1
|
Li Z, Hu F, Xiong L, Zhou X, Dong C, Zheng Y. Underlying mechanisms of traditional Chinese medicine in the prevention and treatment of diabetic retinopathy: Evidences from molecular and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118641. [PMID: 39084273 DOI: 10.1016/j.jep.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.
Collapse
Affiliation(s)
- Zhengpin Li
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Faquan Hu
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Liyuan Xiong
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Xuemei Zhou
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Ma Z, Chen X, Xiong M, Wang H, Sun C, Tang W, Li J, Li X, Ma H, Ye X. Cyberpharmacology uncover the mechanism of the total Rhizoma Coptidis extracts ameliorate chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118644. [PMID: 39094758 DOI: 10.1016/j.jep.2024.118644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Characterized by inflammation of the gastric mucosa, atrophy of gastric gland cells, and intestinal metaplasia, Chronic Atrophic Gastritis (CAG) is a precancerous lesion disease. In traditional Chinese medicine, Rhizoma Coptidis (RC) is extensively used for treating gastrointestinal disorders, mainly because RC alkaloids-based extracts are the main active pharmaceutical ingredients. Total Rhizoma Coptidis extracts (TRCE) is a mixture of Rhizoma Coptidis extracts from Rhizoma Coptidis with alkaloids as the main components. However, the efficacy and mechanism of TRCE on CAG need further study. AIM OF THE STUDY To explore the therapeutic effect and underlying mechanisms of action of TRCE on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced chronic atrophic gastritis (CAG) using network pharmacological analysis. MATERIALS AND METHODS The amelioration effect of TRCE on CAG was evaluated in MNNG-induced CAG mice. The pathological severity of the mice was evaluated through H&E staining. Detection of gastric mucosal parietal cell loss was conducted using immunofluorescence staining, and serum indices were measured using ELISA. Additionally, the active compounds and drug targets of Rhizoma Coptidis were curated from the STP, SEA, and TCMSP databases, alongside disease targets of CAG sourced from PharmGkb, OMIM, and GeneCards databases. By mapping drug targets to disease targets, overlapping targets were identified. A shared protein-protein interaction (PPI) and drug target network were constructed for the overlapping targets and analyzed for KEGG enrichment. RESULTS The results of animal experiments demonstrate that TRCE has the potential to improve the CAG process in mice. In conjunction with disease characteristics, cyberpharmacology analysis has identified nine core compounds, 151 targets, 10 core targets, and five significant inflammatory pathways within the compound-target-pathway network. Furthermore, there is a remarkable coincidence rate of 98% between the core compound targets of TRCE and the targets present in the CAG disease database. The accurate search and calculation of literature reports indicate that the coverage rate for 121 predicted core targets related to CAG reaches 81%. The primary characteristic of CAG lies in its inflammatory process. Both predicted and experimental findings confirm that TRCE can regulate ten key inflammation-associated targets (TP53, STAT3, AKT1, HSP90AA1, TNF, IL-6, MAPK3, SRC, JUN, and HSP90AA1) as well as inflammation-related pathways (MAPK, HIF-1, Toll-Like Receptor, IL-17, TNF, and other signaling pathways). These mechanisms mitigate inflammation and reduce gastric mucosal damage in CAG mice. CONCLUSIONS In conclusion, TRCE was shown to alleviate CAG by modulating TP53, STAT3, AKT1, HSP90AA1, TNF, IL-6, MAPK3, SRC, JUN, and EGFR, as demonstrated by combined network pharmacology and biological experiments. In conclusion, our study provides a robust foundation for future clinical trials evaluating the efficacy of RC in treating CAG.
Collapse
Affiliation(s)
- Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hongmei Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Chunyong Sun
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Wanyu Tang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Juan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Li C, Deng L, Pu M, Ye X, Lu Q. Coptisine alleviates colitis through modulating gut microbiota and inhibiting TXNIP/NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118680. [PMID: 39117021 DOI: 10.1016/j.jep.2024.118680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1β and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Li Deng
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Min Pu
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Xuanlin Ye
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
4
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhang M, Lu P, Zheng Y, Huang X, Liu J, Yan H, Quan H, Tan R, Ren F, Jiang H, Zhou J, Liao H. Genome-wide identification of AP2/ERF gene family in Coptis Chinensis Franch reveals its role in tissue-specific accumulation of benzylisoquinoline alkaloids. BMC Genomics 2024; 25:972. [PMID: 39415101 PMCID: PMC11484470 DOI: 10.1186/s12864-024-10883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The Plant-specific AP2/ERF gene family encodes proteins involved in various biological and physiological processes. Although the genome of Coptis chinensis Franch, a plant producing benzylisoquinoline alkaloids (BIAs), has been sequenced at the chromosome level, studies on the AP2/ERF gene family in C. chinensis are lacking. Thus, a genome-wide identification of AP2/ERF gene family in C. chinensis was conducted to explore its role in BIAs biosynthesis. RESULTS A total of 96 CcAP2/ERF genes were identified and categorized into five subfamilies, including 43 ERFs, 32 DREBs, 17 AP2s, 3 RAVs, and 1 Soloist, based on their structural domains. These CcAP2/ERF genes were unevenly distributed across nine chromosomes. Analysis of gene duplication events identified 17 CcAP2/ERF gene pairs in the genome, with 7 involved in tandem duplication events and 10 involved in segmental duplicate events, indicating that both types of duplications contributed to the expansion of the AP2/ERF gene family. The Ka/Ks ratio analysis suggested that the CcAP2/ERF gene family underwent strong purifying selection. Two phytohormones, methyl jasmonate and abscisic acid, were identified as potential key inducers of BIAs biosynthesis due to the cis-acting element prediction. Analysis of the spatial transcriptomic data revealed that 28 differentially expressed AP2/ERF genes had the highest or relatively higher expression levels in the rhizome, 17 of which positively correlated with the tissue-specific accumulation of BIAs. Further real-time PCR verification and protein-protein interaction analysis indicated that DREB1B might be one of the central regulators in a highly complex BIAs biosynthesis network. CONCLUSION These findings provide significant insight into the function of AP2/ERF genes in C. chinensis, particularly in the regulatory network of BIAs biosynthesis in C. chinensis. This study also identifies candidate genes for metabolic engineering to increase BIAs content in C. chinensis.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Pingping Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yating Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xue Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Junnan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Fengming Ren
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 400010, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
6
|
Zhang Z, Zheng Y, Zhang B, Wang R, Chen L, Wang Y, Feng W, Zheng X, Li K, Zhou N. Untargeted serum and gastric metabolomics and network pharmacology analysis reveal the superior efficacy of zingiberis rhizoma recens-/euodiae fructus-processed Coptidis Rhizoma on gastric ulcer rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118376. [PMID: 38782310 DOI: 10.1016/j.jep.2024.118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiberis rhizoma recens-/wine-/euodiae fructus-processed Coptidis Rhizoma (CR, zCR/wCR/eCR) are the commonly used processed products of CR in clinic. After being processed with different excipients, the efficacy of CR will change accordingly. I.e., wCR could resolve excessive heat of the upper energizer, zCR could eliminate gastric heat and harmonize the stomach, eCR could smooth the liver and harmonize the stomach. However, the underlying mechanisms were still unclear. AIM OF THE STUDY To further verify the differential efficacy of the three processed CR products and compare the mechanisms on gastric ulcer. MATERIAL AND METHODS First, a GU model, whose onset is closely related to the heat in stomach and the disharmony between liver and stomach, was established, and the therapeutic effects of zCR/wCR/eCR/CR were evaluated by pathologic observation and measurement of cytokine levels. Second, metabolomics analysis and network pharmacology were conducted to reveal the differential intervening mechanism of zCR/eCR on GU. Third, the predicted mechanisms from metabolomics analysis and network pharmacology were validated using western blotting, flow cytometry and immunofluorescence. RESULTS zCR/wCR/eCR/CR could alleviate the pathologic damage to varying degrees. In metabolomics research, fewer metabolic pathways were enriched in serum samples, and most of them were also present in the results of gastric tissue samples. The gastroprotective, anti-inflammatory, antioxidant, and anti-apoptotic effects of zCR/wCR/eCR/CR might be due to their interference on histidine, arachidonic acid, and glycerophospholipids metabolism. Quantitative results indicated that zCR/eCR had a better therapeutic effect than wCR/CR in treating GU. A comprehensive analysis of metabolomics and network pharmacology revealed that zCR and eCR exerted anti-GU effects via intervening in five core targets, including AKT, TNF, IL6, IL1B and PPARG. In the validation experiment, zCR/eCR could significantly reverse the abnormal expression of proteins related to apoptosis, inflammation, oxidative stress, gastric function, as well as the PI3K/AKT signaling pathways. CONCLUSION zCR and eCR could offer gastroprotective benefits by resisting inflammation and apoptosis, inhibiting gastric-acid secretion, as well as strengthening gastric mucosal defense and antioxidant capacity. Integrating network pharmacology and metabolomics analysis could reveal the acting mechanism of drugs and promote the development of medications to counteract GU.
Collapse
Affiliation(s)
- Zhenkai Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yajuan Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Bingxian Zhang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ruifeng Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Long Chen
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Yongxiang Wang
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Weisheng Feng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Kai Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China.
| | - Ning Zhou
- Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| |
Collapse
|
7
|
Xie Q, Chen J, Yang H, Liang J, Ma R, Guo J, Zeng X. A Comprehensive Review of Coptidis Rhizoma and Magnoliae Officinalis Cortex Drug Pair and Their Chemical Composition, Pharmacological Effects and Pharmacokinetics Analysis. Drug Des Devel Ther 2024; 18:4413-4426. [PMID: 39372674 PMCID: PMC11456271 DOI: 10.2147/dddt.s477381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Herbal pairs are unique combinations of two relatively fixed herbs that are used in clinical practice. This is the most fundamental and straightforward form of multiple herbal treatment that aims to attain specific efficacy through unique methods. Coptidis Rhizoma ("Huanglian" in Chinese) and Magnoliae Officinalis Cortex ("Houpo" in Chinese) which are commonly used in combination and could also be used as important components of other prescriptions to treat damp-heat dysentery, splenic and stomach disorders, and qi stagnation in clinical practice. However, there is currently no summary on the compatibility of Huanglian and Houpo about traditional use, phytochemistry, and pharmacological activity. It was found the combination or separate extraction of the two drugs may affect the main active components, and new components may be produced after the combined extraction. At the same time, Huanglian and Houpo herb pair exhibited antiviral, anti-inflammatory, antibacterial and other pharmacological effects. At present, research mainly focuses on the indicator components of Huanglian and Houpo, such as berberine, magnolol, and magnolol. The models used for pharmacological validation are limited, mainly including ulcerative colitis, pneumonia, bacterial infections, etc. In order to verify the pharmacological activity of the combination of Huanglian and Houpo, it is necessary to try more in vitro and in vivo models. It's still need to study the compatibility mechanism of the Huanglian and Houpo drug pair, including but not limited to the interactions between different components and the impact of compatibility on efficacy, bioequivalence studies, and the impact of different dosage forms on pharmacokinetics in the future. It's believed that the systematic review provided comprehensive information for the study of Huanglian-Houpo drug pair, which will help highlight the importance of the Huanglian-Houpo herb pair and provide some clues for future research on this herb pair.
Collapse
Affiliation(s)
- Qian Xie
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jianlong Liang
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Rong Ma
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Xuxin Zeng
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| |
Collapse
|
8
|
Zhao Z, Wu Q, Xu Y, Qin Y, Pan R, Meng Q, Li S. Groenlandicine enhances cisplatin sensitivity in cisplatin-resistant osteosarcoma cells through the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. J Bone Oncol 2024; 48:100631. [PMID: 39263651 PMCID: PMC11388767 DOI: 10.1016/j.jbo.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Groenlandicine is a protoberberine alkaloid isolated from Coptidis Rhizoma, a widely used traditional Chinese medicine known for its various biological activities. This study aims to validate groenlandicine's effect on both cisplatin-sensitive and cisplatin-resistant osteosarcoma (OS) cells, along with exploring its potential molecular mechanism. The ligand-based virtual screening (LBVS) method and molecular docking were employed to screen drugs. CCK-8 and FCM were used to measure the effect of groenlandicine on the OS cells transfected by lentivirus with over-expression or low-expression of TOP1. Cell scratch assay, CCK-8, FCM, and the EdU assay were utilized to evaluate the effect of groenlandicine on cisplatin-resistant cells. WB, immunofluorescence, and PCR were conducted to measure the levels of TOP1, Bcl-2, BAX, Caspase-9, and Caspase-3. Additionally, a subcutaneous tumor model was established in nude mice to verify the efficacy of groenlandicine. Groenlandicine reduced the migration and proliferation while promoting apoptosis in OS cells, effectively damaging them. Meanwhile, groenlandicine exhibited weak cytotoxicity in 293T cells. Combination with cisplatin enhanced tumor-killing activity, markedly activating BAX, cleaved-Caspase-3, and cleaved-Caspase-9, while inhibiting the Bcl2 pathway in cisplatin-resistant OS cells. Moreover, the level of TOP1, elevated in cisplatin-resistant OS cells, was down-regulated by groenlandicine both in vitro and in vivo. Animal experiments confirmed that groenlandicine combined with cisplatin suppressed OS growth with lower nephrotoxicity. Groenlandicine induces apoptosis and enhances the sensitivity of drug-resistant OS cells to cisplatin via the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. Groenlandicine inhibits OS cells growth by down-regulating TOP1 level.Therefore, groenlandicine holds promise as a potential agent for reversing cisplatin resistance in OS treatment.
Collapse
Affiliation(s)
- Zihao Zhao
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qihong Wu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yangyang Xu
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuhuan Qin
- Beijing Jinshuitan Hospital Guizhou Hospital, Guiyang, Guizhou Province, China
| | - Runsang Pan
- Basic Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qingqi Meng
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Chen X, Hu Z, Zhao K, Rao X, Shen C, Chen Y, Ye X, Fang C, Zhou F, Ding Z, Zhu B. Microenvironment-responsive, multimodulated herbal polysaccharide hydrogel for diabetic foot ulcer healing. Sci Rep 2024; 14:22135. [PMID: 39333183 PMCID: PMC11436737 DOI: 10.1038/s41598-024-72972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetic ulcers (DUs) usually suffer from severe infections, persistent inflammation, and excessive oxidative stress during the healing process, which led to the microenvironmental alternation and severely impede DU healing, resulting in a delayed wound healing. Therefore, it is particularly important to develop a medical dressing that can address these problems simultaneously. To this end, self-healing composite hydrogels were prepared in this study utilizing Bletilla striata polysaccharide (BSP) and Berberine (BER) with borax via borate ester bond. The chemical and mechanical properties of the BSP/BER hydrogels were characterized, and their wound healing performance was investigated in vivo and in vitro. The results showed that the BSP/BER hydrogel significantly accelerated wound healing in DU mice with the healing rate of 94.90 ± 1.81% on the 14th day by using BSP/BER5, and this outstanding performance was achieved by the multi-targeted biological functions of antibacterial, anti-inflammatory and antioxidant, which provided favorable microenvironment for orderly recovery of the wound. Aside from exhibiting the antibacterial rate of over 90% against both Escherichia coli and Staphylococcus aureus, the BSP/BER5 hydrogel could significantly reduce NO levels 4.544 ± 0.32 µmol/L to exert its anti-inflammatory effects. Additionally, it demonstrated a hemolysis rate and promotes cell migration capabilities at (34.92 ± 1.66%). With the above features, the developed BSP/BER hydrogel in this study could be the potential dressing for clinical treatment of DU wound.
Collapse
Affiliation(s)
- Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Rao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Chenjun Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Chengnan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Ahmad S, Ahmad MFA, Khan S, Alouffi S, Khan M, Prakash C, Khan MWA, Ansari IA. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024; 280:135761. [PMID: 39306154 DOI: 10.1016/j.ijbiomac.2024.135761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Diabetes mellitus significantly increases mortality and morbidity rates due to complications like neuropathy and nephropathy. It also leads to retinopathy and cataract formation, which is a leading cause of vision disability. The polyol pathway emerges as a promising therapeutic target among the various pathways associated with diabetic complications. This review focuses on the development of natural and synthetic aldose reductase inhibitors (ARIs), along with recent discoveries in diabetic complication treatment. AR, pivotal in the polyol pathway converting glucose to sorbitol, plays a key role in secondary diabetes complications' pathophysiology. Understanding AR's function and structure lays the groundwork for improving ARIs to mitigate diabetic complications. New developments in ARIs open up exciting possibilities for treating diabetes-related complications. However, it is still challenging to get preclinical successes to clinical effectiveness because of things like differences in how the disease starts, drug specificity, and the complexity of the AR's structure. Addressing these challenges is crucial for developing targeted and efficient ARIs. Continued research into AR's structural features and specific ARIs is essential. Overcoming these challenges could revolutionize diabetic complication treatment, enhance patient outcomes, and reduce the global burden of diabetes-related mortality and morbidity.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | | | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail, 2440, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il-55473, Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia.
| |
Collapse
|
11
|
Wang Y, Liu Y, Miao K, Hou L, Guo X, Ji Y. A haplotype-resolved genome assembly of Coptis teeta, an endangered plant of significant medicinal value. Sci Data 2024; 11:1012. [PMID: 39294137 PMCID: PMC11411109 DOI: 10.1038/s41597-024-03861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Coptis teeta Wall. (Ranunculaceae), an endangered plant species of significant medicinal value, predominantly undergoes clonal propagation, potentially compromising the species' evolutionary potential and ultimately increase its risk of extinction. In this study, we successfully assembled two sets of haploid genomes (Hap1 and Hap2) for C. teeta, comprising nine homologous chromosome pairs, by employing Illumina and PacBio sequencing technologies. The genome annotation identified a total of 43,979 and 46,311 protein-coding genes in Hap1 and in Hap2, and most of them were functionally annotated. The high-quality reference genome will serve as an indispensable genomic resource for conservation and comprehensive exploitation of this endangered species. Between the two haploid genomes, numerous structural alterations were detected within the nine homologous chromosome pairs, potentially resulting in aberrant synapsis and irregular chromosomal segregation and thus contributing to the sustained preservation of clonal propagation in C. teeta. The findings offer new perspective for elucidating the genetic mechanism underlying the compromised sexual reproductive capacity of C. teeta, thereby facilitating its enhancement though molecular breeding and genetic improvement.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Ke Miao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Luxiao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaorong Guo
- School of Ecology and Environmental Science, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650201, China.
| | - Yunheng Ji
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
12
|
Yang L, Deng F, Gong Q, Liu X, Li M, Zhang C. Distribution of the active components from Xianglian Pill in tissues of healthy and antibiotic-associated diarrhea model mice and the mechanism study. J Pharm Biomed Anal 2024; 248:116326. [PMID: 38959756 DOI: 10.1016/j.jpba.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotic therapy, characterized by intestinal inflammation which reduces the quality of life of patients. Xianglian Pill (XLP) has long been used to treat abdominal pain, diarrhea, bacillary dysentery and enteritis. Studies found that XLP has curative effect on AAD; however, the chemical constituents and mechanism of XLP have not been fully elucidated because of the lack of in vitro and in vivo studies. In this study, ultra-high performance liquid chromatography mass spectrometry method (UPLC-Q-Exactive-Orbitrap-HRMS) was used to examine the components of the XLP. Then, the binding between active compounds and the key targets was studied using network pharmacology and molecular docking. A comparative tissue distribution study was established for the simultaneous determination of the 10 active components in healthy and AAD mouse models. Forty-six components were characterized from XLP. According to the network pharmacology degree value, a prediction was made that encompassed 42 components and 14 core targets, which were intricately involved in crucial biological pathways, such as the AGE-RAGE signaling, cellular senescence, and MAPK signaling. Tissue distribution analysis showed that the 10 components were widely distributed in the heart, liver, spleen, lungs, kidneys, small intestine, and large intestine of mice, with varying concentrations in healthy and AAD mice. Molecular docking analysis also indicated that the active compounds in the tissue distribution could bind tightly to key targets of network pharmacological studies. This study provides a reference for further investigations of the relationships between the chemical components and pharmacological activities of XLP.
Collapse
Affiliation(s)
- Lujia Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fang Deng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qianqian Gong
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Muyao Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Chuanyang Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
13
|
Li L, He Y, Zou Q, Chen W, Liu Y, He H, Zhang J. In vitro and in vivo synergistic inhibition of Malassezia furfur targeting cell membranes by Rosa rugosa Thunb. and Coptidis Rhizoma extracts. Front Microbiol 2024; 15:1456240. [PMID: 39323889 PMCID: PMC11423746 DOI: 10.3389/fmicb.2024.1456240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Background Malassezia furfur (M. furfur) is a prevalent dermatophyte that significantly impairs patients' quality of life. This study aimed to evaluate the synergistic antifungal effects of combined extracts from Rosa rugosa Thunb. (MG) and Coptidis Rhizoma (HL) against M. furfur, both in vitro and in vivo. Methods High-performance liquid chromatography (HPLC) was used to identify the major active compounds present in MG and HL. The antifungal activity of the combined Meilian extract (ML) was assessed using the checkerboard method and time-kill curves. Microstructural alterations in the fungi were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The impact of the extracts on the fungal cell membrane was investigated through propidium iodide staining, protein concentration assays, and ergosterol quantification. Transcriptomic analysis was conducted to elucidate the molecular mechanisms underlying the effects of the extracts. Furthermore, the synergistic antifungal effects of ML were evaluated in a mouse model of seborrheic dermatitis induced by M. furfur. Results The study demonstrated that the combined application of MG and HL significantly affected the integrity of the M. furfur cell membrane and potentially modulated its formation processes. In the M. furfur-induced seborrheic dermatitis model, ML exhibited synergistic antifungal effects and effectively alleviated skin inflammation. These findings provide an important theoretical basis for understanding the antifungal mechanisms of ML and its potential application in dermatological therapy.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghui Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiwei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanxia Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huifen He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Misra A, Chaudhary MK, Rawat P, Tripathi D, Barik SK, Srivastava S. Benzyl-isoquinoline alkaloids rich extract of Coptis teeta Wall., exhibit potential efficacy in calcium-oxalate and uric-acid linked metabolic disorders. Fitoterapia 2024; 177:106050. [PMID: 38838823 DOI: 10.1016/j.fitote.2024.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Coptis teeta Wall., an endangered but valuable medicinal species having various folklore uses in Indian and Chinese Traditional system of medicine. Its distribution is restricted to India, China and Tibet. In India, C. teeta is traditionally used in joint disorders, urinary infections and inflammatory diseases, however the scientific validation is missing. Thus, the present study aims to validate the anti-lithiatic and anti-gout activity of C. teeta rhizome extract (CTME) through in-vitro biological assays. The metabolic fingerprinting of CTME through reverse phase-high performance liquid chromatography-photodiode array (RP-HPLC-PDA) showed the presence of five benzyl-isoquinoline alkaloids, namely berberine (2.59%), coptisine (0.746%) jatrorrhizine (0.133%), palmatine (0.03%) and tetrahydropalmatine (0.003%). The anti-gout potency analysed via in-vitro xanthine oxidase (XOD) inhibition assay, followed by HPTLC (High performance thin layer chromatography) mediated bio-autographic inhibition of XOD signifies that CTME exhibit strong inhibition of XOD (IC50: 3.014 μg/ml), insignificantly different (p > 0.05) from allopurinol (IC50: 2.47 μg/ml). The XOD bioautographic assay advocates that the efficacy is primarily due to berberine and coptisine alkaloids. The CTME has significant anti-lithiatic activity, and thereby limiting the progression of crystal nidus formation, mediated via inhibition of calcium oxalate crystals nucleation and aggregation. Additionally, the extract also exhibits potential effect on inhibition of oxidative stress associated inflammation, which plays crucial role in alleviating urolithiasis and gouty conditions. Validating the traditional claims of C. teeta will not only confirm its medicinal benefits for targeted pathological conditions but also enhance its industrial demand.
Collapse
Affiliation(s)
- Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India
| | - Mridul Kant Chaudhary
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India
| | - Poonam Rawat
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India
| | - Deepali Tripathi
- FEST Division, CSIR-Indian Institute of Toxicological Research, Lucknow, UP, India
| | - Saroj Kanta Barik
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, UP, India.
| |
Collapse
|
15
|
Wang P, Gui X, Xu M, Dong F, Li Y, Wang Q, Wang Y, Yao J, Lu L, Liu R. In vivo and in vitro chemical composition and biological activity of traditional vs. dispensing granule decoctions of Coptidis Rhizoma: A comparative study. Biomed Chromatogr 2024; 38:e5960. [PMID: 38992861 DOI: 10.1002/bmc.5960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Coptidis Rhizoma (CR) holds significant clinical importance. In this study, we conducted a comparative analysis of CR's dispensing granule decoction (DGD) and traditional decoction (TD) to establish a comprehensive evaluation method for the quality of DGD. We selected nine batches of DGD (three from each of manufacturers A, B and C) and 10 batches of decoction pieces for analysis. We determined the content of representative components using high-performance liquid chromatography and assessed the content of blood components in vivo post-administration using ultra-performance liquid chromatography-mass spectrometry. The antibacterial activity was measured using the drug-sensitive tablet method. To evaluate the overall consistency of DGD and TD, we employed the CRITIC method and Grey relational analysis method. Our CRITIC results indicated no significant difference between the CRITIC scores of DGD-B and TD, with DGD-B exhibiting the highest consistency and overall quality. However, DGD-A and DGD-C showed variations in CRITIC scores compared with TD. After equivalent correction, the quality of DGD-A and DGD-C approached that of TD. Furthermore, our Grey relational analysis results supported the findings of the CRITIC method. This study offers a novel approach to evaluate the consistency between DGD and TD, providing insights into improving the quality of DGD.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Xinjing Gui
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Manwen Xu
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Fengyu Dong
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuanyuan Li
- Henan Medical College, Zhengzhou, Henan, China
| | - Qi Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yanli Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Yao
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Lu Lu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ruixin Liu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Traditional Chinese Medicine Clinical Application, Evaluation and Transformation Engineering Research Center, Zhengzhou, Henan, China
- Key Laboratory of Chinese Medicine for Clinical Pharmacology of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Provincial-Ministry Collaborative Innovation Center for TCM Prevention and Treatment of Respiratory Diseases, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
17
|
Wang F, Wu Q, Zhang Q, Ma S, Wang K, Jian H, Zhang Y. Gegen Qinlian Decoction Combined with Conventional Western Medicine for the Treatment of Infectious Diarrhea: A Systematic Review and Trial Sequential Analysis. Complement Med Res 2024; 31:461-476. [PMID: 39137735 DOI: 10.1159/000540793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Infectious diarrhea (ID) is a highly prevalent disease worldwide that poses a substantial risk to human well-being. In China, numerous clinical studies have investigated the efficacy of Gegen Qinlian decoction (GGQLD) in treating ID. However, there is a need for additional rigorous and evidence-based medical research to enhance physicians' confidence in their prescribing practices. METHODS Seven Chinese and English databases were systematically searched. The Cochrane Risk of Bias tool was used to assess the quality of the included studies. Meta-analysis was conducted using RevMan 5.3, and Stata 16.0 was used for the sensitivity analysis. Trial sequential analysis was performed using TSA v0.9, and GRADEprofiler was utilized to evaluate the quality of evidence. RESULTS A total of 12 randomized controlled trials (RCTs) involving 1,240 patients were included. The meta-analysis demonstrated that the combination of GGQLD with conventional Western medicine had better effects on clinical efficacy (relative risk [RR] = 1.15, 95% confidence interval [CI] [1.10, 1.20]), duration of diarrhea symptoms (weighted mean difference [WMD] = -10.96, 95% CI [-11.97, -9.96]), duration of abdominal pain symptoms (WMD = -12.01, 95% CI [-14.12, -9.90]), duration of fever symptoms (WMD = -11.91, 95% CI [-13.39, -10.43]), interleukin-6 levels (WMD = -113.59, 95% CI [-113.03, -108.14]), and tumor necrosis factor-α levels (WMD = -62.18, 95% CI [-65.25, -59.11]) and that no significant adverse reactions occurred (RR = 0.45, 95% CI [0.10, 1.97]). The sample size of the included studies reached the expected size. The quality of evidence for outcome indicators was rated as low or very low. CONCLUSIONS The combination of GGQLD with conventional Western medicine demonstrates promising efficacy and safety in treating ID. Nonetheless, more high-quality RCTs are required to confirm this conclusion.
Collapse
Affiliation(s)
- Fei Wang
- College of Graduate Studies, Jiangxi University of Chinese Medicine, Nanchang, China
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianyan Wu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingyuan Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuaishuai Ma
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kangyi Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hui Jian
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
19
|
Zhang L, Li X, Wang R, Han X. Lemierre's syndrome complicating multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260: Case report and review. Diagn Microbiol Infect Dis 2024; 109:116375. [PMID: 38796934 DOI: 10.1016/j.diagmicrobio.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
We described a case of a 24-year-old man with multiple organ failure caused by Fusobacterium necrophorum subsp. funduliforme F1260. This is the first described case of Lemierre's syndrome with multiple organ failure due to F. necrophorum subsp. funduliforme F1260 in an adult in China. Our study highlights that there may be a risk of misdiagnosis based solely on typical manifestations of internal jugular vein thrombophlebitis, metastatic lesions, and F. necrophorum isolated from blood cultures or normally sterile sites. Clinicians should be cognizant of the potential utility of metagenomic next-generation sequencing in facilitating early pathogen detection in severe infections, thus enabling timely and appropriate administration of antibiotics to reduce mortality rates and improve prognosis.
Collapse
Affiliation(s)
- Lizhong Zhang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Xiaoyan Li
- Shanghai Pudong New District Zhoupu Hospital, Shanghai 200120, China
| | - Ruixue Wang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xiaonan Han
- School of Medicine, Jianghan University, Wuhan 430056, China
| |
Collapse
|
20
|
Wang J, Wu S, Gao H, Yu C, Chen X, Yuan Z. Integrated metabolomics and network pharmacology analysis to explore pig bile-processed Rhizoma Coptidis and Fructus Evodiae sauce-processed Rhizoma Coptidis in lipopolysaccharide-induced inflammatory response. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124192. [PMID: 38941716 DOI: 10.1016/j.jchromb.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a "disease-target-differential metabolites-active ingredients" network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1β levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significant influence of processing methods on the medicinal efficacy of TCMs by revealing their regulatory mechanisms and material bases.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Songnan Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Hui Gao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Caina Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Xuelian Chen
- Gynaecological Ward of Panyu District, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Zimin Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China.
| |
Collapse
|
21
|
Jiang H, Xu J, Xu X, Wei J, Liu J, Qin C, Miao W, Li L, Song X, Liu Q, Cui K, Li Z. Revealing microbial diversity in buffalo milk with high somatic cell counts: implications for mastitis diagnosis and treatment. Vet Res Commun 2024; 48:2537-2553. [PMID: 38874832 DOI: 10.1007/s11259-024-10438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Mastitis is one of the most serious diseases that threatens the health of dairy animals. The somatic cell count (SCC) in milk is widely used to monitor mastitis. This study aimed to reveal the diversity of microorganisms in buffalo milk with high somatic cell count (SCC ≥ 3 × 105 cells/mL, n = 30) and low somatic cell count (SCC ≤ 5 × 104 cells/mL, n = 10), and identify the dominant bacteria that cause mastitis in a local buffalo farm. We also investigated the potential method to treat bacterial mastitis. The V3-V4 region of 16 S rDNA was sequenced. Results showed that, compared to the milk with low SCC, the high SCC samples showed lower microbial diversity, but a high abundance of bacteria and operational taxonomic units (OTUs). By in vitro isolation and culture, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were found to be the leading pathogens, which is consistent with the 16 S rDNA sequencing data. We further isolated 3 of the main pathogens and established a pathogen detection method based on ELISA. In addition, the antibacterial effects of 10 antimicrobials and 15 Chinese herbal extracts were also investigated. Results showed that the microbial has developed tolerance to several of the antimicrobials. While the water extracts of Chinese herbal medicine such as Galla Chinensis, Coptis chinensis Franch, Terminalia chebula Retz, and Sanguisorba officinalis L can effectively inhibit the growth of main pathogens. This study provides novel insight into the microbial diversity in buffalo milk and a reference for the prevention, diagnosis, and treatment of mastitis.
Collapse
Affiliation(s)
- Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiayin Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaoxian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jue Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, China
| | - Jinfeng Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, China
| | - Chaobin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wenhao Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China.
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
22
|
Xu T, Chen J, Shao Q, Ji J, Wang Q, Ma C, Wang X, Cheng F. The Coptidis Rhizoma and Bovis Calculus herb pair attenuates NASH and inhibits the NLRP3 inflammasome activation. Heliyon 2024; 10:e34718. [PMID: 39149083 PMCID: PMC11324969 DOI: 10.1016/j.heliyon.2024.e34718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The Coptidis Rhizoma and Bovis Calculus herb pair possesses clearing heat and detoxifying effects. The aim of this study was to reveal the effects and mechanisms of the herb pair in the treatment of NASH by network pharmacology and experimental verification. A network pharmacology-based approach was employed to predict the putative mechanism of the herb pair against NASH. The high-fat diet (HFD) and methionine/choline deficient (MCD) diet induced NASH models were used to evaluate efficacy and mechanism of the herb pair. Network pharmacological analysis showed that the herb pair modulated NOD-like receptor pathway. In the HFD mice, herb pair reduced body weight, blood sugar, serum ALT, AST, TBA, TC, TG and LDL-C contents, also improved the general morphology and pathological manifestations. Hepatic transcriptomics study showed that herb pair attenuated NASH by regulating NOD-like receptor signaling pathway. Western blotting showed that herb pair reduced the protein expression levels of NLRP3, cleaved Caspase-1 and cleaved IL-1β. In the MCD mice, herb pair also reduced serum ALT, ALT and TBA levels, improved liver pathological manifestations, inhibited the protein expression levels of NLRP3, cleaved Caspase-1 and cleaved IL-1β. Our findings proved that the Coptidis Rhizoma and Bovis Calculus herb pair attenuates NASH through suppression of NLRP3 inflammasome activation. This will demonstrate effective pharmacological evidence for the clinical application of herb pair.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Cheng Z, Li J, Xu C, Zhang L, Gong Q, Long C. Coptisaustrogaoligongensis (Ranunculaceae), a new species from West Yunnan, China. PHYTOKEYS 2024; 244:225-235. [PMID: 39070103 PMCID: PMC11283624 DOI: 10.3897/phytokeys.244.127978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Based on morphological and plastid data, we have described and confirmed that Coptisaustrogaoligongensis distributed in Tongbiguan Provincial Nature Reserve, Yingjiang County, Yunnan Province, is a new species of Coptis. It is distinctly different from C.teetasubsp.teeta and C.teetasubsp.lohitensis with differences mainly reflected in the following features: former leaf segment lobes contiguous to each other, and lateral segments equal to central one; plants without developed stolons; inflorescences with only 1-3 flowers; petals have short claws. Phylogenetic analysis indicated that C.austrogaoligongensis is a sister to C.teetasubsp.teeta and C.teetasubsp.lohitensis.
Collapse
Affiliation(s)
- Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, ChinaMinzu University of ChinaBeijingChina
| | - Jiahua Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, ChinaGaoligongshan National Nature ReserveYunnanChina
| | - Congli Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, ChinaGaoligongshan National Nature ReserveYunnanChina
| | - Lixiang Zhang
- Gaoligongshan National Nature Reserve (Longyang Sub-bureau), Yunnan, 678000, ChinaYunnan Tongbiguan Provincial Nature Reserve Management and Protection BureauYunnanChina
| | - Qiangbang Gong
- Gaoligongshan National Nature Reserve (Longyang Sub-bureau), Yunnan, 678000, ChinaYunnan Tongbiguan Provincial Nature Reserve Management and Protection BureauYunnanChina
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, ChinaMinzu University of ChinaBeijingChina
| |
Collapse
|
24
|
Zhang H, Chu S, Jiang L, Chan Q, Zhang Z, Cheng M. Alkaloid profiling of the new species Corydalis huangshanensis and other 13 medicinal plants in genus Corydalis. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39016051 DOI: 10.1002/pca.3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Corydalis DC., the largest genus of Papaveraceae, comprises numerous species known for their abundant alkaloid content and historical use in clinical medicine. Recently, a new species of genus Corydalis named Corydalis huangshanensis Lu Q. Huang & H. S. Peng was discovered in the Huangshan Mountains of Anhui Province, China. OBJECTIVE To compare the chemical characteristics of C. huangshanensis and other 13 Corydalis species, aiming to elucidate the potential medicinal value of this new species. MATERIALS AND METHODS The chemical constituents of C. huangshanensis and other 13 medicinal plants of genus Corydalis were analyzed using ultra-high-performance liquid chromatography Q-Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Q-Orbitrap) mass technology. The differences in the alkaloids in the 14 species were distinguished by chemometrics. RESULTS The mass spectrometry fragmentation information and relative content of 72 alkaloids were obtained. Orthogonal partial least squares discriminant analysis (OPLS-DA) and cluster heat mapping analysis showed that these 14 species were divided into two groups. The clustering relationship between C. huangshanensis and C. decumbens (Thunb.) Pers. was similar, exhibiting similar chemical compositions and characteristics. These results indicate the potential pharmacological effects of C. huangshanensis. CONCLUSION This study enhances our understanding of the chemical classification of Corydalis and provides a basis for speculations on the medicinal value of C. huangshanensis.
Collapse
Affiliation(s)
- Haiwen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Lu Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Qingyun Chan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming'en Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Traditional Chinese Medicine, Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
25
|
Wang C, An T, Lu C, Liu T, Shan X, Zhu Z, Gao Y. Tangzhiping Decoction Improves Glucose and Lipid Metabolism and Exerts Protective Effects Against White Adipose Tissue Dysfunction in Prediabetic Mice. Drug Des Devel Ther 2024; 18:2951-2969. [PMID: 39050798 PMCID: PMC11268521 DOI: 10.2147/dddt.s462603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prediabetes, characterized by a series of metabolic abnormalities, increases the risk of diabetes and cardiovascular diseases. Tangzhiping (TZP), a clinically validated traditional Chinese medicine formula, is used to treat impaired glucose tolerance. However, the underlying mechanism of TZP in intervening prediabetes is not fully elucidated. Purpose The current study aimed to evaluate the protective effect of TZP against prediabetes mice and explore its potential mechanism. Methods After establishing a prediabetic animal model through 12 weeks of high-fat diet (HFD) feeding, mice were subjected to TZP for 8 weeks. Various parameters related to body weight, glucose and lipid metabolism, and insulin sensitivity were measured. Histopathological examinations observed adipose cell size and liver lipid deposition. The Sable Promethion system assessed energy metabolism activity. Transcriptomic analysis of Epididymal white adipose tissue (EWAT) identified enriched pathways and genes. The key genes in the enriched pathways were identified through RT-PCR. Results Our data revealed that the administration of TZP reduced body weight and fat mass in a prediabetes mouse model. TZP normalized the glucose and insulin levels, improved insulin resistance, and decreased plasma TC and FFA. The alleviation of adipose tissue hypertrophy and lipid deposition by TZP was demonstrated through pathological examination. Indirect calorimetry measurements indicated a potential increase in VO2 and EE levels with TZP. The results of EWAT transcription showed that TZP reversed pathways and genes related to inflammation and catabolic metabolism. RT-PCR demonstrated that the mRNA expression of inflammation and lipolysis, including Tlr2, Ccr5, Ccl9, Itgb2, Lipe, Pnpla2, Cdo1, Ces1d, Echs1, and Acad11, were changed by TZP treatment. Conclusion TZP effectively alleviates obesity, impaired glucose and lipid metabolism, and insulin resistance. The effect of TZP might be associated with the regulation of gene expression in dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Cuiting Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tian An
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Cong Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Zhiyao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Li SY, Xu DQ, Chen YY, Fu RJ, Tang YP. Several major herb pairs containing Coptidis rhizoma: a review of key traditional uses, constituents and compatibility effects. Front Pharmacol 2024; 15:1399460. [PMID: 38983920 PMCID: PMC11231094 DOI: 10.3389/fphar.2024.1399460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.
Collapse
Affiliation(s)
- Shi-Yu Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Wuxi Institute of Integrated Chinese and Western Medicine, and Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
27
|
Zhang X, Zhang J, Zhou Z, Xiong P, Cheng L, Ma J, Wen Y, Shen T, He X, Wang L, Zhang Y, Xiao C. Integrated network pharmacology, metabolomics, and transcriptomics of Huanglian-Hongqu herb pair in non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117828. [PMID: 38325669 DOI: 10.1016/j.jep.2024.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Huanglian-Hongqu herb pair (HH) is a synergistic drug combination used to treat non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism underlying the therapeuticeffects of HH requires further elucidation. AIM OF THE STUDY The present study explored the potential mechanism of HH in treating NAFLD. MATERIALS AND METHODS UPLC-Q-TOF-MS was employed to identify the drug constituents in HH. A NAFLD rat model was induced by a high-fat diet (HFD) and treated with different doses of HH. The functional mechanism of HH in NAFLD rats was predicted using network pharmacology, metabolomics and transcriptomics. Immunohistochemistry, real-time PCR, and Western blot were performed to validate the key mechanisms. RESULTS Pharmacodynamic assessment demonstrated that HH exhibited improvements in lipid deposition and reduced hepatic oxidative stress in NAFLD rats. Hepatic wide-target metabolomics revealed that HH primarily modulated amino acids and their metabolites, fatty acids, organic acids and their derivatives, bile acids, and other liver metabolites. The enriched pathways included metabolic pathways, primary bile acid biosynthesis, and bile secretion. Network pharmacology analysis indicated that HH regulated the key pathways in NAFLD, notably PPAR, AMPK, NF-κB and other signaling pathways. Furthermore, hepatic transcriptomics, based on Illumina RNA-Seq sequencing analyses, suggested that HH improved NAFLD through metabolic pathways, the PPAR signaling pathway, primary bile acid biosynthesis, and fatty acid metabolism. Further mechanistic studies indicated that HH could regulate the genes and proteins associated with the PPAR signaling pathway. CONCLUSION Our findings demonstrated that the potential therapeutic benefits of HH in ameliorating NAFLD by targeting the PPAR signaling pathway, thereby facilitating a more extensive use of HH in NAFLD.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Zhang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peiyu Xiong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Cheng
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingru Ma
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoyan He
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Wang
- School of Traditional Chinese Medicine, Ningxia Medical University, Ningxia, 750004, China
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
28
|
Li W, Jiao R, Luo S, Liu Z, Song J, Chen Z. Mechanism of action of Coptidis Rhizome in treating periodontitis based on network pharmacology and in vitro validation. BMC Oral Health 2024; 24:530. [PMID: 38704553 PMCID: PMC11069132 DOI: 10.1186/s12903-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.
Collapse
Affiliation(s)
- Wei Li
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
| | - Ruofeng Jiao
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shiyi Luo
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Medical College of Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zefei Liu
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550001, China.
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China.
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Medical College of Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
29
|
Cervello M, Augello G, Cocco L, Ratti S, Follo MY, Martelli AM, Cusimano A, Montalto G, McCubrey JA. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH. Adv Biol Regul 2024; 92:101032. [PMID: 38693042 DOI: 10.1016/j.jbior.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo School of Medicine, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
30
|
Wang Z, Qiu H, Yang Y, Zhang Y, Mou T, Zhang X, Zhang Y. Huanglian-Hongqu herb pair improves nonalcoholic fatty liver disease via NF-κB/NLRP3 pathway in mice: network pharmacology, molecular docking and experimental validation. Hereditas 2024; 161:12. [PMID: 38566171 PMCID: PMC10988798 DOI: 10.1186/s41065-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The Huanglian-Hongqu herb pair (HH) is a carefully crafted traditional Chinese herbal compound designed to address disorders related to glucose and lipid metabolism. Its primary application lies in treating hyperlipidemia and fatty liver conditions. This study explored the potential mechanism of HH in treating non-alcoholic fatty liver disease (NAFLD) through network pharmacology, molecular docking, and in vivo animal experiments. Ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UPLC-Q-TOF-MS) was employed to identify the chemical composition of HH. Network pharmacology was used to analyze the related signaling pathways affected by HH. Subsequently, the prediction was verified by animal experiment. Finally, we identified 29 components within HH. Network pharmacology unveiled interactions between HH and 153 NAFLD-related targets, highlighting HH's potential to alleviate NAFLD through NF-κB signaling pathway. Molecular docking analyses illuminated the binding interactions between HH components and key regulatory proteins, including NF-κB, NLRP3, ASC, and Caspase-1. In vivo experiments demonstrated that HH alleviated NAFLD by reducing serum and liver lipid levels, improving liver function, and lowering inflammatory cytokine levels in the serum. Moreover, HH administration downregulated mRNA and protein levels of the NF-κB/NLRP3 pathway. In conclusion, our findings demonstrated that HH has potential therapeutic benefits in ameliorating NAFLD by targeting the NF-κB/NLRP3 pathway, facilitating the broader application of HH in the field of NAFLD.
Collapse
Affiliation(s)
- Zheng Wang
- College of Traditional Chinese Medicine and Health Service, Shanxi Datong University, Datong, China
| | - Hairong Qiu
- Department of Chinese Medicine, Medical School, Hubei Minzu University, Enshi, China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Yueyu Zhang
- College of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Taiguo Mou
- College of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Traditional Chinese Medicine department, Chinese Medicine Hospital of Chenghua, Chengdu, China.
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
31
|
Xiang ZD, Guan HD, Zhao X, Xie Q, Cai FJ, Xie ZJ, Dang R, Li ML, Wang CH. Protoberberine alkaloids: A review of the gastroprotective effects, pharmacokinetics, and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155444. [PMID: 38367423 DOI: 10.1016/j.phymed.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-β1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.
Collapse
Affiliation(s)
- Ze-Dong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hui-Da Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Fu-Jie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Zhe-Jun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Man-Lin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| | - Chang-Hong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
32
|
Shen S, Qu X, Liu Y, Wang M, Zhou H, Xia H. Evaluation of Antioxidant Activity and Treatment of Eczema by Berberine Hydrochloride-Loaded Liposomes-in-Gel. Molecules 2024; 29:1566. [PMID: 38611845 PMCID: PMC11013229 DOI: 10.3390/molecules29071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In this paper, berberine hydrochloride-loaded liposomes-in-gel were designed and developed to investigate their antioxidant properties and therapeutic effects on the eczema model of the mouse. Berberine hydrochloride-liposomes (BBH-L) as the nanoparticles were prepared by the thin-film hydration method and then dispersed BBH-L evenly in the gel matrix to prepare the berberine hydrochloride liposomes-gel (BBH-L-Gel) by the natural swelling method. Their antioxidant capacity was investigated by the free radical scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2 and the inhibition of lipid peroxides malondialdehyde (MDA). An eczema model was established, and the efficacy of the eczema treatment was preliminarily evaluated using ear swelling, the spleen index, and pathological sections as indicators. The results indicate that the entrapment efficiency of BBH-L prepared by the thin-film hydration method was 78.56% ± 0.7%, with a particle size of 155.4 ± 9.3 nm. For BBH-L-Gel, the viscosity and pH were 18.16 ± 6.34 m Pas and 7.32 ± 0.08, respectively. The cumulative release in the unit area of the in vitro transdermal study was 85.01 ± 4.53 μg/cm2. BBH-L-Gel had a good scavenging capacity on DPPH and H2O2, and it could effectively inhibit the production of hepatic lipid peroxides MDA in the concentration range of 0.4-2.0 mg/mL. The topical application of BBH-L-Gel could effectively alleviate eczema symptoms and reduce oxidative stress injury in mice. This study demonstrates that BBH-L-Gel has good skin permeability, excellent sustained release, and antioxidant capabilities. They can effectively alleviate the itching, inflammation, and allergic symptoms caused by eczema, providing a new strategy for clinical applications in eczema treatment.
Collapse
Affiliation(s)
- Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| | - Xiaobo Qu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
- Drug Advanced Research Institute of Yangtze Delta, Nantong 226100, China
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| | - Haifeng Zhou
- Drug Advanced Research Institute of Yangtze Delta, Nantong 226100, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China; (S.S.); (X.Q.); (Y.L.)
| |
Collapse
|
33
|
Ge W, Gao Y, He L, Jiang Z, Zeng Y, Yu Y, Xie X, Zhou F. Developing Chinese herbal-based functional biomaterials for tissue engineering. Heliyon 2024; 10:e27451. [PMID: 38496844 PMCID: PMC10944231 DOI: 10.1016/j.heliyon.2024.e27451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
The role of traditional Chinese medicine (TCM) in treating diseases is receiving increasing attention. Chinese herbal medicine is an important part of TCM with various applications and the active ingredients extracted from Chinese herbal medicines have physiological and pathological effects. Tissue engineering combines cell biology and materials science to construct tissues or organs in vitro or in vivo. TCM has been proposed by the World Health Organization as an effective treatment modality. In recent years, the potential use of TCM in tissue engineering has been demonstrated. In this review, the classification and efficacy of TCM active ingredients and delivery systems are discussed based on the TCM theory. We also summarized the current application status and broad prospects of Chinese herbal active ingredients in different specialized biomaterials in the field of tissue engineering. This review provides novel insights into the integration of TCM and modern Western medicine through the application of Chinese medicine in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Liming He
- Changsha Stomatological Hospital, Changsha, PR China
| | | | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Fang Zhou
- Xiangtan Maternal and Child Health Hospital, Xiangtan, PR China
| |
Collapse
|
34
|
Chi Y, Liu C, Liu W, Tian X, Hu J, Wang B, Liu D, Liu Y. Population genetic variation and geographic distribution of suitable areas of Coptis species in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1341996. [PMID: 38567137 PMCID: PMC10985201 DOI: 10.3389/fpls.2024.1341996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Introduction The rhizomes of Coptis plants have been used in traditional Chinese medicine over 2000 years. Due to increasing market demand, the overexploitation of wild populations, habitat degradation and indiscriminate artificial cultivation of Coptis species have severely damaged the native germplasms of species in China. Methods Genome-wide simple-sequence repeat (SSR) markers were developed using the genomic data of C. chinensis. Population genetic diversity and structure of 345 Coptis accessions collected from 32 different populations were performed based on these SSRs. The distribution of suitable areas for three taxa in China was predicted and the effects of environmental variables on genetic diversity in relation to different population distributions were further analyzed. Results 22 primer pairs were selected as clear, stable, and polymorphic SSR markers. These had an average of 16.41 alleles and an average polymorphism information content (PIC) value of 0.664. In the neighbor-joining (N-J) clustering analysis, the 345 individuals clustered into three groups, with C. chinensis, C. chinensis var. brevisepala and C. teeta being clearly separated. All C. chinensis accessions were further divided into four subgroups in the population structure analysis. The predicted distributions of suitable areas and the environmental variables shaping these distributions varied considerably among the three species. Discussion Overall, the amount of solar radiation, precipitation and altitude were the most important environmental variables influencing the distribution and genetic variation of three species. The findings will provide key information to guide the conservation of genetic resources and construction of a core reserve for species.
Collapse
Affiliation(s)
- Yujie Chi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Changli Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xufang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
35
|
Han J, Wu P, Xu Z, Liu C, Chen Q, Zhang F, Tao H, Luo D, Zhou L, Wang B, Gao Z, Shen T, Wen Y, Yu H. The anti-cholestatic effects of Coptis chinensis Franch. alone and combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley: dual effects on fecal metabolism and microbial diversity. Front Pharmacol 2024; 15:1372527. [PMID: 38523644 PMCID: PMC10957555 DOI: 10.3389/fphar.2024.1372527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: Drug dosages and combinations are the main factors that affect the efficacy of pleiotropic traditional Chinese medicine (TCM). Coptis chinensis Franch. (CF) is a representative TCM with multiple effects and is often combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley (TR) to treat cholestasis. The present study assessed the influence of CF dose and its combination with TR on the efficacy of CF in cholestasis treatment, including their effects on fecal metabolism and fecal microorganisms. Methods: Rats with α-naphthylisothiocyanate (ANIT, 50 mg/kg)-induced cholestasis were administered low (0.3 g/kg) and high (0.6 g/kg) doses of CF, as well as CF combined with TR at doses of 0.6 g/kg and 0.9 g/kg, respectively. The anti-cholestatic effects of these treatments were assessed by determining their anti-inflammatory, hypolipidemic, and anti-oxidative stress properties. Additionally, fecal metabolomics and fecal microorganisms were analyzed. Results: Low dose CF had a more potent hypolipidemic effect than high dose CF, whereas high dose CF had more potent anti-inflammatory and anti-oxidative stress effects. Combination with TR enhanced the hypolipidemic effect, but antagonized the anti-inflammatory effect, of CF. Analyses of fecal metabolomics and fecal microorganisms showed differences in the regulation of lipid- and amino acid metabolism-related pathways, including pathways of linoleic acid, tyrosine, and arachidonic acid metabolism, and amino acid biosynthesis between different doses of CF as well as between different doses of CF in combination with TR. These differences may contribute to differences in the anti-cholestatic effects of these preparations. Conclusion: CF dose influences its anti-cholestatic efficacy. The combination with TR had synergistic or antagonistic effects on the properties of CF, perhaps by altering fecal metabolism and fecal microbial homeostasis.
Collapse
Affiliation(s)
- Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongying Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Tao
- Cangxi Traditional Chinese Medicine Hospital, Guangyuan, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Gao
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Tang T, Wang F, Huang H, Guo J, Guo X, Duan Y, Wang X, Wang Q, You J. Bacillus velezensis LT1: a potential biocontrol agent for southern blight on Coptis chinensis. Front Microbiol 2024; 15:1337655. [PMID: 38500587 PMCID: PMC10946422 DOI: 10.3389/fmicb.2024.1337655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Southern blight, caused by Sclerotium rolfsii, poses a serious threat to the cultivation of Coptis chinensis, a plant with significant medicinal value. The overreliance on fungicides for controlling this pathogen has led to environmental concerns and resistance issues. There is an urgent need for alternative, sustainable disease management strategies. Methods In this study, Bacillus velezensis LT1 was isolated from the rhizosphere soil of diseased C. chinensis plants. Its biocontrol efficacy against S. rolfsii LC1 was evaluated through a confrontation assay. The antimicrobial lipopeptides in the fermentation liquid of B. velezensis LT1 were identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). The effects of B. velezensis LT1 on the mycelial morphology of S. rolfsii LC1 were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results The confrontation assay indicated that B. velezensis LT1 significantly inhibited the growth of S. rolfsii LC1, with an inhibition efficiency of 78.41%. MALDI-TOF-MS analysis detected the presence of bacillomycin, surfactin, iturin, and fengycin in the fermentation liquid, all known for their antifungal properties. SEM and TEM observations revealed that the mycelial and cellular structures of S. rolfsii LC1 were markedly distorted when exposed to B. velezensis LT1. Discussion The findings demonstrate that B. velezensis LT1 has considerable potential as a biocontrol agent against S. rolfsii LC1. The identified lipopeptides likely contribute to the antifungal activity, and the morphological damage to S. rolfsii LC1 suggests a mechanism of action. This study underscores the importance of exploring microbial biocontrol agents as a sustainable alternative to chemical fungicides in the management of plant diseases. Further research into the genetic and functional aspects of B. velezensis LT1 could provide deeper insights into its biocontrol mechanisms and facilitate its application in agriculture.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Houyun Huang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
| | - Jie Guo
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Yuanyuan Duan
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoyue Wang
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Qingfang Wang
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Science, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
37
|
Pan J, Wu J, Zhang S, Wang K, Ji G, Zhou W, Dang Y. Targeted metabolomics revealed the mechanisms underlying the role of Liansu capsule in ameliorating functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117568. [PMID: 38092317 DOI: 10.1016/j.jep.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liansu capsule could alleviate dyspeptic symptoms; however, the mechanisms underlying its role in treating functional dyspepsia (FD) remain unclear. AIM OF THE STUDY To elucidate the mechanism underlying the efficacy of Liansu capsule in alleviating FD symptoms. MATERIALS AND METHODS Thirty-six male mice were randomly divided into the following six groups: control, model, low-strength Liansu, moderate-strength Liansu, high-strength Liansu, and domperidone groups. Small intestine propulsion rate, gastric residual rate and histopathological analysis were performed to evaluate efficacy of Liansu capsule. Levels of interleukin-1β, interleukin-6, tumor necrosis factor α, phosphorylation of p65, ghrelin and gastrin were verified by real-time quantitative polymerase chain reaction and immunofluorescence assays. Targeted metabolomic analyses, western blotting and immunofluorescence assays were used to explore the mechanism of Liansu capsule in ameliorating FD. RESULTS The Liansu capsule significantly ameliorated the symptoms of FD, and markedly increased the levels of ghrelin and gastrin. Moreover, Liansu capsule significantly downregulated the levels of the proinflammatory cytokine interleukin-1β, interleukin-6, tumor necrosis factor α, and inhibited the phosphorylation of p65. Targeted metabolomic analyses showed that Liansu capsule significantly reduced the levels of deoxycholic acid and hyodeoxycholic acid, which were significantly elevated in the model group. Furthermore, these results showed that deoxycholic acid and hyodeoxycholic acid markedly promoted the levels of Takeda G-protein-coupled receptor 5 (TGR5), phosphorylated signal transducer and activator of transcription 3 (STAT3), and Kruppel-like factor 5 (KLF5) in vitro. whereas, Liansu capsule significantly reduced the levels of TGR5, phosphorylated STAT3, and KLF5. CONCLUSION Our findings indicated that Liansu capsule improved FD by regulating the deoxycholic acid/hyodeoxycholic acid-TGR5-STAT3-KLF5 axis. The findings reveal a novel mechanism underlying the role of Liansu capsule, which may be a promising therapeutic strategy for FD.
Collapse
Affiliation(s)
- Jiashu Pan
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Jiaxuan Wu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
38
|
Jia L, Beidelschies M, Evans JM, Niemtzow RC, Niemtzow SZ, Dusek JA, Lin Y, Wu C, Su YC, Wang CJ, Lin CY, Astana PRW, Ardiyanto D, Hardjoutomo R, Visithanon K, Puagkong J, Chokpaisarn J, Lopez MV, Yotsuyanagi H, Lee MS, Ramirez HJG, Bobadilla CP, Quinteros EMG, Galanti de la Paz M, Maramba-Lazarte CC. Recommendations and guidelines of integrative medicine for COVID-19 care: The APEC project outcome. Integr Med Res 2024; 13:101022. [PMID: 38434793 PMCID: PMC10907161 DOI: 10.1016/j.imr.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
This article - Recommendations and Guidelines of Integrative Medicine (IM) for COVID-19 Care - was one of the outcomes from an Asia-Pacific Economic Cooperation (APEC) Project (Integrative Medicine (IM) and COVID -19 Care) during the time between May 2022 and March 2023. With the efforts from care providers, researchers, health policy makers and healthcare administrative leaders among APEC economies, the purpose of this file was to provide comprehensive IM systems for COVID-19 care as recommendations and suggestive guidelines including care methods, tools, procedures, symptom conditions and targets selections, and points need to be considered during care applications. All cited COVID-19 care practices have confirmed their efficacy and usefulness either used alone or combined with conventional medicine. This article provides current useful medical information on IM for COVID-19 care which could benefit APEC economies and world health communities on their healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - C. Jason Wang
- National Research Institute of Chinese Medicine, Chinese Taipei
| | - Chien-Yu Lin
- Hsinchu MacKay Memorial Hospital, Chinese Taipei
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - APEC Health Working Group
- National Cancer Institute, USA
- Cleveland Clinic, USA
- The Center for Functional Medicine, USA
- The US Air Force Medical Corps, USA
- Connor Whole Health, USA
- Food and Drug Administration, USA
- Stanford University, USA
- National Research Institute of Chinese Medicine, Chinese Taipei
- Hsinchu MacKay Memorial Hospital, Chinese Taipei
- Sebelas Maret University of Surakarta, Indonesia
- Ministry of Health, Indonesia
- Public Health Management, Ministry of Health, Indonesia
- Department of Thai Traditional and Alternative Medicine, Thailand
- Prince of Songkla University, Thailand
- National University of San Marcos, Peru
- University of Tokyo, Japan
- Korea Institute of Oriental Medicine, Republic of Korea
- Complementary Care System, Mexico
- Academic Network of Integrative Medicine and Health, Chile
- Ministry of Health, Chile
- Academic University of Chile, Chile
- National Institutes of Health, Philippines
| |
Collapse
|
39
|
Lan T, Chen B, Hu X, Cao J, Chen S, Ding X, Li S, Fu Y, Liu H, Luo D, Rong X, Guo J. Tianhuang formula ameliorates liver fibrosis by inhibiting CCL2-CCR2 axis and MAPK/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117516. [PMID: 38042390 DOI: 10.1016/j.jep.2023.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the progression of chronic liver diseases, liver fibrosis is a reversible pathophysiologic event for liver diseases prognosis and risk of cirrhosis. Liver injury factors of different etiologies mediate this process. There is still a lack of effective medications for treating liver fibrosis. Additionally, the ameliorative effects of traditional herbs on liver fibrosis have been commonly reported. Tianhuang formula (THF) is a drug combination consisting of 2 traditional Chinese herbs, which has been showing significant improvement in metabolic liver diseases. However, the hepatoprotective effect and mechanism of THF in ameliorating liver fibrosis are still unclear. AIM OF THE STUDY This study aimed to investigate the effects of THF on carbon tetrachloride (CCl4)-induced and methionine-choline-deficient (MCD) diet-induced liver fibrosis model and to reveal the potential mechanisms. It can provide experimental evidence for THF as a therapeutic candidate for liver fibrosis. MATERIALS AND METHODS In this study, CCl4-induced mice were treated with THF (80 mg/kg, 160 mg/kg) or Fuzheng Huayu (FZHY) capsules (4.8 g/kg) for 6 weeks. MCD-induced mice received the same doses of THF or FZHY for 4 weeks. FZHY is used as a comparative study in these two models. Following that, using kit reagents detected changes in relevant serum and liver biochemical indicators. Histological changes in mouse liver were measured by staining of H&E and Sirius Red. The markers expression of liver fibrosis and inflammation were detected using qRT-PCR, western blotting and immunohistochemical staining analysis. The potential regulatory mechanism of THF to ameliorate liver fibrosis was performed by RNA-sequencing analysis. Finally, the analysis results were verified by immunofluorescence co-staining, qRT-PCR and western blotting. RESULTS Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic triglyceride (TG) levels in CCl4 and MCD-induced liver fibrosis mice were significantly improved after THF treatment. Meanwhile, the expression of fibrosis and inflammation markers were significantly suppressed. Furthermore, THF downregulated the expression of the macrophage marker CD68. According to RNA-sequencing analysis, we found the CCL2-CCR2 axis and MAPK/NF-κB as the potential signaling pathway for THF against liver fibrosis. CONCLUSION This study revealed that THF ameliorated liver injury, inflammation and fibrotic process by inhibiting CCL2-CCR2 axis and its downstream MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Bo Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Xianzhe Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Jiafan Cao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xin Ding
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Shengwen Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Yanfang Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Huanle Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Kim MH, Ahn S, Hur N, Oh SY, Son CG. The additive effect of herbal medicines on lifestyle modification in the treatment of non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1362391. [PMID: 38464716 PMCID: PMC10920213 DOI: 10.3389/fphar.2024.1362391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) is difficult to manage because of its complex pathophysiological mechanism. There is still no effective treatment other than lifestyle modification (LM) such as dietary modifications, regular physical activity, and gradual weight loss. Herbal medicines from traditional Chinese Medicine and Korean Medicine have been shown to be effective in the treatment of NAFLD based on many randomized controlled trials. This systematic review and meta-analysis aims to evaluate the additive effects of herbal medicines on LM in the treatment of NAFLD. Methods: Two databases (PubMed and Cochrane library) were searched using keywords related to NAFLD and herbal medicines. Then the randomized controlled trials (RCTs) evaluating the therapeutic effects of herbal medicines combined with LM were selected. The pooled results were analyzed as mean difference (MD) with 95% confidence interval (CI) for continuous data, and risk ratio (RR) with 95% CI for dichotomous data. Results and Discussion: Eight RCTs with a total of 603 participants were included for this review study. Participants were administered with multi-herbal formulas (Yiqi Sanju Formula, Tiaogan Lipi Recipe, and Lingguizhugan Decoction) or single-herbal extracts (Glycyrrhiza glabra L., Magnoliae offcinalis, Trigonella Foenum-graecum L. semen, Portulaca oleracea L., and Rhus Coriaria L. fructus) along with LM for 12 weeks. The meta-analysis showed a significant improvement in ultrasoundbased liver steatosis measured by odds ratio (OR) in the herbal medicine group than those with LM alone (OR = 7.9, 95% CI 0.7 to 95.2, p < 0.1). In addition, herbal medicines decreased the levels of aspartate transferase (MD -7.5, 95% CI -13.4 to -1.7, p = 0.01) and total cholesterol (MD -16.0, 95% CI -32.7 to 0.7, p = 0.06) more than LM alone. The meta-analysis partially showed clinical evidence supporting the additive benefits of herbal medicines for NAFLD in combination with LM. Whereas, it is necessary to provide a solid basis through higher-quality studies using a specific herbal medicine.
Collapse
Affiliation(s)
- Myung-Ho Kim
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Subin Ahn
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Nayeon Hur
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Seung-Yun Oh
- Department of Sasang Constitutional Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
41
|
Yu XH, Lv Z, Zhang CE, Gao Y, Li H, Ma XJ, Ma ZJ, Su JR, Huang LQ. Shengjiang Xiexin decoction mitigates murine Clostridium difficile infection through modulation of the gut microbiota and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117384. [PMID: 37925000 DOI: 10.1016/j.jep.2023.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The overuse of antibiotics has resulted in Clostridium difficile infection (CDI) as a significant global public health concern. Studies have shown that imbalances in gut microbiota and metabolism play a vital role in the onset of CDI. Shengjiang Xiexin decoction (SJT), a traditional Chinese medicinal formula widely employed in the treatment of gastrointestinal ailments, demonstrates effectiveness in addressing murine CDI. However, the precise mechanistic role of SJT in CDI treatment remains uncertain, particularly regarding its impact on gut microbiota and intestinal metabolism. Thus, further investigation is imperative to shed light on these mechanisms. AIM OF THE STUDY This study aims to thoroughly investigate the therapeutic potential of SJT in the treatment of CDI, while also examining its impact on the intricate interplay between gut microbiota and bile acid metabolism. By employing a mouse model, we aspire to uncover novel insights that could pave the way for the development of more effective strategies in combating CDI. MATERIALS AND METHODS We developed a mouse model for CDI and assessed SJT's potential as a therapeutic agent through pharmacological analyses. Our study employed high-throughput sequencing of 16S rRNA to identify changes in gut microbiota composition and untargeted metabolomics analysis to evaluate SJT's intervention on intestinal metabolism. We also conducted targeted analysis of bile acid metabolism to examine the specific effects of SJT. Finally, the growth-inhibitory effect of SJT on C. difficile was confirmed through ex vivo cultivation of the pathogen using cecal contents, supporting its potential role in treating CDI by modulating gut microbiota and bile acid metabolism. RESULTS In pharmacological studies, SJT was found to effectively reduce the levels of A&B toxins and alleviate colonic inflammation in CDI mice. Mechanistically, SJT demonstrated a mild increase in the abundance and diversity of the gut microbiota. However, its most significant impact was observed in the substantial improvement of the structural composition of the gut microbiota. Specifically, SJT decreased the abundance of gut Polymorphs and Firmicutes while restoring the proportions of family Trichophyton and Bacteroides_S24-7 spp (P < 0.001). Moreover, SJT not only decreased the levels of primary bile acids but also elevated the levels of secondary bile acids. Notably, it enhanced the conversion of taurocholic acid (TCA) to deoxycholic acid (DCA), leading to a balanced bile acid metabolism. Finally, cecal contents of SJT-treated mice showed a significant reduction in the growth of C. difficile, underscoring the therapeutic potential of SJT via modulation of gut microbiota and bile acid metabolism. CONCLUSION SJT demonstrates remarkable efficacy in treating CDI in mice by not only effectively combating the infection but also restoring the intricate balance of gut microbiota and bile acid metabolism. Furthermore, promising indications suggest that SJT may have the potential to prevent CDI recurrence. These findings underscore the comprehensive therapeutic value of SJT in managing CDI. Moving forward, we plan to transition from the laboratory to clinical settings to conduct further studies, validating our conclusions on SJT's efficacy.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhi Lv
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Cong-En Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Yan Gao
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao-Jing Ma
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhi-Jie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Jian-Rong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| | - Lu-Qi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
42
|
Yang WL, Zhang CY, Ji WY, Zhao LL, Yang FY, Zhang L, Cao X. Berberine Metabolites Stimulate GLP-1 Secretion by Alleviating Oxidative Stress and Mitochondrial Dysfunction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:253-274. [PMID: 38351702 DOI: 10.1142/s0192415x24500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Berberine (BBR) is a principal component of Rhizoma coptidis known for its therapeutic potential in treating diseases such as type 2 diabetes mellitus (T2DM) and obesity. Despite the trace levels of BBR in plasma, it's believed that its metabolites play a pivotal role in its biological activities. While BBR is recognized to promote GLP-1 production in intestinal L cells, the cytoprotective effects of its metabolites on these cells are yet to be explored. The present study investigates the effects of BBR metabolites on GLP-1 secretion and the underlying mechanisms. Our results revealed that, out of six BBR metabolites, berberrubine (BBB) and palmatine (PMT) significantly increased the production and glucose-stimulated secretion of GLP-1 in GLUTag cells. Notably, both BBB and PMT could facilitate GLP-1 and insulin secretion and enhance glucose tolerance in standard mice. Moreover, a single dose of PMT could markedly increase plasma GLP-1 and improve glucose tolerance in mice with obesity induced by a high-fat diet. In palmitic acid or TNF[Formula: see text]-treated GLUTag cells, BBB and PMT alleviated cell death, oxidative stress, and mitochondrial dysfunction. Furthermore, they could effectively reverse inflammation-induced inhibition of the Akt signaling pathway. In general, these insights suggest that the beneficial effects of orally administered BBR on GLP-1 secretion are largely attributed to the pharmacological activity of BBB and PMT by their above cytoprotective effects on L cells, which provide important ideas for stimulating GLP-1 secretion and the treatment of T2DM.
Collapse
Affiliation(s)
- Wei-Li Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Chen-Yang Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Wen-Yi Ji
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Li-Li Zhao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Fang-Yuan Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Lin Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| |
Collapse
|
43
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Lin L, Zhou X, Gao T, Zhu Z, Qing Y, Liao W, Lin W. Herb pairs containing Curcumae Rhizoma (Ezhu): A review of bio-active constituents, compatibility effects and t-copula function analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117199. [PMID: 37844744 DOI: 10.1016/j.jep.2023.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An herbal pair is a classic form of clinical dispensing in Traditional Chinese Medicine (TCM), often used in prescriptions to enhance the effect or reduce potential side effects. It is the smallest component unit of Chinese medicine prescription and an essential bridge between Chinese medicine and prescription. Curcumae Rhizoma (called Ezhu in Chinese) is a representative TCM herb that promotes blood circulation and removes blood stasis. It has been used in Chinese medicine for thousands of years. Ezhu is generally used in clinical applications as a part of a "drug pair" to treat heartburn, stomach pain, tumour, amenorrhea and abdominal pain caused by blood stasis, qi stagnation and injury. AIMS OF THE REVIEW This review aims to summarize the latest and comprehensive situation of the biological activity and clinical application of drug pairs containing Ezhu, find the law of Ezhu compatibility application, and discuss the rationalization of Ezhu drug compatibility. For Ezhu, herb pairs to provide a theoretical basis for clinical research in TCM and serve as a research foundation for developing new drugs. MATERIALS AND METHODS Using a self-built prescription database and Apriori algorithm for association rule mining. A systematic search for studies on herb pairs containing Ezhu was carried out by using the internet databases of PubMed, CNKI, Baidu Scholar, Google Scholar and Web of Science, as well as other relevant textbooks, reviews and documents (e.g. Chinese Pharmacopoeia, 2020 edition, Chinese herbal classic books and PhD and MSc theses, etc.). Among them with keywords including "Curcumae Rhizoma", "Ezhu", "herb pairs", "clinical application", etc. and their combinations. Moreover, the t-copula function was used to analyse the dose-coupling effect of five drug pairs, including Ezhu. RESULTS The preliminary statistical analysis retrieved Ezhu prescriptions from self-built prescription database and internet databases. The results showed that the compatibility frequency of Ezhu with the other five Chinese medicines was high. Most of these selected herbal combinations are used to treat internal diseases. In this paper, the progress of the ethnopharmacology of Ezhu was reviewed, emphasizing the changes in bioactive components and compatibility of Chinese traditional medicine combinations such as Ezhu and Astragalus Curcuma (Sparganium stoloniferum Buch. -Ham; called Sanleng in Chinese), Ezhu and Astragali Radix (Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao, Astragalus membranaceus (Fisch.) Bge.; called Huangqi in Chinese). Some other varieties, such as Ezhu and Rhizoma Chuanxiong (Ligusticum chuanxiong Hort.; called Chuanxiong in Chinese), Trionycis Carapax (Trionyx sinensis Wiegmann; called Biejia in Chinese), and Coptidis Rhizoma (Coptis chinensis Franch., Coptis deltoidea C. Y. Cheng et Hsiao, Coptis teeta Wall.; called Huanglian in Chinese), are also recorded in ancient books but rarely researched. The dose of Ezhu is strongly correlated with the amount of Sanleng, Huangqi, Biejia, Chuanxiong and Huanglian, respectively. Furthermore, there was a positive correlation between them. CONCLUSIONS The bioactive components and compatibility effects of Ezhu herb pairs were studied in detail using data mining and t-copula function analysis. Ezhu and Astragalus Curcuma (Sanleng) mainly treat gynecological disorders by activating blood circulation and relieving congestion. Ezhu and Astragali Radix (Huangqi) drug pair and Ezhu and Trionycis Carapax (Biejia) drug pair are all commonly used in the clinical treatment of tumors, the former is mainly used clinically for the treatment of digestive tract-related inflammation and tumors, liver cancer and gynecological tumors, and the latter is commonly used for the treatment of malignant tumors, such as liver cancer and mammary cancer.
Collapse
Affiliation(s)
- Liting Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaomei Zhou
- Department of Pharmacy, West China Second University Hospital, Sichuan University, China; Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, China.
| | - Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Qing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Wei Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
45
|
Xie M, Lu W, Gu S, Lu J, Wu H, Yao L, Du M, Zhang J, Liu Y, Wang Q. A rapid localization and analysis method for isoquinoline alkaloids with fluorescence in Coptis chinensis Franch. By fabricating the nano-silver sol as a substrate for surface-enhanced Raman spectroscopy. Anal Chim Acta 2024; 1287:342067. [PMID: 38182374 DOI: 10.1016/j.aca.2023.342067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The quality of traditional Chinese medicines (TCMs) directly impacts their clinical efficacy and drug safety, making standardization a critical component of modern TCMs. Surface-enhanced Raman spectroscopy (SERS) is an effective physical detection method with speed, sensitivity, and suitability for large sample analyses. In this study, a SERS analysis method was developed using a nano-silver sol as the matrix to address the interference of fluorescence components in TCMs and overcome the limitations of traditional detection methods. RESULTS The higher sensitivity and efficiency of SERS was used, enabling detection of a single sample within 30 s. Coptis chinensis Franch. (CCF) was chosen as the model medicine, the nano-silver sol was used as the matrix, and CCF's fourteen main fluorescent alkaloids were tested as index components. Typical signal peaks of the main components in CCF corresponded to the bending deformation of the nitrogen-containing ring plane outer ring system, methoxy stretching vibration, and isoquinoline ring deformation vibration. Through SERS detection of different parts, the distribution content of the main active components in the cortex of CCF was found to be lower than that in the xylem and phloem. Additionally, rapid quality control analyses indicated that among the nine batches of original medicinal materials purchased from Emei and Guangxi, the main active ingredient showed a higher content. SIGNIFICANCE A SERS-based method for the rapid localization and analysis of multiple components of TCMs was established. The findings highlight the potential of SERS as a valuable tool for the analysis and quality control of TCMs, especially for fluorescent components.
Collapse
Affiliation(s)
- Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Wanying Lu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Siqi Gu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Junzhong Lu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Haotian Wu
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Le Yao
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Menghan Du
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China
| | - Jianjia Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040, China.
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, 150081, China.
| |
Collapse
|
46
|
Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases. Front Pharmacol 2024; 15:1298181. [PMID: 38318147 PMCID: PMC10839104 DOI: 10.3389/fphar.2024.1298181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.
Collapse
Affiliation(s)
- Minghe Yao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ayomide M. Akintibu
- School of Community Health and Policy, Morgan State University, Baltimore, MD, United States
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
47
|
Yang B, Zhang Z, Song J, Qi T, Zeng J, Feng L, Jia X. Interpreting the efficacy enhancement mechanism of Chinese medicine processing from a biopharmaceutic perspective. Chin Med 2024; 19:14. [PMID: 38238801 PMCID: PMC10797928 DOI: 10.1186/s13020-024-00887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Chinese medicine processing (CMP) is a unique pharmaceutical technology that distinguishes it from natural medicines. Current research primarily focuses on changes in chemical components to understand the mechanisms behind efficacy enhancement in processing. However, this paper presents a novel perspective on the biopharmaceutics of CMP. It provides a comprehensive overview of the current research, emphasizing two crucial aspects: the role of 'heat' during processing and the utilization of processing adjuvants. The paper highlights the generation of easily absorbed components through the hydrolysis of glycosides by 'heat', as well as the facilitation of dissolution, absorption, and targeted distribution of active components through the utilization of processing adjuvants. From a biopharmaceutic perspective, this paper provides a lucid comprehension of the scientific foundation for augmenting the efficacy of CMP. Moreover, it proposes a three-dimensional research framework encompassing chemical reactions, phase transitions, and biopharmaceutical properties to further investigate the mechanisms involved in enhancing the efficacy of CMP.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhubin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jinjing Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tianhao Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jingqi Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
48
|
Tian M, Nie L, Yin Y, Zhou H, Meng Z, Cao G, Zang H. Study on quality analysis of different species of Coptidis rhizome based on fingerprint-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:77-86. [PMID: 37621176 DOI: 10.1002/pca.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy. OBJECTIVES In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship. METHODS High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression. RESULTS We have identified a total of 10 common peaks (1-10) with similarity scores above 0.96. The study on the relationship between spectra and potency further showed that the contents of peaks 8, 9, and 10 are potential key components. And based on a previous study, a method of one measurement and multiple evaluations of CR was established to achieve the goal of simplifying the analytical process and reducing costs. CONCLUSION Through a combination of fingerprint analysis, antioxidant activity evaluation, fingerprint-efficacy relationship analysis, and simultaneous quantification of multiple components, a CR quality control index and method have been selected and established, which can also provide a more comprehensive quality evaluation for traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Yaqing Yin
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Haonan Zhou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Centre, Shandong University, Jinan, Shandong, China
| |
Collapse
|
49
|
Wu L, Zhao B, Deng Z, Wang B, Yu Y. A biosynthetic network for protoberberine production in Coptis chinensis. HORTICULTURE RESEARCH 2024; 11:uhad259. [PMID: 38282690 PMCID: PMC10812381 DOI: 10.1093/hr/uhad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/26/2023] [Indexed: 01/30/2024]
Abstract
Protoberberine alkaloids are a group of tetracyclic isoquinoline compounds known for their well-established antimicrobial and anti-inflammatory properties. The richness and diversity of protoberberine alkaloids accumulated in the Coptis genus necessitate a comprehensive examination of the biosynthetic machinery to understand their ecological significance. Here, from Coptis chinensis we identified CcCYP719A1, which could install a methylenedioxy bridge on either ring A or ring D of the protoberberine backbone, thus diverging metabolite flux towards the biosynthesis of various protoberberine components. We also obtained CcCYP719A2 and CcCYP719A3, which underwent positive selection after diverging from CcCYP719A1 and maintained specific catalytic activity on ring D. Further, we resolved the biosynthetic pathway of jatrorrhizine by identifying two demethylases, which could also modulate protoberberine composition by removing the C-3 methyl group and methylenedioxy bridge of ring D, allowing demethylated metabolites to be redirected into different routes. Moreover, we characterized 2-O-methyltransferase CcOMT1 and flavin-dependent oxidase CcTHBO, respectively responsible for the commonly observed 2-O-methylation and aromatic ring-C assembly in protoberberine alkaloids. Overall, this study reveals an interconnected metabolite network from which diverse protoberberine alkaloids originate. It provides valuable insights into the existence of undiscovered protoberberine components, and paves the way for the targeted production of desired protoberberine components for potential therapeutic development.
Collapse
Affiliation(s)
- Linrui Wu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Binxin Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
50
|
Zhao Q, Huang S, Yang L, Chen T, Qiu X, Huang R, Dong L, Liu W. Biomarkers and coptis chinensis activity for rituximab-resistant diffuse large B-cell lymphoma: Combination of bioinformatics analysis, network pharmacology and molecular docking. Technol Health Care 2024; 32:2091-2105. [PMID: 38517810 DOI: 10.3233/thc-230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Rituximab resistance is one of the great challenges in the treatment of diffuse large B-cell lymphoma (DLBCL), but relevant biomarkers and signalling pathways remain to be identified. Coptis chinensis and its active ingredients have antitumour effects; thus, the potential bioactive compounds and mechanisms through which Coptis chinensis acts against rituximab-resistant DLBCL are worth exploring. OBJECTIVE To elucidate the core genes involved in rituximab-resistant DLBCL and the potential therapeutic targets of candidate monomers of Coptis chinensis. METHODS Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Similarity Ensemble Approach and Swiss Target Prediction, the main ingredients and pharmacological targets of Coptis chinensis were identified through database searches. Through the overlap between the pharmacological targets of Coptis chinensis and the core targets of rituximab-resistant DLBCL, we identified the targets of Coptis chinensis against rituximab-resistant DLBCL and constructed an active compound-target interaction network. The targets and their corresponding active ingredients of Coptis chinensis against rituximab-resistant DLBCL were molecularly docked. RESULTS Berberine, quercetin, epiberberine and palmatine, the active components of Coptis chinensis, have great potential for improving rituximab-resistant DLBCL via PIK3CG. CONCLUSION This study revealed biomarkers and Coptis chinensis-associated molecular functions for rituximab-resistant DLBCL.
Collapse
|