1
|
Saini BL, Kumar A, Ahmad SF, Mehrotra A, Sachan S, Singh R, Prakash J, Chauhan A, Dutt T, Kumar P. Expression profile analysis of estrous-phased ovarian tissue of high and low prolific lines of inbred Swiss albino mice. Mol Biol Rep 2025; 52:167. [PMID: 39873827 DOI: 10.1007/s11033-025-10233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation. METHODS AND RESULTS Variation in estrous-phased ovarian gene expression between high (LSB ≥ 12) and low prolific lines (LSB ≤ 3) of F4 inbred SAM, was explored using RNA-Seq. Estrous phase assessment was done using vaginal cytology. A total of 870 differentially expressed genes (DEGs) were identified; among which, 287 genes were significantly up-regulated while 583 genes were down-regulated in HLS as compared to the LLS group. DEGs were assigned to 166 Gene Ontology (GO) terms and KEGG pathways. In HLS, the significantly up-regulated DEGs were involved in ovarian cell-cell signaling, regulation of biological activity and ovarian metabolic-associated pathways. Most down-regulated DEGs were expressed in immune-related pathways, indicating that immunological dampening is associated with a high ovulation rate and higher level of progesterone concentration leading to physiological changes responsible for higher fecundity. CONCLUSIONS The present study, based on bulk RNA-seq analysis reflects the aggregate gene expression of the whole ovarian tissue, and reveals 24 DEGs that could be used as candidates for litter size attributes in future polymorphism and functional studies to gain further insights into the mechanisms underlying litter size variations in animals.
Collapse
Affiliation(s)
- Babu Lal Saini
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Arnav Mehrotra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
- Animal Genomics, ETH Zürich, Zurich, Switzerland
| | - Shweta Sachan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Rohit Singh
- Physiological Sciences, Oklahoma State University, Norman, USA
| | - Jai Prakash
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Anuj Chauhan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
2
|
Pan L, Yin C, Jin KJ, Huang CX, Wang X, Wang Y, Rinkiko S, Jia JG, Zhang GP, Zhu YZ, Dai YX, Zou YZ, Gong H. Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload. Acta Pharmacol Sin 2025:10.1038/s41401-024-01415-4. [PMID: 39779966 DOI: 10.1038/s41401-024-01415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms. We performed transverse aortic constriction (TAC) to induce pressure overload in cardiomyocyte-specific LRP6 overexpression mice (LRP6-over mice) and in control mice (α-myosin heavy chain (α-MHC) Mer-Cre-Mer Tg mice or named MCM mice). Cardiac function and hypertrophy were assessed using echocardiography. LRP6-over mice showed improved cardiac function and reduced hypertrophy after TAC, compared with MCM mice. We also applied mechanical stretch to cultured neonatal rat cardiomyocytes to model pressure overload in vitro. Mass spectrometry analysis showed that LRP6 interacts with HSP90α and cathepsin D (CTSD) in cardiomyocytes under mechanical stress. Further analysis demonstrated that LRP6 facilitates CTSD-mediated degradation of HSP90α, consequently inhibiting β-catenin activation and reducing cardiac hypertrophy post-TAC. Treatment with recombinant HSP90α protein or the CTSD inhibitor, pepstatin A, partly abolished the protective effect of LRP6 overexpression on myocardial hypertrophy and cardiac function after TAC in mice. Collectively, our data suggest that LRP6 protects against pressure overload-induced myocardial remodeling and that the CTSD/HSP90α/β-catenin axis may be a potential therapeutic target.
Collapse
Affiliation(s)
- Le Pan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ke-Jia Jin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Xing Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Suguro Rinkiko
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Jian-Guo Jia
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guo-Ping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, China
| | - Yu-Xiang Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yun-Zeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Gence L, Morello E, Rastegar S, Apalama ML, Meilhac O, Bascands JL, Diotel N. Gene expression patterns of the LDL receptor and its inhibitor Pcsk9 in the adult zebrafish brain suggest a possible role in neurogenesis. Eur J Neurosci 2025; 61:e16586. [PMID: 39551948 DOI: 10.1111/ejn.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
The low-density lipoprotein receptor (LDLr) is the first member of a closely related transmembrane protein family. It is known for its involvement in various physiological processes, mainly in the regulation of lipid metabolism, especially in the brains of mammals and zebrafish. In zebrafish, two ldlr genes (ldlra and b) have been identified and their distribution in the brain is not well documented. Recently, the roles of ldlr and its inhibitor pcsk9 in regenerative process after telencephalic brain injury have been discussed. In this study, we explored the expression patterns of these genes during zebrafish development. We found that ldlra expression was detected at the end of the pharyngula period (48 hpf) and increased during the larval stage. Conversely, ldlrb expression was observed from zygotic to larval stages. Using techniques like in situ hybridization and taking advantage of transgenic fish, we demonstrated the widespread distribution of ldlra, ldlrb and pcsk9 in the brain of adult zebrafish. Specifically, these genes were expressed in neurons and neural stem cells and also at lower levels in endothelial cells. As expected, intraperitoneal injection of fluorescent-labelled LDLs resulted in their uptake by cerebral endothelial cells in a homeostatic context, whereas they diffused within the brain parenchyma after telencephalic injury. However, after intracerebroventricular injections into animals, LDL particles were not taken up by neural stem cells. In conclusion, our results provide additional evidence for LDLr expression in the brain of adult zebrafish. These results raise the question of the role of LDLr in the cholesterol/lipid imbalance in cerebral complications.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Elena Morello
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
- CHU de La Réunion, Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marie Laurine Apalama
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
- CHU de La Réunion, Saint-Pierre, La Réunion, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| |
Collapse
|
4
|
Yang T, Dong Y, Wang G, Guan X. SOX13-mediated transcription of LRP11 enhances malignant properties of tumor cells and CD8 + T cell inactivation in breast cancer through the β-catenin/PD-L1 axis. Cell Signal 2024; 124:111383. [PMID: 39243917 DOI: 10.1016/j.cellsig.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND High expression of low-density lipoprotein receptor related protein 11 (LRP11) has been associated with unfavorable prognosis of breast cancer (BC). This study explores the exact roles of LRP11 in BC progression and investigates the associated mechanism. METHODS LRP11 expression in BC tissues and cells was determined by immunohistochemistry or RT-qPCR. LRP11 upregulation was induced in two human BC cell lines to investigate its impact on cell proliferation, migration, and invasion. Its regulation on immune activity was assessed by detecting PD-L1 protein levels and generating a co-culture system of cancer cells and CD8+ T cells. Mouse allograft tumor models were generated to analyze the function of LRP11 in tumorigenesis and immune activity in vivo. Gain-of-function assays of SRY-box transcription factor 13 (SOX13) were performed to investigate its function in development and immunosuppression of BC. RESULTS LRP11 was found to be highly expressed in BC tissues and cells, presenting an association with unfavorable prognosis of patients. Artificial upregulation of LRP11 in BC cells triggered malignant properties of cells, enhancing β-catenin-mediated transcriptional activation of PD-L1, thus decreasing immune activity of the co-cultured CD8+ T cells. Consistently, LRP11 upregulation in mouse 4 T1 cells and promoted tumorigenesis and immune evasion in mice. SOX13 was found to bind the LRP11 promoter for transcriptional activation. Upregulation of SOX13 similarly promoted growth of BC cells and immunosuppression, with its oncogenic effects blocked by the additional LRP11 knockdown. CONCLUSION This study demonstrates that SOX13 is responsible for LRP11 transcription activation, leading to increased malignant phenotype of BC cells and diminished activity CD8+ T cells. This evidence highlights SOX13 and LRP11 as promising novel therapeutic targets to reduce malignant phenotype of BC cells and overcome immunosuppression.
Collapse
Affiliation(s)
- Tingting Yang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Yi Dong
- The Second Breast Surgery Department, Jilin Cancer Hospital, Changchun 130012, Jilin, PR China
| | - Guoxiang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Xin Guan
- Breast Surgery Department, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
5
|
Mastrantuono E, Ghibaudi M, Matias D, Battaglia G. The multifaceted therapeutical role of low-density lipoprotein receptor family in high-grade glioma. Mol Oncol 2024; 18:2966-2976. [PMID: 39276062 PMCID: PMC11619799 DOI: 10.1002/1878-0261.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
The diverse roles of the low-density lipoprotein receptor family (LDLR) have been associated with many processes critical to maintaining central nervous system (CNS) health and contributing to neurological diseases or cancer. In this review, we provide a comprehensive understanding of the LDLR's involvement in common brain tumors, specifically high-grade gliomas, emphasizing the receptors' critical role in the pathophysiology and progression of these tumors due to LDLR's high expression. We delve into LDLR's role in regulating cellular uptake and transport through the brain barrier. Additionally, we highlight LDLR's role in activating several signaling pathways related to tumor proliferation, migration, and invasion, engaging readers with an in-depth understanding of the molecular mechanisms at play. By synthesizing current research findings, this review underscores the significance of LDLR during tumorigenesis and explores its potential as a therapeutic target for high-grade gliomas. The collective insights presented here contribute to a deeper appreciation of LDLR's multifaceted roles and implications for physiological and pathological states, opening new avenues for tumor treatment.
Collapse
Affiliation(s)
- Elisa Mastrantuono
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaPortugal
- Institute for Bioengineering of CataloniaBarcelona Institute of Science and TechnologySpain
| | - Matilde Ghibaudi
- Institute for Bioengineering of CataloniaBarcelona Institute of Science and TechnologySpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)MadridSpain
| | - Diana Matias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaPortugal
| | - Giuseppe Battaglia
- Institute for Bioengineering of CataloniaBarcelona Institute of Science and TechnologySpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)MadridSpain
- Catalan Institution for Research and Advanced StudiesPasseig de Lluís CompanysBarcelonaSpain
| |
Collapse
|
6
|
Monson C, Goetz G, Forsgren K, Swanson P, Young G. In vivo treatment with a non-aromatizable androgen rapidly alters the ovarian transcriptome of previtellogenic secondary growth coho salmon (Onchorhynchus kisutch). PLoS One 2024; 19:e0311628. [PMID: 39383164 PMCID: PMC11463792 DOI: 10.1371/journal.pone.0311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests that androgens are a potent driver of growth during late the primary stage of ovarian follicle development in teleosts. We have previously shown that the non-aromatizable androgen, 11-ketotestosterone (11-KT), both advances ovarian follicle growth in vivo and dramatically alters the primary growth ovarian transcriptome in coho salmon. Many of the transcriptomic changes pointed towards 11-KT driving process associated with the transition to a secondary growth phenotype. In the current study, we implanted previtellogenic early secondary growth coho salmon with cholesterol pellets containing 11-KT and performed RNA-Seq on ovarian tissue after 3 days in order to identify alterations to the ovarian transcriptome in early secondary growth. We identified 8,707 contiguous sequences (contigs) that were differentially expressed (DE) between control and 11-KT implanted fish and were able to collapse those to 3,853 gene-level IDs, more than a 3-fold more DE contigs than at the primary growth stage we reported previously. These contigs included genes encoding proteins involved in steroidogenesis, vitellogenin and lipid uptake, follicle stimulating hormone signaling, growth factor signaling, and structural proteins, suggesting androgens continue to promote previtellogenic secondary growth.
Collapse
Affiliation(s)
- Christopher Monson
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Kristy Forsgren
- Department of Biological Science, California State University, Fullerton, Fullerton, California, United States of America
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Graham Young
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
7
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
8
|
Banos-Mateos S, Lopez-Robles C, Yubero ME, Jurado A, Arbelaiz-Sarasola A, Lamsfus-Calle A, Arrasate A, Albo C, Ramírez JC, Fertin MJ. Abolishing Retro-Transduction of Producer Cells in Lentiviral Vector Manufacturing. Viruses 2024; 16:1216. [PMID: 39205190 PMCID: PMC11359676 DOI: 10.3390/v16081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Transduction of producer cells during lentiviral vector (LVV) production causes the loss of 70-90% of viable particles. This process is called retro-transduction and it is a consequence of the interaction between the LVV envelope protein, VSV-G, and the LDL receptor located on the producer cell membrane, allowing lentiviral vector transduction. Avoiding retro-transduction in LVV manufacturing is crucial to improve net production and, therefore, the efficiency of the production process. Here, we describe a method for quantifying the transduction of producer cells and three different strategies that, focused on the interaction between VSV-G and the LDLR, aim to reduce retro-transduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marie J. Fertin
- VIVEbiotech, Tandem Building, 20014 Donostia, Spain; (S.B.-M.); (C.L.-R.); (M.E.Y.); (A.J.); (A.A.-S.); (A.L.-C.); (A.A.); (C.A.)
| |
Collapse
|
9
|
Wolde T, Bhardwaj V, Reyad-ul-Ferdous M, Qin P, Pandey V. The Integrated Bioinformatic Approach Reveals the Prognostic Significance of LRP1 Expression in Ovarian Cancer. Int J Mol Sci 2024; 25:7996. [PMID: 39063239 PMCID: PMC11276689 DOI: 10.3390/ijms25147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
A hyperactive tumour microenvironment (TME) drives unrestricted cancer cell survival, drug resistance, and metastasis in ovarian carcinoma (OC). However, therapeutic targets within the TME for OC remain elusive, and efficient methods to quantify TME activity are still limited. Herein, we employed an integrated bioinformatics approach to determine which immune-related genes (IRGs) modulate the TME and further assess their potential theragnostic (therapeutic + diagnostic) significance in OC progression. Using a robust approach, we developed a predictive risk model to retrospectively examine the clinicopathological parameters of OC patients from The Cancer Genome Atlas (TCGA) database. The validity of the prognostic model was confirmed with data from the International Cancer Genome Consortium (ICGC) cohort. Our approach identified nine IRGs, AKT2, FGF7, FOS, IL27RA, LRP1, OBP2A, PAEP, PDGFRA, and PI3, that form a prognostic model in OC progression, distinguishing patients with significantly better clinical outcomes in the low-risk group. We validated this model as an independent prognostic indicator and demonstrated enhanced prognostic significance when used alongside clinical nomograms for accurate prediction. Elevated LRP1 expression, which indicates poor prognosis in bladder cancer (BLCA), OC, low-grade gliomas (LGG), and glioblastoma (GBM), was also associated with immune infiltration in several other cancers. Significant correlations with immune checkpoint genes (ICGs) highlight the potential importance of LRP1 as a biomarker and therapeutic target. Furthermore, gene set enrichment analysis highlighted LRP1's involvement in metabolism-related pathways, supporting its prognostic and therapeutic relevance also in BLCA, OC, low-grade gliomas (LGG), GBM, kidney cancer, OC, BLCA, kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), and stomach and oesophageal carcinoma (STES). Our study has generated a novel signature of nine IRGs within the TME across cancers, that could serve as potential prognostic predictors and provide a valuable resource to improve the prognosis of OC.
Collapse
Affiliation(s)
- Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Md. Reyad-ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
10
|
Cao X, Huber S, Ahari AJ, Traube FR, Seifert M, Oakes CC, Secheyko P, Vilov S, Scheller IF, Wagner N, Yépez VA, Blombery P, Haferlach T, Heinig M, Wachutka L, Hutter S, Gagneur J. Analysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genes. Genome Med 2024; 16:70. [PMID: 38769532 PMCID: PMC11103968 DOI: 10.1186/s13073-024-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.
Collapse
Affiliation(s)
- Xueqi Cao
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany
| | - Sandra Huber
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ata Jadid Ahari
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Franziska R Traube
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Polina Secheyko
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sergey Vilov
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Ines F Scheller
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Torsten Haferlach Leukämiediagnostik Stiftung, Munich, Germany
| | | | - Matthias Heinig
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Leonhard Wachutka
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
12
|
Chen BH, Lin ZY, Zeng XX, Jiang YH, Geng F. LRP4-related signalling pathways and their regulatory role in neurological diseases. Brain Res 2024; 1825:148705. [PMID: 38065285 DOI: 10.1016/j.brainres.2023.148705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.
Collapse
Affiliation(s)
- Bai-Hui Chen
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Yu Lin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Xue Zeng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yi-Han Jiang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
13
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Scalez DCB, Nascimento AV, Santos DJA, Stefani G, Carvalho IS, Sandoval AF, Brito LF. Genetic parameters and genome-wide association studies for mozzarella and milk production traits, lactation length, and lactation persistency in Murrah buffaloes. J Dairy Sci 2024; 107:992-1021. [PMID: 37730179 DOI: 10.3168/jds.2023-23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daiane C B Scalez
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | | | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Isabella S Carvalho
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Amanda F Sandoval
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
14
|
Shi L, Hu M, Lai W, Yi W, Liu Z, Sun H, Li F, Yan S. Detection of genomic variations and selection signatures in Wagyu using whole-genome sequencing data. Anim Genet 2023; 54:808-812. [PMID: 37792466 DOI: 10.1111/age.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Wagyu is recognized for producing marbled beef with high nutritional value and flavor. Reportedly, Wagyu has been widely used to improve the meat quality of local breeds around the world. However, studies on the genetic mechanism of meat quality in Wagyu at the whole-genome level are rarely reported. Here, whole-genome sequencing data of 11 Wagyu and 115 other individuals were used to explore the genomic variations and genes under selection pressure in Wagyu. A total of 31 349 non-synonymous variants and 53 102 synonymous variants were identified in Wagyu. The population structure analysis showed that Wagyu had the closest genetic relationship with Mishima-Ushi cattle and was apparently separated from other cattle breeds. Then, composite likelihood ratio (CLR), integrated haplotype score, fixation index and cross-population composite likelihood ratio (XP-CLR) tests were performed to identify the candidate genes under positive selection in Wagyu. In total, 770 regions containing 312 genes were identified by at least three methods. Among them, 97 regions containing 27 genes were detected by all four methods. We specifically illustrate a list of interesting genes, including LRP2BP, GAA, CACNG6, CXADR, GPCPD1, KLF2, KLF13, SOX5, MYBPC1, SLC25A10, ATP8A1 and MYH15, which are associated with lipid metabolism, fat deposition, muscle development, bone development, feed intake and growth traits in Wagyu. This is the first study to explore the genomic variations and selection signatures of Wagyu at the whole-genome level. These results will provide significant help to beef cattle improvement and breeding.
Collapse
Affiliation(s)
- Lulu Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Mingyue Hu
- College of Animal Science, Jilin University, Changchun, China
| | - Weining Lai
- College of Animal Science, Jilin University, Changchun, China
| | - Wenfeng Yi
- College of Animal Science, Jilin University, Changchun, China
| | - Zhengxi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Feng Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang S, Wang Z, Wang X, Qu J, Li F, Ji C, Wu H. Histopathological and transcriptomic analyses reveal the reproductive endocrine-disrupting effects of decabromodiphenyl ethane (DBDPE) in mussel Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160724. [PMID: 36493811 DOI: 10.1016/j.scitotenv.2022.160724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The novel brominated flame retardant DBDPE has become a widespread environmental contaminant and could affect reproductive endocrine system in vertebrates. However, information about reproductive endocrine-disrupting effects of DBDPE on invertebrates is totally unknown. In this study, mussels Mytilus galloprovincialis were exposed to 1, 10, 50, 200 and 500 μg/L DBDPE for 30 days. Histopathological and transcriptomic analyses were performed to assess the reproductive endocrine-disrupting effects of DBDPE in mussels and the potential mechanisms. DBDPE promoted the gametogenesis in mussels of both sexes according to histological observation, gender-specific gene expression (VERL and VCL) and histological morphometric parameter analysis. Transcriptomic analysis demonstrated that DBDPE suppressed the genes related to cholesterol homeostasis and transport in both sexes via different LRPs- and ABCs-mediated pathways. DBDPE also disturbed nongenomic signaling pathway including signaling cascades (GPR157-IP3-Ca2+) in males and secondary messengers (cGMP) in females, and subsequently altered the expression levels of reproductive genes (VMO1, ZAN, Banf1 and Hook1). Additionally, dysregulation of energy metabolism in male mussels induced by DBDPE might interfere with the reproductive endocrine system. Overall, this is the first report that DBDPE evoked reproductive endocrine-disruptions in marine mussels. These findings will provide important references for ecological risk assessment of DBDPE pollution in marine environment.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Zhiyu Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| |
Collapse
|
16
|
Drake SS, Zaman A, Simas T, Fournier AE. Comparing RNA-sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mech Dis 2023; 15:e1594. [PMID: 36600404 DOI: 10.1002/wsbm.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) inflammation is a key factor in multiple sclerosis (MS). Invasion of peripheral immune cells into the CNS resulting from an unknown signal or combination of signals results in activation of resident immune cells and the hallmark feature of the disease: demyelinating lesions. These lesion sites are an amalgam of reactive peripheral and central immune cells, astrocytes, damaged and dying oligodendrocytes, and injured neurons and axons. Sustained inflammation affects cells directly located within the lesion site and further abnormalities are apparent diffusely throughout normal-appearing white matter and grey matter. It is only relatively recently, using animal models, new tissue sampling techniques, and next-generation sequencing, that molecular changes occurring in CNS resident cells have been broadly captured. Advances in cell isolation through Fluorescence Activated Cell Sorting (FACS) and laser-capture microdissection together with the emergence of single-cell sequencing have enabled researchers to investigate changes in gene expression in astrocytes, microglia, and oligodendrocytes derived from animal models of MS as well as from primary patient tissue. The contribution of some dysregulated pathways has been followed up in individual studies; however, corroborating results often go unreported between sequencing studies. To this end, we have consolidated results from numerous RNA-sequencing studies to identify and review novel patterns of differentially regulated genes and pathways occurring within CNS glial cells in MS. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Sienna S Drake
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Aliyah Zaman
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Tristan Simas
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Alyson E Fournier
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Babio L, Damsteegt EL, Lokman PM. Lipoprotein receptors in ovary of eel, Anguilla australis: molecular characterisation of putative vitellogenin receptors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:117-137. [PMID: 36648592 PMCID: PMC9935665 DOI: 10.1007/s10695-023-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lipoprotein receptors, including low-density lipoprotein receptor (LDLr) relatives (Lrs) and LDLr-related proteins (Lrps), belong to the LDLr supergene family and participate in diverse physiological functions. In this study, novel sequences of lr and lrp genes expressed in the ovary of the short-finned eel, Anguilla australis, during early gonadal development are presented. The genes encoding the LDLr-like, Lrp1-like, Lrp1b-like, Lrp3, Lrp4-like, Lrp5-like, Lrp6, Lrp10, Lrp11, Lrp12-like, and Lr11-like proteins were found and identified by sequence and structure analysis, in addition to phylogenetic analysis. Genes encoding proteins previously implicated in follicle development and vitellogenin (Vtg) uptake in oviparous vertebrates were also identified, i.e. lr8 (including lr8 + and lr8- variants) and lrp13; their identification was reinforced by conserved synteny with orthologues in other teleost fish. Compared to other lr/lrp genes, the genes encoding Lr8 + , Lr8-, and Lrp13 were highly expressed in ovary during early development, decreasing as oocyte development advanced when induced by hypophysation. Furthermore, lr8 + , lr8-, and lrp13 were dominantly expressed in the ovary when compared with 17 other tissues. Finally, this study successfully detected the expression of both lr8 variants, which showed different expression patterns to those reported in other oviparous vertebrates and provided the first characterisation of Lrp13 in Anguilla sp. We propose that lr8 + , lr8-, and lrp13 encode putative Vtg receptors in anguillid eels.
Collapse
Affiliation(s)
- Lucila Babio
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - Erin L. Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - P. Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| |
Collapse
|
18
|
Wang H, Liang L, Yang C, Xiao L, Wang H, Wang G, Zhu Z. The protective role of hippocampal LRP1 knockdown involves synaptic plasticity through the promoting microtubule dynamics and activation of Akt/GSK-3β pathway in depressive rats. J Affect Disord 2023; 322:63-75. [PMID: 36372121 DOI: 10.1016/j.jad.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The mechanism by which synaptic plasticity mediates the occurrence of depression is unknown. Low-density lipoprotein receptor-related protein 1 (LRP1) affects axon growth and neurogenesis in the brain, but its role in depressive-like behaviors is poorly understood. METHODS Adeno-associated virus-mediated small interfering RNA was injected into the bilateral hippocampus 14 days before chronic unpredicted mild stress (CUMS). Behavior performance was assessed for depressive-like behaviors. Western blot was conducted to detect levels of LRP1, neurogenesis-related proteins, synaptic markers, microtubule system molecules and Akt/GSK-3β signaling-related proteins. Immunohistochemical staining was performed for LRP1 protein, immunofluorescence staining was conducted to determine the Sox2 protein, Nissl's staining and transmission electron microscope staining were used to observe hippocampal morphological features. RESULTS The expression of hippocampal LRP1 was positively correlated with depressive-like behaviors. Treatment with iAAV-LRP1 exerted protective effects on depressive-like behaviors. LRP1 Knockdown relieved the inhibition of synaptic plasticity induced by CUMS. Expression of Sox2, GluR2 and SYP was significantly increased in iAAV-LRP1 CUMS rats. LRP1 knockdown reduced the p-tau (Ser262 and Thr404) and Acet-tubule levels in depressed rats. Finally, we found that LRP1 knockdown activated the PI3K/Akt pathway and inhibited GSK-3β signal transduction. LIMITATIONS More neurogenesis markers would be considered, and stereotactic injection into hippocampal DG region could be performed to investigate the effects of LRP1. CONCLUSIONS These findings indicated that hippocampal LRP1 deficiency in stressed rats plays an important protective role in depressive-like behavior by increasing synaptic plasticity mediated by microtubule dynamic and activating Akt/GSK-3β signaling pathway. Therefore, LRP1 may represent a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Clinical Psychology, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Can Yang
- Department of Clinical Psychology, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Zhixian Zhu
- Department of Clinical Psychology, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
19
|
Sizova O, John LS, Ma Q, Molldrem JJ. Multi-faceted role of LRP1 in the immune system. Front Immunol 2023; 14:1166189. [PMID: 37020553 PMCID: PMC10069629 DOI: 10.3389/fimmu.2023.1166189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Graft versus host disease (GVHD) represents the major complication after allogeneic hematopoietic stem cell transplantation (Allo-SCT). GVHD-prone patients rely on GVHD prophylaxis (e.g. methotrexate) and generalized anti-GVHD medical regimen (glucocorticoids). New anti-GVHD therapy strategies are being constantly explored, however there is an urgent need to improve current treatment, since GVHD-related mortality reaches 22% within 5 years in patients with chronic GVHD. This review is an attempt to describe a very well-known receptor in lipoprotein studies - the low-density lipoprotein receptor related protein 1 (LRP1) - in a new light, as a potential therapeutic target for GVHD prevention and treatment. Our preliminary studies demonstrated that LRP1 deletion in donor murine T cells results in significantly lower GVHD-related mortality in recipient mice with MHC (major histocompatibility complex) -mismatched HSCT. Given the importance of T cells in the development of GVHD, there is a significant gap in scientific literature regarding LRP1's role in T cell biology. Furthermore, there is limited research interest and publications on this classical receptor molecule in other immune cell types. Herein, we endeavor to summarize existing knowledge about LRP1's role in various immune cells to demonstrate the possibility of this receptor to serve as a novel target for anti-GVHD treatment.
Collapse
Affiliation(s)
- Olga Sizova
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St. John
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- ECLIPSE, Therapeutic Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jeffrey J. Molldrem,
| |
Collapse
|
20
|
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:100-108. [PMID: 36644126 PMCID: PMC9837797 DOI: 10.31491/apt.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests there is an alternative insulin transporter besides the insulin receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation into the brain. In this review, we summarize key features of the BBB and what makes it unique compared to other capillary beds; summarize what we know about insulin BBB transport; provide an extensive list of diseases, physiological states, and serum factors tested in modifying insulin BBB transport; and lastly, highlight potential alternative transport systems that may be involved in or have already been tested in mediating insulin BBB transport. Identifying the transport system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin levels in multiple diseases and conditions including Alzheimer's disease (AD) and obesity, where availability of insulin to the CNS is limited.
Collapse
Affiliation(s)
- William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Cassidy Noonan
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
21
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
22
|
There is urgent need to treat atherosclerotic cardiovascular disease risk earlier, more intensively, and with greater precision: A review of current practice and recommendations for improved effectiveness. Am J Prev Cardiol 2022; 12:100371. [PMID: 36124049 PMCID: PMC9482082 DOI: 10.1016/j.ajpc.2022.100371] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/10/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is epidemic throughout the world and is etiologic for such acute cardiovascular events as myocardial infarction, ischemic stroke, unstable angina, and death. ASCVD also impacts risk for dementia, chronic kidney disease peripheral arterial disease and mobility, impaired sexual response, and a host of other visceral impairments that adversely impact the quality and rate of progression of aging. The relationship between low-density lipoprotein cholesterol (LDL-C) and risk for ASCVD is one of the most highly established and investigated issues in the entirety of modern medicine. Elevated LDL-C is a necessary condition for atherogenesis induction. Basic scientific investigation, prospective longitudinal cohorts, and randomized clinical trials have all validated this association. Yet despite the enormous number of clinical trials which support the need for reducing the burden of atherogenic lipoprotein in blood, the percentage of high and very high-risk patients who achieve risk stratified LDL-C target reductions is low and has remained low for the last thirty years. Atherosclerosis is a preventable disease. As clinicians, the time has come for us to take primordial and primary prevention more serously. Despite a plethora of therapeutic approaches, the large majority of patients at risk for ASCVD are poorly or inadequately treated, leaving them vulnerable to disease progression, acute cardiovascular events, and poor aging due to loss of function in multiple visceral organs. Herein we discuss the need to greatly intensify efforts to reduce risk, decrease disease burden, and provide more comprehensive and earlier risk assessment to optimally prevent ASCVD and its complications. Evidence is presented to support that treatment should aim for far lower goals in cholesterol management, should take into account many more factors than commonly employed today and should begin significantly earlier in life.
Collapse
|
23
|
Miao J, Yang Z, Guo W, Liu L, Song P, Ding C, Guan W. Integrative analysis of the proteome and transcriptome in gastric cancer identified LRP1B as a potential biomarker. Biomark Med 2022; 16:1101-1111. [PMID: 36606427 DOI: 10.2217/bmm-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: The aim of this study was to discover unique membrane proteins associated with gastric cancer (GC) in proteomics analysis. Methods: Using a data-independent acquisition strategy, we compared the relative expression levels of membrane proteins in GC. Results: A total of 2774 differentially expressed membrane proteins were identified between GC and normal cell lines. Conjoint analysis of transcriptomes and proteomes provided 11 potential biomarkers (GPRC5A, PSAT1, NUDCD1, RCC2, IPO4, FAM91A1, KANK2, PRADC1, NME4, METTL7A and LRP1B) for further exploration. Downregulation of LRP1B in GC was validated by immunohistochemistry. Moreover, LRP1B demonstrated an area under the receiver operating characteristic curve of 0.917 in differentiating GC from normal tissues. Conclusion: LRP1B was identified as a meaningful indicator assisting in GC detection and labeling of tumor boundaries.
Collapse
Affiliation(s)
- Ji Miao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhi Yang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Peng Song
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chao Ding
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
24
|
Boshra H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022; 14:2139. [PMID: 36298693 PMCID: PMC9610998 DOI: 10.3390/v14102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bunyaviruses represent the largest group of RNA viruses and are the causative agent of a variety of febrile and hemorrhagic illnesses. Originally characterized as a single serotype in Africa, the number of described bunyaviruses now exceeds over 500, with its presence detected around the world. These predominantly tri-segmented, single-stranded RNA viruses are transmitted primarily through arthropod and rodent vectors and can infect a wide variety of animals and plants. Although encoding for a small number of proteins, these viruses can inflict potentially fatal disease outcomes and have even developed strategies to suppress the innate antiviral immune mechanisms of the infected host. This short review will attempt to provide an overall description of the order Bunyavirales, describing the mechanisms behind their infection, replication, and their evasion of the host immune response. Furthermore, the historical context of these viruses will be presented, starting from their original discovery almost 80 years ago to the most recent research pertaining to viral replication and host immune response.
Collapse
Affiliation(s)
- Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 Rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
25
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Li Z, Huang H, Wang C, Zhao Z, Ma W, Wang D, Mao H, Liu F, Yang Y, Pan W, Lu Z. DCE-MRI radiomics models predicting the expression of radioresistant-related factors of LRP-1 and survivin in locally advanced rectal cancer. Front Oncol 2022; 12:881341. [PMID: 36106114 PMCID: PMC9465298 DOI: 10.3389/fonc.2022.881341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin are associated with radiotherapy resistance in patients with locally advanced rectal cancer (LARC). This study aimed to evaluate the value of a radiomics model based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin expressions in these patients. Methods One hundred patients with pathologically confirmed LARC who underwent DCE-MRI before surgery between February 2017 and September 2021 were included in this retrospective study. DCE-MRI perfusion histogram parameters were calculated for the entire lesion using post-processing software (Omni Kinetics, G.E. Healthcare, China), with three quantitative parameter maps. LRP-1 and survivin expressions were assessed by immunohistochemical methods and patients were classified into low- and high-expression groups. Results Four radiomics features were selected to construct the LRP-1 discrimination model. The LRP-1 predictive model achieved excellent diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively. The other four radiomics characteristics were screened to construct the survivin predictive model, with AUCs of 0.780 and 0.800 in the training and validation cohorts, respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics models. Conclusion DCE-MRI radiomics models are particularly useful for evaluating LRP-1 and survivin expressions in patients with LARC. Our model has significant potential for the preoperative identification of patients with radiotherapy resistance and can serve as an essential reference for treatment planning.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Huizhen Huang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Chuchu Wang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weili Ma
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Haijia Mao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Fang Liu
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Ye Yang
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weihuo Pan
- Department of Colon and Rectal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
- *Correspondence: Zengxin Lu,
| |
Collapse
|
27
|
Expression of the Low-density Lipoprotein Receptor (LDLR) Gene Family in CD133+/CD44+ Prostate Cancer Stem Cells. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1140895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aim: The low-density lipoprotein receptor gene (LDLR) family plays a fundamental role in many malignancies and may have a putative cancer-boosting function. In our study, we have attempted to comparatively investigate the differential gene expressions of LDLR family in normal prostate epithelial cell line (RWPE-1), prostate cancer cell line (DU145 cell line), prostate cancer stem cells (DU145 CSCs) and non-CSCs (DU145 non-CSCs, bulk population).
Materials and Methods: Cancer stem cells in DU-145 prostate cancer cell line were isolated by flow cytometry according to CD133 and CD44 cell surface properties. Whole transcriptome sequencing data was comprehensively analyzed for each group. The protein-protein interaction network was determined using the STRING protein database.
Results: Our data showed that the expression levels of LRP1, LRP3, LRP8 and LRP11 were increased in the DU145 CSCs relative to the normal prostate epithelial cell line.
Conclusion: Overall, our data suggest that the LRP functions and/or the expression in prostate cancer may ultimately change the invasive phenotype of the CSCs.
Collapse
|
28
|
Sanguinetti C, Minniti M, Susini V, Caponi L, Panichella G, Castiglione V, Aimo A, Emdin M, Vergaro G, Franzini M. The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism. Biomedicines 2022; 10:biomedicines10081906. [PMID: 36009453 PMCID: PMC9405911 DOI: 10.3390/biomedicines10081906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein mainly synthesised by the liver and the choroid plexus whose function is to carry the thyroid hormone thyroxine and the retinol-binding protein bound to retinol in plasma and cerebrospinal fluid. When the stability of the tetrameric structure is lost, it breaks down, paving the way for the aggregation of TTR monomers into insoluble fibrils leading to transthyretin (ATTR) amyloidosis, a progressive disorder mainly affecting the heart and nervous system. Several TTR gene mutations have been characterised as destabilisers of TTR structure and are associated with hereditary forms of ATTR amyloidosis. The reason why also the wild-type TTR is intrinsically amyloidogenic in some subjects is largely unknown. The aim of the review is to give an overview of the TTR biological life cycle which is largely unknown. For this purpose, the current knowledge on TTR physiological metabolism, from its synthesis to its catabolism, is described. Furthermore, a large section of the review is dedicated to examining in depth the role of mutations and physiological ligands on the stability of TTR tetramers.
Collapse
Affiliation(s)
- Chiara Sanguinetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marianna Minniti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Susini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Laura Caponi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giorgia Panichella
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Vincenzo Castiglione
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Michele Emdin
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Giuseppe Vergaro
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
29
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
30
|
Treatment of Neuronopathic Mucopolysaccharidoses with Blood-Brain Barrier-Crossing Enzymes: Clinical Application of Receptor-Mediated Transcytosis. Pharmaceutics 2022; 14:pharmaceutics14061240. [PMID: 35745811 PMCID: PMC9229961 DOI: 10.3390/pharmaceutics14061240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Enzyme replacement therapy (ERT) has paved the way for treating the somatic symptoms of lysosomal storage diseases (LSDs), but the inability of intravenously administered enzymes to cross the blood-brain barrier (BBB) has left the central nervous system (CNS)-related symptoms of LSDs largely impervious to the therapeutic benefits of ERT, although ERT via intrathecal and intracerebroventricular routes can be used for some neuronopathic LSDs (in particular, mucopolysaccharidoses). However, the considerable practical issues involved make these routes unsuitable for long-term treatment. Efforts have been made to modify enzymes (e.g., by fusing them with antibodies against innate receptors on the cerebrovascular endothelium) so that they can cross the BBB via receptor-mediated transcytosis (RMT) and address neuronopathy in the CNS. This review summarizes the various scientific and technological challenges of applying RMT to the development of safe and effective enzyme therapeutics for neuronopathic mucopolysaccharidoses; it then discusses the translational and methodological issues surrounding preclinical and clinical evaluation to establish RMT-applied ERT.
Collapse
|
31
|
Liu J, Peng W, Yu F, Shen Y, Yu W, Lu Y, Lin W, Zhou M, Huang Z, Luo X, You W, Ke C. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone. Evol Appl 2022; 15:992-1001. [PMID: 35782008 PMCID: PMC9234619 DOI: 10.1111/eva.13388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/02/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is one of the world's fastest-growing and most traded food industries, but it is under the threat of climate-related risks represented by global warming, marine heatwave (MHW) events, ocean acidification, and deoxygenation. For the sustainable development of aquaculture, selective breeding may be a viable method to obtain aquatic economic species with greater tolerance to environmental stressors. In this study, we estimated the heritability of heat tolerance trait of Pacific abalone Haliotis discus hannai, performed genome-wide association studies (GWAS) analysis for heat tolerance to detect single nucleotide polymorphisms (SNPs) and candidate genes, and assessed the potential of genomic selection (GS) in the breeding of abalone industry. A total of 1120 individuals were phenotyped for their heat tolerance and genotyped with 64,788 quality-controlled SNPs. The heritability of heat tolerance was moderate (0.35-0.42) and the predictive accuracy estimated using BayesB (0.55 ± 0.05) was higher than that using GBLUP (0.40 ± 0.01). A total of 11 genome-wide significant SNPs and 2 suggestive SNPs were associated with heat tolerance of abalone, and 13 candidate genes were identified, including got2,znfx1,l(2)efl, and lrp5. Based on GWAS results, the prediction accuracy using the top 5K SNPs was higher than that using randomly selected SNPs and higher than that using all SNPs. These results suggest that GS is an efficient approach for improving the heat tolerance of abalone and pave the way for abalone selecting breeding programs in rapidly changing oceans.
Collapse
Affiliation(s)
- Junyu Liu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Feng Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yawei Shen
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yisha Lu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weihong Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Muzhi Zhou
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Zekun Huang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Xuan Luo
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weiwei You
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| |
Collapse
|
32
|
Zhen Z, Shen Z, Sun P. Downregulation of Low-density lipoprotein receptor-related protein 1B (LRP1B) inhibits the progression of hepatocellular carcinoma cells by activating the endoplasmic reticulum stress signaling pathway. Bioengineered 2022; 13:9467-9481. [PMID: 35389768 PMCID: PMC9161869 DOI: 10.1080/21655979.2022.2060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high recurrence rate and mortality rate even after surgery. Low-density lipoprotein receptor-related protein 1B (LRP1B) has proven to be involved in tumor development and progression of multiple malignancies. However, the function of LRP1B in HCC progression has not been fully elucidated. Thus, we conducted this study to explore the relationship between LRP1B and HCC. Bioinformatic analyses implied that LRP1B was highly expressed in HCC tissues. High LRP1B expression was shown to be related to poor outcomes and the determination of HCC patients’ tumor stage. LRP1B deletion impeded the proliferation, migration, and invasion of HCC cells. Further investigation demonstrated that silencing LRP1B expression enhanced the sensitivity of HCC cells to doxorubicin. LRP1B deletion inhibited HCC progression by regulating the PERK-ATF4-CHOP signaling pathway. Additionally, we probed the genomic alterations of LRP1B in HCC and the impact on the prognosis of patients. Collectively, our results suggest that LRP1B plays an essential role in the promotion of HCC progression by regulating the PERK-ATF4-CHOP signaling pathway, which is a potential prognostic biomarker and a promising therapeutic target of HCC.
Collapse
Affiliation(s)
- Zili Zhen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P. R. China.,Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, P. R. China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhemin Shen
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P. R. China
| | - Peilong Sun
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P. R. China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
33
|
Gemza A, Barresi C, Proemer J, Hatami J, Lazaridis M, Herbst R. Internalization of Muscle-Specific Kinase Is Increased by Agrin and Independent of Kinase-Activity, Lrp4 and Dynamin. Front Mol Neurosci 2022; 15:780659. [PMID: 35370548 PMCID: PMC8965242 DOI: 10.3389/fnmol.2022.780659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase absolutely required for neuromuscular junction formation. MuSK is activated by binding of motor neuron-derived Agrin to low-density lipoprotein receptor related protein 4 (Lrp4), which forms a complex with MuSK. MuSK activation and downstream signaling are critical events during the development of the neuromuscular junction. Receptor tyrosine kinases are commonly internalized upon ligand binding and crosstalk between endocytosis and signaling has been implicated. To extend our knowledge about endocytosis of synaptic proteins and its role during postsynaptic differentiation at the neuromuscular junction, we studied the stability and internalization of Lrp4, MuSK and acetylcholine receptors (AChRs) in response to Agrin. We provide evidence that MuSK but not Lrp4 internalization is increased by Agrin stimulation. MuSK kinase-activity is not sufficient to induce MuSK internalization and the absence of Lrp4 has no effect on MuSK endocytosis. Moreover, MuSK internalization and signaling are unaffected by the inhibition of Dynamin suggesting that MuSK endocytosis uses a non-conventional pathway and is not required for MuSK-dependent downstream signaling.
Collapse
Affiliation(s)
- Anna Gemza
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jakob Proemer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Hatami
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarita Lazaridis
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Zhao G, Zhu Y, Hu J, Gao M, Hong Y. l-selenomethionine induces zebrafish embryo cardiovascular defects via down-regulating expression of lrp2b. CHEMOSPHERE 2022; 290:133351. [PMID: 34933029 DOI: 10.1016/j.chemosphere.2021.133351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Selenium plays crucial roles in maintaining the growth and development of vertebrates including humans. However, excessive selenium in cells will lead to developmental defects and disease. Selenium has been reported to cause severe malformation in zebrafish embryos, but there are few studies on the mechanism of selenium excess-induced cardiovascular defects. In this study, the fertilized zebrafish embryos were treated with selenium for 96 h post fertilization (hpf). Under selenium stress, wild-type embryos showed pericardial edema, heart rate decrease, ectopic accumulation of hemoglobin; fli1-eGFP transgenic zebrafish displayed intersegmental vessel injury; and myl7-eGFP transgenic zebrafish exhibited atrial area increase. RNA-seq data and qRT-PCR results indicated that the expressions of cardiovascular development genes were up-regulated in selenium-stressed embryos. The expressions of lipid metabolism-related and selenium metabolism-related genes were evaluated in embryos. Among the tested genes, the expression of lrp2b was down-regulated in both 24 hpf and 96 hpf embryos. Furthermore, lrp2b-knockdown embryos exhibited the cardiac defects similar to selenium-stress embryos, and the over-expression of lrp2b rescued the selenium-induced defects, indicating that lrp2b might play a key role in regulating selenium cardiotoxicity. In summary, our research evaluates the cardiotoxicity of excessive selenium, and reveals the molecular mechanism of cardiovascular defects in selenium-exposed zebrafish embryos.
Collapse
Affiliation(s)
- Guang Zhao
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Yuejie Zhu
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Jun Hu
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Meng Gao
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China
| | - Yijiang Hong
- School of Life science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
35
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
36
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
38
|
Cuchillo-Ibañez I, Lennol MP, Escamilla S, Mata-Balaguer T, Valverde-Vozmediano L, Lopez-Font I, Ferrer I, Sáez-Valero J. The apolipoprotein receptor LRP3 compromises APP levels. Alzheimers Res Ther 2021; 13:181. [PMID: 34727970 PMCID: PMC8565065 DOI: 10.1186/s13195-021-00921-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and β-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. We have analyzed whether ApoER2-ICD is able to regulate the expression of other LDL receptors, and we focused on LRP3, the most unknown member of this family. We analyzed LRP3 expression in middle-aged individuals (MA) and in cases with Alzheimer's disease (AD)-related pathology, and the relation of LRP3 with APP. METHODS The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in the presence of recombinant reelin or Aβ42 peptide, were evaluated by microarray, qRT-PCRs, and western blots in SH-SY5Y cells. LRP3 expression was analyzed in human frontal cortex extracts from MA subjects (mean age 51.8±4.8 years) and AD-related pathology subjects [Braak neurofibrillary tangle stages I-II, 68.4±8.8 years; III-IV, 80.4 ± 8.8 years; V-VI, 76.5±9.7 years] by qRT-PCRs and western blot; LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Chloroquine was employed to block the lysosomal/autophagy function. RESULTS We have identified that ApoER2 overexpression increases LRP3 expression, also after reelin stimulation of ApoER2 signaling. The same occurred following ApoER2-ICD overexpression. In extracts from subjects with AD-related pathology, the levels of LRP3 mRNA and protein were lower than those in MA subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, particularly in the membrane fraction. In cell supernatants, levels of APP fragments from the amyloidogenic (sAPPα) or non-amyloidogenic (sAPPβ) pathways, as well as Aβ peptides, were drastically reduced with respect to mock-transfected cells. The inhibitor of lysosomal/autophagy function, chloroquine, significantly increased full-length APP, APP-CTF, and sAPPα levels. CONCLUSIONS ApoER2/reelin signaling regulates LRP3 expression, whose levels are affected in AD; LRP3 is involved in the regulation of APP levels.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lucía Valverde-Vozmediano
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Neuropatología, Hospital Universitario de Bellvitge, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
39
|
Sousa G, de Carvalho SS, Atella GC. Trypanosoma cruzi Affects Rhodnius prolixus Lipid Metabolism During Acute Infection. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.737909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interaction between Rhodnius prolixus and Trypanosoma cruzi has huge medical importance because it responds to the transmission of Chagas disease, a neglected tropical disease that affects about eight million people worldwide. It is known that trypanosomatid pathogens depend on active lipid endocytosis from the insect host to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs was largely unknown. Herein, the biochemical and molecular dynamics of the triatomine R. prolixus lipid metabolism in response to T. cruzi acute infection were investigated. A qRT-PCR approach was used to determine the expression profile of 12 protein-coding genes involved in R. prolixus lipid physiology. In addition, microscopic and biochemical assays revealed the lipid droplet profile and the levels of the different identified lipid classes. Finally, spectrometry analyses were used to determine fatty acid and sterol composition and their modulation towards the infection. T. cruzi infection downregulated the transcript levels of protein-coding genes for lipid biosynthetic and degrading pathways in individual triatomine organs. On the other hand, upregulation of lipid receptor transcripts indicates an attempt to capture more lipids from hemolymphatic lipoproteins. Consequently, several lipid classes (such as monoacylglycerol, diacylglycerol, triacylglycerol, cholesteryl ester, phosphatidylcholine, and phosphatidylethanolamine) were involved in the response to the parasite challenge, although modulating only the insect fat body. T. cruzi never leaves the insect gut and yet it modulates non-infected tissues, suggesting that the association between the parasite and the vector organs is reached by cell signaling molecules. This hypothesis raises several intriguing issues to inspire future studies in the parasite-vector interaction field.
Collapse
|
40
|
Bian W, Tang M, Jiang H, Xu W, Hao W, Sui Y, Hou Y, Nie L, Zhang H, Wang C, Li N, Wang J, Qin J, Wu L, Ma X, Chen J, Wang W, Li X. Low-density-lipoprotein-receptor-related protein 1 mediates Notch pathway activation. Dev Cell 2021; 56:2902-2919.e8. [PMID: 34626540 DOI: 10.1016/j.devcel.2021.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
The Notch signaling pathway controls cell growth, differentiation, and fate decisions, and its dysregulation has been linked to various human genetic disorders and cancers. To comprehensively understand the global organization of the Notch pathway and identify potential drug targets for Notch-related diseases, we established a protein interaction landscape for the human Notch pathway. By combining and analyzing genetic and phenotypic data with bioinformatics analysis, we greatly expanded this pathway and identified many key regulators, including low-density-lipoprotein-receptor-related protein 1 (LRP1). We demonstrated that LRP1 mediates the ubiquitination chain linkage switching of Delta ligands, which further affects ligand recycling, membrane localization, and stability. LRP1 inhibition led to Notch signaling inhibition and decreased tumorigenesis in leukemia models. Our study provides a glimpse into the Notch pathway interaction network and uncovers LRP1 as one critical regulator of the Notch pathway, as well as a possible therapeutic target for Notch-related cancers.
Collapse
Affiliation(s)
- Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Jiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yue Sui
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yingnan Hou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Litong Nie
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Nan Li
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Science, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Junjie Chen
- Department of Experimental Radiation Oncology, the University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA.
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
41
|
Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals (Basel) 2021; 14:836. [PMID: 34577535 PMCID: PMC8469001 DOI: 10.3390/ph14090836] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1B (LRP1B) is a giant member of the LDLR protein family, which includes several structurally homologous cell surface receptors with a wide range of biological functions from cargo transport to cell signaling. LRP1B is among the most altered genes in human cancer overall. Found frequently inactivated by several genetic and epigenetic mechanisms, it has mostly been regarded as a putative tumor suppressor. Still, limitations in LRP1B studies exist, in particular associated with its huge size. Therefore, LRP1B expression and function in cancer remains to be fully unveiled. This review addresses the current understanding of LRP1B and the studies that shed a light on the LRP1B structure and ligands. It goes further in presenting increasing knowledge brought by technical and methodological advances that allow to better manipulate LRP1B expression in cells and to more thoroughly explore its expression and mutation status. New evidence is pushing towards the increased relevance of LRP1B in cancer as a potential target or translational prognosis and response to therapy biomarker.
Collapse
Affiliation(s)
- Catarina Príncipe
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel J. Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo Prazeres
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
42
|
Mao Z, Wang Z, Zhang S, Pu Y, Wang J, Zhang T, Long Y, Liu Y, Ma Y, Zhu J. LRP4 promotes migration and invasion of gastric cancer under the regulation of microRNA-140-5p. Cancer Biomark 2021; 29:245-253. [PMID: 32675391 DOI: 10.3233/cbm-190571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 4 (LRP4) has been reported to be implicated in multiple types of cancers. However, the significance of LRP4 in gastric cancer (GC) remains poorly elucidated. Therefore, it's urgent to investigate the importance and underlying mechanisms of LRP4 in GC. OBJECTIVE To investigate the clinical roles of LRP4 in GC. METHODS The LRP4 mRNA and miR-140-5p was measured by qRT-PCR. The protein expression was determined Western blot. Kaplan-Meier survival curves and Cox proportional hazard regression models were performed to evaluate prognosis. RESULTS We demonstrated that LRP4 mRNA and protein was up-regulated in GC tissues for the first time. Its high expression was significantly correlated with malignant clinical features including TNM stage and lymph-node metastasis and poor prognosis for GC patients. LRP4 promotes migration, invasion and epithelial-mesenchymal transition (EMT) progress of GC cells. Mechanically, LRP4 regulated PI3K/AKT in GC cells. AKT inhibitors reversed the effects of LRP4. Finally, LRP4 was regulated by miR-140-5p in GC. CONCLUSIONS Our findings showed that LRP4 has an important function in GC progression and promotes GC migration, invasion and EMT by regulating PI3K/AKT under regulation of miR-140-5p, providing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhijun Mao
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhen Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.,The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Shiping Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yansong Pu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jianhua Wang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Tao Zhang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanbin Long
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yu Ma
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
45
|
DePew AT, Mosca TJ. Conservation and Innovation: Versatile Roles for LRP4 in Nervous System Development. J Dev Biol 2021; 9:9. [PMID: 33799485 PMCID: PMC8006230 DOI: 10.3390/jdb9010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
As the nervous system develops, connections between neurons must form to enable efficient communication. This complex process of synaptic development requires the coordination of a series of intricate mechanisms between partner neurons to ensure pre- and postsynaptic differentiation. Many of these mechanisms employ transsynaptic signaling via essential secreted factors and cell surface receptors to promote each step of synaptic development. One such cell surface receptor, LRP4, has emerged as a synaptic organizer, playing a critical role in conveying extracellular signals to initiate diverse intracellular events during development. To date, LRP4 is largely known for its role in development of the mammalian neuromuscular junction, where it functions as a receptor for the synaptogenic signal Agrin to regulate synapse development. Recently however, LRP4 has emerged as a synapse organizer in the brain, where new functions for the protein continue to arise, adding further complexity to its already versatile roles. Additional findings indicate that LRP4 plays a role in disorders of the nervous system, including myasthenia gravis, amyotrophic lateral sclerosis, and Alzheimer's disease, demonstrating the need for further study to understand disease etiology. This review will highlight our current knowledge of how LRP4 functions in the nervous system, focusing on the diverse developmental roles and different modes this essential cell surface protein uses to ensure the formation of robust synaptic connections.
Collapse
Affiliation(s)
| | - Timothy J. Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
46
|
Di L, Maiseyeu A. Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential. Drug Deliv 2021; 28:408-421. [PMID: 33594923 PMCID: PMC7894439 DOI: 10.1080/10717544.2021.1886199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Native nanostructured lipoproteins such as low- and high-density lipoproteins (LDL and HDL) are powerful tools for the targeted delivery of drugs and imaging agents. While the cellular recognition of well-known HDL-based carriers occurs via interactions with an HDL receptor, the selective delivery and uptake of LDL particles by target cells are more complex. The most well-known mode of LDL-based delivery is via the interaction between apolipoprotein B (Apo-B) - the main protein of LDL - and the low-density lipoprotein receptor (LDLR). LDLR is expressed in the liver, adipocytes, and macrophages, and thus selectively delivers LDL carriers to these cells and tissues. Moreover, the elevated expression of LDLR in tumor cells indicates a role for LDL in the targeted delivery of chemotherapy drugs. In addition, chronic inflammation associated with hypercholesterolemia (i.e., high levels of endogenous LDL) can be abated by LDL carriers, which outcompete the deleterious oxidized LDL for uptake by macrophages. In this case, synthetic LDL nanocarriers act as 'eat-me' signals and exploit mechanisms of native LDL uptake for targeted drug delivery and imaging. Lastly, recent studies have shown that the delivery of LDL-based nanocarriers to macrophages via fluid-phase pinocytosis is a promising tool for atherosclerosis imaging. Hence, the present review summarizes the use of natural and synthetic LDL-based carriers for drug delivery and imaging and discusses various mechanisms of targeting.
Collapse
Affiliation(s)
- Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Clevehand, OH, USA
| |
Collapse
|
47
|
Le Roy N, Ganot P, Aranda M, Allemand D, Tambutté S. The skeletome of the red coral Corallium rubrum indicates an independent evolution of biomineralization process in octocorals. BMC Ecol Evol 2021; 21:1. [PMID: 33514311 PMCID: PMC7853314 DOI: 10.1186/s12862-020-01734-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. Results We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are found in the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral organic matrix possesses a large number of collagen-like proteins. Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. The inferred regulatory function of these OM proteins suggests that the difference between the two biominerals is due to the modeling of the matrix network, rather than the presence of specific structural components. At least one OM component could have been horizontally transferred from prokaryotes early during Octocorallia evolution. Conclusion Our results suggest that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
Collapse
Affiliation(s)
- Nathalie Le Roy
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco. .,BOA UMR83, INRAe Centre Val de Loire, 37380, Nouzilly, France.
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| |
Collapse
|
48
|
Sun W, Li L, Li H, Zhou K, Li W, Wang Q. Vitellogenin receptor expression in ovaries controls innate immunity in the Chinese mitten crab (Eriocheir sinensis) by regulating vitellogenin accumulation in the hemolymph. FISH & SHELLFISH IMMUNOLOGY 2020; 107:480-489. [PMID: 32920203 DOI: 10.1016/j.fsi.2020.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The vitellogenin receptor (Vgr), which is specific for vitellogenin (Vtg), recognises and transports Vtg into the ovaries. Accumulating evidence suggests that Vtg also performs an immune defence function and plays critical roles in innate immunity in oviparous animals. However, whether Vgr is involved in innate immunity in the Chinese mitten crab (Eriocheir sinensis) is unknown. In this study, we obtained a 3009 nucleotide partial cDNA of the E. sinensis vitellogenin receptor gene (Es-vgr) encoding an open reading frame of 1003 amino acid residues. Bioinformatics analysis showed that the domains of Es-vgr were conserved during evolution. Quantitative real-time PCR and western blotting revealed that the highest Es-vgr expression levels occurred in the ovary, and expression was specific. Comparison of the expression levels of Es-vgr and the Vtg gene (Es-vtg1) at different ovary developmental stages suggested that there may be some regulatory relationship between them. Bacterial challenge induced high-level expression of antimicrobial peptide genes and reduced Es-vgr expression in ovaries, resulting in massive accumulation of Vtg in the hemolymph. The survival rate of crabs increased significantly after injection with recombinant Es-vtg1 protein following bacterial infection. Collectively, these results demonstrate that Es-vgr plays critical roles in antimicrobial function by regulating the accumulation of Vtg in the hemolymph.
Collapse
Affiliation(s)
- Weikang Sun
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
49
|
Martins R, Machado PC, Pinto LFB, Silva MR, Schenkel FS, Brito LF, Pedrosa VB. Genome-wide association study and pathway analysis for fat deposition traits in nellore cattle raised in pasture-based systems. J Anim Breed Genet 2020; 138:360-378. [PMID: 33232564 DOI: 10.1111/jbg.12525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Genome-wide association study (GWAS) is a powerful tool to identify candidate genes and genomic regions underlying key biological mechanisms associated with economically important traits. In this context, the aim of this study was to identify genomic regions and metabolic pathways associated with backfat thickness (BFT) and rump fat thickness (RFT) in Nellore cattle, raised in pasture-based systems. Ultrasound-based measurements of BFT and RFT (adjusted to 18 months of age) were collected in 11,750 animals, with 39,903 animals in the pedigree file. Additionally, 1,440 animals were genotyped using the GGP-indicus 35K SNP chip, containing 33,623 SNPs after the quality control. The single-step GWAS analyses were performed using the BLUPF90 family programs. Candidate genes were identified through the Ensembl database incorporated in the BioMart tool, while PANTHER and REVIGO were used to identify the key metabolic pathways and gene networks. A total of 18 genomic regions located on 10 different chromosomes and harbouring 23 candidate genes were identified for BFT. For RFT, 22 genomic regions were found on 14 chromosomes, with a total of 29 candidate genes identified. The results of the pathway analyses showed important genes for BFT, including TBL1XR1, AHCYL2, SLC4A7, AADAT, VPS53, IDH2 and ETS1, which are involved in lipid metabolism, synthesis of cellular amino acids, transport of solutes, transport between Golgi Complex membranes, cell differentiation and cellular development. The main genes identified for RFT were GSK3β, LRP1B, EXT1, GRB2, SORCS1 and SLMAP, which are involved in metabolic pathways such as glycogen synthesis, lipid transport and homeostasis, polysaccharide and carbohydrate metabolism. Polymorphisms located in these candidate genes can be incorporated in commercial genotyping platforms to improve the accuracy of imputation and genomic evaluations for carcass fatness. In addition to uncovering biological mechanisms associated with carcass quality, the key gene pathways identified can also be incorporated in biology-driven genomic prediction methods.
Collapse
Affiliation(s)
- Rafaela Martins
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Pamela C Machado
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Marcio R Silva
- Melhore Animal and Katayama Agropecuaria Lda, Guararapes, Brazil
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
50
|
Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 2020; 319:C404-C418. [PMID: 32520609 PMCID: PMC7500214 DOI: 10.1152/ajpcell.00188.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.
Collapse
Affiliation(s)
- Skylar Fisher
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Damian Kuna
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| | - Tamara Caspary
- 3Department of Human Genetics, Emory
University School of Medicine, Atlanta,
Georgia
| | - Richard A. Kahn
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Elizabeth Sztul
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| |
Collapse
|