1
|
Qing J, Li C, Zhi H, Zhang L, Wu J, Li Y. Exploring macrophage heterogeneity in IgA nephropathy: Mechanisms of renal impairment and current therapeutic targets. Int Immunopharmacol 2024; 140:112748. [PMID: 39106714 DOI: 10.1016/j.intimp.2024.112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
The lack of understanding of the mechanism of renal injury in IgA nephropathy (IgAN) hinders the development of personalized treatment plans and targeted therapies. Improved insight into the cause of renal dysfunction in IgAN is necessary to enhance the effectiveness of strategies for slowing the progression of the disease. This study examined single cell RNA sequencing (scRNA seq) and bulk-RNA seq data and found that the gene expression of renal intrinsic cells (RIC) was significantly changed in patients with renal impairment, with a primary focus on energy metabolism. We discovered a clear metabolic reprogramming of RIC during renal function impairment (RF) using the 'scMetabolism' package, which manifested as a weakening of oxidative phosphorylation, alterations in fatty acid metabolism, and changes in glycolysis. Cellular communication analysis revealed that communication between macrophages (Ma) and RIC became more active and impacted cell function through the ligand-receptor-transcription factor (L-R-TF) axis in patients with RF. Our studies showed a notable upsurge in the expression of gene CLU and the infiltration of CLU+ Ma in patients with RF. CLU is a multifunctional protein, extensively involved in processes such as cell apoptosis and immune responses. Data obtained from the Nephroseq V5 database and multiplex immunohistochemistry (mIHC) were used to validate the findings, which were found to be robustly correlated with estimated glomerular filtration rate (eGFR) of the IgAN patients, as demonstrated by linear regression (LR). This study provides new insights into the cellular and molecular changes that occur in IgAN during renal impairment, revealing that elevated expression of CLU and CLU+ Ma percolation are common features in patients with RF. These findings offer potential targets and strategies for personalized management and targeted therapy of IgAN.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Changqun Li
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Lijuan Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China; Department of Nephrology, Hejin Municipal People's Hospital, Yuncheng 043300, China.
| |
Collapse
|
2
|
Bai X, Shang J, Cao X, Li M, Yu H, Wu C, Yang M, Yue X. Proteomic and phosphoproteomic reveal immune-related function of milk fat globule membrane in bovine milk of different lactation periods. Food Chem 2024; 451:139295. [PMID: 38729042 DOI: 10.1016/j.foodchem.2024.139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
3
|
Juli MSB, Raza A, Forutan M, Siddle HV, Fordyce G, Muller J, Boe-Hansen GB, Tabor AE. Characterisation of reproductive tract microbiome and immune biomarkers for bovine genital campylobacteriosis in vaccinated and unvaccinated heifers. Front Microbiol 2024; 15:1404525. [PMID: 39224219 PMCID: PMC11366586 DOI: 10.3389/fmicb.2024.1404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Bovine genital campylobacteriosis (BGC) is a globally important venereal disease of cattle caused by Campylobacter fetus subspecies venerealis. Diagnosis of BGC is highly challenging due to the lack of accurate diagnostic tests. Methods To characterise the biomarkers for C. fetus venerealis infection, a total of twelve cycling heifers were selected and categorised as vaccinated (n = 6) with Vibrovax® (Zoetis™) and unvaccinated (n = 6). All heifers were oestrous synchronised with a double dose of prostaglandin (PGF2α) 11 days apart and when in oestrous intravaginally challenged with 2.7 x 109 CFU live C. fetus venerealis. DNA extracted from vaginal mucus samples was screened using a C. fetus qPCR and 16S rRNA was characterised using Illumina sequencing (V5-V8 region). Relative abundances of serum proteins were calculated using sequential window acquisition of all theoretical fragment ion spectra coupled to tandem mass spectrometry (SWATH-MS) for all heifers at three timepoints: pre-challenge, post-challenge and post-recovery. Results In 16S rRNA sequencing of vaginal mucus, Campylobacter spp. appeared two days following challenge in unvaccinated compared to 14 days in vaccinated animals, consistent with the qPCR results. Increased relative abundances of Firmicutes and Campylobacterota were identified after C. fetus venerealis challenge and were associated with C. fetus venerealis in vaccinated and unvaccinated heifers. Greater relative abundance of Streptococcus spp. was observed during oestrous rather than dioestrous. In both vaccinated and unvaccinated heifers, Acinetobacter spp. increased after challenge with higher abundance of Corynebacterium spp. in the vaccinated group. A total of 130 unique proteins were identified in SWATH analysis of the serum samples, and the number of differentially abundant proteins found was higher in the vaccinated group after recovery from infection compared to pre-and post-challenge (adjusted P < 0.05 and Log2FC > 0.2). Conclusion Coglutinin, clusterin, HP homologs, vitamin D binding protein and fetuin B were identified as potential biomarkers for C. fetus venerealis infection and need further study to validate their efficiency as immune biomarkers for BGC.
Collapse
Affiliation(s)
- Mst Sogra Banu Juli
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Ali Raza
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mehrnush Forutan
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Hannah V. Siddle
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Geoffry Fordyce
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- Department of Agriculture & Fisheries, Charters Towers, QLD, Australia
| | - Jarud Muller
- Department of Agriculture & Fisheries, Charters Towers, QLD, Australia
| | - Gry B. Boe-Hansen
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ala E. Tabor
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
4
|
Yang W, Yu H, Lei Q, Pu C, Guo Y, Lin L. Identification and clinical validation of diverse cell-death patterns-associated prognostic features among low-grade gliomas. Sci Rep 2024; 14:11874. [PMID: 38789729 PMCID: PMC11126566 DOI: 10.1038/s41598-024-62869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Low-grade glioma (LGG) is heterogeneous at biological and transcriptomic levels, and it is still controversial for the definition and typing of LGG. Therefore, there is an urgent need for specific and practical molecular signatures for accurate diagnosis, individualized therapy, and prognostic evaluation of LGG. Cell death is essential for maintaining homeostasis, developing and preventing hyperproliferative malignancies. Based on diverse programmed cell death (PCD) related genes and prognostic characteristics of LGG, this study constructed a model to explore the mechanism and treatment strategies for LGG cell metastasis and invasion. We screened 1161 genes associated with PCD and divided 512 LGG samples into C1 and C2 subtypes by consistent cluster analysis. We analyzed the two subtypes' differentially expressed genes (DEGs) and performed functional enrichment analysis. Using R packages such as ESTIMATE, CIBERSOTR, and MCPcounter, we assessed immune cell scores for both subtypes. Compared with C1, the C2 subtype has a poor prognosis and a higher immune score, and patients in the C2 subtype are more strongly associated with tumor progression. LASSO and COX regression analysis screened four characteristic genes (CLU, FHL3, GIMAP2, and HVCN1). Using data sets from different platforms to validate the four-gene feature, we found that the expression and prognostic correlation of the four-gene feature had a high degree of stability, showing stable predictive effects. Besides, we found downregulation of CLU, FHL3, and GIMAP2 significantly impairs the growth, migration, and invasive potential of LGG cells. Take together, the four-gene feature constructed based on PCD-related genes provides valuable information for further study of the pathogenesis and clinical treatment of LGG.
Collapse
Affiliation(s)
- Wenyong Yang
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Hui Yu
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Chunlan Pu
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Yuanbiao Guo
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China.
| | - Liangbin Lin
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Klíčová K, Mareš J, Menšíková K, Kaiserová M, Friedecký D, Kaňovský P, Strnad M, Matěj R. Utilizing neurodegenerative markers for the diagnostic evaluation of amyotrophic lateral sclerosis. Eur J Med Res 2024; 29:31. [PMID: 38184629 PMCID: PMC10771003 DOI: 10.1186/s40001-023-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of upper and lower motor neurons. A definitive diagnostic test or biomarker for ALS is currently unavailable, leading to a diagnostic delay following the onset of initial symptoms. Our study focused on cerebrospinal fluid (CSF) concentrations of clusterin, tau protein, phosphorylated tau protein, and beta-amyloid1-42 in ALS patients and a control group. METHODS Our study involved 54 ALS patients and 58 control subjects. Among the ALS patients, 14 presented with bulbar-onset ALS, and 40 with limb-onset ALS. We quantified biomarker levels using enzyme-linked immunosorbent assay (ELISA) and compared the results using the Mann-Whitney U-test. RESULTS Significant elevations in neurodegenerative markers, including tau protein (p < 0.0001), phosphorylated tau protein (p < 0.0001), and clusterin (p = 0.038), were observed in ALS patients compared to controls. Elevated levels of tau protein and phosphorylated tau protein were also noted in both bulbar and limb-onset ALS patients. However, no significant difference was observed for beta-amyloid1-42. ROC analysis identified tau protein (AUC = 0.767) and p-tau protein (AUC = 0.719) as statistically significant predictors for ALS. CONCLUSION Our study demonstrates that neurodegenerative marker levels indicate an ongoing neurodegenerative process in ALS. Nonetheless, the progression of ALS cannot be predicted solely based on these markers. The discovery of a specific biomarker could potentially complement existing diagnostic criteria for ALS.
Collapse
Affiliation(s)
- Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic.
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- Laboratory of Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Miroslav Strnad
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Radoslav Matěj
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| |
Collapse
|
6
|
Kobayashi Y, Eguchi A, Imami K, Tempaku M, Izuoka K, Takase T, Kainuma K, Nagao M, Furuta N, Iwasa M, Nakagawa H, Fujisawa T, Togashi K. Circulating extracellular vesicles are associated with pathophysiological condition including metabolic syndrome-related dysmetabolism in children and adolescents with obesity. J Mol Med (Berl) 2024; 102:23-38. [PMID: 37874387 DOI: 10.1007/s00109-023-02386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Obesity of children and adolescents (OCA) is often accompanied by metabolic syndrome (MetS), which often leads to adult obesity and subsequent complications, yet the entire pathophysiological response is not fully understood. The number and composition of circulating extracellular vesicles (EV) reflect overall patient condition; therefore, we investigated the pathophysiological condition of OCA, including MetS-associated dysmetabolism, using circulating EVs. In total, 107 children and adolescents with or without obesity (boys, n = 69; girls, n = 38; median age, 10 years) were enrolled. Circulating EV number and EV protein composition were assessed via flow cytometry and liquid chromatography tandem-mass spectrometry, respectively. In a multivariate analysis, relative body weight (standardized partial regression coefficient (SPRC) 0.469, P = 0.012) and serum triglyceride level (SPRC 0.548, P < 0.001) were detected as independent parameters correlating with circulating EV number. Proteomic analysis identified 31 upregulated and 45 downregulated EV proteins in OCA. Gene ontology analysis revealed upregulated proteins to be involved in various biological processes, including intracellular protein transport, protein folding, stress response, leukocyte activation, innate immune response, and platelet degranulation, which can modulate lipid and glucose metabolism, skeletal and cardiac muscle development, inflammation, immune response, carcinogenesis, and cancer progression. Notably, several identified EV proteins are involved in neuro-development, neurotransmitter release, and neuro-protective agents in OCA. Circulating EVs were derived from adipocytes, hepatocytes, B cell lymphocytes, and neurons. Circulating EV number is significantly associated with MetS-related dysmetabolism and the EV protein cargo carries a special "signature" that reflects the alteration of various biological processes under the pathophysiological condition of OCA. KEY MESSAGES: Circulating EV number correlates with physical and laboratory parameters for obesity in children and adolescents. Relative body weight and triglyceride are independent factors for increased circulating EVs. EV composition is significantly changed in obesity of children and adolescents. Identified EV composition changes associated with obesity and involves in metabolism, immune response, and cancer progression. Circulating EVs are partially derived from adipocyte, hepatocytes, B cells, and neurons.
Collapse
Affiliation(s)
- Yoshinao Kobayashi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Biobank Center, Mie University Hospital, Tsu, Mie, 514-8507, Japan.
| | - Koshi Imami
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mina Tempaku
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kiyora Izuoka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takafumi Takase
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Keigo Kainuma
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Mizuho Nagao
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Noriko Furuta
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takao Fujisawa
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Kenji Togashi
- Department of Health and Physical Education, Faculty of Education, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
7
|
López Malizia A, Merlotti A, Bonte PE, Sager M, Arribas De Sandoval Y, Goudot C, Erra Díaz F, Pereyra-Gerber P, Ceballos A, Amigorena S, Geffner J, Sabatte J. Clusterin protects mature dendritic cells from reactive oxygen species mediated cell death. Oncoimmunology 2023; 13:2294564. [PMID: 38125724 PMCID: PMC10730137 DOI: 10.1080/2162402x.2023.2294564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.
Collapse
Affiliation(s)
- Alvaro López Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | | | - Melina Sager
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Christel Goudot
- Institut Curie, Université Paris Sciences et Lettres, Paris, France
| | - Fernando Erra Díaz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | | | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| | - Juan Sabatte
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires University, School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
8
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Pentoxifylline as Add-On Treatment to Donepezil in Copper Sulphate-Induced Alzheimer's Disease-Like Neurodegeneration in Rats. Neurotox Res 2023; 41:546-558. [PMID: 37821782 PMCID: PMC10682165 DOI: 10.1007/s12640-023-00672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by behavioral, cognitive, and progressive memory impairments. Extensive neuronal loss, extracellular accumulation of insoluble senile amyloid-β (Aβ) plaques, and intracellular neurofibrillary tangles (NFTs) are the major pathological features. The present study aimed to investigate the therapeutic effect of donepezil (DON) and pentoxifylline (PTX) in combination to combat the neurodegenerative disorders (experimental AD) induced by CuSO4 intake in experimental rats. Thirty adult male Wistar rats (140-160 g) were used in this study. AD was first induced in rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. The AD group received no further treatment. Oral treatment with DON (10 mg/kg/day), PTX (100 mg/kg/day), or DON + PTX for the other three groups was started from the 10th week of CuSO4 intake for 4 weeks. Cortex markers like acetylcholine (ACh), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) and hippocampus markers like β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), Clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 were measured. The histopathology studies were done by using hematoxylin and eosin and Congo red stains as well as immunohistochemistry for neurofilament. CuSO4 induced adverse histological and biochemical changes. The histological injury in the hippocampus was inhibited following the administration of the DON and PTX. The brain tissue levels of AChE, MDA, BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α were significantly increased, while brain tissue levels of ACh, TAC, and Bcl-2 were significantly decreased in CuSO4-treated rats as compared with the untreated control group. The effects induced by either DON or PTX on most studied parameters were comparable. Combined treatment of DON and PTX induced remarkable results compared with their individual use. However, more clinical and preclinical studies are still required to further confirm and prove the long-term efficacy of such combination.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
9
|
Qin M, Yu-Wai-Man C. Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork. Eur J Pharmacol 2023; 954:175882. [PMID: 37391006 PMCID: PMC10804937 DOI: 10.1016/j.ejphar.2023.175882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Glaucoma is a chronic and progressive neurodegenerative disease characterized by the loss of retinal ganglion cells and visual field defects, and currently affects around 1% of the world's population. Elevated intraocular pressure (IOP) is the best-known modifiable risk factor and a key therapeutic target in hypertensive glaucoma. The trabecular meshwork (TM) is the main site of aqueous humor outflow resistance and therefore a critical regulator of IOP. Fibrosis, a reparative process characterized by the excessive deposition of extracellular matrix components and contractile myofibroblasts, can impair TM function and contribute to the pathogenesis of primary open-angle glaucoma (POAG) as well as the failure of minimally invasive glaucoma surgery (MIGS) devices. This paper provides a detailed overview of the current anti-fibrotic therapeutics targeting the TM in glaucoma, along with their anti-fibrotic mechanisms, efficacy as well as the current research progress from pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Mengqi Qin
- King's College London, London, SE1 7EH, UK
| | | |
Collapse
|
10
|
Zhang Y, Lv X, Chen L, Liu Y. The role and function of CLU in cancer biology and therapy. Clin Exp Med 2023; 23:1375-1391. [PMID: 36098834 DOI: 10.1007/s10238-022-00885-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Clusterin (CLU) is a highly evolutionary conserved glycoprotein with multiple isoform-specific functions and is widely distributed in different species. Accumulated evidence has shown the prominent role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation and cell growth via regulating diverse signaling pathways to mediate cancer progression in various cancers, such as prostate, breast, lung, liver, colon, bladder and pancreatic cancer. Several studies have revealed the potential benefit of inhibiting CLU in CLU inhibition-based targeted cancer therapies in vitro, in vivo or in human, suggesting CLU is a promising therapeutic target. This review discusses the multiple functions and mechanisms of CLU in regulating tumor progression of various cancers and summarizes the inhibitors of CLU used in CLU inhibition-based targeted cancer therapies.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiang Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
11
|
Ren X, Chang C, Qi T, Yang P, Wang Y, Zhou X, Guan F, Li X. Clusterin Is a Prognostic Biomarker of Lower-Grade Gliomas and Is Associated with Immune Cell Infiltration. Int J Mol Sci 2023; 24:13413. [PMID: 37686218 PMCID: PMC10487477 DOI: 10.3390/ijms241713413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Dysregulation of clusterin (CLU) has been demonstrated in many cancers and has been proposed as a regulator of carcinogenesis. However, the roles of CLU in gliomas remain unclear. The expression of CLU was assessed using TIMER2.0, GEPIA2, and R package 4.2.1 software, leveraging data from TCGA and/or GTEx databases. Survival analysis and Cox regression were employed to investigate the prognostic significance of CLU. Immune infiltration was evaluated utilizing TIMER2.0, ESTIMATE, and CIBERSORT. The findings reveal the dysregulated expression of CLU in many cancers, with a marked increase observed in glioblastoma and lower-grade glioma (LGG). High CLU expression indicated worse survival outcomes and was an independent risk factor for the prognosis in LGG patients. CLU was involved in immune status as evidenced by its strong correlations with immune and stromal scores and the infiltration levels of multiple immune cells. Additionally, CLU was co-expressed with multiple immune-related genes, and high CLU expression was associated with the activation of immune-related pathways, such as binding to the antigen/immunoglobulin receptor and aiding the cytokine and cytokine receptor interaction. In conclusion, CLU appears to play crucial roles in tumor immunity within gliomas, highlighting its potential as a biomarker or target in glioma immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Ren
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Chao Chang
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Teng Qi
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Pengyu Yang
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Yuanbo Wang
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Xiaorui Zhou
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Xiang Li
- Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi’an 710069, China; (X.R.); (C.C.); (T.Q.); (P.Y.); (Y.W.); (X.Z.)
- College of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| |
Collapse
|
12
|
Pierzynowska K, Deresz P, Węgrzyn G, Gaffke L. Dysregulation of genes coding for proteins involved in metabolic processes in mucopolysaccharidoses, evidenced by a transcriptomic approach. Metab Brain Dis 2023; 38:2133-2144. [PMID: 37195412 PMCID: PMC10349023 DOI: 10.1007/s11011-023-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSD) caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans (GAGs). Most types of these severe disorders are characterized by neuronopathic phenotypes. Although lysosomal accumulation of GAGs is the primary metabolic defect in MPS, secondary alterations in biochemical processes are considerable and influence the course of the disease. Early hypothesis suggested that these secondary changes might be due to lysosomal storage-mediated impairment of activities of other enzymes, and subsequent accumulation of various compounds in cells. However, recent studies indicated that expression of hundreds of genes is changed in MPS cells. Therefore, we asked whether metabolic effects observed in MPS are caused primarily by GAG-mediated inhibition of specific biochemical reactions or appear as results of dysregulation of expression of genes coding for proteins involved in metabolic processes. Transcriptomic analyses of 11 types of MPS (using RNA isolated from patient-derived fibroblasts), performed in this study, showed that a battery of the above mentioned genes is dysregulated in MPS cells. Some biochemical pathways might be especially affected by changes in expression of many genes, including GAG metabolism and sphingolipid metabolism which is especially interesting as secondary accumulation of various sphingolipids is one of the best known additional (while significantly enhancing neuropathological effects) metabolic defects in MPS. We conclude that severe metabolic disturbances, observed in MPS cells, can partially arise from changes in the expression of many genes coding for proteins involved in metabolic processes.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Patrycja Deresz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
13
|
Frazel PW, Fricano-Kugler K, May-Zhang AA, O'Dea MR, Prakash P, Desmet NM, Lee H, Meltzer RH, Fontanez KM, Hettige P, Agam Y, Lithwick-Yanai G, Lipson D, Luikart BW, Dasen JD, Liddelow SA. Single-cell analysis of the nervous system at small and large scales with instant partitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549051. [PMID: 37503160 PMCID: PMC10370061 DOI: 10.1101/2023.07.14.549051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Single-cell RNA sequencing is a new frontier across all biology, particularly in neuroscience. While powerful for answering numerous neuroscience questions, limitations in sample input size, and initial capital outlay can exclude some researchers from its application. Here, we tested a recently introduced method for scRNAseq across diverse scales and neuroscience experiments. We benchmarked against a major current scRNAseq technology and found that PIPseq performed similarly, in line with earlier benchmarking data. Across dozens of samples, PIPseq recovered many brain cell types at small and large scales (1,000-100,000 cells/sample) and was able to detect differentially expressed genes in an inflammation paradigm. Similarly, PIPseq could detect expected and new differentially expressed genes in a brain single cell suspension from a knockout mouse model; it could also detect rare, virally-la-belled cells following lentiviral targeting and gene knockdown. Finally, we used PIPseq to investigate gene expression in a nontraditional model species, the little skate (Leucoraja erinacea). In total, PIPSeq was able to detect single-cell gene expression changes across models and species, with an added benefit of large scale capture and sequencing of each sample.
Collapse
|
14
|
Wen L, Du X, Liu T, Meng W, Li T, Li M, Zhang M. Colorimetric Aptasensor for the Visual and Microplate Determination of Clusterin in Human Urine Based on Aggregation Characteristics of Gold Nanoparticles. ACS OMEGA 2023; 8:16000-16008. [PMID: 37179603 PMCID: PMC10173331 DOI: 10.1021/acsomega.2c08040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Clusterin has the potential to become the biomarker of multiple diseases, but its clinical quantitative detection methods are limited, which restricts its research progress as a biomarker. A rapid and visible colorimetric sensor for clusterin detection based on sodium chloride-induced aggregation characteristic of gold nanoparticles (AuNPs) was successfully constructed. Unlike the existing methods based on antigen-antibody recognition reactions, the aptamer of clusterin was used as the sensing recognition element. The aptamer could protect AuNPs from aggregation caused by sodium chloride, but clusterin bound with aptamer detached it from AuNPs, thereby inducing aggregation again. Simultaneously, the color change from red in the dispersed state to purple gray in the aggregated state made it possible to preliminarily judge the concentration of clusterin by observation. This biosensor showed a linear range of 0.02-2 ng/mL and good sensitivity with a detection limit of 5.37 pg/mL. The test results of clusterin in spiked human urine confirmed that the recovery rate was satisfactory. The proposed strategy is helpful for the development of label-free point-of-care testing equipment for clinical testing of clusterin, which is cost-effective and feasible.
Collapse
Affiliation(s)
- Lina Wen
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Department
of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian
District, Beijing 100038, China
| | - Xiaoyu Du
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Tianci Liu
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Wen Meng
- Department
of Infection Prevention and Control, Peking
University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Tao Li
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Mengjie Li
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Man Zhang
- Beijing
Key Laboratory of Urinary Cellular Molecular Diagnostics, No. 10, Tieyi Road, Yangfangdian
Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
- Clinical
Laboratory Medicine, Peking University Ninth
School of Clinical Medicine, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| |
Collapse
|
15
|
Vestergaard N, Cehofski LJ, Alsing AN, Kruse A, Nielsen JE, Schlosser A, Sorensen GL, Honoré B, Vorum H. Large-Scale Protein Analysis of Experimental Retinal Artery Occlusion. Int J Mol Sci 2023; 24:ijms24097919. [PMID: 37175625 PMCID: PMC10177937 DOI: 10.3390/ijms24097919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The management of RAO could potentially be improved through an in-depth understanding of the molecular alterations in the condition. This study combined advanced proteomic techniques and an experimental model to uncover the retinal large-scale protein profile of RAO. In 13 pigs, RAO was induced with an argon laser and confirmed by fluorescein angiography. Left eyes serving as controls received a sham laser without inducing occlusion. Retinal samples were collected after one, three, or six days and analyzed with liquid chromatography-tandem mass spectrometry. In RAO, 36 proteins were differentially regulated on day one, 86 on day three, and 557 on day six. Upregulated proteins included clusterin, vitronectin, and vimentin, with several proteins increasing over time with a maximum on day six, including clusterin, vimentin, osteopontin, annexin-A, signal transducer, and the activator of transcription 3. On day six, RAO resulted in the upregulation of proteins involved in cellular response to stress, hemostasis, innate immune response, and cytokine signaling. Downregulated proteins were involved in transmission across chemical synapses and visual phototransduction. This study identified the upregulation of multiple inflammatory proteins in RAO and the downregulation of proteins involved in visual pathways.
Collapse
Affiliation(s)
- Nanna Vestergaard
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | | | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
16
|
Dai W, Guo C, Wang Y, Li Y, Xie R, Wu J, Yao B, Xie D, He L, Li Y, Huang H, Wang Y, Liu S. Identification of hub genes and pathways in lung metastatic colorectal cancer. BMC Cancer 2023; 23:323. [PMID: 37024866 PMCID: PMC10080892 DOI: 10.1186/s12885-023-10792-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent types of malignant tumours. Metastasis is the leading cause of cancer-related mortality, with lung metastases accounting for 32.9% of all metastatic CRCs. However, since the biological mechanism of lung metastatic CRC is poorly understood, limited therapeutic targets are available. In the present study, we aimed to identify the key genes and molecular processes involved in CRC lung metastasis. METHODS The differentially expressed genes (DEGs) between primary and lung metastatic CRC patients were obtained from the Gene Expression Omnibus (GEO) database via the GEO2R tool. The enriched biological processes and pathways modulated by the DEGs were determined with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome Gene Sets analyses. The search tool Retrieval of Interacting Genes (STRING) and Cytoscape were used to construct a protein-protein interaction (PPI) network among DEGs. RESULTS The DEGs were enriched in surfactant metabolism, cell-cell communication and chemokine signaling pathways. The defined hub genes were included CLU, SFTPD, CCL18, SPP1, APOE, BGN and MMP3. Among them, CLU, SFTPD and CCL18 might be associated with the specific lung tropism metastasis in CRC. In addition, the expression and prognostic values of the hub genes in CRC patients were verified in database of The Cancer Genome Atlas (TCGA) and GEO. Moreover, the protein levels of the hub genes were detected in primary and lung metastatic CRC cells, serum or tissues. Furthermore, SFTPD was confirmed to facilitate cellular proliferation and lung metastasis in CRC. CONCLUSION This bioinformatics study may provide a better understanding of the candidate therapeutic targets and molecular mechanisms for CRC lung metastasis.
Collapse
Affiliation(s)
- Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Baole Yao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Dong Xie
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Ling He
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yingying Li
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Huang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
17
|
Neves D, Duarte-Pereira S, Matos S, Silva RM. Proteostasis networks in aging: novel insights from text-mining approaches. Biogerontology 2023:10.1007/s10522-023-10027-0. [PMID: 37004691 PMCID: PMC10267007 DOI: 10.1007/s10522-023-10027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Aging is a topic of paramount importance in an increasingly elderly society and has been the focus of extensive research. Protein homeostasis (proteostasis) decline is a hallmark in aging and several age-related diseases, but which specific proteins and mechanisms are involved in proteostasis (de)regulation during the aging process remain largely unknown. Here, we used different text-mining tools complemented with protein-protein interaction data to address this complex topic. Analysis of the integrated protein interaction networks identified novel proteins and pathways associated to proteostasis mechanisms and aging or age-related disorders, indicating that this approach is useful to identify previously unknown links and for retrieving information of potential novel biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Diogo Neves
- Department of Medical Sciences & iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sara Duarte-Pereira
- Department of Medical Sciences & iBiMED, University of Aveiro, Aveiro, Portugal
- IEETA, University of Aveiro, Aveiro, Portugal
| | - Sérgio Matos
- IEETA, University of Aveiro, Aveiro, Portugal
- DETI, University of Aveiro, Aveiro, Portugal
| | - Raquel M Silva
- Department of Medical Sciences & iBiMED, University of Aveiro, Aveiro, Portugal.
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Estrada da Circunvalação, 3504-505, Viseu, Portugal.
| |
Collapse
|
18
|
Zhang Y, Lu L, Song F, Zou X, Liu Y, Zheng X, Qian J, Gu C, Huang P, Yang Y. Research progress on non-protein-targeted drugs for cancer therapy. J Exp Clin Cancer Res 2023; 42:62. [PMID: 36918935 PMCID: PMC10011800 DOI: 10.1186/s13046-023-02635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Non-protein target drugs, especially RNA-based gene therapies for treating hereditary diseases, have been recognized worldwide. As cancer is an insurmountable challenge, no miracle drug is currently available. With the advancements in the field of biopharmaceuticals, research on cancer therapy has gradually focused on non-protein target-targeted drugs, especially RNA therapeutics, including oligonucleotide drugs and mRNA vaccines. This review mainly summarizes the clinical research progress in RNA therapeutics and highlights that appropriate target selection and optimized delivery vehicles are key factors in increasing the effectiveness of cancer treatment in vivo.
Collapse
Affiliation(s)
- Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Lu Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China
| | - Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Chunyan Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 158 Shangtang Road, Hangzhou, 310014, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
19
|
Tian Y, Xiao YH, Sun C, Liu B, Sun F. N6-Methyladenosine Methyltransferase METTL3 Alleviates Diabetes-Induced Testicular Damage through Modulating TUG1/Clusterin Axis. Diabetes Metab J 2023; 47:287-300. [PMID: 36653890 PMCID: PMC10040629 DOI: 10.4093/dmj.2021.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The present study investigated the regulatory effects of N6-methyladenosine (m6A) methyltransferase like-3 (METTL3) in diabetes-induced testicular damage. METHODS In vivo diabetic mice and high glucose (HG) treated GC-1 spg cells were established. The mRNA and protein expressions were determined by real-time quantitative polymerase chain reaction, Western blot, immunofluorescence and immunohistochemistry staining. Levels of testosterone, blood glucose, cell viability, and apoptosis were detected by enzyme-linked immunosorbent assay, MTT, and flow cytometry, respectively. Molecular interactions were verified by RNA immunoprecipitation and RNA pull-down assay. Histopathological staining was performed to evaluate testicular injury. RESULTS METTL3 and long non-coding RNA taurine up-regulated 1 (lncRNA TUG1) were downregulated in testicular tissues of diabetic mice and HG-treated GC-1 spg cells. METTL3 overexpression could reduce the blood glucose level, oxidative stress and testicular damage but enhance testosterone secretion in diabetic mouse model and HG-stimulated GC-1 spg cells. Mechanically, METTL3-mediated m6A methylation enhanced the stability of TUG1, then stabilizing the clusterin mRNA via recruiting serine and arginine rich splicing factor 1. Moreover, inhibition of TUG1/clusterin signaling markedly reversed the protective impacts of METTL3 overexpression on HG-stimulated GC-1 spg cells. CONCLUSION This study demonstrated that METTL3 ameliorated diabetes-induced testicular damage by upregulating the TUG1/clusterin signaling. These data further elucidate the potential regulatory mechanisms of m6A modification on diabetes-induced testicular injury.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yue-Hai Xiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Sun
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Bei Liu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fa Sun
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Corresponding author: Fa Sun https://orcid.org/0000-0002-0841-4668 School of Clinical Medicine, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, Guizhou Province, China E-mail:
| |
Collapse
|
20
|
Guo Y, Li J, Hao F, Yang Y, Yang H, Chang Q, Kong P, Liu W, Jiao X, Teng X. A new perspective on semen quality of aged male: The characteristics of metabolomics and proteomics. Front Endocrinol (Lausanne) 2023; 13:1058250. [PMID: 36686470 PMCID: PMC9848653 DOI: 10.3389/fendo.2022.1058250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Background Semen quality is negatively correlated with male age and is mainly quantified by a routine semen analysis, which is descriptive and inconclusive. Sperm proteins or semen metabolites are used as the intermediate or end-products, reflecting changes in semen quality, and hold much promise as a new biomarker to predict fertility in advanced-aged males. Objectives In this study, we sought to assess whether the semen metabolome and proteome of aged males can affect semen quality and serve as biomarkers for predicting semen quality. Materials and methods We retrospectively analyzed 12825 males that underwent semen routine analysis to understand the age-dependent changes in sperm quality. To identify the difference between aged and young adults, metabolomics (n=60) analyses of semen and proteomics (n=12) analyses of sperm were conducted. Finally, integrated machine learning of metabolomics was conducted to screen biomarkers to identify aging semen. Results We discovered that male age was positively correlated with sperm concentration as well as DNA fragmentation index(DFI), and negatively with progressive motile sperm count, total sperm count, sperm volume and progressive sperm motility. The differential metabolites were significantly enriched in various metabolic pathways, and four of these differential metabolites (Pipamperone, 2,2-Bis(hydroxymethyl)-2,2',2''-nitrilotriethanol, Arg-Pro and Triethyl phosphate) were utilized to establish a biomarker panel to identify aging semen. Proteomic analysis showed that differential proteins were significantly enriched in protein digestion and absorption and some energy-related pathways. An integrated analysis of the metabolome and proteome identified differential energy metabolism and oxidative stress-related proteins, which could explain the decreased motility and the increased DFI of aging sperm. Discussion and conclusion We provide compelling evidence that the changes in semen metabolome and sperm proteome are related to the decline of semen quality in aged males. Moreover, a biomarker panel based on four metabolites was established to identify aging semen.
Collapse
Affiliation(s)
- Yi Guo
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinli Li
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengdan Hao
- Department of Pediatrics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiurong Chang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pengcheng Kong
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianting Jiao
- Department of Pediatric Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Teng
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Fu Y, Du Q, Cui T, Lu Y, Niu G. A pan-cancer analysis reveals role of clusterin ( CLU) in carcinogenesis and prognosis of human tumors. Front Genet 2023; 13:1056184. [PMID: 36685863 PMCID: PMC9846084 DOI: 10.3389/fgene.2022.1056184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Clusterin (CLU) is a chaperone-like protein that has been demonstrated to have a direct relationship with cancer occurrence, progression, or metastasis. Clusterin was downregulated in tumor tissues using three datasets of tongue squamous carcinoma from the Gene Expression Omnibus. We further retrieved datasets from The Cancer Genome Atlas and Gene Expression Omnibus to thoroughly investigate the carcinogenic consequences of Clusterin. Our findings revealed that decreased Clusterin expression in malignancies was associated with a worse overall survival prognosis in individuals with multiple tumors; Clusterin gene deep deletions were found in almost all malignancies and were connected to most cancer patient's prognosis, Clusterin DNA methylation level was dependent on tumor type, Clusterin expression was also linked to the invasion of cancer-associated CD8+ T-cells and fibroblasts in numerous cancer forms. Moreover, pathway enrichment analysis revealed that Clusterin primarily regulates biological processes such as cholesterol metabolism, phospholipid binding, and protein-lipid complex formation. Overall, our pan-cancer research suggests that Clusterin expression levels are linked to tumor carcinogenesis and prognosis, which contributes to understanding the probable mechanism of Clusterin in tumorigenesis as well as its clinical prognostic significance.
Collapse
Affiliation(s)
- Yizhe Fu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Qiao Du
- Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Tiehan Cui
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuying Lu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Guangliang Niu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China,*Correspondence: Guangliang Niu,
| |
Collapse
|
22
|
Ruiz-Sanmartín A, Ribas V, Suñol D, Chiscano-Camón L, Palmada C, Bajaña I, Larrosa N, González JJ, Canela N, Ferrer R, Ruiz-Rodríguez JC. Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock. PLoS One 2022; 17:e0278708. [PMID: 36459524 PMCID: PMC9718383 DOI: 10.1371/journal.pone.0278708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The search for new biomarkers that allow an early diagnosis in sepsis and predict its evolution has become a necessity in medicine. The objective of this study is to identify, through omics techniques, potential protein biomarkers that are expressed in patients with sepsis and their relationship with organ dysfunction and mortality. METHODS Prospective, observational and single-center study that included adult patients (≥ 18 years) who were admitted to a tertiary hospital and who met the criteria for sepsis. A mass spectrometry-based approach was used to analyze the plasma proteins in the enrolled subjects. Subsequently, using recursive feature elimination classification and cross-validation with a vector classifier, an association of these proteins with mortality and organ dysfunction was established. The protein-protein interaction network was analyzed with String software. RESULTS 141 patients were enrolled in this study. Mass spectrometry identified 177 proteins. Of all of them, and by recursive feature elimination, nine proteins (GPX3, APOB, ORM1, SERPINF1, LYZ, C8A, CD14, APOC3 and C1QC) were associated with organ dysfunction (SOFA > 6) with an accuracy of 0.82 ± 0.06, precision of 0.85 ± 0.093, sensitivity 0.81 ± 0.10, specificity 0.84 ± 0.10 and AUC 0.82 ± 0.06. Twenty-two proteins (CLU, LUM, APOL1, SAA1, CLEBC3B, C8A, ITIH4, KNG1, AGT, C7, SAA2, APOH, HRG, AFM, APOE, APOC1, C1S, SERPINC1, IGFALS, KLKB1, CFB and BTD) were associated with mortality with an accuracy of 0.86 ± 0.05, a precision of 0.91 ± 0.05, a sensitivity of 0.91 ± 0.05, a specificity of 0.72 ± 0.17, and an area under the curve (AUC) of 0.81 ± 0.08 with a confidence interval of 95%. CONCLUSION In sepsis there are proteomic patterns associated with organ dysfunction and mortality.
Collapse
Affiliation(s)
- Adolfo Ruiz-Sanmartín
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicent Ribas
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - Luis Chiscano-Camón
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Palmada
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Iván Bajaña
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José González
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Timofeeva AV, Fedorov IS, Tarasova AM, Gorina KA, Suhova Y, Gusar VA, Ivanets TY. Role of clusterin in predicting development of early- and late-onset preeclampsia in the first trimester of pregnancy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) occurs in 2–8% of pregnancies. It is one of the leading causes of maternal and perinatal morbidity and mortality. Today, there are no tests adopted by the practitioners that enable accurate prediction of early (weeks 20 through 34) or late (after week 34) onset of PE when the pregnancy is in its 11th to 14th week. This study aimed to evaluate the feasibility of using secretory clusterin quantification to predict early or late PE during the first trimester of pregnancy. The choice of this protein is determined, on the one hand, by the specificity of its expression for cytotrophoblast, syncytiotrophoblast, and extracellular trophoblast cells, and, on the other hand, by the proven negative effect of clusterin on the invasive properties of trophoblastic cells and gestational transformations of uterine vessels, which play a key role in the pathogenesis of PE. The study included 40 pregnant women aged 27–40 years who underwent a comprehensive screening examination in the first trimester of pregnancy. Western blotting revealed a significant increase in the level of secretory clusterin (40 kDa) in the blood serum of pregnant women in the case of PE compared to physiological pregnancy: in early-onset PE, a twofold increase in the level of clusterin in the vesicular and extravesicular fractions of blood serum (p = 0.03 and p = 0.004, respectively), with late-onset PE — a threefold increase only in the extravesicular fraction of blood serum (p = 0.002). According to logistic regression models, the level of secretory clusterin in the extravesicular fraction of blood serum of pregnant women in the first trimester has prognostic significance in assessing the likelihood of developing early-onset PE (AUC = 0.97, Se = 1, Sp = 0.875, cutoff = 0.3877) and late-onset PE ( AUC = 1, Se = 1, Sp = 1, cutoff = 0.5).
Collapse
Affiliation(s)
- AV Timofeeva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - IS Fedorov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AM Tarasova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - KA Gorina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - YuV Suhova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VA Gusar
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - TYu Ivanets
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
24
|
Song G, Wang S, Barkestani MN, Mullan C, Fan M, Jiang B, Jiang Q, Li X, Jane-wit D. Membrane attack complexes, endothelial cell activation, and direct allorecognition. Front Immunol 2022; 13:1020889. [PMID: 36211400 PMCID: PMC9539657 DOI: 10.3389/fimmu.2022.1020889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (ECs) form a critical immune interface regulating both the activation and trafficking of alloreactive T cells. In the setting of solid organ transplantation, donor-derived ECs represent sites where alloreactive T cells encounter major and minor tissue-derived alloantigens. During this initial encounter, ECs may formatively modulate effector responses of these T cells through expression of inflammatory mediators. Direct allorecognition is a process whereby recipient T cells recognize alloantigen in the context of donor EC-derived HLA molecules. Direct alloresponses are strongly modulated by human ECs and are galvanized by EC-derived inflammatory mediators. Complement are immune proteins that mark damaged or foreign surfaces for immune cell activation. Following labeling by natural IgM during ischemia reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the complement cascade is terminally activated in the vicinity of donor-derived ECs to locally generate the solid-phase inflammatory mediator, the membrane attack complex (MAC). Via upregulation of leukocyte adhesion molecules, costimulatory molecules, and cytokine trans-presentation, MAC strengthen EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell response. These processes together promote T cell-mediated inflammation during solid organ transplant rejection. In this review we describe molecular pathways downstream of IgM- and IgG-mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue allografts, respectively. We describe work demonstrating that MAC deposition on ECs generates 'signaling endosomes' that sequester and post-translationally enhance the stability of inflammatory signaling molecules to promote EC activation, a process potentiating EC-mediated direct allorecognition. Additionally, with consideration to first-in-human xenotransplantation procedures, we describe clinical therapeutics based on inhibition of the complement pathway. The complement cascade critically mediates EC activation and improved understanding of relevant effector pathways will uncover druggable targets to obviate dysregulated alloimmune T cell infiltration into tissue allografts.
Collapse
Affiliation(s)
- Guiyu Song
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoxun Wang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Mahsa Nouri Barkestani
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Clancy Mullan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Fan
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Li
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Dan Jane-wit
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiology, West Haven VA Medical Center, West Haven, CT, United States
| |
Collapse
|
25
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
26
|
Bai Y, Chen D, Cheng C, Li Z, Chi H, Zhang Y, Zhang X, Tang S, Zhao Q, Ang B, Zhang Y. Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Front Immunol 2022; 13:950536. [PMID: 35967424 PMCID: PMC9365996 DOI: 10.3389/fimmu.2022.950536] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Background/Aims Hepatocellular carcinoma (HCC), accounting for 75-85% of primary liver cancer cases, is the third leading cause of cancer-related death worldwide. The purpose of this research was to examine the tumor immune microenvironment (TIME) in HCC. Methods We investigated the HCC TIME by integrated analysis of single-cell and bulk-tissue sequencing data to reveal the landscape of major immune cell types. Results Regulatory T(Treg) cells were found to be specifically distributed in the TIME of HCC. Several immune checkpoints, including TNFRSF4, TIGIT and CTLA4, were found to be uniquely overexpressed in Treg cells, and the glycolysis/gluconeogenesis pathway was enriched in Treg cells. We also discovered the presence of two NK-cell subsets with different cytotoxic capacities, one in an activated state with antitumor effects and another with an exhausted status. In addition, memory B cells in HCC were found to exist in a unique state, with high proliferation, low differentiation, and low activity, which was induced by overexpression of PRAP1 and activation of the MIF-CD74 axis. Conclusions We revealed the TIME landscape in HCC, highlighting the heterogeneity of major immune cell types and their potential mechanisms in the formation of an immunosuppressive environment. Hence, blocking the formation of the TIME could be a useful therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Chuanliang Cheng
- Tianjin First Central Hospital Clinic Institute, School of Medicine, Nankai University, Tianjin, China
| | - Zhongmin Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Hao Chi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yuliang Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Shaohai Tang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Ang
- Oncology Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
27
|
You J, Han Y, Qiao H, Han Y, Lu X, Lu Y, Wang X, Kai H, Zheng Y. Hsa_circ_0063804 enhances ovarian cancer cells proliferation and resistance to cisplatin by targeting miR-1276/CLU axis. Aging (Albany NY) 2022; 14:4699-4713. [PMID: 35687899 PMCID: PMC9217714 DOI: 10.18632/aging.203474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Purpose: This article researched circ_0063804 effects on ovarian cancer (OC) development and resistance to cisplatin, aiming to provide a new target for OC therapy. Methods: A total of 108 OC patients participated in this study. The circle structure of circ_0063804 was investigated using RNase R. Circ_0063804 expression in OC cells were up-regulated or down-regulated by transfection. Cell proliferation was assessed by cell counting kit-8 assay and colony formation assay. Flow cytometry was used to detect apoptosis. OC cells resistance to cisplatin was explored through MTT assay. Luciferase reporter assay was performed. qRT-PCR and Western blot was applied to research genes expression. Xenograft tumor experiment was conducted using nude mice. Ki67 expression in xenograft tumor was detected by immunohistochemistry. Results: Circ_0063804 expression was up-regulated in OC patients and indicated poor prognosis (P < 0.05). Circ_0063804 had a stable circle structure. Circ_0063804 enhanced proliferation, resistance to cisplatin and reduced apoptosis of OC cells (P < 0.01). miR-1276 was down-regulated in OC patients and sponged by circ_0063804. CLU was directly inhibited by miR-1276 and up-regulated in OC patients. Circ_0063804 exacerbated malignant phenotype and resistance to cisplatin of OC cells in vitro by enhancing CLU expression via sponging miR-1276 (P < 0.01). Circ_0063804 silencing inhibited OC cells growth, resistance to cisplatin and Ki67 expression in vivo (P < 0.01). Conclusion: Circ_0063804 promoted OC cells proliferation and resistance to cisplatin by enhancing CLU expression via sponging miR-1276.
Collapse
Affiliation(s)
- Jun You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haifeng Qiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyan Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yiling Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haili Kai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
Zhang Q, Yue Y, Zheng R. Clusterin as a serum biomarker candidate contributes to the lung fibroblasts activation in chronic obstructive pulmonary disease. Chin Med J (Engl) 2022; 135:1076-1086. [PMID: 35191419 PMCID: PMC9276345 DOI: 10.1097/cm9.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Fibrosis in the peripheral airways contributes to airflow limitation in patients with chronic obstructive pulmonary disease (COPD). However, the key proteins involved in its development are still poorly understood. Thus, we aimed to identify the differentially expressed proteins (DEPs) between smoker patients with and without COPD and elucidate the molecular mechanisms involved by investigating the effects of the identified biomarker candidate on lung fibroblasts. METHODS The potential DEPs were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. The messenger RNA and protein levels of clusterin (CLU) in COPD patients and 12% cigarette smoke extract (CSE)-treated human bronchial epithelial cells were determined at the indicated time points. Furthermore, an in vitro COPD model was established via the administration of 8% CSE to normal human lung fibroblasts (NHLFs) at indicated time points. The effects of CSE treatment and CLU silencing on proliferation and activation of lung fibroblasts were analyzed. RESULTS A total of 144 DEPs were identified between COPD patients and normal smokers. The iTRAQ-based proteomics and bioinformatics analyses identified CLU as a serum biomarker candidate. We also discovered that CLU levels were significantly increased ( P < 0.0001) in Global Initiative for Obstructive Lung Disease II, III, and IV patients and correlated ( P < 0.0001) with forced expiratory volume in 1 s ( R = -0.7705), residual volume (RV) ( R = 0.6281), RV/total lung capacity ( R = 0.5454), and computerized tomography emphysema ( R = 0.7878). Similarly, CLU levels were significantly increased in CSE-treated cells at indicated time points ( P < 0.0001). The CSE treatment significantly inhibited the proliferation, promoted the inflammatory response, differentiation of NHLFs, and collagen matrix deposition, and induced the apoptosis of NHLFs; however, these effects were partially reversed by CLU silencing. CONCLUSION Our findings suggest that CLU may play significant roles during airway fibrosis in COPD by regulating lung fibroblast activation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110014, China
| | - Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110014, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110014, China
| |
Collapse
|
29
|
Weng X, Li J, Guan Q, Zhao H, Wang Z, Gleave ME, Nguan CY, Du C. The functions of clusterin in renal mesenchymal stromal cells: Promotion of cell growth and regulation of macrophage activation. Exp Cell Res 2022; 413:113081. [PMID: 35218723 DOI: 10.1016/j.yexcr.2022.113081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
Abstract
Clusterin (CLU) increases resistance to renal ischemia-reperfusion injury and promotes renal tissue repair. However, the mechanisms underlying of the renal protection of CLU remain unknown. Mesenchymal stromal cells (MSCs) may contribute to kidney cell turnover and injury repair. This study investigated the in vitro functions of CLU in kidney mesenchymal stromal cells (KMSCs). KMSCs were grown in plastic culture plates. Cell surface markers, apoptosis and phagocytosis were determined by flow cytometry, and CLU protein by Western blot. There were no differences in the expression of MSC markers (positive: CD133, Sca-1, CD44, CD117 and NG2, and negative: CD34, CD45, CD163, CD41, CD276, CD138, CD79a, CD146 and CD140b) and in the trilineage differentiation to chondrocytes, adipocytes and osteocytes between wild type (WT) and CLU knockout (KO) KMSCs. CLU was expressed intracellularly and secreted by WT KMSCs, and it was up-regulated by hypoxia. CLU did not prevent hypoxia-induced cell apoptosis but promoted cell growth in KMSC cultures. Furthermore, incubation with CLU-containing culture medium from WT KMSCs increased CD206 expression and phagocytic capacity of macrophages. In conclusion, our data for the first time demonstrate the function of CLU in the promotion of KMSCs proliferation, and it may be required for KMSCs-regulated macrophage M2 polarization and phagocytic activity.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Li
- Department of Ophthamology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haimei Zhao
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zihuan Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; First Clinical Medical School, Southern Medical University, Guangzhou, 510000, China
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Yc Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Zhang P, Konja D, Zhang Y, Xu A, Lee IK, Jeon JH, Bashiri G, Mitra A, Wang Y. Clusterin is involved in mediating the metabolic function of adipose SIRT1. iScience 2022; 25:103709. [PMID: 35072003 PMCID: PMC8762396 DOI: 10.1016/j.isci.2021.103709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
SIRT1 is a metabolic sensor regulating energy homeostasis. The present study revealed that mice with selective overexpression of human SIRT1 in adipose tissue (Adipo-SIRT1) were protected from high-fat diet (HFD)-induced metabolic abnormalities. Adipose SIRT1 was enriched at mitochondria-ER contacts (MERCs) to trigger mitohormesis and unfolded protein response (UPRmt), in turn preventing ER stress. As a downstream target of UPRmt, clusterin was significantly upregulated and acted together with SIRT1 to regulate the protein and lipid compositions at MERCs of adipose tissue. In mice lacking clusterin, HFD-induced metabolic abnormalities were significantly enhanced and could not be prevented by overexpression of SIRT1 in adipose tissue. Treatment with ER stress inhibitors restored adipose SIRT1-mediated beneficial effects on systemic energy metabolism. In summary, adipose SIRT1 facilitated the dynamic interactions and communications between mitochondria and ER, via MERCs, in turn triggering a mild mitochondrial stress to instigate the defense responses against dietary obesity-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Pengcheng Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yiwei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Alok Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
31
|
Pecankova K, Pecherkova P, Gasova Z, Sovova Z, Riedel T, Jäger E, Cermak J, Majek P. Proteome changes of plasma-derived extracellular vesicles in patients with myelodysplastic syndrome. PLoS One 2022; 17:e0262484. [PMID: 35007303 PMCID: PMC8746746 DOI: 10.1371/journal.pone.0262484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. Objective Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. Methods Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. Results Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. Conclusions This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.
Collapse
Affiliation(s)
- Klara Pecankova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| | - Pavla Pecherkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gasova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zofie Sovova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Tomas Riedel
- Institute of Macromolecular Chemistry CAS, Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavel Majek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
32
|
Minamijima Y, Tozaki T, Kuroda T, Urayama S, Nomura M, Yamamoto K. A comprehensive and comparative proteomic analysis of horse serum proteins in colitis. Equine Vet J 2022; 54:1039-1046. [PMID: 35000251 DOI: 10.1111/evj.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Equine colitis is a diarrhoeal disease caused by inflammation of the large bowel and can potentially be life-threatening due to its rapid progression. Pathogenesis is multifactorial and pathophysiology is highly complicated, therefore, reliable diagnostic biomarkers are needed in the veterinary field. OBJECTIVE Serum is one of the most commonly used diagnostic tools in equine clinical investigation. To discover diagnostic or prognostic protein markers for colitis in horse serum, comprehensive and comparative proteomic analysis was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS). STUDY DESIGN Case-control study. METHODS Serum samples were collected from 36 healthy Thoroughbreds and 12 Thoroughbreds with colitis. Serum from each horse suffering from colitis was collected daily until death or recovery. Collected sera were digested with trypsin. Peptides obtained from serum proteins were measured by Q-Exactive HF Orbitrap mass spectrometer. The identification and quantification of peptides were performed using Proteome Discoverer version 2.2. RESULTS On day 1 of treatment, eight proteins in the colitis group were upregulated (P < .05, more than a twofold change) compared with the healthy group. Among the eight proteins, biliverdin reductase B was significantly upregulated (P < .05) in the non-survivor group (n = 5) compared with the survivor group (n = 7). On the last day of the treatment, haemoglobin subunit alpha, clusterin, glyceraldehyde-3-phosphate dehydrogenase, lipopolysaccharide-binding protein, and biliverdin reductase B showed significant increases (P < .05) in the non-survivor group. MAIN LIMITATIONS The number of the identified proteins is limited due to the existence of abundant proteins. CONCLUSIONS Measuring the changes of these proteins together may enable a potential prognosis or early diagnosis of horses suffering from colitis.
Collapse
Affiliation(s)
- Yohei Minamijima
- Laboratory of Racing Chemistry, Utsunomiya, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | | | - Taisuke Kuroda
- Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Shuntaro Urayama
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Inashiki, Japan
| | - Motoi Nomura
- Equine Hospital, Horseracing School, Japan Racing Association, Shiroi, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
33
|
Lindberg I, Shu Z, Lam H, Helwig M, Yucer N, Laperle A, Svendsen C, Di Monte DA, Maidment NT. The proSAAS Chaperone Provides Neuroprotection and Attenuates Transsynaptic α-Synuclein Spread in Rodent Models of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1463-1478. [PMID: 35527562 PMCID: PMC9731515 DOI: 10.3233/jpd-213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Parkinson's disease involves aberrant aggregation of the synaptic protein alpha-synuclein (aSyn) in the nigrostriatal tract. We have previously shown that proSAAS, a small neuronal chaperone, blocks aSyn-induced dopaminergic cytotoxicity in primary nigral cultures. OBJECTIVE To determine if proSAAS overexpression is neuroprotective in animal models of Parkinson's disease. METHODS proSAAS- or GFP-encoding lentivirus was injected together with human aSyn-expressing AAV unilaterally into the substantia nigra of rats and motor asymmetry assessed using a battery of motor performance tests. Dopamine neuron survival was assessed by nigral stereology and striatal tyrosine hydroxylase (TH) densitometry. To examine transsynaptic spread of aSyn, aSyn AAV was injected into the vagus of mice in the presence of AAVs encoding either GFP or proSAAS; the spread of aSyn-positive neurites into rostral nuclei was quantified following immunohistochemistry. RESULTS Coinjection of proSAAS-encoding lentivirus profoundly reduced the motor asymmetry caused by unilateral nigral AAV-mediated human aSyn overexpression. This was accompanied by significant amelioration of the human aSyn-induced loss of both nigral TH-positive cells and striatal TH-positive terminals, demonstrating clear proSAAS-mediated protection of the nigrostriatal tract. ProSAAS overexpression reduced human aSyn protein levels in nigra and striatum and reduced the loss of TH protein in both regions. Following vagal administration of human aSyn-encoding AAV, the number of human aSyn-positive neurites in the pons and caudal midbrain was considerably reduced in mice coinjected with proSAAS-, but not GFP-encoding AAV, supporting proSAAS-mediated blockade of transsynaptic aSyn transmission. CONCLUSION The proSAAS chaperone may represent a promising target for therapeutic development in Parkinson's disease.
Collapse
Affiliation(s)
- Iris Lindberg
- University of Maryland-Baltimore;,To whom correspondence should be addressed: Iris Lindberg, Ph.D., Department of Anatomy and Neurobiology, University of Maryland Medical School, University of Maryland-Baltimore, Baltimore, MD 21201, Phone: (410) 7064778, and Nigel T. Maidment, Ph.D., Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles CA 90024, Phone: (310) 206-7767,
| | - Zhan Shu
- University of California-Los Angeles
| | - Hoa Lam
- University of California-Los Angeles
| | | | - Nur Yucer
- Cedars-Sinai Medical Center, Los Angeles
| | | | | | | | - Nigel T. Maidment
- University of California-Los Angeles;,To whom correspondence should be addressed: Iris Lindberg, Ph.D., Department of Anatomy and Neurobiology, University of Maryland Medical School, University of Maryland-Baltimore, Baltimore, MD 21201, Phone: (410) 7064778, and Nigel T. Maidment, Ph.D., Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles CA 90024, Phone: (310) 206-7767,
| |
Collapse
|
34
|
Souza MM, Coutinho-Camillo CM, de Paula FM, de Paula F, Bologna SB, Lourenço SV. Relevant proteins for the monitoring of engraftment phases after allogeneic hematopoietic stem cell transplantation. Clinics (Sao Paulo) 2022; 77:100134. [PMID: 36403426 PMCID: PMC9678684 DOI: 10.1016/j.clinsp.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Hematopoietic Stem Cell Transplant (HSCT) has been successfully used as standard therapy for hematological disorders. After conditioning therapy, patients undergoing allogeneic HSCT, present three different phases of engraftment: early pre-engraftment, early post-engraftment, and late engraftment. Severe complications are associated with morbidity, mortality, and malignancies in these phases, which include effects on the oral cavity. OBJECTIVES The changes in the salivary composition after HSCT may contribute to identifying relevant proteins that could map differences among the phases of diseases, driven for personalized diagnostics and therapy. METHODS Unstimulated whole saliva was collected from patients submitted to HSCT. The samples were submitted to trypsin digestion for a Mass spectrometry analysis. MaxQuant processed the Data analysis, and the relevant expressed proteins were subjected to pathway and network analyses. RESULTS Differences were observed in the most identified proteins, specifically in proteins involved with the regulation of body fluid levels and the mucosal immune response. The heatmap showed a list of proteins exclusively expressed during the different phases of HSCT: HBB, KNG1, HSPA, FGB, APOA1, PFN1, PRTN3, TMSB4X, YWHAZ, CAP1, ACTN1, CLU and ALDOA. Bioinformatics analysis implicated pathways involved in protein processing in the endoplasmic reticulum, complement and coagulation cascades, apoptosis signaling, and cholesterol metabolism. CONCLUSION The compositional changes in saliva reflected the three phases of HSCT and demonstrated the usefulness of proteomics and computational approaches as a revolutionary field in diagnostic methods.
Collapse
Affiliation(s)
- Milena Monteiro Souza
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil; International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Fabiana Martins de Paula
- Medical Research Laboratory, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda de Paula
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sheyla Batista Bologna
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Vanessa Lourenço
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil; Medical Research Laboratory, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Kalvaityte U, Matta C, Bernotiene E, Pushparaj PN, Kiapour AM, Mobasheri A. Exploring the translational potential of clusterin as a biomarker of early osteoarthritis. J Orthop Translat 2022; 32:77-84. [PMID: 34976733 PMCID: PMC8671091 DOI: 10.1016/j.jot.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clusterin (CLU; also known as apolipoprotein J) is an ATP-independent holdase chaperone that prevents proteotoxicity as a consequence of protein aggregation. It is a ∼60 kDa disulfide-linked heterodimeric protein involved in the clearance of cellular debris and the regulation of apoptosis. CLU has been proposed to protect cells from cytolysis by complement components and has been implicated in Alzheimer's disease due to its ability to bind amyloid-β peptides and prevent aggregate formation in the brain. Recent studies suggest that CLU performs moonlighting functions. CLU exists in two major forms: an intracellular form and a secreted extracellular form. The intracellular form of CLU may suppress stress-induced apoptosis by forming complexes with misfolded proteins and facilitates their degradation. The secreted form of CLU functions as an extracellular chaperone that prevents protein aggregation. METHODS In this review, we discuss the published literature on the biology of CLU in cartilage, chondrocytes, and other synovial joint tissues. We also review clinical studies that have examined the potential for using this protein as a biomarker in synovial and systemic fluids of patients with rheumatoid arthritis (RA) or osteoarthritis (OA). RESULTS Since CLU functions as an extracellular chaperone, we propose that it may be involved in cytoprotective functions in osteoarticular tissues. The secreted form of CLU can be measured in synovial and systemic fluids and may have translational potential as a biomarker of early repair responses in OA. CONCLUSION There is significant potential for investigating synovial and systemic CLU as biomarkers of OA. Future translational and clinical orthopaedic studies should carefully consider the diverse roles of this protein and its involvement in other comorbidities. Therefore, future biomarker studies should not correlate circulating CLU levels exclusively to the process of OA pathogenesis and progression. Special attention should be paid to CLU levels in synovial fluid. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE There is significant potential for investigating synovial and systemic CLU as a predictive biomarker of osteoarthritis (OA) progression and response to novel treatments and interventions. Given that CLU plays diverse roles in other comorbidities such as rheumatoid arthritis (RA) and obesity, future translational and clinical orthopaedic biomarker studies should not directly correlate circulating CLU levels to the process of OA pathogenesis and progression. However, special attention should be paid to CLU levels in synovial fluid. The cytoprotective properties of CLU may support the implementation of regenerative strategies and new approaches for developing targeted therapeutics for OA.
Collapse
Key Words
- ACL, anterior cruciate ligament
- ACR, American College of Rheumatology
- ApoJ, apolipoprotein J
- Apoptosis
- CLU, clusterin
- CMC-I, carpometacarpal joint
- COMP, cartilage oligomeric matrix protein
- Clusterin (CLU)
- ECM, extracellular matrix
- ELISA, enzyme-linked immunosorbent assay
- ESCEO, The European Society for Clinical and Economic Aspects of Osteoporosis: Osteoarthritis and Musculoskeletal Diseases
- Inflammation
- OA, osteoarthritis
- OARSI, Osteoarthritis Research Society International
- Osteoarthritis (OA)
- PsA, psoriatic arthritis
- RA, rheumatoid arthritis
- Rheumatoid arthritis (RA)
- SF, synovial fluid
- TNF-α, tumor necrosis factor-α
- Translational biomarker
- hsCRP, high sensitivity C-reactive protein
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- sCLU, secreted clusterin
Collapse
Affiliation(s)
- Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT, 08406, Vilnius, Lithuania
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, H, 4032, Hungary
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT, 08406, Vilnius, Lithuania
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ata M. Kiapour
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 021115, USA
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT, 08406, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI, 90014, Oulu, Finland
- Department of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508, GA, Utrecht, the Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
36
|
Beheshti Namdar A, Kabiri M, Mosanan Mozaffari H, Aminifar E, Mehrad-Majd H. Circulating Clusterin Levels and Cancer Risk: A Systematic Review and Meta-Analysis. Cancer Control 2022; 29:10732748211038437. [PMID: 35465749 PMCID: PMC9047800 DOI: 10.1177/10732748211038437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction The previous reports on clusterin (CLU) levels in various types of cancer
have been controversial and heterogeneous. The present meta-analysis has
aimed to evaluate the association between soluble CLU levels and the risk of
different human cancers based on observational studies. Methods A systematic literature review was conducted to determine the relevant
eligible studies in English language from health-related electronic
databases up to January 2021. Random effects models were used to calculate
the summary standard mean difference (SMD) with 95% confidence intervals
(CIs) to identify the correlation between CLU levels and cancer risk. The
meta-regression, sensitivity, Galbraith, and subgroup analyses were
performed to explore the source of between-study heterogeneity. Furthermore,
the funnel plot and Egger’s linear regression tests were carried out to
evaluate the risk of publication bias. Results According to 16 eligible articles, 3331 patients and 839 healthy controls
were included in our meta-analysis. Overall, the CLU levels were
significantly higher in various cancer cases compared to the healthy groups
(SMD = 1.50, 95% CI = 0.47–2.53). Moreover, subgroup analysis based on types
of cancer showed a significant correlation between CLU levels and the risk
of digestive system cancers (SMD = 1.54, 95% CI = 0.91–2.18,
P <0.001), especially in HCC (SMD = 1.89, 95% CI =
0.76–3.03, P = 0.001), and CRC (SMD = 1.63, 95% CI =
0.0–3.23, P = 0.048). Conclusion The present meta-analysis indicates a significant association of CLU levels
with the risk of digestive system cancers such as hepatocellular carcinoma
and colorectal cancer. Therefore, CLU can be monitored as a novel molecular
biomarker for the prognosis and diagnosis of various types of cancers
particularly in the digestive system.
Collapse
Affiliation(s)
- Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Kabiri
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit, Ghaem Hospital, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homan Mosanan Mozaffari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Aminifar
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Identifying new molecular players in extracellular proteostasis. Biochem Soc Trans 2021; 50:321-334. [PMID: 34940856 DOI: 10.1042/bst20210369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023]
Abstract
Proteostasis refers to a delicately tuned balance between the processes of protein synthesis, folding, localization, and the degradation of proteins found inside and outside cells. Our understanding of extracellular proteostasis is rather limited and largely restricted to knowledge of 11 currently established extracellular chaperones (ECs). This review will briefly outline what is known of the established ECs, before moving on to discuss experimental strategies used to identify new members of this growing family, and an examination of a group of putative new ECs identified using one of these approaches. An observation that emerges from an analysis of the expanding number of ECs is that all of these proteins are multifunctional. Strikingly, the armory of activities each possess uniquely suit them as a group to act together at sites of tissue damage, infection, and inflammation to restore homeostasis. Lastly, we highlight outstanding questions to guide future research in this field.
Collapse
|
38
|
Yuan J, Duan F, Zhai W, Song C, Wang L, Xia W, Hua X, Yuan Z, Bi X, Huang J. An Aging-Related Gene Signature-Based Model for Risk Stratification and Prognosis Prediction in Breast Cancer. Int J Womens Health 2021; 13:1053-1064. [PMID: 34785957 PMCID: PMC8578840 DOI: 10.2147/ijwh.s334756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aging, an inevitable process characterized by functional decline over time, is a significant risk factor for various tumors. However, little is known about aging-related genes (ARGs) in breast cancer (BC). We aimed to explore the potential prognostic role of ARGs and to develop an ARG-based prognosis signature for BC. METHODS RNA-sequencing expression profiles and corresponding clinicopathological data of female patients with BC were obtained from public databases in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). An ARG-based risk signature was constructed in the TCGA cohort based on results of least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, and its prognostic value was further validated in the GSE20685 cohort. RESULTS A six ARG-based signature, including CLU, DGAT1, MXI1, NFKBI, PIK3CA and PLAU, was developed in the TCGA cohort and significantly stratified patients into low- and high-risk groups. Patients in the former group showed significantly better prognosis than those in the latter. Multivariate Cox regression analysis demonstrated that the ARG risk score was an independent prognostic factor for BC. A predictive nomogram integrating the ARG risk score and three identified factors (age, N- and M-classification) was established in the TCGA cohort and validated in the GSE20685 cohort. Calibration plots showed good consistency between predicted survival probabilities and actual observations. CONCLUSION A novel ARG-based risk signature was developed for patients with BC, which can be used for individual prognosis prediction and promoting personalized treatment.
Collapse
Affiliation(s)
- Jing Yuan
- Departments of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Fangfang Duan
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Wenyu Zhai
- Departments of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Chenge Song
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Li Wang
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Wen Xia
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Xin Hua
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Zhongyu Yuan
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Xiwen Bi
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| | - Jiajia Huang
- Departments of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
39
|
Zeng S, Pan Y, Liu F, Yin J, Jiang M, Long Y, Zhao X, Lash GE, Yang H. Role of clusterin in the regulation of trophoblast development and preeclampsia. Biochem Biophys Res Commun 2021; 583:128-134. [PMID: 34735874 DOI: 10.1016/j.bbrc.2021.10.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE) threatens the safety of mothers and fetuses, and its pathogenesis is still unclear. Our previous study has found the relationship between PE and serum Clusterin (CLU). This study aimed to investigate the role of CLU on PE. Firstly, levels of CLU in serum and placental tissue from PE patients and healthy pregnancies were compared. Then, RNA sequencing, cell counting kit-8, matrigel invasion, cell apoptosis, and angiogenesis assay were performed to evaluate the role of CLU on primary isolation trophoblast cells. We found the expression of CLU was increased before the clinical syndrome occurred, whereas its level was positively related to the severity of PE. CLU significantly inhibited the expression of matrix metalloproteinase-9 and Vimentin and enhanced E-cadherin to inhibit epithelial-mesenchymal transition of trophoblast cells, further reducing its migration and invasion. Our results suggested that CLU may play a role in regulating trophoblast invasion and migration during placental development, which may be one of the risk factors for PE.
Collapse
Affiliation(s)
- Shanshui Zeng
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yue Pan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiaye Yin
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Min Jiang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xueqin Zhao
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Hongling Yang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
40
|
Liang N, Li S, Liang Y, Ma Y, Tang S, Ye S, Xiao F. Clusterin inhibits Cr(VI)-induced apoptosis via enhancing mitochondrial biogenesis through AKT-associated STAT3 activation in L02 hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112447. [PMID: 34175824 DOI: 10.1016/j.ecoenv.2021.112447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Improper treatment of a large amount of industrial waste makes hexavalent chromium [Cr(VI)] seriously pollute the atmosphere, soil and water, and enter the food chain, seriously affecting the health of workers and local residents. We previously proved that Clusterin (CLU) can inhibit the apoptosis of L02 hepatocytes induced by Cr(VI) through mitochondrial pathway, but the associated molecular mechanism has not been further studied. Mitochondrial biogenesis is an important step in mitochondrial damage repair, but the mechanism of mitochondrial biogenesis in Cr(VI)-induced liver toxicity is still unclear. We demonstrated in the present study that Cr(VI) triggered mitochondrial biogenesis dysfunction-associated apoptosis, and CLU delayed Cr(VI)-induced apoptosis by enhancing mitochondrial biogenesis. Signal transducer and activator of transcription 3 (STAT3) was down-regulated in Cr(VI)-induced apoptosis, and CLU may regulate STAT3 via protein kinase B (PKB/AKT) in Cr(VI)-exposed hepatocytes. We used the STAT3 inhibitor C188-9 and the AKT inhibitor Uprosertib to eliminate the anti-apoptotic effect of CLU, and found that CLU inhibited Cr(VI)-induced apoptosis by up-regulating AKT/STAT3 signal. Based on the fact that both AKT and STAT3 are closely related to mitochondrial biogenesis and mitochondrial pathway-associated apoptosis, this study is the first time to link CLU, STAT3, AKT and mitochondrial biogenesis function after Cr(VI) exposure, to further enrich the experimental basis of Cr(VI)-induced hepatotoxicity, clarify the molecular mechanism of CLU helping cells to escape apoptosis, and also suggest that new ways can be sought to prevent and treat Cr(VI)-induced hepatotoxicity by regulating mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Ningjuan Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yuehui Liang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Sixuan Tang
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
41
|
Uzuner D, Akkoç Y, Peker N, Pir P, Gözüaçık D, Çakır T. Transcriptional landscape of cellular networks reveal interactions driving the dormancy mechanisms in cancer. Sci Rep 2021; 11:15806. [PMID: 34349126 PMCID: PMC8339123 DOI: 10.1038/s41598-021-94005-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Primary cancer cells exert unique capacity to disseminate and nestle in distant organs. Once seeded in secondary sites, cancer cells may enter a dormant state, becoming resistant to current treatment approaches, and they remain silent until they reactivate and cause overt metastases. To illuminate the complex mechanisms of cancer dormancy, 10 transcriptomic datasets from the literature enabling 21 dormancy–cancer comparisons were mapped on protein–protein interaction networks and gene-regulatory networks to extract subnetworks that are enriched in significantly deregulated genes. The genes appearing in the subnetworks and significantly upregulated in dormancy with respect to proliferative state were scored and filtered across all comparisons, leading to a dormancy–interaction network for the first time in the literature, which includes 139 genes and 1974 interactions. The dormancy interaction network will contribute to the elucidation of cellular mechanisms orchestrating cancer dormancy, paving the way for improvements in the diagnosis and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Dilara Uzuner
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), Zeytinburnu, 34010, Istanbul, Turkey
| | - Nesibe Peker
- Koç University Research Center for Translational Medicine (KUTTAM), Zeytinburnu, 34010, Istanbul, Turkey
| | - Pınar Pir
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Devrim Gözüaçık
- Koç University Research Center for Translational Medicine (KUTTAM), Zeytinburnu, 34010, Istanbul, Turkey.,Koç University School of Medicine, Sarıyer , 34450, Istanbul, Turkey.,SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey.
| |
Collapse
|
42
|
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22158102. [PMID: 34360868 PMCID: PMC8346982 DOI: 10.3390/ijms22158102] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells’ survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.
Collapse
Affiliation(s)
- Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
- Correspondence:
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| |
Collapse
|
43
|
Responses and coping methods of different testicular cell types to heat stress: overview and perspectives. Biosci Rep 2021; 41:228844. [PMID: 34060622 PMCID: PMC8209165 DOI: 10.1042/bsr20210443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023] Open
Abstract
To facilitate temperature adjustments, the testicles are located outside the body cavity. In most mammals, the temperature of the testes is lower than the body temperature to ensure the normal progression of spermatogenesis. Rising temperatures affect spermatogenesis and eventually lead to a decline in male fertility or even infertility. However, the testes are composed of different cell types, including spermatogonial stem cells (SSCs), spermatocytes, spermatozoa, Leydig cells, and Sertoli cells, which have different cellular responses to heat stress. Recent studies have shown that using different drugs can relieve heat stress-induced reproductive damage by regulating different signaling pathways. Here, we review the mechanisms by which heat stress damages different cells in testes and possible treatments.
Collapse
|
44
|
Mu L, Yang F, Guo D, Li P, Zhang M. Overexpression of secretory clusterin (sCLU) induces chemotherapy resistance in human gastric cancer cells by targeting miR-195-5p. Bioengineered 2021; 11:472-483. [PMID: 32250192 PMCID: PMC7161562 DOI: 10.1080/21655979.2020.1747825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent focus has turned to secretory clusterin (sCLU) as a key contributor to chemoresistance of anticancer agents, but the role of sCLU on chemotherapy drug response to gastric cancer cells is not fully understood. Previous research found that sCLU was overexpressed in the induced multidrug-resistant MGC-803/5-FU cell line, suggesting that sCLU upregulation was closely related to chemoresistance to anticancer agents. In the present study, we aimed to clarify the role and mechanisms of sCLU in regulating the chemoresistance of gastric cancer cells. Cell apoptosis and cell viability were evaluated by annexin V/propidium iodide staining and CCK8. Expression of sCLU and miR-195-5P was detected using quantitative RT-PCR assays. The expression of sCLU in gastric cancer tissues was detected by RT-PCR assays. Upregulating or downregulating sCLU or miR-195-5P in gastric cancer cells was used to evaluate the mechanisms of chemoresistance. We found that sCLU was significantly elevated in the MGC-803/5-FU and SGC-7901 cells, and the downregulating sCLU sensitized MGC-803/5-FU and SGC-7901 cells to cisplatin and Docetaxel by upregulation of miR-195-5P. Upregulating sCLU in MGC-803 and HGC-27 cells was resistant to cisplatin and Docetaxel by downregulating miR-195-5p. Targeting miR-195-5P reduced the sensitivity of MGC-803 cells to 5-FU, and miR-195-5P overexpression enhanced the sensitivity of MGC-803/5-FU cells to 5-FU. The overexpression of sCLU in gastric cancer tissues was associated with chemoresistance. Our findings suggest that overexpression of sCLU induced chemoresistance in gastric cancer cells by downregulating miR-195-5p, thus providing a potential target for the development of agents that targeting sCLU for gastric cancer therapy.
Collapse
Affiliation(s)
- Lihua Mu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengxia Yang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong Guo
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Maoshen Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
45
|
Deletion of Clusterin Protects Cochlear Hair Cells against Hair Cell Aging and Ototoxicity. Neural Plast 2021; 2021:9979157. [PMID: 34194490 PMCID: PMC8181089 DOI: 10.1155/2021/9979157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023] Open
Abstract
Hearing loss is a debilitating disease that affects 10% of adults worldwide. Most sensorineural hearing loss is caused by the loss of mechanosensitive hair cells in the cochlea, often due to aging, noise, and ototoxic drugs. The identification of genes that can be targeted to slow aging and reduce the vulnerability of hair cells to insults is critical for the prevention of sensorineural hearing loss. Our previous cell-specific transcriptome analysis of adult cochlear hair cells and supporting cells showed that Clu, encoding a secreted chaperone that is involved in several basic biological events, such as cell death, tumor progression, and neurodegenerative disorders, is expressed in hair cells and supporting cells. We generated Clu-null mice (C57BL/6) to investigate its role in the organ of Corti, the sensory epithelium responsible for hearing in the mammalian cochlea. We showed that the deletion of Clu did not affect the development of hair cells and supporting cells; hair cells and supporting cells appeared normal at 1 month of age. Auditory function tests showed that Clu-null mice had hearing thresholds comparable to those of wild-type littermates before 3 months of age. Interestingly, Clu-null mice displayed less hair cell and hearing loss compared to their wildtype littermates after 3 months. Furthermore, the deletion of Clu is protected against aminoglycoside-induced hair cell loss in both in vivo and in vitro models. Our findings suggested that the inhibition of Clu expression could represent a potential therapeutic strategy for the alleviation of age-related and ototoxic drug-induced hearing loss.
Collapse
|
46
|
de Campos TDP, da Cruz Rodrigues KC, Pereira RM, Anaruma CP, Dos Santos Canciglieri R, de Melo DG, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. The protective roles of clusterin in ocular diseases caused by obesity and diabetes mellitus type 2. Mol Biol Rep 2021; 48:4637-4645. [PMID: 34036481 DOI: 10.1007/s11033-021-06419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
Obesity is a chronic, non-transmissible and multifactorial disease commonly associated with systemic inflammation and damage to health. This disorder has been pointed out as leading to the development of a diversity of eye diseases and, consequently, damage to visual acuity. More specifically, cardiometabolic risk is associated with lacrimal gland dysfunctions, since it changes the inflammatory profile favoring the development and worsening of dry eye disease. In more severe and extreme cases, obesity, inflammation, and diabetes mellitus type 2 can trigger the total loss of vision. In this scenario, besides its numerous metabolic functions, clusterin, an apolipoprotein, has been described as protective to the ocular surface through the seal mechanism. Thus, the current review aimed to explain the role of clusterin in dry eye disease that can be triggered by obesity and diabetes.
Collapse
Affiliation(s)
- Thaís Dantis Pereira de Campos
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Rodrigo Martins Pereira
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Chadi Pellegrini Anaruma
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Raphael Dos Santos Canciglieri
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Diego Gomes de Melo
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | | | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LABGeN), School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil.
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
- Postgraduate Program in Motricity Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
47
|
Zeng S, Han M, Jiang M, Liu F, Hu Y, Long Y, Zhu C, Zeng F, Gan Q, Ye W, Fu W, Yang H. Serum complement proteomics reveal biomarkers for hypertension disorder of pregnancy and the potential role of Clusterin. Reprod Biol Endocrinol 2021; 19:56. [PMID: 33874952 PMCID: PMC8054419 DOI: 10.1186/s12958-021-00742-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Hypertension disorder of pregnancy (HDP) is one of the leading causes of maternal and foetal illness. The aim of the current study was to identify and verify novel serum markers for HDP. METHODS A label-free LC-MS/MS method was used to establish the serum proteomic profiles of 12 pre-HDP (before clinical diagnosis of HDP) pregnancies and verify prioritized candidates in the verification set of 48 pre-HDP pregnancies. These biomarkers were revalidated by ELISA in an independent cohort of 88 pre-HDP pregnancies. Subsequently, the candidate biomarkers were histologically analysed by immunohistochemistry, and function was evaluated in TEV-1 cells. RESULTS We identified 33 proteins with significantly increased abundance and 14 with decreased abundance (peptide FDR ≤ 1%, P < 0.05). Complement was one of the top enriched components in the pre-HDP group compared with the control group. Three complement factors (CLU, CFHR5, and CRP) were significantly increased in the three sets, of which CLU was a critical factor for the development of HDP (OR = 1.22, P < 0.001). When these three factors and body weight were combined, the AUC was 0.74, with a sensitivity of 0.67 and specificity of 0.68 for HDP prediction compared with normal pregnancy. In addition, inflammation-induced CLU could inhibit the invasion of TEV-1 cells. CONCLUSIONS Complement proteins may play an essential role in the occurrence of HDP by acting on trophoblast cells. CLU may be a high-risk factor for HDP, and the models combining candidates show reasonable screening efficiency of HDP in the first half of pregnancy.
Collapse
Affiliation(s)
- Shanshui Zeng
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Mengru Han
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Min Jiang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Yanwei Hu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Chunyan Zhu
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fangling Zeng
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qiangsheng Gan
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Weitao Ye
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenjin Fu
- Clinical Laboratory, Houjie Hospital of Guangdong Medical University, HeTian Road, Dongguan, 523945, Guangdong, China.
| | - Hongling Yang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
48
|
Dou J, Cánovas A, Brito LF, Yu Y, Schenkel FS, Wang Y. Comprehensive RNA-Seq Profiling Reveals Temporal and Tissue-Specific Changes in Gene Expression in Sprague-Dawley Rats as Response to Heat Stress Challenges. Front Genet 2021; 12:651979. [PMID: 33897767 PMCID: PMC8063118 DOI: 10.3389/fgene.2021.651979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding heat stress physiology and identifying reliable biomarkers are paramount for developing effective management and mitigation strategies. However, little is known about the molecular mechanisms underlying thermal tolerance in animals. In an experimental model of Sprague–Dawley rats subjected to temperatures of 22 ± 1°C (control group; CT) and 42°C for 30 min (H30), 60 min (H60), and 120 min (H120), RNA-sequencing (RNA-Seq) assays were performed for blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120). A total of 53, 1,310, and 1,501 differentially expressed genes (DEGs) were significantly identified in the blood (P < 0.05 and |fold change (FC)| >2), liver (P < 0.01, false discovery rate (FDR)–adjusted P = 0.05 and |FC| >2) and adrenal glands (P < 0.01, FDR-adjusted P = 0.05 and |FC| >2), respectively. Of these, four DEGs, namely Junb, P4ha1, Chordc1, and RT1-Bb, were shared among the three tissues in CT vs. H120 comparison. Functional enrichment analyses of the DEGs identified in the blood (CT vs. H120) revealed 12 biological processes (BPs) and 25 metabolic pathways significantly enriched (FDR = 0.05). In the liver, 133 BPs and three metabolic pathways were significantly detected by comparing CT vs. H30, H60, and H120. Furthermore, 237 BPs were significantly (FDR = 0.05) enriched in the adrenal glands, and no shared metabolic pathways were detected among the different heat-stressed groups of rats. Five and four expression patterns (P < 0.05) were uncovered by 73 and 91 shared DEGs in the liver and adrenal glands, respectively, over the different comparisons. Among these, 69 and 73 genes, respectively, were proposed as candidates for regulating heat stress response in rats. Finally, together with genome-wide association study (GWAS) results in cattle and phenome-wide association studies (PheWAS) analysis in humans, five genes (Slco1b2, Clu, Arntl, Fads1, and Npas2) were considered as being associated with heat stress response across mammal species. The datasets and findings of this study will contribute to a better understanding of heat stress response in mammals and to the development of effective approaches to mitigate heat stress response in livestock through breeding.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Inoue Y, Ando Y, Misumi Y, Ueda M. Current Management and Therapeutic Strategies for Cerebral Amyloid Angiopathy. Int J Mol Sci 2021; 22:ijms22083869. [PMID: 33918041 PMCID: PMC8068954 DOI: 10.3390/ijms22083869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by accumulation of amyloid β (Aβ) in walls of leptomeningeal vessels and cortical capillaries in the brain. The loss of integrity of these vessels caused by cerebrovascular Aβ deposits results in fragile vessels and lobar intracerebral hemorrhages. CAA also manifests with progressive cognitive impairment or transient focal neurological symptoms. Although development of therapeutics for CAA is urgently needed, the pathogenesis of CAA remains to be fully elucidated. In this review, we summarize the epidemiology, pathology, clinical and radiological features, and perspectives for future research directions in CAA therapeutics. Recent advances in mass spectrometric methodology combined with vascular isolation techniques have aided understanding of the cerebrovascular proteome. In this paper, we describe several potential key CAA-associated molecules that have been identified by proteomic analyses (apolipoprotein E, clusterin, SRPX1 (sushi repeat-containing protein X-linked 1), TIMP3 (tissue inhibitor of metalloproteinases 3), and HTRA1 (HtrA serine peptidase 1)), and their pivotal roles in Aβ cytotoxicity, Aβ fibril formation, and vessel wall remodeling. Understanding the interactions between cerebrovascular Aβ deposits and molecules that accumulate with Aβ may lead to discovery of effective CAA therapeutics and to the identification of biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
- Correspondence: ; Tel.: +81-96-373-5893; Fax: +81-96-373-5895
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo 859-3298, Japan;
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
| |
Collapse
|
50
|
Timofeeva AV, Fedorov IS, Pirogova MM, Vasilchenko ON, Chagovets VV, Ezhova LS, Zabelina TM, Shmakov RG, Sukhikh GT. Clusterin and Its Potential Regulatory microRNAs as a Part of Secretome for the Diagnosis of Abnormally Invasive Placenta: Accreta, Increta, and Percreta Cases. Life (Basel) 2021; 11:life11040270. [PMID: 33805203 PMCID: PMC8064394 DOI: 10.3390/life11040270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) and ultrasound methods used for the diagnosis of an abnormally invasive placenta (AIP) have a wide range of sensitivity (Se, 33–93%) and specificity (Sp, 71–100%) levels, which results in a high risk of unfavorable maternal and perinatal outcomes. The relevance of optimizing the diagnosis of AIP is beyond doubt. Given the epigenetic nature of trophoblast invasion, we aimed to quantitate microRNAs and proteins of their target genes that are potentially associated with AIP in blood plasma samples from 64 pregnant women at gestation weeks 30–34 by reverse transcription coupled with polymerase chain reaction (RT-PCR) and Western blotting, respectively. Statistically significant increases in the expression levels of hsa-miR-17-5p, hsa-miR-21-5p, hsa-miR-25-3p, hsa-miR-92a-3p, and hsa-miR-320a-3p were revealed in the groups of women with AIP (accreta, increta, percreta) relative to the group of women with scars on the uterus or to the group with placenta previa. Opposite changes in the expression level of “gene–target protein/miRNA” pairs were found for the α-subunit of the clusterin secretory form and any of the hsa-miR-21-5p, hsa-miR-25-3p, hsa-miR-92a-3p, hsa-miR-320a-3p, and hsa-miR-17-5p in all cases of AIP. The developed logistic regression models to diagnose AIP cases of various severity gave Se values of 88.8–100% and Sp values of 91.6–100% using a combination of hsa-miR-21-5p, hsa-miR-92a-3p, hsa-miR-320a-3p, or clusterin levels.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
- Correspondence: or ; Tel.: +7-4955314444
| | - Ivan S. Fedorov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Mariya M. Pirogova
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Oksana N. Vasilchenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Vitaliy V. Chagovets
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Larisa S. Ezhova
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Tatiana M. Zabelina
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Roman G. Shmakov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
| | - Gennadiy T. Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (M.M.P.); (O.N.V.); (V.V.C.); (L.S.E.); (T.M.Z.); (R.G.S.); (G.T.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|