrate recognition sites (SRS): SRS2 (helix F) and SRS3 (helix G). MD simulations show that the number and position of water molecules occurring in CYP1 APO and in the structures complexed with ligands are diverse. The presence of water in binding sites results in the formation of water-protein, water-ligand, and bridging ligand-water-protein hydrogen bonds. Analysis of the solvent and substrate channels opening during the MD simulation showed significant differences between cytochromes in relation to the solvent channel and the substrate channels 2c, 2ac, and 2f. The results of this investigation lead to a deeper understanding of the molecular processes that occur in the CYP1 binding sites and may be useful for further molecular studies of CYP1 functions.
Collapse
Affiliation(s)
- Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Renata Mikstacka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University, Collegium Medicum, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
11
|
Bae CS, Lee Y, Ahn T. Therapeutic treatments for diabetes mellitus-induced liver injury by regulating oxidative stress and inflammation. Appl Microsc 2023; 53:4. [PMID: 37428327 PMCID: PMC10333167 DOI: 10.1186/s42649-023-00089-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that affects all systems in the body, including the liver. Numerous studies have reported that chronic DM etiology and pathogenesis complications implicate oxidative stress, generating reactive oxygen species, such as superoxide anions and free radicals. In addition, pro-inflammatory reactions are also underlying functions closely related to oxidative stress that further exacerbate pathological DM states. The liver is especially susceptible to hyperglycemia-induced oxidative stress and the related inflammation. Thus, anti-oxidation and anti-inflammation therapies are promising strategies for treating liver damage. This review summarizes therapeutic treatments attenuating the generation of oxidative stress and pro-inflammation, which also cause DM-induced liver injury. Although the treatments have several impediments to be solved, these remedies may have clinically important implications under the absence of effective drugs for the damaged liver in DM patients.
Collapse
Affiliation(s)
- Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Youngchan Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
12
|
Feng Y, Gong C, Zhu J, Liu G, Tang Y, Li W. Prediction of Sites of Metabolism of CYP3A4 Substrates Utilizing Docking-Derived Geometric Features. J Chem Inf Model 2023. [PMID: 37336765 DOI: 10.1021/acs.jcim.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is one of the major drug-metabolizing enzymes in the human body and is responsible for the metabolism of ∼50% of clinically used drugs. Therefore, the identification of the compound's sites of metabolism (SOMs) mediated by CYP3A4 is of utmost importance in the early stage of drug discovery and development. Herein, docking-based approaches incorporating geometric features were used for SOMs prediction of CYP3A4 substrates. The cross-docking poses of a relatively large data set containing 474 substrates were analyzed in depth, and a widely observed geometric pattern called the close proximity of SOMs was derived from the poses. On the basis of the close proximity, several structure-based models have been constructed, which demonstrated better performance than those structure-based models using the criterion of Fe-SOM distance. For further improving the prediction performance, the structure-based models were also combined with the well-known ligand-based model SMARTCyp. One combined model exhibited good performance on the SOMs prediction of an external substrate set containing kinase inhibitors, PROTACs, approved drugs, and some lead compounds.
Collapse
Affiliation(s)
- Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changda Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jieyu Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Tantipaiboonwong P, Pintha K, Chaiwangyen W, Suttajit M, Khanaree C, Khantamat O. Bioefficacy of Nga-Mon ( Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112210. [PMID: 37299189 DOI: 10.3390/plants12112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Perilla leaves are known to be a rich source of polyphenols, which have been shown to exhibit various biological effects. This study aimed to compare the bioefficacies and bioactivities of fresh (PLEf) and dry (PLEd) Thai perilla (Nga-mon) leaf extracts. Phytochemical analysis indicated that both PLEf and PLEd were abundant in rosmarinic acid and bioactive phenolic compounds. PLEd, which had higher levels of rosmarinic acid but lower levels of ferulic acid and luteolin than PLEf, exhibited greater effectiveness in a free radical scavenging assay. Furthermore, both extracts were found to suppress intracellular ROS generation and exhibit antimutagenic activity against food-borne carcinogens in S. typhimurium. They also attenuated lipopolysaccharide-induced inflammation in RAW 264.7 cells by inhibiting the expression of nitric oxide, iNOS, COX-2, TNF-α, IL-1β, and IL-6 through the suppression of NF-κB activation and translocation. However, PLEf exhibited a higher ability to suppress cellular ROS production and higher antimutagenic and anti-inflammatory activities than PLEd, which can be attributed to its combination of phytochemical components. Overall, PLEf and PLEd have the potential to serve as natural bioactive antioxidant, antimutagenic, and anti-inflammatory agents to achieve potential health benefits.
Collapse
Affiliation(s)
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chakkrit Khanaree
- School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Liu C, Li J, Qi X, Wang L, Sun D, Zhang J, Zhang K, Li J, Li Y, Wen H. Cytochrome P450 superfamily in spotted sea bass: Genome-wide identification and expression profiles under trichlorfon and environmental stresses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101078. [PMID: 37121223 DOI: 10.1016/j.cbd.2023.101078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Cytochrome P450s (CYPs), as one of the most diverse enzyme superfamilies in nature, play critical functions in antioxidant reactions against endogenous and exogenous compounds. In this study, we performed genome-wide characterization of CYP superfamily members and analyzed their expression patterns under several abiotic stresses in spotted sea bass, which is known as an economically important fish species in the Chinese aquaculture industry. A total of 55 CYP genes were identified and divided into 17 families within 10 clans. The analysis of phylogeny, gene structure, and syntenic relationships provided evidence for the evolution of CYP genes and confirmed their annotation and orthology. The expression of CYP genes was examined in the liver during trichlorfon stress using quantitative real-time PCR. The results showed that 20 tested CYP genes displayed significant mRNA expression changes, indicating that they may play crucial roles in the metabolism of trichlorfon and can be potential biomarkers for trichlorfon pollution. Moreover, by screening transcriptomic databases, 10, 3 and 19 CYP genes exhibited differential expression patterns in response to hypoxia, alkalinity and heat stress, respectively. Taken together, this study provided insights into the regulation of CYP genes by toxicological and environmental stresses, laid basis for extensive functional studies of the CYP superfamily in spotted sea bass and other teleost species.
Collapse
Affiliation(s)
- Cong Liu
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Junjie Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Xin Qi
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Lingyu Wang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Donglei Sun
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Jingru Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Kaiqiang Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Jianshuang Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China
| | - Yun Li
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China.
| | - Haishen Wen
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Shandong 266003, China.
| |
Collapse
|
15
|
Seo ME, Min BJ, Heo N, Lee KH, Kim JH. Comprehensive in vitro and in silico assessments of metabolic capabilities of 24 genomic variants of CYP2C19 using two different substrates. Front Pharmacol 2023; 14:1055991. [PMID: 36713839 PMCID: PMC9877350 DOI: 10.3389/fphar.2023.1055991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Most hepatically cleared drugs are metabolized by cytochromes P450 (CYPs), and Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines provide curated clinical references for CYPs to apply individual genome data for optimized drug therapy. However, incorporating novel pharmacogenetic variants into guidelines takes considerable time. Methods: We comprehensively assessed the drug metabolizing capabilities of CYP2C19 variants discovered through population sequencing of two substrates, S-mephenytoin and omeprazole. Results: Based on established functional assays, 75% (18/24) of the variants not yet described in Pharmacogene Variation (PharmVar) had significantly altered drug metabolizing capabilities. Of them, seven variants with inappreciable protein expression were evaluated as protein damaging by all three in silico prediction algorithms, Sorting intolerant from tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined annotation dependent depletion (CADD). The five variants with decreased metabolic capability (<50%) of wild type for either substrates were evaluated as protein damaging by all three in silico prediction algorithms, except CADD exact score of NM_000769.4:c.593T>C that was 19.68 (<20.0). In the crystal structure of the five polymorphic proteins, each altered residue of all those proteins was observed to affect the key structures of drug binding specificity. We also identified polymorphic proteins indicating different tendencies of metabolic capability between the two substrates (5/24). Discussion: Therefore, we propose a methodology that combines in silico prediction algorithms and functional assays on polymorphic CYPs with multiple substrates to evaluate the changes in the metabolism of all possible genomic variants in CYP genes. The approach would reinforce existing guidelines and provide information for prescribing appropriate medicines for individual patients.
Collapse
Affiliation(s)
- Myung-Eui Seo
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Joo Min
- National Forensic Service Seoul Institute, Seoul, South Korea
| | - Nayoon Heo
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea,Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| |
Collapse
|
16
|
Zhang L, Wei Y, Wei L, Liu X, Liu N. Effects of transgenic cotton lines expressing dsAgCYP6CY3-P1 on the growth and detoxification ability of Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2023; 79:481-488. [PMID: 36196669 DOI: 10.1002/ps.7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The pest Aphis gossypii Glover globally causes considerable economic losses on various crops by its feeding damage and disease transmission. Transgenic plants that produce double-stranded RNA (dsRNA) targeted to insect genes are being developed as a pest control strategy. In this study, we evaluated the effects of transgenic cotton-mediated RNA interference (RNAi) on the growth and detoxification ability of A. gossypii after the transgenic cotton lines expressing dsAgCYP6CY3-P1 (the TG cotton lines) were obtained on the basis of exploring the functions of CYP6CY3 in our previous research. RESULTS The developmental time of third- and fourth-instar nymphs which fed on the TG cotton lines were significantly prolonged. Life table parameters showed that the fitness of cotton aphids from the TG cotton lines decreased. Additionally, the relative expression level of CYP6CY3 in cotton aphids which fed on the TG cotton lines was significantly reduced by 47.3 % at 48 h compared with that from the nontransgenic cotton (the NT cotton). Bioassay showed that silencing of CYP6CY3 increased mortality of the nymphs to imidacloprid by 28.49 % (at 24 h) and to acetamiprid by 73.77 % (at 48 h), respectively. CONCLUSION These results indicated that the TG cotton lines delayed the growth and development of A. gossypii, but also decreased population density and increased its sensitivity to imidacloprid and acetamiprid, respectively. The results provide further support for the development and application of plant-mediated RNAi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yuanjie Wei
- Xinjiang Science and Technology Project Service Center, Urumqi, China
| | - Linyu Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ning Liu
- Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
17
|
Zhang Q, Qi Y, Wang S, Zhao F, Zou L, Zhou Q, Geng P, Hong Y, Yang H, Luo Q, Cai J, Wu H, Wang D, Chen H, Yang J, Dai D. Identification and in vitro functional assessment of 10 CYP2C9 variants found in Chinese Han subjects. Front Endocrinol (Lausanne) 2023; 14:1139805. [PMID: 37008923 PMCID: PMC10052410 DOI: 10.3389/fendo.2023.1139805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) participates in about 15% of clinical drug metabolism, and its polymorphism is associated with individual drug metabolism differences, which may lead to the adverse drug reactions (ADRs). In this study, 1163 Chinese Han individuals were recruited to investigate their distribution pattern of CYP2C9 gene and find out the variants that may affect their drug metabolic activities. We successfully developed a multiplex PCR amplicon sequencing method and used it for the genetic screening of CYP2C9 in a large scale. Besides the wild type CYP2C9*1, totally 26 allelic variants of CYP2C9 were detected, which included 16 previously reported alleles and 10 new non-synonymous variants that had not been listed on the PharmVar website. The characteristics of these newly detected CYP2C9 variants were then evaluated after co-expressing them with CYPOR in S. cerevisiae microsomes. Immunoblot analysis revealed that except for Pro163Ser, Glu326Lys, Gly431Arg and Ile488Phe, most of newly detected variants showed comparable protein expression levels to wild type in yeast cells. Two typical CYP2C9 probe drugs, losartan and glimepiride, were then used for the evaluation of metabolic activities of variants. As a result, 3 variants Thr301Met, Glu326Lys, and Gly431Arg almost lost their catalytic activities and most of other variants exhibited significantly elevated activities for drug metabolism. Our data not only enriches the knowledge of naturally occurring CYP2C9 variants in the Chinese Han population, but also provides the fundamental evidence for its potential clinical usage for personalized medicine in the clinic.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuying Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Beijing Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Shuanghu Wang
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Fangling Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Beijing Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Lili Zou
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Quan Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Peiwu Geng
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Yun Hong
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hang Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Beijing Institute of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Qingfeng Luo
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Hualan Wu
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongxu Wang
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Chen
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Dapeng Dai, ; Jiefu Yang, ; Hao Chen,
| | - Jiefu Yang
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Dapeng Dai, ; Jiefu Yang, ; Hao Chen,
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Dapeng Dai, ; Jiefu Yang, ; Hao Chen,
| |
Collapse
|
18
|
Öeren M, Walton PJ, Suri J, Ponting DJ, Hunt PA, Segall MD. Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning. J Med Chem 2022; 65:14066-14081. [PMID: 36239985 DOI: 10.1021/acs.jmedchem.2c01303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unexpected metabolism in modification and conjugation phases can lead to the failure of many late-stage drug candidates or even withdrawal of approved drugs. Thus, it is critical to predict the sites of metabolism (SoM) for enzymes, which interact with drug-like molecules, in the early stages of the research. This study presents methods for predicting the isoform-specific metabolism for human AOs, FMOs, and UGTs and general CYP metabolism for preclinical species. The models use semi-empirical quantum mechanical simulations, validated using experimentally obtained data and DFT calculations, to estimate the reactivity of each SoM in the context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, combine the reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the different enzyme isoforms. The resulting models achieve κ values of up to 0.94 and AUC of up to 0.92.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James Suri
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, U.K
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| |
Collapse
|
19
|
A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis. Nat Commun 2022; 13:5143. [PMID: 36050299 PMCID: PMC9436924 DOI: 10.1038/s41467-022-32879-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P450s with atypical catalytic activities generate the tert-butyl group and one of the lactone rings, characteristic of all G. biloba trilactone terpenoids. The reactions include scarless C-C bond cleavage as well as carbon skeleton rearrangement (NIH shift) occurring on a previously unsuspected intermediate. The cytochrome P450s belong to CYP families that diversifies in pre-seed plants and gymnosperms, but are not preserved in angiosperms. Our work uncovers the early ginkgolide pathway and offers a glance into the biosynthesis of terpenoids of the Mesozoic Era.
Collapse
|
20
|
Guttman Y, Kerem Z. Computer-Aided (In Silico) Modeling of Cytochrome P450-Mediated Food–Drug Interactions (FDI). Int J Mol Sci 2022; 23:ijms23158498. [PMID: 35955630 PMCID: PMC9369352 DOI: 10.3390/ijms23158498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Modifications of the activity of Cytochrome 450 (CYP) enzymes by compounds in food might impair medical treatments. These CYP-mediated food–drug interactions (FDI) play a major role in drug clearance in the intestine and liver. Inter-individual variation in both CYP expression and structure is an important determinant of FDI. Traditional targeted approaches have highlighted a limited number of dietary inhibitors and single-nucleotide variations (SNVs), each determining personal CYP activity and inhibition. These approaches are costly in time, money and labor. Here, we review computational tools and databases that are already available and are relevant to predicting CYP-mediated FDIs. Computer-aided approaches such as protein–ligand interaction modeling and the virtual screening of big data narrow down hundreds of thousands of items in databanks to a few putative targets, to which the research resources could be further directed. Structure-based methods are used to explore the structural nature of the interaction between compounds and CYP enzymes. However, while collections of chemical, biochemical and genetic data are available today and call for the implementation of big-data approaches, ligand-based machine-learning approaches for virtual screening are still scarcely used for FDI studies. This review of CYP-mediated FDIs promises to attract scientists and the general public.
Collapse
|
21
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Shi N, Zheng Q, Zhang H. Molecular Basis of the Recognition of Cholesterol by Cytochrome P450 46A1 along the Major Access Tunnel. ACS Chem Neurosci 2022; 13:1526-1533. [PMID: 35438962 DOI: 10.1021/acschemneuro.1c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CYP46A1 is an important potential target for the treatment of Alzheimer's disease (AD), which is the most common neurodegenerative disease among older individuals. However, the binding mechanism between CYP46A1 and substrate cholesterol (CH) has not been clarified and will not be conducive to the research of relevant drug molecules. In this study, we integrated molecular docking, molecular dynamics (MD) simulations, and adaptive steered MD simulations to explore the recognition and binding mechanism of CYP46A1 with CH. Two key factors affecting the interaction between CH and CYP46A1 are determined: one is a hydrophobic cavity formed by seven hydrophobic residues (F80, Y109, L112, I222, W368, F371, and T475), which provides nonpolar interactions to stabilize CH, and the other is a hydrogen bond formed by H81 and CH, which ensures the binding direction of CH. In addition, the tunnel analysis results show that tunnel 2a is identified as the primary pathway of CH. The entry of CH induces tunnel 2e to close and tunnel w to open. Our results may provide effective clues for the design of drugs based on the substrate for AD and improve our understanding of the structure-function of CYP46A1.
Collapse
Affiliation(s)
- Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, China
| | - Hongxing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
23
|
Koulgi S, Jani V, Phukan S, Sonavane U, Joshi R, Kamboj RK, Palle V. A Deep Dive into the Conformational Dynamics of CYP3A4 : Understanding the Binding of Homotropic and Non‐homotropic Ligands for Mitigating Drug‐Drug interaction (DDI). ChemistrySelect 2022. [DOI: 10.1002/slct.202200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shruti Koulgi
- High Performance Computing – Medical and Bioinformatics Applications Group Centre for Development of Advanced Computing C–DAC Innovation Park, Panchawati, Pashan Pune 411 008 India
| | - Vinod Jani
- High Performance Computing – Medical and Bioinformatics Applications Group Centre for Development of Advanced Computing C–DAC Innovation Park, Panchawati, Pashan Pune 411 008 India
| | - Samiron Phukan
- Lupin Limited (Research Park), Nande Village Pune 412115 India
| | - Uddhavesh Sonavane
- High Performance Computing – Medical and Bioinformatics Applications Group Centre for Development of Advanced Computing C–DAC Innovation Park, Panchawati, Pashan Pune 411 008 India
| | - Rajendra Joshi
- High Performance Computing – Medical and Bioinformatics Applications Group Centre for Development of Advanced Computing C–DAC Innovation Park, Panchawati, Pashan Pune 411 008 India
| | | | - Venkata Palle
- Lupin Limited (Research Park), Nande Village Pune 412115 India
| |
Collapse
|
24
|
Identification of Novel Molecular Targets of Four Microcystin Variants by High-Throughput Virtual Screening. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Highly toxic microcystins (MCs) perform complex interactions with many proteins that induce cellular dysregulation, leading to the development of several diseases including cancer. There is significant diversity and chemical complexity among MC congeners, which makes it difficult to identify structure-dependent toxicity outcomes and their long-term effects. The aim of this study was to exploratory identify likely molecular targets of the main MC variants (MC-LA, MC-LR, MC-RR, and MC-LY) by conducting a computational binding affinity analysis using AutoDock Vina to evaluate the interaction of the toxins with 1000 proteins related to different biological functions. All four variants showed strong in silico interactions with proteins that regulate metabolism/immune system, CD38 (top scoring hit, −11.5 kcal/mol); inflammation, TLR4 (−11.4 kcal/mol) and TLR8 (−11.5 kcal/mol); neuronal conduction, BChE; renin–angiotensin signaling, (ACE); thyroid hormone homeostasis (TTR); and cancer-promoting processes, among other biochemical activities. The results show MCs have the potential to bind onto distinct molecular targets which could generate biochemical alterations through a number of signal transduction pathways. In short, this study broadens our knowledge about the mechanisms of action of different variants of microcystins and provides information for future direct experimentation.
Collapse
|
25
|
Wu Y, Qiao A, Lin S, Chen L. In vitro evaluation of the inhibition potential of echinacoside on human cytochrome P450 isozymes. BMC Complement Med Ther 2022; 22:46. [PMID: 35180866 PMCID: PMC8857812 DOI: 10.1186/s12906-022-03517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Background Echinacoside (ECH) possesses a wide range of biological activity. This present study analyzes the effect of ECH on cytochrome P450 isozymes (CYPs) activities of human liver microsomes. Methods The effect of ECH on CYPs enzyme activities were studied using the enzyme-selective substrates phenacetin (1A2), chlorzoxazone (2E1), S-mephenytoin (2C19), testosterone (3A4), coumarin (2A6), diclofenac (2C9), paclitaxel (2C8), and dextromethorphan (2D6). The IC50 values for CYP1A2, CYP2E1, CYP2C19, and CYP3A4 isoforms were examined to express the strength of inhibition. Further, the inhibition of CYPs was checked for time-dependent or not, and then fitted with competitive or non-competitive inhibition models. The corresponding parameters were also obtained. Results ECH caused inhibitions on CYP1A2, CYP2E1, CYP2C19 and CYP3A4 enzyme activities in HLMs with IC50 of 21.23, 19.15, 8.70 and 55.42 μM, respectively. The obtained results showed that the inhibition of ECH on CYP3A4 was time-dependent with the KI/Kinact value of 6.63/0.066 min− 1·μM− 1. Moreover, ECH inhibited the activity of CYP1A2 and CYP2E1 via non-competitive manners (Ki = 10.90 μM and Ki = 14.40 μM, respectively), while ECH attenuated the CYP2C19 activity via a competitive manner (Ki = 4.41 μM). Conclusions The results of this study indicate that ECH inhibits CYP1A2, CYP2E1, CYP2C19 and CYP3A4 activities in vitro. In vivo and clinical studies are warranted to verify the relevance of these interactions.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Aiqing Qiao
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Shu Lin
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China
| | - Lijia Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, China.
| |
Collapse
|
26
|
Wang Y, Hu B, Zhang Y, Wang D, Luo Z, Wang J, Zhang F. Perspective of structural flexibility on selective inhibition towards CYP1B1 over CYP1A1 by α-naphthoflavone analogs. Phys Chem Chem Phys 2021; 23:20230-20246. [PMID: 34474468 DOI: 10.1039/d1cp02541d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research on action selectivity between CYP1A1 and CYP1B1 is particularly valuable for cancer chemoprevention and chemotherapy. However, they share a very close similarity in their ligand-binding pockets that α-naphthoflavone (ANF) is the co-crystal ligand for both isoforms, which poses a major challenge in revealing their selectivity mechanism. Therefore, three selective CYP1B1 inhibitors derived from ANF were selected to illustrate the structural basis for the selectivity between the two isoforms via a comprehensive computational strategy. It was found that the sustainability of the π-π stacking interactions with the phenylalanine residues of the two isoforms, namely, Phe123, Phe224, and Phe258 for CYP1A1, and Phe134, Phe231, and Phe268 for CYP1B1, played a crucial role in determining the selectivity of ligands with a classic aromatic conjugation system like ANF and its derivatives for CYP1B1 versus CYP1A1. Of note, the structural flexibility of the corresponding protein domains mainly orchestrated the sustainability of the corresponding π-π stacking interactions, thereby determining the binding selectivity. Therefore, the structure modification of naphthoflavone lead compounds into preferable binding configurations to satisfy the π-π stacking interactions of the key phenylalanine residues within CYP1B1 would be an inspiring strategy devised to improve the inhibitory selectivity towards CYP1B1. Collectively, this study revealed valuable insight into understanding the selective mechanism between CYP1A1 and CYP1B1 from the perspective of structural flexibility, which sheds light on the future rational design of CYP1B1 selective inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yupeng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Dong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Zhaohu Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
27
|
Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am J Hum Genet 2021; 108:1735-1751. [PMID: 34314704 DOI: 10.1016/j.ajhg.2021.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants. Using click-seq, we measured the activity of 6,142 missense variants in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants in a human cell line by using variant abundance by massively parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.
Collapse
|
28
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
CityApps: A bioinformatics tool for predicting the key residues of enzymes weakly interacting with monovalent metal ions. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
McCarty KD, Ratliff SA, Furge KA, Furge LL. Tryptophan-75 Is a Low-Energy Channel-Gating Residue that Facilitates Substrate Egress/Access in Cytochrome P450 2D6. Drug Metab Dispos 2021; 49:179-187. [PMID: 33376147 PMCID: PMC7883074 DOI: 10.1124/dmd.120.000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
CYP2D6 is a major drug metabolizing enzyme with a buried active site. Channels leading to the active site from various enzyme surfaces are believed to facilitate ligand egress and access to the active site. The present study used molecular dynamics (MD) and in vitro studies with CYP2D6*1 and a Trp75-to-Ala mutant to examine channel gating in CYP2D6 by Trp75. MD simulations measured energy landscapes of Trp75 conformations and simulated substrate passage within channel 2b using bufuralol as a model substrate. Trp75 alternated between multiple stable states that supported substrate transport along channel 2b with low-energy barriers between states (∼ -1 kcal/mol). Trp75 conformations were stabilized primarily by hydrogen bonding between Trp75 and Glu222, Asn226, Ala225, or Gln72. Energy barriers were low between Trp75 conformations, allowing Trp75 to easily move between various conformations over time and to function in both binding to and moving substrates in the 2b channel of CYP2D6. Michaelis-Menten kinetic studies completed with purified enzyme in a reconstituted system showed overall reduced enzyme efficiency for metabolism of bufuralol and dextromethorphan by the Trp75Ala mutant compared with CYP2D6*1. In stopped-flow measurements, k off for dextromethorphan was decreased in the absence of Trp75. Our results support a role for Trp75 in substrate shuttling to the active site of CYP2D6. SIGNIFICANCE STATEMENT: Using combined molecular dynamics and in vitro assays, this study shows for the first time a role for Trp75 as a channel entrance gating residue in the mechanism of substrate binding/unbinding in CYP2D6. Energy landscapes derived from molecular dynamics were used to quantitate the strength of gating, and kinetics assays showed the impact on enzyme efficiency and k off of a Trp75Ala mutation.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | | - Kyle A Furge
- Department of Chemistry, Kalamazoo College, Kalamazoo, Michigan
| | | |
Collapse
|
31
|
Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213600] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Lim H, Jeon H, Hong S, Kim JH. Catalytic approach to in vivo metabolism of atractylenolide III using biomimetic iron–porphyrin complexes. RSC Adv 2021; 11:33048-33054. [PMID: 35493574 PMCID: PMC9042181 DOI: 10.1039/d1ra05014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
In vivo oxygenation of atractylenolide III during the metabolism and in situ oxidation mechanism by an iron–porphyrin iron(iv)-oxo porphyrin π-cation–radical complex.
Collapse
Affiliation(s)
- Hanae Lim
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, 04310, Seoul, Republic of Korea
| | - Hyeri Jeon
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, 04310, Seoul, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, 04310, Seoul, Republic of Korea
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, 50612, Yangsan, Republic of Korea
| |
Collapse
|
33
|
Don CG, Smieško M. Deciphering Reaction Determinants of Altered-Activity CYP2D6 Variants by Well-Tempered Metadynamics Simulation and QM/MM Calculations. J Chem Inf Model 2020; 60:6642-6653. [PMID: 33269921 DOI: 10.1021/acs.jcim.0c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The xenobiotic metabolizing enzyme CYP2D6 is the P450 cytochrome family member with the highest rate of polymorphism. This causes changes in the enzyme activity and specificity, which can ultimately lead to adverse reactions during drug treatment. To avoid or lower CYP-related toxicity risks, prediction of the most likely positions within a molecule where a metabolic reaction might occur is paramount. In order to obtain accurate predictions, it is crucial to understand all phenomena within the active site of the enzyme that contribute to an efficient substrate recognition and the subsequent catalytic reaction together with their relative weight within the overall thermodynamic context. This study aims to define the weight of the driving forces upon the C-H bond activation within CYP2D6 wild-type and a clinically relevant allelic variant with increased activity (CYP2D6*53) featuring two amino acid mutations in close vicinity of the heme. First, we investigated the steric and electrostatic complementarity of the substrate bufuralol using well-tempered metadynamics simulations with the aim to obtain the free energy profiles for each site of metabolism (SoM) within the different active sites. Second, the stereoelectronic complementarity was determined for each SoM within the two different active-site environments. Relying on the well-tempered metadynamics simulation energy profiles of each SoM, we identified the binding mode that was closest to the preferred transition-state geometry for efficient C-H bond activation. The binding modes were then used as starting structures for the quantum mechanics/molecular mechanics calculations performed to quantify the corresponding activation barriers. Our results show the relevance of the steric component in orienting the SoM in an energetically accessible position toward the heme. However, the corresponding intrinsic reactivity and electronic complementarity within the active site must be accurately evaluated in order to obtain a meaningful reaction prediction, from which the predominant SoM can be determined. The F120I mutation lowered the activation barrier for the major site and one of the minor SoMs. However, it had an impact neither on the CYP2D6 enantioselectivity preference of the oxidation reaction nor on the stereoselectivity from the substrate point of view.
Collapse
Affiliation(s)
- Charleen G Don
- Computational Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Wang Y, Misto M, Yang J, Gehring N, Yu X, Moussian B. Toxicity of Dithiothreitol (DTT) to Drosophila melanogaster. Toxicol Rep 2020; 8:124-130. [PMID: 33425686 PMCID: PMC7782319 DOI: 10.1016/j.toxrep.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The thiol-containing compound Dithiothreitol (DTT) has been shown to be toxic to cultured cells by inducing the generation of reactive oxygen species that ultimately cause cell death. However, its effects on multicellular organisms and the environment have not been investigated yet in detail. In this work, we tested the toxicity of DTT to the model insect Drosophila melanogaster. We show that DTT is lethal to D. melanogaster by topical application but not through feeding. DTT treatment triggers the transcription of the canonical apoptosis regulators grim, hid and rpr at low amounts. The amplitude of this induction declines with elevating DTT amounts. By live microscopy, we observe apoptotic cells especially in the gut of DTT treated flies. In parallel, low DTT amounts also activate the expression of the cuticle barrier component gene snsl. This indicates that a physical defence response is launched upon DTT contact. This combined measure is seemingly successful in preventing fly death. The expression of a number of known detoxification genes including cyp6a2, cyp6a8, cyp12d1 and GstD2 is also enhanced through DTT contact. The degree of upregulation of these genes is proportional to the applied DTT amounts. Despite this effort, flies exposed to high amounts of DTT eventually die. Together, D. melanogaster is able to sense DTT toxicity and adjust the defence response successfully at least at low concentrations. This is the first time to analyse the molecular consequences of DTT exposure in a multicellular organism. Our work provides a new model to discuss the physiological response of animals against thiol toxins and to resurvey the effect of redox agents on the environment.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Maïlys Misto
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jing Yang
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Nicole Gehring
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Institut Biologie Valrose (iBV), Université Nice Sophia Antipolis, Parc Valrose, Nice Cedex, France
| |
Collapse
|
35
|
Shi Y, O'Reilly AO, Sun S, Qu Q, Yang Y, Wu Y. Roles of the variable P450 substrate recognition sites SRS1 and SRS6 in esfenvalerate metabolism by CYP6AE subfamily enzymes in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103486. [PMID: 33069773 DOI: 10.1016/j.ibmb.2020.103486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The cotton bollworm P450s of the clustered CYP6AE subfamily share high sequence identities but differ dramatically in their capacity to metabolize xenobiotics, especially esfenvalerate. Among them, CYP6AE17 has the highest sequence identity with CYP6AE18 but shows ~7-fold higher metabolic efficiency. CYP6AE11 is most active towards esfenvalerate but CYP6AE20 is inactive even though the enzymes share 54.8% sequence identity. Sequence analysis revealed the SRS1 (Substrate Recognition Site) and SRS6 between CYP6AE17 and CYP6AE18, and SRS1 between CYP6AE11 and CYP6AE20 are the most variable among all six SRSs. In order to identify the key factors that underlie the observed catalytic difference, we exchanged these SRS sequences between two pairs of P450s and studied the activity of the resulting hybrid mutants or chimeras. In vitro metabolism showed that the CYP6AE17/18 chimeras had 2- and 14-fold decreased activities and the CYP6AE18/17 chimeras had 6- and 10-fold increased activities to esfenvalerate. Meanwhile, after exchanging SRS1 with each other, the CYP6AE11/20 chimera folded incorrectly but the CYP6AE20/11 chimera gained moderate activity to esfenvalerate. Molecular modelling showed that amino acids variants within SRS1 or SRS6 change the shape and chemical environment of the active sites, which may affect the ligand-binding interactions. These results indicate that the protein structure variation resulting from the sequence diversity of SRSs promotes the evolution of insect chemical defense and contributes to the development of insect resistance to pesticides.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Andrias O O'Reilly
- School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Shuo Sun
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiong Qu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
36
|
Nair PC, Chau N, McKinnon RA, Miners JO. Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity. Mol Pharmacol 2020; 98:710-718. [PMID: 33008919 DOI: 10.1124/molpharm.120.000104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022] Open
Abstract
Enzymes of the human UDP-glycosyltransferase (UGT) superfamily typically catalyze the covalent addition of the sugar moiety from a UDP-sugar cofactor to relatively low-molecular weight lipophilic compounds. Although UDP-glucuronic acid (UDP-GlcUA) is most commonly employed as the cofactor by UGT1 and UGT2 family enzymes, UGT2B7 and several other enzymes can use both UDP-GlcUA and UDP-glucose (UDP-Glc), leading to the formation of glucuronide and glucoside conjugates. An investigation of UGT2B7-catalyzed morphine glycosidation indicated that glucuronidation is the principal route of metabolism because the binding affinity of UDP-GlcUA is higher than that of UDP-Glc. Currently, it is unclear which residues in the UGT2B7 cofactor binding domain are responsible for the preferential binding of UDP-GlcUA. Here, molecular dynamics (MD) simulations were performed together with site-directed mutagenesis and enzyme kinetic studies to identify residues within the UGT2B7 binding site responsible for the selective cofactor binding. MD simulations demonstrated that Arg259, which is located within the N-terminal domain, specifically interacts with UDP-GlcUA, whereby the side chain of Arg259 H-bonds and forms a salt bridge with the carboxylate group of glucuronic acid. Consistent with the MD simulations, substitution of Arg259 with Leu resulted in the loss of morphine, 4-methylumbelliferone, and zidovudine glucuronidation activity, but morphine glucosidation was preserved. SIGNIFICANCE STATEMENT: Despite the importance of uridine diphosphate glycosyltransferase (UGT) enzymes in drug and chemical metabolism, cofactor binding interactions are incompletely understood, as is the molecular basis for preferential glucuronidation by UGT1 and UGT2 family enzymes. The study demonstrated that long timescale molecular dynamics (MD) simulations with a UGT2B7 homology model can be used to identify critical binding interactions of a UGT protein with UDP-sugar cofactors. Further, the data provide a basis for the application of MD simulations to the elucidation of UGT-aglycone interactions.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology (P.C.N., N.C., J.O.M.) and Flinders Health and Medical Research Institute (FHMRI) Cancer Program (P.C.N., R.A.M., J.O.M.), Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, South Australia, Australia
| |
Collapse
|
37
|
Shi N, Zheng Q, Zhang H. Molecular Dynamics Investigations of Binding Mechanism for Triazoles Inhibitors to CYP51. Front Mol Biosci 2020; 7:586540. [PMID: 33102531 PMCID: PMC7546855 DOI: 10.3389/fmolb.2020.586540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023] Open
Abstract
The sterol 14α demethylase enzyme (CYP51) is an important target of fungal infections. However, the molecular mechanism between triazoles inhibitors and CYP51 remains obscure. In this study, we have investigated the binding mechanism and tunnel characteristic upon four triazoles inhibitors with CYP51 based on the molecular docking and molecular dynamics simulations. The results indicate the four inhibitors stabilize in the binding cavity of CYP51 in a similar binding mode. We discover a hydrophobic cavity (F58, Y64, Y118, L121, Y132, L376, S378, S506, S507, and M508) and the hydrophobic interaction is the main driving force for inhibitors binding to CYP51. The long-tailed inhibitors (posaconazole and itraconazole) have stronger binding affinities than short-tailed inhibitors (fluconazole and voriconazole) because long-tailed inhibitors can form more hydrophobic interactions with CYP51. The tunnel 2f is the predominant pathway for inhibitors ingress/egress protein, which is similar to the other works of CYP51. This study could provide the theoretical basis for the development of efficient azoles inhibitors and may lead a better insight into structure-function relationships of CYP51.
Collapse
Affiliation(s)
- Na Shi
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
38
|
Esteves F, Urban P, Rueff J, Truan G, Kranendonk M. Interaction Modes of Microsomal Cytochrome P450s with Its Reductase and the Role of Substrate Binding. Int J Mol Sci 2020; 21:E6669. [PMID: 32933097 PMCID: PMC7555755 DOI: 10.3390/ijms21186669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is degenerated. Recently, we demonstrated that specific CPR mutations in the FMN-domain (FD) may induce a gain in activity for a specific CYP isoform. In the current report, we confirm the CYP isoform dependence of CPR's degenerated binding by demonstrating that the effect of four of the formerly studied FD mutants are indeed exclusive of a specific CYP isoform, as verified by cytochrome c inhibition studies. Moreover, the nature of CYP's substrate seems to have a modulating role in the CPR:CYP interaction. In silico molecular dynamics simulations of the FD evidence that mutations induces very subtle structural alterations, influencing the characteristics of residues formerly implicated in the CPR:CYP interaction or in positioning of the FMN moiety. CPR seems therefore to be able to form effective interaction complexes with its structural diverse partners via a combination of specific structural features of the FD, which are functional in a CYP isoform dependent manner, and dependent on the substrate bound.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - José Rueff
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| |
Collapse
|
39
|
Cheong EJY, Nair PC, Neo RWY, Tu HT, Lin F, Chiong E, Esuvaranathan K, Fan H, Szmulewitz RZ, Peer CJ, Figg WD, Chai CLL, Miners JO, Chan ECY. Slow-, Tight-Binding Inhibition of CYP17A1 by Abiraterone Redefines Its Kinetic Selectivity and Dosing Regimen. J Pharmacol Exp Ther 2020; 374:438-451. [PMID: 32554434 DOI: 10.1124/jpet.120.265868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence underscores the clinical efficacy of inhibiting CYP17A1-mediated androgen biosynthesis by abiraterone for treatment of prostate oncology. Previous structural analysis and in vitro assays revealed inconsistencies surrounding the nature and potency of CYP17A1 inhibition by abiraterone. Here, we establish that abiraterone is a slow-, tight-binding inhibitor of CYP17A1, with initial weak binding preceding the subsequent slow isomerization to a high-affinity CYP17A1-abiraterone complex. The in vitro inhibition constant of the final high-affinity CYP17A1-abiraterone complex ( ( K i * = 0.39 nM )yielded a binding free energy of -12.8 kcal/mol that was quantitatively consistent with the in silico prediction of -14.5 kcal/mol. Prolonged suppression of dehydroepiandrosterone (DHEA) concentrations observed in VCaP cells after abiraterone washout corroborated its protracted CYP17A1 engagement. Molecular dynamics simulations illuminated potential structural determinants underlying the rapid reversible binding characterizing the two-step induced-fit model. Given the extended residence time (42 hours) of abiraterone within the CYP17A1 active site, in silico simulations demonstrated sustained target engagement even when most abiraterone has been eliminated systemically. Subsequent pharmacokinetic-pharmacodynamic (PK-PD) modeling linking time-dependent CYP17A1 occupancy to in vitro steroidogenic dynamics predicted comparable suppression of downstream DHEA-sulfate at both 1000- and 500-mg doses of abiraterone acetate. This enabled mechanistic rationalization of a clinically reported PK-PD disconnect, in which equipotent reduction of downstream plasma DHEA-sulfate levels was achieved despite a lower systemic exposure of abiraterone. Our novel findings provide the impetus for re-evaluating the current dosing paradigm of abiraterone with the aim of preserving PD efficacy while mitigating its dose-dependent adverse effects and financial burden. SIGNIFICANCE STATEMENT: With the advent of novel molecularly targeted anticancer modalities, it is becoming increasingly evident that optimal dose selection must necessarily be predicated on mechanistic characterization of the relationships between target exposure, drug-target interactions, and pharmacodynamic endpoints. Nevertheless, efficacy has always been perceived as being exclusively synonymous with affinity-based measurements of drug-target binding. This work demonstrates how elucidating the slow-, tight-binding inhibition of CYP17A1 by abiraterone via in vitro and in silico analyses was pivotal in establishing the role of kinetic selectivity in mediating time-dependent CYP17A1 engagement and eventually downstream efficacy outcomes.
Collapse
Affiliation(s)
- Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Pramod C Nair
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Rebecca Wan Yi Neo
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Ho Thanh Tu
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Fu Lin
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Edmund Chiong
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Kesavan Esuvaranathan
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Hao Fan
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Russell Z Szmulewitz
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Cody J Peer
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - William D Figg
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Christina Li Lin Chai
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - John O Miners
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science (E.J.Y.C., R.W.Y.N., H.T.T., C.L.L.C., E.C.Y.C.) and Department of Biological Sciences (H.F.), National University of Singapore, Singapore, Singapore; Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia (P.C.N., J.O.M.); Bioinformatics Institute, Biotransformation Innovation Platform (BioTrans) (F.L.) and Bioinformatics Institute (H.F.), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Surgery, National University Health System, Singapore, Singapore (E.C., K.E.); Department of Urology, National University Hospital, Singapore, Singapore (E.C., K.E.); Centre for Computational Biology, DUKE-NUS Medical School, Singapore, Singapore (H.F.); The University of Chicago, Chicago, Illinois (R.Z.S.); National Cancer Institute, Rockville, Maryland (C.J.P., W.D.F.); and National University Cancer Institute, Singapore (NCIS), NUH Medical Centre (NUHMC), Singapore, Singapore (E.C.Y.C.)
| |
Collapse
|
40
|
Ma G, Yu H, Xu X, Geng L, Wei X, Wen J, Wang Z. Molecular Basis for Metabolic Regioselectivity and Mechanism of Cytochrome P450s toward Carcinogenic 4-(Methylnitrosamino)-(3-pyridyl)-1-butanone. Chem Res Toxicol 2020; 33:436-447. [PMID: 31889441 DOI: 10.1021/acs.chemrestox.9b00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an abundantly present tobacco component, carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) has also been detected in atmospheric particulate matter, suggesting the ineluctable exposure risk of this contaminant. NNK metabolic activation by cytochrome P450 enzymes (CYPs) is a prerequisite to exerting its genotoxicity, but the metabolic regioselectivity and mechanism are still unknown. Here the binding feature and regioselectivity of CYPs 1A1, 1A2, 2A6, 2A13, 2B6, and 3A4 toward NNK are unraveled through molecular docking and molecular dynamics (MD) simulations. Binding mode analyses reveal that 1A2 and 2B6 have definite preferences for NNK α-methyl hydroxylation, while the other four CYPs preferentially catalyze α-methylene hydroxylation. The binding affinities between NNK and CYPs evaluated by the binding free energies follow the order 2A13 > 2B6 > 1A2 > 2A6 > 1A1 > 3A4. Density functional theory (DFT) calculations are further performed to characterize the mechanism of NNK biotransformation. Results show that the α-hydroxyNNK generated from α-hydroxylation may undergo nonenzymatic decomposition to form genotoxic diazohydroxide and aldehyde, and further oxidation by P450 to yield nitrosamide, which mainly contributes to NNK toxification capacity. Meanwhile the pyridine N-oxidation and denitrosation of Cα-radical intermediate play an important role in detoxifying NNK. Overall, the present study provides the molecular basis for CYP-catalyzed regioselectivity and mechanism of NNK biotransformation, which can enable the identification of metabolites for assessing the health risk of individual NNK exposure.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Haiying Yu
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Xiaoqin Xu
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Liming Geng
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Jiale Wen
- College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
41
|
Lin B, Zhang H, Zheng Q. How do mutations affect the structural characteristics and substrate binding of CYP21A2? An investigation by molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:8870-8877. [DOI: 10.1039/d0cp00763c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CYP21A2 mutations affect the activity of the protein leading to CAH disease.
Collapse
Affiliation(s)
- Baihui Lin
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Hongxing Zhang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| | - Qingchuan Zheng
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Jilin University
- Changchun 130023
| |
Collapse
|
42
|
Sekretarska J, Szczepaniak J, Sosnowska M, Grodzik M, Kutwin M, Wierzbicki M, Jaworski S, Bałaban J, Daniluk K, Sawosz E, Chwalibog A, Strojny B. Influence of Selected Carbon Nanostructures on the CYP2C9 Enzyme of the P450 Cytochrome. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4149. [PMID: 31835701 PMCID: PMC6947289 DOI: 10.3390/ma12244149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Carbon nanostructures have recently gained significant interest from scientists due to their unique physicochemical properties and low toxicity. They can accumulate in the liver, which is the main expression site of cytochrome P450 (CYP450) enzymes. These enzymes play an important role in the metabolism of exogenous compounds, such as drugs and xenobiotics. Altered activity or expression of CYP450 enzymes may lead to adverse drug effects and toxicity. The objective of this study was to evaluate the influence of three carbon nanostructures on the activity and expression at the mRNA and protein levels of CYP2C9 isoenzyme from the CYP2C subfamily: Diamond nanoparticles, graphite nanoparticles, and graphene oxide platelets. The experiments were conducted using two in vitro models. A microsome model was used to assess the influence of the three-carbon nanostructures on the activity of the CYP2C9 isoenzyme. The CYP2C9 gene expression at the mRNA and protein levels was determined using a hepatoma-derived cell line HepG2. The experiments have shown that all examined nanostructures inhibit the enzymatic activity of the studied isoenzymes. Moreover, a decrease in the expression at the mRNA and protein levels was also observed. This indicates that despite low toxicity, the nanostructures can alter the enzymatic function of CYP450 enzymes, and the molecular pathways involved in their expression.
Collapse
Affiliation(s)
- Justyna Sekretarska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Marta Kutwin
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Jaśmina Bałaban
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Karolina Daniluk
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| |
Collapse
|
43
|
Zarifi Khosroshahi M, Corin Chavez Alvarez A, Gagné-Boulet M, C-Gaudreault R, Gobeil S, Fortin S. Evaluation of the time-dependent antiproliferative activity and liver microsome stability of 3 phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates as promising CYP1A1-dependent antimicrotubule prodrugs. ACTA ACUST UNITED AC 2019; 72:249-258. [PMID: 31729035 DOI: 10.1111/jphp.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVES In this study, the antiproliferative activity of 3 phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) was assessed in a time-dependent manner together with their hepatic stability and metabolism using human, mouse and rat liver microsomes. METHODS CEU-818, -820 and -913 were selected as promising hit compounds. Their antiproliferative activity on human breast carcinoma MCF-7 cells was evaluated using escalating concentrations of drugs at 24, 36 and 48 h and the sulforhodamine B assay. Their hepatic stability was evaluated by HPLC-UV of extracts obtained from human, mouse and rat liver microsomes. KEY FINDINGS The antiproliferative activity of PAIB-SOs is concentration and time-dependent and requires between 24 and 36 h of contact with MCF-7 cells to detect a significant antiproliferative activity. PAIB-SOs stability in microsomes usually decreases following this order: human ≈ (rat > mouse). The CEU-913 exhibits the longest half-life in rat and human liver microsomes while the CEU-820 exhibits the longest half-life in mouse liver microsomes. CONCLUSIONS Our in vitro results suggest that PAIB-SOs should have a minimum contact time of 24 h with the tumour to trigger significant antitumoural activity. The activity of mouse liver microsomes towards PAIB-SOs is higher than rat microsomes and tends to be higher than human liver microsomes.
Collapse
Affiliation(s)
- Mitra Zarifi Khosroshahi
- Oncology Division, CHU de Québec-Université Laval Research Center, Hôpital Saint-François d'Assise, Quebec City, QC, Canada.,Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Atziri Corin Chavez Alvarez
- Oncology Division, CHU de Québec-Université Laval Research Center, Hôpital Saint-François d'Assise, Quebec City, QC, Canada.,Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Mathieu Gagné-Boulet
- Oncology Division, CHU de Québec-Université Laval Research Center, Hôpital Saint-François d'Assise, Quebec City, QC, Canada.,Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - René C-Gaudreault
- Oncology Division, CHU de Québec-Université Laval Research Center, Hôpital Saint-François d'Assise, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Stéphane Gobeil
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Endocrinology and Nephrology Division, CHU de Québec-Université Laval Research Centre, CHUL, Quebec City, QC, Canada
| | - Sébastien Fortin
- Oncology Division, CHU de Québec-Université Laval Research Center, Hôpital Saint-François d'Assise, Quebec City, QC, Canada.,Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
44
|
Transcriptome-Based Identification and Molecular Evolution of the Cytochrome P450 Genes and Expression Profiling under Dimethoate Treatment in Amur Stickleback ( Pungitius sinensis). Animals (Basel) 2019; 9:ani9110873. [PMID: 31661806 PMCID: PMC6912322 DOI: 10.3390/ani9110873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (CYPs) are a family of membrane-bound mono-oxygenase proteins, which are involved in cell metabolism and detoxification of various xenobiotic substances. In this study, we identified 58 putative CYP genes in Amur stickleback (Pungitius sinensis) based on the transcriptome sequencing. Conserved motif distribution suggested their functional relevance within each group. Some present recombination events have accelerated the evolution of this gene family. Moreover, a few positive selection sites were identified, which may have accelerated the functional divergence of this family of proteins. Expression patterns of these CYP genes were investigated and indicated that most were affected by dimethoate treatment, suggesting that CYPs were involved in the detoxication of dimethoate. This study will provide a foundation for the further functional investigation of CYP genes in fishes.
Collapse
|
45
|
Murray M, Gillani TB, Rawling T, Nair PC. Inhibition of Hepatic CYP2D6 by the Active N-Oxide Metabolite of Sorafenib. AAPS JOURNAL 2019; 21:107. [PMID: 31637538 DOI: 10.1208/s12248-019-0374-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 11/30/2022]
Abstract
The multikinase inhibitor sorafenib (SOR) is used to treat patients with hepatocellular and renal carcinomas. SOR undergoes CYP-mediated biotransformation to a pharmacologically active N-oxide metabolite (SNO) that has been shown to accumulate to varying extents in individuals. Kinase inhibitors like SOR are frequently coadministered with a range of other drugs to improve the efficacy of anticancer drug therapy and to treat comorbidities. Recent evidence has suggested that SNO is more effective than SOR as an inhibitor of CYP3A4-mediated midazolam 1'-hydroxylation. CYP2D6 is also reportedly inhibited by SOR. The present study assessed the possibility that SNO might contribute to CYP2D6 inhibition. The inhibition kinetics of CYP2D6-mediated dextromethorphan O-demethylation were analyzed in human hepatic microsomes, with SNO found to be ~ 19-fold more active than SOR (Kis 1.8 ± 0.3 μM and 34 ± 11 μM, respectively). Molecular docking studies of SOR and SNO were undertaken using multiple crystal structures of CYP2D6. Both molecules mediated interactions with key amino acid residues in putative substrate recognition sites of CYP2D6. However, a larger number of H-bonding interactions was noted between the N-oxide moiety of SNO and active site residues that account for its greater inhibition potency. These findings suggest that SNO has the potential to contribute to pharmacokinetic interactions involving SOR, perhaps in those individuals in whom SNO accumulates.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Tina B Gillani
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
46
|
Fessner ND. P450 Monooxygenases Enable Rapid Late-Stage Diversification of Natural Products via C-H Bond Activation. ChemCatChem 2019; 11:2226-2242. [PMID: 31423290 PMCID: PMC6686969 DOI: 10.1002/cctc.201801829] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/07/2019] [Indexed: 01/07/2023]
Abstract
The biological potency of natural products has been exploited for decades. Their inherent structural complexity and natural diversity might hold the key to efficiently address the urgent need for the development of novel pharmaceuticals. At the same time, it is that very complexity, which impedes necessary chemical modifications such as structural diversification, to improve the effectiveness of the drug. For this purpose, Cytochrome P450 enzymes, which possess unique abilities to activate inert sp3-hybridised C-H bonds in a late-stage fashion, offer an attractive synthetic tool. In this review the potential of cytochrome P450 enzymes in chemoenzymatic lead diversification is illustrated discussing studies reporting late-stage functionalisations of natural products and other high-value compounds. These enzymes were proven to extend the synthetic toolbox significantly by adding to the flexibility and efficacy of synthetic strategies of natural product chemists, and scientists of other related disciplines.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI GrazPetersgasse 148010GrazAustria
| |
Collapse
|
47
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
48
|
Schaefer AW, Ehudin MA, Quist DA, Tang JA, Karlin KD, Solomon EI. Spin Interconversion of Heme-Peroxo-Copper Complexes Facilitated by Intramolecular Hydrogen-Bonding Interactions. J Am Chem Soc 2019; 141:4936-4951. [PMID: 30836005 PMCID: PMC6457345 DOI: 10.1021/jacs.9b00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic peroxo-bridged high-spin (HS) heme-(μ-η2:η1-O22-)-Cu(L) complexes incorporating (as part of the copper ligand) intramolecular hydrogen-bond (H-bond) capabilities and/or steric effects are herein demonstrated to affect the complex's electronic and geometric structure, notably impacting the spin state. An H-bonding interaction with the peroxo core favors a low-spin (LS) heme-(μ-η1:η1-O22-)-Cu(L) structure, resulting in a reversible temperature-dependent interconversion of spin state (5 coordinate HS to 6 coordinate LS). The LS state dominates at low temperatures, even in the absence of a strong trans-axial heme ligand. Lewis base addition inhibits the H-bond facilitated spin interconversion by competition for the H-bond donor, illustrating the precise H-bonding interaction required to induce spin-crossover (SCO). Resonance Raman spectroscopy (rR) shows that the H-bonding pendant interacts with the bridging peroxide ligand to stabilize the LS but not the HS state. The H-bond (to the Cu-bound O atom) acts to weaken the O-O bond and strengthen the Fe-O bond, exhibiting ν(M-O) and ν(O-O) values comparable to analogous known LS complexes with a strong donating trans-axial ligand, 1,5-dicyclohexylimidazole, (DCHIm)heme-(μ-η1:η1-O22-)-Cu(L). Variable-temperature (-90 to -130 °C) UV-vis and 2H NMR spectroscopies confirm the SCO process and implicate the involvement of solvent binding. Examining a case of solvent binding without SCO, thermodynamic parameters were obtained from a van't Hoff analysis, accounting for its contribution in SCO. Taken together, these data provide evidence for the H-bond group facilitating a core geometry change and allowing solvent to bind, stabilizing a LS state. The rR data, complemented by DFT analysis, reveal a stronger H-bonding interaction with the peroxo core in the LS compared to the HS complexes, which enthalpically favors the LS state. These insights enhance our fundamental understanding of secondary coordination sphere influences in metalloenzymes.
Collapse
Affiliation(s)
- Andrew W. Schaefer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joel A. Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Nair PC, McKinnon RA, Miners JO. Computational Prediction of the Site(s) of Metabolism and Binding Modes of Protein Kinase Inhibitors Metabolized by CYP3A4. Drug Metab Dispos 2019; 47:616-631. [DOI: 10.1124/dmd.118.085167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/18/2019] [Indexed: 01/13/2023] Open
|
50
|
Ariza Márquez YV, Briceño I, Aristizábal F, Niño LF, Yosa Reyes J. Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen. Sci Rep 2019; 9:2521. [PMID: 30792473 PMCID: PMC6385267 DOI: 10.1038/s41598-018-38340-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is a group of multigenic diseases. It is the most common cancer diagnosed among women worldwide and is often treated with tamoxifen. Tamoxifen is catalysed by cytochrome P450 2D6 (CYP2D6), and inter-individual variations in the enzyme due to single nucleotide polymorphisms (SNPs) could alter enzyme activity. We evaluated SNPs in patients from Colombia in South America who were receiving tamoxifen treatment for breast cancer. Allelic diversity in the CYP2D6 gene was found in the studied population, with two patients displaying the poor-metaboliser phenotype. Molecular dynamics and trajectory analyses were performed for CYP2D6 from these two patients, comparing it with the common allelic form (CYP2D6*1). Although we found no significant structural change in the protein, its dynamics differ significantly from those of CYP2D6*1, the effect of such differential dynamics resulting in an inefficient enzyme with serious implications for tamoxifen-treated patients, increasing the risk of disease relapse and ineffective treatment.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal/drug therapy
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Carcinoma, Ductal/pathology
- Chemotherapy, Adjuvant
- Cytochrome P-450 CYP2D6/genetics
- Cytochrome P-450 CYP2D6/metabolism
- Female
- Genotype
- Humans
- Inactivation, Metabolic/genetics
- Middle Aged
- Pharmacogenomic Variants/genetics
- Phenotype
- Polymorphism, Single Nucleotide/genetics
- Tamoxifen/administration & dosage
- Tamoxifen/adverse effects
- Tamoxifen/metabolism
Collapse
Affiliation(s)
- Yeimy Viviana Ariza Márquez
- Universidad Nacional de Colombia, Instituto de Biotecnología IBUN, Departamento de Farmacia, Bogota, 111321, Colombia
| | - Ignacio Briceño
- Universidad de la Sabana, Facultad de Medicina, Bogota, 140013, Colombia
- Pontificia Universidad Javeriana, Facultad de Medicina, Instituto de Genética Humana IGH, Bogota, 110231, Colombia
| | - Fabio Aristizábal
- Universidad Nacional de Colombia, Instituto de Biotecnología IBUN, Departamento de Farmacia, Bogota, 111321, Colombia
| | - Luis Fernando Niño
- Universidad Nacional de Colombia, Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial, Bogota, 111321, Colombia
| | - Juvenal Yosa Reyes
- Universidad Simón Bolivar, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Barranquilla, 080002, Colombia.
| |
Collapse
|