1
|
Huang TL, Su H, Chen JC, Kuo SY, Hou CY, Shih SY, Chu KA, Ponnusamy VK, Lee CW, Shiea J. Rapid detection of ingested acetaminophen on face mask by ambient ionization tandem mass spectrometry. Anal Chim Acta 2024; 1329:343225. [PMID: 39396290 DOI: 10.1016/j.aca.2024.343225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND A regular face mask is comprised of three layers for resisting moisture, filtration, and absorbing oral fluid, respectively. Since the polymers with different polarities are used to make the layers, a face mask can be used as a sampling tool to retain polar or non-polar chemical and biochemical substances in the exhaled breath. In this study, thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS), an ambient ionization mass spectrometric technique, was used to detect trace acetaminophen that were exhaled and retained on the surface of different layers in a face mask. RESULTS With probe sampling combined with TD-ESI/MS/MS, the acetaminophen ion signal can be detected at the mouth/nostril region of the face mask after taking the acetaminophen tablet. The experimental results were similar to previous studies for the detection of acetaminophen in blood over time using LC/MS/MS. In addition, the intensities of acetaminophen on different layers of the face mask could reveal the differing distributions of exhaled acetaminophen on each layer. To explore the distribution of acetaminophen on the face mask surface, multiple probes were used to collect samples from different locations of the face mask for analysis. The molecular mapping of acetaminophen on the face mask was rendered by scaling the analyte ion signal intensity based on a temperature color gradient. The cartography showed a higher acetaminophen ion signal distribution on the mouth and nostril regions than in other areas of the face mask. SIGNIFICANCE Owing to the advantages of a simple, sensitive, and non-invasive sampling approach, drug monitoring could be potentially performed to provide useful information for anti-drug of precision medicine in the future.
Collapse
Affiliation(s)
- Tiao-Lai Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan
| | - Hung Su
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung, 824004, Taiwan
| | - Jia-Cheng Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Szu-Yu Kuo
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Chia-Yi Hou
- Department of Clinical Pathology, Chi-Mei Medical Center, Liouying, Tainan, 736402, Taiwan
| | - Shu-Yu Shih
- Department of Emergency Medicine, Chi-Mei Medical Center, Liouying, Tainan, 736402, Taiwan
| | - Kuo-An Chu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Wei Lee
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.
| |
Collapse
|
2
|
Yu Y, Sun B, Ye X, Wang Y, Zhao M, Song J, Geng X, Marx U, Li B, Zhou X. Hepatotoxic assessment in a microphysiological system: Simulation of the drug absorption and toxic process after an overdosed acetaminophen on intestinal-liver-on-chip. Food Chem Toxicol 2024; 193:115016. [PMID: 39304085 DOI: 10.1016/j.fct.2024.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
To compensate the limitation of animal models, new models were proposed for drug safety evaluation to refine and reduce existing models. To mimic drug absorption and metabolism and predict toxicokinetic and toxic effects in an in vitro intestinal-liver microphysiological system (MPS), we constructed an intestinal-liver-on-chip and detected the acute liver injury process after an overdose of acetaminophen (APAP). Caco-2 and HT29-MTX-E12 cell lines were utilized to establish intestinal equivalents, along with HepG2, HUVEC-T1, and THP-1 induced by PMA and human hepatic stellate cell to establish liver equivalents. The APAP concentration was determined using high-performance liquid chromatography, and the toxicokinetic parameters were fitted using the non-compartmental analysis method by Phoenix. Changes in liver injury biomarkers aspartate aminotransferase and alanine aminotransferase, and liver function marker albumin indicated that the short-term culture of the two organs-on-chip model was stable for 4 days. Reactive oxygen species signaling was enhanced after APAP administration, along with decreased mitochondrial membrane potential, activated caspase-3, and enhanced p53 signaling, indicating a toxic response induced by APAP overdose. In the gut-liver MPS model, we fitted the toxicokinetic parameters and simulated the hepatotoxicity procedure following an APAP overdose, which will facilitate the organ-on-chips application in drug toxicity assays.
Collapse
Affiliation(s)
- Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Xiao Ye
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Manman Zhao
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Jie Song
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Xingchao Geng
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China.
| | - Xiaobing Zhou
- Institute for Safety Evaluation, National Institutes for Food and Drug Control, Beijing Key Laboratory for Safety Evaluation of Drugs, Beijing, 100176, China.
| |
Collapse
|
3
|
Jagtap YA, Kumar P, Dubey AR, Kinger S, Choudhary A, Karmakar S, Lal G, Kumar A, Kumar A, Prasad A, Mishra A. Acetaminophen induces mitochondrial apoptosis through proteasome dysfunctions. Life Sci 2024; 349:122732. [PMID: 38768775 DOI: 10.1016/j.lfs.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acetaminophen is a known antipyretic and non-opioid analgesic for mild pain and fever. Numerous studies uncover their hidden chemotherapeutics applications, including chronic cancer pain management. Acetaminophen also represents an anti-proliferative effect in some cancer cells. Few studies also suggest that the use of Acetaminophen can trigger apoptosis and impede cellular growth. However, Acetaminophen's molecular potential and precise mechanism against improper cellular proliferation and use as an effective anti-proliferative agent still need to be better understood. Here, our current findings show that Acetaminophen induces proteasomal dysfunctions, resulting in aberrant protein accumulation and mitochondrial abnormalities, and consequently induces cell apoptosis. We observed that the Acetaminophen treatment leads to improper aggregation of ubiquitylated expanded polyglutamine proteins, which may be due to the dysfunctions of proteasome activities. Our in-silico analysis suggests the interaction of Acetaminophen and proteasome. Furthermore, we demonstrated the accumulation of proteasome substrates and the depletion of proteasome activities after treating Acetaminophen in cells. Acetaminophen induces proteasome dysfunctions and mitochondrial abnormalities, leading to pro-apoptotic morphological changes and apoptosis successively. These results suggest that Acetaminophen can induce cell death and may retain a promising anti-proliferative effect. These observations can open new possible molecular strategies in the near future for developing and designing specific and effective proteasome inhibitors, which can be helpful in conjugation with other anti-tumor drugs for their better efficiency.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
4
|
Clewell HJ, Fuchsman PC. Interspecies scaling of toxicity reference values in human health versus ecological risk assessments: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:749-764. [PMID: 37724480 DOI: 10.1002/ieam.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Risk assessments that focus on anthropogenic chemicals in environmental media-whether considering human health or ecological effects-often rely on toxicity data from experimentally studied species to estimate safe exposures for species that lack similar data. Current default extrapolation approaches used in both human health risk assessments and ecological risk assessments (ERAs) account for differences in body weight between the test organisms and the species of interest, but the two default approaches differ in important ways. Human health risk assessments currently employ a default based on body weight raised to the three-quarters power. Ecological risk assessments for wildlife (i.e., mammals and birds) are typically based directly on body weight, as measured in the test organism and receptor species. This review describes differences in the experimental data underlying these default practices and discusses the many factors that affect interspecies variability in chemical exposures. The interplay of these different factors can lead to substantial departures from default expectations. Alternative methodologies for conducting more accurate interspecies extrapolations in ERAs for wildlife are discussed, including tissue-based toxicity reference values, physiologically based toxicokinetic and/or toxicodynamic modeling, chemical read-across, and a system of categorical defaults based on route of exposure and toxic mode of action. Integr Environ Assess Manag 2024;20:749-764. © 2023 SETAC.
Collapse
|
5
|
Aleksic M, Rajagopal R, de-Ávila R, Spriggs S, Gilmour N. The skin sensitization adverse outcome pathway: exploring the role of mechanistic understanding for higher tier risk assessment. Crit Rev Toxicol 2024; 54:69-91. [PMID: 38385441 DOI: 10.1080/10408444.2024.2308816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
For over a decade, the skin sensitization Adverse Outcome Pathway (AOP) has served as a useful framework for development of novel in chemico and in vitro assays for use in skin sensitization hazard and risk assessment. Since its establishment, the AOP framework further fueled the existing efforts in new assay development and stimulated a plethora of activities with particular focus on validation, reproducibility and interpretation of individual assays and combination of assay outputs for use in hazard/risk assessment. In parallel, research efforts have also accelerated in pace, providing new molecular and dynamic insight into key events leading to sensitization. In light of novel hypotheses emerging from over a decade of focused research effort, mechanistic evidence relating to the key events in the skin sensitization AOP may complement the tools currently used in risk assessment. We reviewed the recent advances unraveling the complexity of molecular events in sensitization and signpost the most promising avenues for further exploration and development of useful assays.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Ramya Rajagopal
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Renato de-Ávila
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Sandrine Spriggs
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| | - Nicola Gilmour
- Safety and Environmental Assurance Centre, Unilever, Sharnbrook, UK
| |
Collapse
|
6
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
7
|
Rousar T, Handl J, Capek J, Nyvltova P, Rousarova E, Kubat M, Smid L, Vanova J, Malinak D, Musilek K, Cesla P. Cysteine conjugates of acetaminophen and p-aminophenol are potent inducers of cellular impairment in human proximal tubular kidney HK-2 cells. Arch Toxicol 2023; 97:2943-2954. [PMID: 37639014 PMCID: PMC10504157 DOI: 10.1007/s00204-023-03569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.
Collapse
Affiliation(s)
- Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic.
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Miroslav Kubat
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Lenka Smid
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Jana Vanova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Petr Cesla
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| |
Collapse
|
8
|
Chou AH, Lee HC, Liao CC, Yu HP, Liu FC. ERK/NF-kB/COX-2 Signaling Pathway Plays a Key Role in Curcumin Protection against Acetaminophen-Induced Liver Injury. Life (Basel) 2023; 13:2150. [PMID: 38004290 PMCID: PMC10672507 DOI: 10.3390/life13112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Recent experimental studies have highlighted the beneficial effects of curcumin on liver injury induced by acetaminophen (APAP). However, the specific molecular mechanisms underlying curcumin's hepatoprotective effects against APAP-induced liver injury remain to be fully elucidated. This study aimed to investigate the therapeutic effect of curcumin on APAP-induced liver injury using a mouse model. In the experiment, mice were subjected to an intraperitoneal hepatotoxic dose of APAP (300 mg/kg) to induce hepatotoxicity. After 30 min of APAP administration, the mice were treated with different concentrations of curcumin (0, 10, 25, or 50 mg/kg). After 16 h, mice with hepatotoxicity showed elevated levels of serum alanine transaminase (ALT), aspartate transaminase (AST), hepatic myeloperoxidase (MPO), TNF-α, and IL-6, and decreased levels of glutathione (GSH). Moreover, there was an increased infiltration of neutrophils and macrophages following intraperitoneal injection of APAP. However, curcumin-treated mice displayed a pronounced reduction in serum ALT, AST, hepatic MPO, TNF-α, and IL-6 levels, coupled with a notable elevation in GSH levels compared to the APAP-treated hepatotoxic mice. Moreover, curcumin treatment led to reduced infiltration of neutrophils and macrophages. Additionally, curcumin inhibited the phosphorylation of ERK and NF-kB proteins while reducing the expression of cyclooxygenase-2 (COX-2). These findings highlight the hepatoprotective potential of curcumin against APAP-induced liver injury through the suppression of the ERK, NF-kB, and COX-2 signaling pathways.
Collapse
Affiliation(s)
- An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (A.-H.C.); (H.-C.L.); (C.-C.L.); (H.-P.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Nouioura G, Kettani T, Tourabi M, Elousrouti LT, Al kamaly O, Alshawwa SZ, Shahat AA, Alhalmi A, Lyoussi B, Derwich E. The Protective Potential of Petroselinum crispum (Mill.) Fuss. on Paracetamol-Induced Hepatio-Renal Toxicity and Antiproteinuric Effect: A Biochemical, Hematological, and Histopathological Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1814. [PMID: 37893532 PMCID: PMC10608762 DOI: 10.3390/medicina59101814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions-particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.
Collapse
Affiliation(s)
- Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.T.); (B.L.); (E.D.)
| | - Tayeb Kettani
- Saâda Laboratory of Medical Analysis, Fez 30000, Morocco;
| | - Meryem Tourabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.T.); (B.L.); (E.D.)
| | | | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (S.Z.A.)
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (S.Z.A.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.T.); (B.L.); (E.D.)
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El-Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.T.); (B.L.); (E.D.)
- Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
10
|
Hwang DB, Seo Y, Lee E, Won DH, Kim C, Kang M, Jeon Y, Kim HS, Park JW, Yun JW. Diagnostic potential of serum miR-532-3p as a circulating biomarker for experimental intrinsic drug-induced liver injury by acetaminophen and cisplatin in rats. Food Chem Toxicol 2023:113890. [PMID: 37308052 DOI: 10.1016/j.fct.2023.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Evaluating tissue injury largely depends on serum biochemical analysis despite insufficient tissue specificity and low sensitivity. Therefore, attention has been paid to the potential of microRNAs (miRNAs) to overcome the limitations of the current diagnostic tools, as tissue-enriched miRNAs are detected in the blood upon tissue injury. First, using a cisplatin-injected rats, we screened a specific pattern of altered hepatic miRNAs and their target mRNAs. Subsequently, we identified novel liver-specific circulating miRNAs for drug-induced liver injury by comparing miRNA expression changes in organs and serum. RNA sequencing revealed that 32 hepatic miRNAs were differentially expressed (DE) in the cisplatin-treated group. Furthermore, among the 1217 targets predicted using miRDB on these DE-miRNAs, 153 hepatic genes involved in different liver function-related pathways and processes were found to be dysregulated by cisplatin. Next, comparative analyses of the liver, kidneys, and serum DE-miRNAs were conducted to select circulating miRNA biomarker candidates reflecting drug-induced liver injury. Finally, among the four liver-specific circulating miRNAs selected based on their expression patterns in tissue and serum, miR-532-3p was increased in the serum after cisplatin or acetaminophen administration. Our findings suggest that miR-532-3p is potential as a serum biomarker for identifying drug-induced liver injury, leading to the accurate diagnosis.
Collapse
Affiliation(s)
- Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Eunji Lee
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - MinHwa Kang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Ahn YY, Kim J, Kim K. Catalytic behavior of nitrous acid for acetaminophen transformation during the freezing process. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131652. [PMID: 37224712 DOI: 10.1016/j.jhazmat.2023.131652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
This study demonstrates the transformation of acetaminophen by reactive nitrous acid in a frozen solution and its abnormal stoichiometry. The chemical reaction between acetaminophen and nitrous acid (AAP/NO2- system) was negligible in the aqueous solution; however, the reaction rapidly progressed if the solution started to freeze. The ultrahigh performance liquid chromatography-electrospray ionization tandem mass spectrometry measurements showed that polymerized acetaminophen and nitrated acetaminophen were formed in the proceeding reaction. Electron paramagnetic resonance spectroscopy measurements showed that nitrous acid oxidized acetaminophen via a one-electron transfer reaction producing acetaminophen-derived radical species, which is the cause of acetaminophen polymerization. We demonstrated that a relatively smaller dose of nitrite than acetaminophen caused significant acetaminophen degradation in the frozen AAP/NO2- system and revealed that the dissolved oxygen content notably affected acetaminophen degradation. We showed that the reaction occurs in a natural Arctic lake matrix (nitrite and acetaminophen spiked). Considering that the freezing phenomenon is common in the natural environment, our research provides a possible scenario for the freezing chemistry of nitrite and pharmaceuticals in environmental chemistry.
Collapse
Affiliation(s)
- Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science and Technology (UST), Incheon 21990, Republic of Korea.
| |
Collapse
|
12
|
Qi S, Lin B, Wu S, Hao H, Zheng H, Liu X, Zhang X, Yue L, Chen C. The hepatoprotective effect of Sophora viciifolia fruit extract against acetaminophen-induced liver injury in mice. J Appl Biomed 2023. [PMID: 37212153 DOI: 10.32725/jab.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
This research demonstrated the protective effect and possible mechanism of the Sophora viciifolia extract (SVE) against acetaminophen-induced liver injury in mice. The levels of ALT and AST in the serum and antioxidant enzyme activity in the liver were measured. We used immunohistochemistry to detect CYP2E1, Nrf2, and Keap1 protein expression in the liver. The mRNA expression in the liver of TNF-α, NF-κB, and IL-6, Nrf2 and its downstream genes HO-1 and GCLC were measured by qRT-PCR. We found that SVE could decrease the ALT and AST levels, promote the activities of SOD, CAT, GSH-Px, and GSH, and ameliorate pathological liver lesions. SVE could down-regulate the mRNA expression of inflammatory factors and up-regulate Nrf2, HO-1 and GCLC. SVE reduced the protein expression of the CYP2E1 and increased the Nrf2 and Keap1. SVE has been shown to have a protective effect against APAP-induced liver injury, possibly through activation of the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Shanshan Qi
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | - Beibei Lin
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | - Sanqiao Wu
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | - Hao Hao
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | - Hongxin Zheng
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | - Xiang Liu
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | - Xiaoying Zhang
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| | | | - Chen Chen
- Shaanxi University of Technology, College of Biological Science and Engineering, Hanzhong, Shaanxi Province, 723000, China
| |
Collapse
|
13
|
Ayenew KD, Wasihun Y. Hepatoprotective effect of methanol extract of Agave americana leaves on paracetamol induced hepatotoxicity in Wistar albino rats. BMC Complement Med Ther 2023; 23:99. [PMID: 37005601 PMCID: PMC10067186 DOI: 10.1186/s12906-023-03931-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Ethiopians locally treat liver illnesses with A. Americana. Available literature demonstrates this. However, there are few in-vivo investigations that provide supporting data. The aim of this study was to evaluate the hepatoprotective effects of methanolic extract of Agave americana leaves on rat liver damage caused by paracetamol. METHODS The acute oral toxicity test was conducted in accordance with OECD-425 recommendations. The approach outlined by Eesha et al. (Asian Pac J Trop Biomed 4:466-469, 2011) was used to test the hepatoprotective activity. Wistar male rats weighing between 180 and 200 g were used, and six groups with seven animals each were formed. Group I received treatment with gum acacia (2%) at a dose of 2 ml/kg p.o. daily for 7 days. Rats in group II were treated with 2% gum acacia orally daily for seven days along with a single dose of paracetamol (2 mg/kg) p.o. on 7th day. Silymarin (50 mg/kg) was given orally to Group III for 7 days. Plant extract doses of 100 mg/kg, 200 mg/kg, and 400 mg/kg were administered orally to Groups IV -VI for seven days, respectively. All rats in groups III-VI were treated with paracetamol (2 mg/kg) 30 min following extract administration. Blood samples were obtained from the cardiac puncture after paracetamol had been used for 24 h to induce toxicity. Serum biomarkers (AST, ALT, ALP, and total bilirubin) were estimated. A histopathological investigation was also done. RESULTS No toxicity symptoms or animal fatalities were recorded during the acute toxicity study. The values of AST, ALT, ALP, and total bilirubin were all substantially raised by paracetamol. Significant hepatoprotective effects were obtained by pretreatment with A. americana extract. Histopathological examination of the liver tissues of paracetamol control group represented the presence of marked foci of mononuclear infiltration in the hepatic parenchyma tissue, sinusoid, and around central vein, as well as disorganization of hepatic plates, necrosis, and fatty changes of hepatocytes. Pretreatment with A. americana extract reversed these alterations. Results of the methanolic extract of A. americana were comparable to Silymarin. CONCLUSION The current investigation supports the hepatoprotective properties of Agave americana methanolic extract.
Collapse
Affiliation(s)
- Kassahun Dires Ayenew
- Department of Pharmacy, Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia.
| | - Yared Wasihun
- Department of Internal Medicine, Ras Desta Damtew Memorial Hospital, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
AlMasoud N, Alomar TS, Xu Y, Lima C, Goodacre R. Rapid detection and quantification of paracetamol and its major metabolites using surface enhanced Raman scattering. Analyst 2023; 148:1805-1814. [PMID: 36938623 DOI: 10.1039/d3an00249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Paracetamol (also known as acetaminophen) is an over-the-counter (OTC) drug that is commonly used as an analgesic for mild pain, headache, cold and flu. While in the short term it is a safe and effective medicine, it is sometimes used for attempted suicides particularly in young adults. In such circumstances it is important for rapid diagnosis of overdoses as antidotes can be given to limit liver damage from one of its primary metabolites N-acetyl-p-benzoquinone imine (NAPQI). Unfortunately, the demand for rapid and sensitive analytical techniques to accurately monitor the abuse of OTC drugs has significantly risen. Ideally these techniques would be highly specific, sensitive, reproducible, portable and rapid. In addition, an ideal point of care (PoC) test would enable quantitative detection of drugs and their metabolites present in body fluids. While Raman spectroscopy meets these specifications, there is a need for enhancement of the signal because the Raman effect is weak. In this study, we developed a surface-enhanced Raman scattering (SERS) methodology in conjunction with chemometrics to quantify the amount of paracetamol and its main primary metabolites (viz., paracetamol sulfate, p-acetamidophenyl β-D-glucuronide and NAPQI) in water and artificial urine. The enhancement of the SERS signals was achieved by mixing the drug or xenometabolites with a gold nanoparticle followed by aggregation with 0.045 M NaCl. We found that the SERS data could be collected directly, due to immediate analyte association with the Au surface and colloid aggregation. Accurate and precise measurements were generated, with a limit of detection (LoD) of paracetamol in water and artificial urine at 7.18 × 10-6 M and 2.11 × 10-5 M, respectively, which is well below the limit needed for overdose and indeed normal levels of paracetamol in serum after taking 1 g orally. The predictive values obtained from the analysis of paracetamol in water and artificial urine were also excellent, with the coefficient of determination (Q2) being 0.995 and 0.996, respectively (1 suggests a perfect model). It was noteworthy that when artificial urine was spiked with paracetamol, no aggregating agent was required due to the salt rich medium, which led to spontaneous aggregation. Moreover, for the xenometabolites of paracetamol excellent LoDs were obtained and these ranged from 2.6 × 10-4 M to 5 × 10-5 M with paracetamol sulfate and NAPQI having Q2 values of 0.934 and 0.892 and for p-acetamidophenyl β-D-glucuronide this was slightly lower at 0.6437.
Collapse
Affiliation(s)
- Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
15
|
Lim HK, Chen J, Lam W, Gong Y, Leclercq L, Silva J, Salter R, Berwaerts J, Gelotte CK, Vakil AM, Eichenbaum GE, Kuffner EK, Flores CM. Metabolism and disposition of JNJ-10450232 (NTM-006) in rats, dogs, nonhuman primates and humans. Regul Toxicol Pharmacol 2023:105379. [PMID: 36931586 DOI: 10.1016/j.yrtph.2023.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
JNJ-10450232 (NTM-006), a novel non-opioid, non-nonsteroidal anti-inflammatory drug with structural similarities to acetaminophen, demonstrated anti-pyretic and/or analgesic activities in preclinical models and humans and reduced potential to cause hepatotoxicity in preclinical species. Metabolism and disposition of JNJ-10450232 (NTM-006) following oral administration to rats, dogs, monkeys and humans are reported. Urinary excretion was the major route of elimination based on recovery of 88.6% (rats) and 73.7% (dogs) of oral dose. The compound was extensively metabolized based on low recovery of unchanged drug in excreta from rats (11.3%) and dogs (18.4%). Clearance is driven by O-glucuronidation, amide hydrolysis, O-sulfation and methyl oxidation pathways. The combination of metabolic pathways driving clearance in human is covered in at least one preclinical species despite a few species-dependent pathways. O-Glucuronidation was the major primary metabolic pathway of JNJ-10450232 (NTM-006) in dogs, monkeys and humans, although amide hydrolysis was another major primary metabolic pathway in rats and dogs. A minor bioactivation pathway to quinone-imine is observed only in monkeys and humans. Unchanged drug was the major circulatory component in all species investigated. Except for metabolic pathways unique to the 5-methyl-1H-pyrazole-3-carboxamide moiety, metabolism and disposition of JNJ-10450232 (NTM-006) are similar to acetaminophen across species.
Collapse
Affiliation(s)
- Heng-Keang Lim
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Jie Chen
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Wing Lam
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Yong Gong
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Laurent Leclercq
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Jose Silva
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | - Rhys Salter
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, PA, USA
| | | | | | - Amy M Vakil
- Johnson & Johnson Consumer Inc, Fort Washington, PA, USA
| | | | | | | |
Collapse
|
16
|
Fadil HAE, Behairy A, Ebraheim LLM, Abd-Elhakim YM, Fathy HH. The palliative effect of mulberry leaf and olive leaf ethanolic extracts on hepatic CYP2E1 and caspase-3 immunoexpression and oxidative damage induced by paracetamol in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41682-41699. [PMID: 36637651 PMCID: PMC10067661 DOI: 10.1007/s11356-023-25152-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the possible protective role of mulberry leaf (MLE) and olive leaf (OLE) ethanolic extracts against paracetamol (PTL)-induced liver injury in rats compared to silymarin as a reference drug. Initially, MLE and OLE were characterized using gas chromatography-mass spectrometry (GC/MS). Then, forty male Sprague Dawley rats were divided into five groups: the negative control group orally received distilled water for 35 days, the PTL-treated group (PTG) received 500 mg PTL/kg b. wt. for 7 days, the MLE-treated group (MLTG) received 400 mg MLE/kg b. wt., the OLE-treated group (OLTG) received 400 mg OLE/kg b. wt., and the silymarin-treated group (STG) received 100 mg silymarin/kg b. wt. The last three groups received the treatment for 28 days, then PTL for 7 days. The GC-MS characterization revealed that MLE comprised 19 constituents dominated by ethyl linoleate, phytol, hexadecanoic acid, ethyl ester, and squalene. Moreover, OLE comprised 30 components, and the major components were 11-eicosenoic acid, oleic acid, phytol, and à-tetralone. MLE and OLE significantly corrected the PTL-induced normocytic normochromic anemia, leukocytosis, hypercholesterolemia, and hypoproteinemia. Moreover, the MLE and OLE pretreatment considerably suppressed the PTL-induced increment in serum levels of hepatic enzymes, including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Furthermore, the PTL-induced depletion in antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, and the rise in hepatic malondialdehyde content were significantly reversed by the MLE and OLE pretreatment. Besides, MLE and OLE pretreatment significantly protected the hepatic tissue against PTL-induced DNA damage, pathological perturbations, and increased caspase 3 and CYP2E1 immunoexpression. Of note, OLTG showed better enhancement of most indices rather than MLTG. Conclusively, these findings imply that OLE, with its antioxidant and antiapoptotic capabilities, is superior to MLE in protecting against PTL-induced liver injury.
Collapse
Affiliation(s)
- Hosny Abd El Fadil
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba Hussein Fathy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Ballók R, Kis Varga Á, Erdélyi P, Fischer J. Phosphonate Derivatives of Paracetamol and Valproic Acid. ChemMedChem 2023; 18:e202200526. [PMID: 36367256 DOI: 10.1002/cmdc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Paracetamol and valproic acid are standalone drugs with leading position in the world drug market. The phosphonate analogues of these drugs were synthesized and were tested in vivo. N-(4-hydroxyphenylcarbamoyl)phosphonic acid was four times more potent than paracetamol in preventing acetic acid-induced writhing. Phosphonate derivative of valproic acid, (2-propylpentanoyl)phosphonic acid, had similar in vivo activity to valproic acid in the pentylenetetrazole-induced kindling mouse model.
Collapse
Affiliation(s)
- Renáta Ballók
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Ágnes Kis Varga
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - Péter Erdélyi
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| | - János Fischer
- Gedeon Richter Plc., 19-21 Gyömrői út, Budapest 1103, Hungary
| |
Collapse
|
18
|
Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury. Antioxidants (Basel) 2023; 12:antiox12010158. [PMID: 36671020 PMCID: PMC9854665 DOI: 10.3390/antiox12010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.
Collapse
|
19
|
Wei M, Gao Y, Cheng D, Zhang H, Zhang W, Shen Y, Huang Q, An X, Wang B, Yu Z, Wang N, Chen H, Xu Y, Gui D. Notoginsenoside Fc ameliorates renal tubular injury and mitochondrial damage in acetaminophen-induced acute kidney injury partly by regulating SIRT3/SOD2 pathway. Front Med (Lausanne) 2023; 9:1055252. [PMID: 36714147 PMCID: PMC9875593 DOI: 10.3389/fmed.2022.1055252] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Mitochondria dysfunction is one of the primary causes of tubular injury in acute kidney injury (AKI). Notoginsenoside Fc (Fc), a new saponin isolated from Panax notoginseng, exhibited numerous pharmacological actions. However, the beneficial effects of Fc on renal tubular impairment and mitochondrial dysfunction in AKI have not been fully studied. Methods In this study, we established acetaminophen (APAP)-induced AKI model in mice to examine the therapeutic impacts of Fc on AKI. Results Our results showed that Fc could decrease the levels of the serum creatinine (Scr), blood urea nitrogen (BUN) and Cystatin C in mice with AKI. Fc also ameliorated renal histopathology, renal tubular cells apoptosis and restored expression of apoptosis-related proteins such as Bax, Bcl-2 and caspase3 (C-caspase3). Additionally, Fc increased the protein expression of SIRT3 and SOD2 in kidneys from mice with AKI. In vitro studies further showed Fc reduced the apoptosis of HK-2 cells exposure to APAP, attenuated the loss of mitochondrial membrane potential and decreased the formation of mitochondrial superoxide. Fc also partly restored the protein expression of Bax, Bcl-2, C-Caspase3, SIRT3, and SOD2 in HK-2 cells exposure to APAP. Conclusion In summary, Fc might reduce renal tubular injury and mitochondrial dysfunction in AKI partly through the regulation of SIRT3/SOD2 pathway.
Collapse
Affiliation(s)
- Miaomiao Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China,Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuancheng Gao
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongsheng Cheng
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiying Zhang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Nephrology, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qunwei Huang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoning An
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Hongbo Chen
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China,Youhua Xu
| | - Dingkun Gui
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Central Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Dingkun Gui
| |
Collapse
|
20
|
Zhou J, De Jonghe S, Codd EE, Weiner S, Gallacher D, Stahle P, Kelley MF, Kuffner EK, Flores CM, Eichenbaum GE. Preclinical safety assessment of JNJ-10450232 (NTM-006), a structural analog of acetaminophen, that does not cause hepatotoxicity at supratherapeutic doses. Regul Toxicol Pharmacol 2023:105334. [PMID: 36608923 DOI: 10.1016/j.yrtph.2023.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
JNJ-10450232 (NTM-006) is a new molecular entity that is structurally related to acetaminophen. A comprehensive non-clinical safety program was conducted to support first-in-human and clinical efficacy studies based on preclinical data suggesting that the compound has comparable or enhanced antinociceptive and antipyretic efficacy without causing hepatotoxicity at supratherapeutic doses. No hepatic toxicity was noted in a mouse model sensitive to acetaminophen hepatotoxicity or in rats, dogs, and non-human primates in 28-day repeat dose toxicity studies at and above doses/exposures at which acetaminophen is known to cause hepatotoxicity. In the 28-day toxicity studies, all treatment-related findings were monitorable and reversible. Methemoglobinemia, which was observed in dogs and to a lesser extent in rats, is also observed with acetaminophen. This finding is considered not relevant to humans due to species differences in metabolism. Thyroid hypertrophy and hyperplasia were also observed in dogs and were shown to be a consequence of a species-specific UGT induction also demonstrated with increased thyroid hormone metabolism. Indirect bilirubin elevation was observed in rats as a result of UGT1A1 Inhibition. JNJ-10450232 (NTM-006) had no toxicologically relevant findings in safety pharmacology or genotoxicity studies. Together, these data supported progressing into safety and efficacy studies in humans.
Collapse
Affiliation(s)
- Junguo Zhou
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Sandra De Jonghe
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ellen E Codd
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Sandy Weiner
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - David Gallacher
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Paul Stahle
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Edwin K Kuffner
- Johnson & Johnson Consumer Companies, Fort Washington, PA, USA.
| | | | - Gary E Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Ugan RA, Cadirci E, Un H, Cinar I, Gurbuz MA. Fisetin Attenuates Paracetamol-Induced Hepatotoxicity by Regulating CYP2E1 Enzyme. AN ACAD BRAS CIENC 2023; 95:e20201408. [PMID: 37018834 DOI: 10.1590/0001-3765202320201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/14/2020] [Indexed: 04/07/2023] Open
Abstract
Paracetamol is one of the drugs that cause hepatic damage. Fisetin has wide pharmacological effects such as anticancer, antiinflammatory and antioxidant. We aimed to evaluate the possible protective effect of fisetin on paracetamol-induced hepatotoxicity. Fisetin was administered at 25 and 50 mg/kg doses. Paracetamol was administered orally at a dose of 2 g/kg for induce hepatotoxicity 1 h after the fisetin and NAC treatments. The rats were sacrificed 24h after the Paracetamol administration. Tumor necrosis factor-alpha (TNF-α), NFκB and CYP2E1 mRNA levels and Superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels of livers were determined. Serum ALT, AST and ALP levels were measured. Histopathological examinations were also performed. Fisetin administration significantly decreased the ALT, AST and ALP levels in a dose dependent manner. In addition, SOD activity and GSH levels increased, and the MDA level decreased with the treatment of fisetin. The TNF-α, NFκB and CYP2E1 gene expressions were significantly lower in both doses of the fisetin groups compared with the PARA group. Histopathological examinations showed that fisetin has hepatoprotective effects. This study showed that fisetin has the liver protective effects by increasing GSH, decreasing inflammatory mediators and CYP2E1.
Collapse
Affiliation(s)
- Rustem A Ugan
- Ataturk University, Faculty of Pharmacy, Department of Pharmacology, 25240, Erzurum, Turkey
- Ataturk University, Clinical Research, Development and Design Application and Research Center, 25240, Erzurum, Turkey
| | - Elif Cadirci
- Ataturk University, Faculty of Medicine, Department of Pharmacology, 25240, Erzurum, Turkey
- Ataturk University, Clinical Research, Development and Design Application and Research Center, 25240, Erzurum, Turkey
| | - Harun Un
- Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Biochemistry, 04100, Agri, Turkey
| | - Irfan Cinar
- Kafkas University, Faculty of Medicine, Department of Pharmacology, Kars, 36200, Turkey
| | - Muhammet A Gurbuz
- Ataturk University, Faculty of Medicine, Department of Histology and Embryology, 25240, Erzurum, Turkey
| |
Collapse
|
22
|
Çoban FK, İnce S, Demirel HH, İslam İ, Aytuğ H. Acetaminophen-Induced Nephrotoxicity: Suppression of Apoptosis and Endoplasmic Reticulum Stress Using Boric Acid. Biol Trace Elem Res 2023; 201:242-249. [PMID: 35020164 DOI: 10.1007/s12011-022-03114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 01/11/2023]
Abstract
Acetaminophen (APAP) is one of the popular and safe pain medications worldwide. However, due its wide availability, it is frequently implicated in intentional or unintentional overdoses where it can cause severe liver injury and even acute liver failure. Boron is a bioactive trace element, found naturally as boric acid (BA) and borate. In this study, the effects of boric acid on the acute renal toxicity induced by APAP in rats were researched in comparison with N-acetyl cysteine (NAC). In the study, 7 groups were formed and 2 g/kg dose of paracetamol per rat was prepared by suspending in 1% Carboxy Methyl Cellulose (CMC) solution of phosphate buffer saline (PBS). Boric acid dissolved in saline was administered to experimental animals by gavage at doses of 50, 100, and 200 mg/kg. In this study, ER stress and apoptosis formed by paracetamol-induced nephrotoxicity were investigated. This purpose determined iNOS, PERK, ATF6, NFkB p53, caspases 3, 12, bcl-2, and bcl-xL gene mRNA expression kidney tissue. Also, the levels of kidney injury molecule-1 (KIM-1), Cysteine (Cys), and IL-18 levels, which are mentioned today as kidney damage markers were compared with BUN and creatine levels. The effect of boron on kidney damage was determined by histopathologic. Data were statistically analyzed by using SPSS-20 ANOVA and stated as means and standard deviation. According to the data obtained in our study, we believe that boric acid has a protective effect on the negative effects of paracetamol on the kidney. We believe that our study will provide useful data to the literature on the possibility of a supplement to be used as an active compound in paracetamol for the prophylaxis of boric acid and it can also be converted into a useful product.
Collapse
Affiliation(s)
- Funda Karabağ Çoban
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Uşak University, 64200, Usak, Turkey.
| | - Sinan İnce
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03030, Afyonkarahisar, Turkey
| | - Hasan Hüseyin Demirel
- Department of Pathology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03030, Afyonkarahisar, Turkey
| | - İzzet İslam
- Department of Molecular Biology and Genetics, The Graduate School of Natural and Applied Sciences, Uşak University, 64200, Usak, Turkey
| | - Hande Aytuğ
- Department of Molecular Biology and Genetics, The Graduate School of Natural and Applied Sciences, Uşak University, 64200, Usak, Turkey
| |
Collapse
|
23
|
Ahmed MJ, Perveen S, Hussain SG, Khan AA, Ejaz SMW, Rizvi SMA. Design of a facile, green and efficient graphene oxide-based electrochemical sensor for analysis of acetaminophen drug. CHEMICAL PAPERS 2023; 77:2275-2294. [PMID: 36589858 PMCID: PMC9792318 DOI: 10.1007/s11696-022-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
In this study an efficient and environment friendly electrochemical sensor has been designed for the analysis of acetaminophen (APAP) drug. Electrochemical impedance spectroscopy, differential pulse voltammetry and cyclic voltammetric techniques were used to demonstrate the fabricated erGO/GCE sensor performance. Voltammetric assessment of acetaminophen drug was done using bare GC electrode, drop-casted GO/GC electrode and erGO/GCE electrochemical sensor. Proposed sensor was precisely validated for APAP detection by differential pulse voltammetric technique. Subsequently LOD, LOQ, sensitivity and linearity were determined and found to be 7.23 nM, 21.909 nM, 20.14 μA nM-1 cm-2 and 0.0219-2.30 μM, respectively. The diffusion coefficient of APAP was determined by chronoamperometry, and it was found to be 2.24 × 10-5 cm2.s-1. The synthetic and analytical steps were assessed as per the Green Chemistry's 12 Principles giving a 66 score (acceptable) and 93 score (excellent) for the said steps, respectively. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02628-9.
Collapse
Affiliation(s)
- Muzamil Jalil Ahmed
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Shazia Perveen
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Syed Ghazanfar Hussain
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Arsalan Ahmed Khan
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Syed Muhammad Wahaj Ejaz
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| | - Syed Muhammad Ali Rizvi
- Department of Chemistry, NED University of Engineering & Technology, University Road, Karachi, Sindh 75270 Pakistan
| |
Collapse
|
24
|
Hepatorenal Protective Effects of Hydroalcoholic Extract of Solidago canadensis L. against Paracetamol-Induced Toxicity in Mice. J Toxicol 2022; 2022:9091605. [PMID: 36573135 PMCID: PMC9789909 DOI: 10.1155/2022/9091605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Paracetamol (AKA acetaminophen) is a widely used drug and is used for mild to moderate pains, such as mild osteoarthritis, toothache, headache, and pain caused by minimally invasive surgeries. Despite being a harmless drug in lower doses, acetaminophen can be toxic to the liver and kidneys if overdosed and even results in death. In this study, the therapeutic effects of Solidago canadensis L. extract (SCE) were investigated. 48 adult male Swiss albino mice (20-30 grams) were randomly divided into six groups of 8. The control group was gavaged with normal saline every 12 hours for 6 days. The second group received paracetamol at a 500 mg/kg intraperitoneally (i.p) dose on the sixth day. The third, fourth, and fifth groups were gavaged doses of 125, 250, and 500 mg/kg of SCE every 12 hours for six days, respectively, and on the sixth day, we received paracetamol at a dose of 500 mg/kg i.p. The sixth group only received SCE every 12 hours at a dose of 1000 mg/kg via gavaging for six days. On the seventh day (24 hours after paracetamol injection), blood samples were collected to measure the serum level of creatinine, uric acid, blood urea nitrogen (BUN), total protein, albumin, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and total and direct bilirubin, and liver and kidney tissues were also sampled for histopathological examination. It was observed that paracetamol caused a considerable increase in the ALT, AST, ALP, uric Acid, and BUN levels (P < 0.01), while those in SCE-treated groups were significantly lower. In addition, various lesions in the paracetamol group were observed, while in the SCE-receiving groups, receiving prophylactic SCE inhibited the high-intense lesions such as the infiltration of inflammatory cells, hyperemia, and vacuolar degeneration, which decreased significantly in the control group in comparison with that of the paracetamol group (P < 0.05). In conclusion, SCE can have substantial protective effects against paracetamol's hepatorenal toxicity.
Collapse
|
25
|
Corona A, Cattaneo D, Latronico N. Antibiotic Therapy in the Critically Ill with Acute Renal Failure and Renal Replacement Therapy: A Narrative Review. Antibiotics (Basel) 2022; 11:1769. [PMID: 36551426 PMCID: PMC9774462 DOI: 10.3390/antibiotics11121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The outcome for critically ill patients is burdened by a double mortality rate and a longer hospital stay in the case of sepsis or septic shock. The adequate use of antibiotics may impact on the outcome since they may affect the pharmacokinetics (Pk) and pharmacodynamics (Pd) of antibiotics in such patients. Acute renal failure (ARF) occurs in about 50% of septic patients, and the consequent need for continuous renal replacement therapy (CRRT) makes the renal elimination rate of most antibiotics highly variable. Antibiotics doses should be reduced in patients experiencing ARF, in accordance with the glomerular filtration rate (GFR), whereas posology should be increased in the case of CRRT. Since different settings of CRRT may be used, identifying a standard dosage of antibiotics is very difficult, because there is a risk of both oversimplification and failing the therapeutic efficacy. Indeed, it has been seen that, in over 25% of cases, the antibiotic therapy does not reach the necessary concentration target mainly due to lack of the proper minimal inhibitory concentration (MIC) achievement. The aim of this narrative review is to clarify whether shared algorithms exist, allowing them to inform the daily practice in the proper antibiotics posology for critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Alberto Corona
- Accident & Emergency and Anaesthesia and Intensive Care Medicine Department, Esine and Edolo Hospitals, ASST Valcamonica, 25040 Brescia, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, 20157 Milan, Italy
| | - Nicola Latronico
- University Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25100 Brescia, Italy
| |
Collapse
|
26
|
Cao L, Zhao H, Qian M, Shao C, Zhang Y, Yang J. Construction of polysaccharide scaffold-based perfusion bioreactor supporting liver cell aggregates for drug screening. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2249-2269. [PMID: 35848470 DOI: 10.1080/09205063.2022.2102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rebuilding a suitable microenvironment of liver cells is the key challenge to enhancing the expression of hepatic functions for drug screening in vitro. To improve the microenvironment by providing the specific adhesive ligands for hepatocytes in the three-dimensional dynamic culture, a perfusion bioreactor with a pectin/alginate blend porous scaffold was constructed in this study. The galactosyl component in the main chain of pectin was able to be specifically recognized by the asialoglycoprotein receptor on the surface of hepatocytes, and subsequently promoted the adhesion and aggregation of hepatocytes co-cultured with hepatic non-parenchymal cells. The bioreactor was optimized for 4 h of dynamic inoculation followed by perfusion at a flow rate of 2 mL/min, which provided adequate oxygen supply and good mass transfer to the liver cells. During dynamic cultured in the bioreactor for 14 days, more multicellular aggregates were formed and were evenly distributed in the pectin/alginate blend scaffolds. The expressions of intercellular interaction and hepatic functions of the hepatocytes in aggregates were significantly enhanced in the three-dimensional dynamic group. Furthermore, the bioreactor not only markedly upregulated the cell polarity markers expression of hepatocytes but also enhanced their metabolic capacity to acetaminophen, isoniazid, and tolbutamide, which exhibited a significant concentration-dependent manner. Therefore, the pectin/alginate blend scaffold-based perfusion bioreactor appeared to be a promising candidate in the field of drug development and liver regeneration research.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China.,Biological Sample Resource Sharing Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huicun Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Afful EY, Frimpong-Manso S, Bekoe SO, Barfi CO, Opuni KFM, Oppong MB. The Unethical Use of Paracetamol As a Food Tenderizer in Four Selected African Countries: A Major Public Health Concern? DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:159-165. [PMID: 35950247 DOI: 10.2174/2949681015666220810125820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Paracetamol poisoning is the commonest cause of acute liver injury. Therefore, the unethical use of paracetamol as a food tenderizer poses a threat to human health. Although this is a common practice in Ghana, Uganda, Nigeria, and Kenya, there are few or no scientific records on the use of paracetamol as a food tenderizer and its deleterious effects, thus making it difficult to regulate this practice. This review aims to fully collate and present a systematic overview of the literature on the use of paracetamol as a food tenderizer in these countries, the potentially harmful effects posed by the practice, and measures in place to curb the situation. Additionally, this review aims to reveal the scientific gaps and areas requiring more research, thus providing a reference for further research to regulate this unscrupulous practice. From our extensive review of the literature, the high cost of fuel used in cooking and longer cooking times are the main reasons for the inappropriate use of paracetamol as a food tenderizer. Also, this review concludes that little has been done to create public awareness of this unethical practice. Furthermore, few ways to monitor, control and regulate this practice have been proposed.
Collapse
Affiliation(s)
- Ewurabena Y Afful
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel Frimpong-Manso
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel O Bekoe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Chris O Barfi
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Mahmood B Oppong
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
28
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
29
|
Eldin DN, Fahim HI, Ahmed HY, Abdelgawad MA, Abourehab MAS, Ahmed OM. Preventive Effects of Mandarin Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin on Acetaminophen-Induced Hepatonephrotoxicity in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7065845. [PMID: 36092164 PMCID: PMC9463012 DOI: 10.1155/2022/7065845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/14/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Acetaminophen, also known as N-acetyl-para-aminophenol (NAPAP), is a traditional antipyretic and analgesic that is used extensively around the world to treat colds and fevers. However, a NAPAP excess causes rapid, severe liver and kidney damage. The goal of the study was to examine the protective effects and determine the mechanisms of action of MPHE, hesperidin, and quercetin in NAPAP-induced hepatorenal damage in Wistar rats. Male Wistar rats received a 0.5 g/kg oral supplement of NAPAP every other day for a period of four weeks. During the same period of NAPAP supplementation, MPHE (50 mg/kg), quercetin (20 mg/kg), and hesperidin (20 mg/kg) were administered to rats receiving NAPAP. MPHE, quercetin, and hesperidin treatments significantly improved liver function in NAPAP-supplemented rats. The high serum levels of aminotransferases, alkaline phosphatase, lactate dehydrogenase, and γ-glutamyl transferase as well as total bilirubin were significantly reduced, while the levels of suppressed serum albumin were significantly increased, demonstrating this improvement. Treatments utilizing these natural substances significantly enhanced kidney function as seen by a considerable decline in the increased blood levels of urea, uric acid, and creatinine. Additionally, the injection of MPHE, hesperidin, and quercetin resulted in a decrease in the quantity of lipid peroxides while increasing the activities of superoxide dismutase, glutathione peroxidase, and glutathione-S-transferase in the liver and kidneys. The treatments markedly abated the NAPAP-induced liver and kidney histological perturbations and reduced the NAPAP-induced serum tumor necrosis factor-α level and liver and kidney proapoptotic protein 53 and caspase 3 expressions. Otherwise, serum interleukin-4 level significantly increased by treatments. The MPHE, hesperidin, and quercetin treatments resulted in marked decrease in liver and kidney histopathological scores including inflammation, necrosis, apoptosis, and congestion. In conclusion, the MPHE, quercetin, and hesperidin may induce hepatonephropreventive impacts in NAPAP-supplemented rats via enhancing the antioxidant defense system, anti-inflammatory activity, and antiapoptotic action.
Collapse
Affiliation(s)
- Doaa Nor Eldin
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanaa I. Fahim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Heba Y. Ahmed
- Rodents Division, Department of Harmful Animals, Plant Protection Research Institute, Agriculture Research Center, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
30
|
Raghuvanshi D, Sharma K, Verma R, Kumar D, Kumar H, Khan A, Valko M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K. Phytochemistry, and pharmacological efficacy of Cordia dichotoma G. Forst. (Lashuda): A therapeutic medicinal plant of Himachal Pradesh. Biomed Pharmacother 2022; 153:113400. [DOI: 10.1016/j.biopha.2022.113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
|
31
|
Antioxidant Mechanism of Renal and Hepatic Failure Prevention Related to Paracetamol Overdose by the Aqueous Extract of Amblygonocarpus andongensis Stem Bark. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1846558. [PMID: 35909484 PMCID: PMC9334103 DOI: 10.1155/2022/1846558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
Paracetamol is a commonly used analgesic/antipyretic whose long-term intake or overdose is associated with renal and hepatic injuries. The aim of this study was to determine the hepatonephroprotective mechanisms of the aqueous extract of Amblygonocarpus andongensis stem bark (AEAASB) on renal and hepatic failure resulting from paracetamol overdose. Forty-five rats were divided into nine groups (n = 5); these were treated once daily for 8 days with 5 ml/kg distilled water (normal, negative, and satellite controls); 0.9% normal saline and 140 mg/kg N-acetyl-cysteine (positive controls); 125, 250, and 500 mg/kg AEAASB (test groups); and 500 mg/kg AEAASB (satellite test). On day 8 after different treatments, hepatonephrotoxicity was induced in all the groups except the normal group by oral administration of a single dose of paracetamol (1000 mg/kg). Urinary, hematological, serum, and oxidative stress parameters and in vitro antioxidant activity of AEAASB were evaluated. Histological sections of the liver and kidney were performed. AEAASB significantly decreased urea, creatinine, transaminases, alkaline phosphatase, and bilirubin (p < 0.001) at 500 mg/kg compared to the negative control. Significant decreases in hepatic (p < 0.01) and renal (p < 0.001) malondialdehyde levels were associated with increases in superoxide dismutase, catalase, and reduced glutathione levels in 500 mg/kg AEAASB compared with the negative control. Histological analysis showed that AEAASB prevented paracetamol-induced renal and liver tissue damage. Furthermore, AEAASB revealed a very strong antioxidant activity (inhibitory concentration 50 = 180 μg/ml, antioxidant activity index = 5.55) with an ability to scavenge 63.03% 2,2-diphenyl-2-picrylhy-drazyl radical and reduced ferric iron by 52.68 mgEqVitC/100 g DM. The hepatonephroprotective effect of AEAASB might result from its ability to improve the antioxidant status through the stimulation of antioxidant factors and the scavenging of free radicals. This property could be ascribed to the presence of some classes of bioactive compounds such as phenolic compounds in great amounts.
Collapse
|
32
|
van Vugt-Lussenburg BMA, Capinha L, Reinen J, Rooseboom M, Kranendonk M, Onderwater RCA, Jennings P. " Commandeuring" Xenobiotic Metabolism: Advances in Understanding Xenobiotic Metabolism. Chem Res Toxicol 2022; 35:1184-1201. [PMID: 35768066 PMCID: PMC9297329 DOI: 10.1021/acs.chemrestox.2c00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The understanding
of how exogenous chemicals (xenobiotics) are
metabolized, distributed, and eliminated is critical to determine
the impact of the chemical and its metabolites to the (human) organism.
This is part of the research and educational discipline ADMET (absorption,
distribution, metabolism, elimination, and toxicity). Here, we review
the work of Jan Commandeur and colleagues who have not only made a
significant impact in understanding of phase I and phase II metabolism
of several important compounds but also contributed greatly to the
development of experimental techniques for the study of xenobiotic
metabolism. Jan Commandeur’s work has covered a broad area
of research, such as the development of online screening methodologies,
the use of a combination of enzyme mutagenesis and molecular modeling
for structure–activity relationship (SAR) studies, and the
development of novel probe substrates. This work is the bedrock of
current activities and brings the field closer to personalized (cohort-based)
pharmacology, toxicology, and hazard/risk assessment.
Collapse
Affiliation(s)
| | - Liliana Capinha
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jelle Reinen
- Charles River Den Bosch, Hambakenwetering 7, 5203 DL Hertogenbosch, The Netherlands
| | - Martijn Rooseboom
- Shell Global Solutions International B.V., 1030 BN The Hague, The Netherlands
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | | | - Paul Jennings
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
33
|
Dua TK, Palai S, Roy A, Paul P. Protective effect of probiotics against acetaminophen induced nephrotoxicity. Mol Biol Rep 2022; 49:8139-8143. [PMID: 35661049 DOI: 10.1007/s11033-022-07534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
Acetaminophen (APAP) is commonly prescribed as an antipyretic and analgesic agent in the practical field. Like every other drug(s), APAP also undergo metabolism by oxidation or conjugation by glucuronate and sulphate to form the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). Moreover, the NAPQI is detoxified by conjugation with reduced glutathione (GSH). Interestingly, APAP is also metabolized in the kidney by deacetylation reaction in the presence of N-deacetylase enzyme into another severely toxic but minor metabolite, p-aminophenol. Both NAPQI and p-aminophenol shows nephrotoxicity as well as hepatotoxicity. Hence, the long-term therapeutic dose use and unnecessary overdose of APAP are of great concern as prolonged negligence may cost the nephrotoxicity that may lead to uremia and finally to kidney failure. It has recently been investigated that probiotic supplementation inhibits the sequential events associated with APAP-induced nephrotoxicity. This review emphasizes the role of different probiotics that have already been investigated in nephrotoxicity or uremia caused by APAP overdose.
Collapse
Affiliation(s)
- Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India.
| | - Sangita Palai
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| | - Abani Roy
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| |
Collapse
|
34
|
A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
The Provision of Dental Care to Post COVID-19 Survivors. A Concise Review. Int Dent J 2022; 72:421-435. [PMID: 35752482 PMCID: PMC9156960 DOI: 10.1016/j.identj.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/19/2022] [Accepted: 05/22/2022] [Indexed: 01/08/2023] Open
Abstract
Aims It has been reported that there are a certain percentage of COVID-19 patients who recover but suffer from devastating permanent organ damage or failure. Others suffer from long Covid syndrome, with prolonged symptoms that persist more than 12 weeks. However, there is scarcity of literature regarding the provision of dental treatment for these two groups of patients. This manuscript reviews the impact of multi-system involvement on the provision of dental care to these patients. Materials and methods A search of literature was done in PubMed-Medline and Scopus databases to review the available literature on COVID-19 impacts on pulmonary, cardiovascular, haematologic, renal, gastrointestinal, endocrine, and neurologic systems and respective management in dental clinical settings. Results The literature search from PubMed-Medline and Scopus databases resulted in 74 salient articles that contributed to the concise review on COVID-19 effects on pulmonary, cardiovascular, haematologic, renal, gastrointestinal, endocrine, and neurologic systems and/or its respective dental management recommendations. Conclusions This concise review covers the management of post COVID-19 patients with pulmonary, cardiovascular, haematologic, renal, gastrointestinal, endocrine, or neurologic system complications.
Collapse
|
36
|
Ratios of Acetaminophen Metabolites Identify New Loci of Pharmacogenetic Relevance in a Genome-Wide Association Study. Metabolites 2022; 12:metabo12060496. [PMID: 35736429 PMCID: PMC9228664 DOI: 10.3390/metabo12060496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) with non-targeted metabolomics have identified many genetic loci of biomedical interest. However, metabolites with a high degree of missingness, such as drug metabolites and xenobiotics, are often excluded from such studies due to a lack of statistical power and higher uncertainty in their quantification. Here we propose ratios between related drug metabolites as GWAS phenotypes that can drastically increase power to detect genetic associations between pairs of biochemically related molecules. As a proof-of-concept we conducted a GWAS with 520 individuals from the Qatar Biobank for who at least five of the nine available acetaminophen metabolites have been detected. We identified compelling evidence for genetic variance in acetaminophen glucuronidation and methylation by UGT2A15 and COMT, respectively. Based on the metabolite ratio association profiles of these two loci we hypothesized the chemical structure of one of their products or substrates as being 3-methoxyacetaminophen, which we then confirmed experimentally. Taken together, our study suggests a novel approach to analyze metabolites with a high degree of missingness in a GWAS setting with ratios, and it also demonstrates how pharmacological pathways can be mapped out using non-targeted metabolomics measurements in large population-based studies.
Collapse
|
37
|
Offor SJ, Amadi CN, Chijioke-Nwauche I, Manautou JE, Orisakwe OE. Potential deleterious effects of paracetamol dose regime used in Nigeria versus that of the United States of America. Toxicol Rep 2022; 9:1035-1044. [PMID: 36561959 PMCID: PMC9764198 DOI: 10.1016/j.toxrep.2022.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/25/2022] Open
Abstract
Paracetamol, also known as acetaminophen (N-acetyl-para-aminophenol, APAP) is the world's most used over-the-counter analgesic-antipyretic drug. Despite its good safety profile, acetaminophen can cause severe hepatotoxicity in overdose, and poisoning from paracetamol has become a major public health concern. Paracetamol is now the major cause of acute liver failure in the United States and Europe. This systematic review aims at examining the likelihood of paracetamol use in Nigeria causing more liver toxicity vis-à-vis the reduced maximum recommended daily adult dose of 3 g for the 500 mg tablet. Online searches were conducted in the databases of PubMed, Google Scholar and MEDLINE for publications using terms like "paracetamol toxicity," "acetaminophen and liver toxicity," "paracetamol and liver diseases in Nigeria," and other variants. Further search of related references in PubMed was carried out, and synthesis of all studies included in this review finalized. There were 94 studies that met the inclusion criteria. Evaluation of hepatic disorder was predicated mostly on a constellation of clinical features and limited clinical laboratory investigations. Determination of blood paracetamol concentration was rarely reported, thus excluding paracetamol poisoning as one of the likely causes of liver disorders in Nigeria. In Nigeria and elsewhere, several factors are known to increase paracetamol's predisposition to liver injury. They include: the over-the-counter status of paracetamol, use of fixed-dose combinations of paracetamol with other drugs, malnutrition, dose miscalculations, and chronic alcohol consumption. The tendency to exceed the new paracetamol maximum daily dose of 3 g in Nigeria may increase its risk for hepatotoxicity than observed in the United States of America known for emphasizing lower dose of the drug. In addition to recommending the new maximal daily paracetamol dose allowance, the historical maximum daily adult dose of 4 g should be de-emphasized in Nigeria.
Collapse
Affiliation(s)
- Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Ifeyinwa Chijioke-Nwauche
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt 5323, Rivers State, Nigeria
| | - Jose E. Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Orish E. Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| |
Collapse
|
38
|
Approach to paracetamol intoxication in intensive care: 2 pregnant cases. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.907301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Prooxidant activity of aminophenol compounds: copper-dependent generation of reactive oxygen species. Biometals 2022; 35:329-334. [PMID: 35157172 DOI: 10.1007/s10534-022-00367-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022]
Abstract
Prooxidant properties of aminophenol, the constituent of acetaminophen and mesalamine, were examined. Aminophenol compounds/copper-dependent formation of reactive oxygen species was analyzed by the inactivation of aconitase, the most sensitive enzyme to oxidative stress in permeabilized yeast cells. Aminophenol compounds of 2 (ortho)- and 4 (para)- substituents, but not 3 (meta)-isomer produced reactive oxygen species in the presence of copper (cupric) ion or iron. The inactivation required sodium azide the inhibitor of catalase, suggesting that the superoxide radical produced from the 2- and 4-aminophenol in the presence of copper is responsible for the inactivation of aconitase. Aminophenols of 2- and 4-substituents showed a potent reducing activity of copper (cupric) ion, and further potent reactivity with DPPH radical, but 3-aminophenol showed only a little reactivity. Reduced copper ion can generate superoxide radical with the production of oxidized metal. Aminophenols can reduce the copper ion, and further stimulate the continuous production of reactive oxygen species. Cytotoxic effect of acetaminophen, the N-acetylated-p-aminophenol and mesalamine, the 4-aminophenol derivatives may be accounted for by the prooxidant properties of their constituents, aminophenol.
Collapse
|
40
|
Akkermansia muciniphila Ameliorates Acetaminophen-Induced Liver Injury by Regulating Gut Microbial Composition and Metabolism. Microbiol Spectr 2022; 10:e0159621. [PMID: 35107323 PMCID: PMC8809353 DOI: 10.1128/spectrum.01596-21] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota drives individual sensitivity to excess acetaminophen (APAP)-mediated hepatotoxicity. It has been reported that the bacterium Akkermansia muciniphila protects hosts against liver disease via the liver-gut axis, but its therapeutic potential for drug-induced liver injury remains unclear. In this study, we aimed to investigate the effect of A. muciniphila on APAP-induced liver injury and the underlying mechanism. Administration of A. muciniphila efficiently alleviated APAP-induced hepatotoxicity and reduced the levels of serum alanine aminotransferase (ALT) and aspartate transaminase (AST). A. muciniphila significantly attenuated APAP-induced oxidative stress and the inflammatory response, as evidenced by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, enhanced superoxide dismutase (SOD) activity, reduced proinflammatory cytokine production, and alleviation of macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained gut barrier function, reshaped the perturbed microbial community and promoted short-chain fatty acid (SCFA) secretion. The beneficial effects of A. muciniphila were accompanied by alterations in hepatic gene expression at the transcriptional level and activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Our results suggested that A. muciniphila could be a potential pretreatment for APAP-induced liver injury. IMPORTANCE Our work revealed that A. muciniphila attenuated APAP-induced liver injury by alleviating oxidative stress and inflammation in the liver, and its hepatoprotective effect was accompanied by activation of the PI3K/Akt pathway and mediated by regulation of the composition and metabolic function of the intestinal microbiota. This finding suggested that the microbial community is a non-negligible impact on drug metabolism and probiotic administration could be a potential therapy for drug-induced liver injury.
Collapse
|
41
|
Au-PEDOT/rGO nanocomposites functionalized graphene electrochemical transistor for ultra-sensitive detection of acetaminophen in human urine. Anal Chim Acta 2022; 1191:339306. [PMID: 35033240 DOI: 10.1016/j.aca.2021.339306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
A novel graphene electrochemical transistor (GECT) sensor based on Au-poly(3,4-ethylenedioxythiophene)/reduced graphene oxide (Au-PEDOT/rGO) nanocomposites functionalized the gate electrode and monolayer graphene as channel was proposed and constructed for the ultra-sensitive detection of acetaminophen (AP). Au-PEDOT/rGO nanocomposites were synthesized by a simple one-pot method to modify the gate electrode of GECT. With the high catalytic activity of Au nanoparticles, the good conductivity and stability of PEDOT, the large specific surface area and abundant adhesion sites of rGO, the sensitivity and stability of the device for AP detection could be effectively improved. The sensing mechanism of the device was that the electrochemical reactions of the AP on the surface of gate electrode causes the effective gate voltage on the GECT to change, thereby adjusting the carrier concentration and current of the graphene channel. Combined with the excellent catalytic properties of Au-PEDOT/rGO nanocomposites and the high carrier mobility of the graphene channel, the resulting device has remarkable sensing performance for AP, with a detection limit as low as 1 nM and a linear range from 1 nM to 8 mM. In addition, the device has good anti-interference ability and accuracy in the detection of AP in urine samples and tablets, which proved that it could be used to determine AP in human non-invasive and pharmaceutical products. The GECT sensor based on Au-PEDOT/rGO provides an efficient, sensitive and cost-effective sensing platform for AP detection, and is expected to realize in vitro diagnosis of diseases.
Collapse
|
42
|
Shao QH, Yin XD, Liu HX, Zhao B, Huang JQ, Li ZL. Kidney Injury Following Ibuprofen and Acetaminophen: A Real-World Analysis of Post-Marketing Surveillance Data. Front Pharmacol 2022; 12:750108. [PMID: 35002695 PMCID: PMC8727534 DOI: 10.3389/fphar.2021.750108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Although kidney injury has been reported as a serious adverse effect in patients treated with ibuprofen or acetaminophen (APAP), there are still few real-world studies to compare the specific differences in the adverse effects of nephrotoxicity. Methods: Disproportionality analysis and Bayesian analysis were devoted to data-mining of the suspected kidney injury after using ibuprofen and APAP based on the FDA’s Adverse Event Reporting System (FAERS) from January 2004 to March 2021. The times to onset, fatality, and hospitalization rates of ibuprofen-associated kidney injury and APAP-associated kidney injury were also investigated. Results: 2,453 reports of ibuprofen-associated kidney injury and 1,288 reports of APAP-associated kidney injury were identified. Ibuprofen appeared to affected more middle-aged patients than elderly ones (27.76 vs 16.53%) while APAP appeared to affected more young patients than middle-aged patients (45.24 vs 29.10%) and elderly patients were fewer (13.99%). Compared to ibuprofen, APAP had the higher association with renal injury based on the higher reporting odds ratio (ROR = 2.45, 95% two-sided CI = 2.36–2.56), proportional reporting ratio (PRR = 2.39, χ2 = 2002.94) and empirical Bayes geometric mean (EBGM = 2.38, 95% one-sided CI = 2.3). In addition, APAP-associated kidney injury had earlier onset (32.74 vs 115.82 days, p < 0.0001) and a higher fatality rate (44.43 vs 7.36%, p < 0.001) than those of ibuprofen-associated kidney injury. Conclusion: The analysis of FAERS data provides a more accurate profile on the incidence and prognosis of kidney injury after ibuprofen and acetaminophen treatment, enabling continued surveillance and timely intervention in patients at risk of kidney injury using these drugs.
Collapse
Affiliation(s)
- Qi-Hui Shao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Dong Yin
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Xia Liu
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Zhao
- Pharmacy Department, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Quan Huang
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Ling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Alatawi H, Hogan A, Alabalawi I, O'Sullivan-Carroll E, Wang Y, Moore E. Fast determination of paracetamol and its hydrolytic degradation product p-aminophenol by capillary and microchip electrophoresis with contactless conductivity detection. Electrophoresis 2021; 43:857-864. [PMID: 34936709 DOI: 10.1002/elps.202100347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be found in environmental water. Recently, capillary electrophoresis (CE) has been developed for the detection of a wide variety of chemical substances. The purpose of this study is to develop a simple and fast method for the detection and separation of PAC and its main hydrolysis product PAP, using CE and microchip electrophoresis (ME) with capacitively coupled contactless conductivity detection (C4 D). The determination of these compounds using ME with C4 D is being reported for the first time. The separation was run for all analytes using a background electrolyte (BGE) (20 Mm β-alanine, pH 11) containing 14% (v/v) methanol. The RSDs obtained for migration time were less than 0.05%, and RSDs obtained for peak area were less than 3%. The detection limits (S/N = 3) that were achieved ranged from 0.3 to 0.6 mg/L without sample preconcentration. The presented method showed rapid analysis time (less than 1 min), high efficiency and precision, low cost, and a significant decrease in the consumption of reagents. The microchip system has proved to be an excellent analytical technique for fast and reliable environmental applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanan Alatawi
- School of Chemistry, University College Cork, Cork, Ireland
| | - Anna Hogan
- School of Chemistry, University College Cork, Cork, Ireland
| | | | | | | | - Eric Moore
- School of Chemistry, University College Cork, Cork, Ireland.,Tyndall National Institute, Cork, Ireland
| |
Collapse
|
44
|
Pourbagher-Shahri AM, Schimmel J, Shirazi FM, Nakhaee S, Mehrpour O. Use of fomepizole (4-methylpyrazole) for acetaminophen poisoning: A scoping review. Toxicol Lett 2021; 355:47-61. [PMID: 34785186 DOI: 10.1016/j.toxlet.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acetaminophen (paracetamol, APAP) poisoning is a prominent global cause of drug-induced liver injury. While N-acetylcysteine (NAC) is an effective antidote, it has therapeutic limitations in massive overdose or delayed presentation. The objective is to comprehensively review the literature on fomepizole as a potential adjunct antidote for acetaminophen toxicity. METHODS A scoping review was performed using standardized search terms from inception through July 2021. RESULTS Reports on fomepizole as a therapeutic adjunct for APAP toxicity span heterogeneous types of evidence. Eleven preclinical studies (in vitro and animal), fourteen case reports/series, and one human volunteer study were included. Fomepizole's action is mediated by inhibition of CYP2E1 to prevent oxidant stress generation, and inhibition of c-Jun N-terminal kinase (JNK) to decrease amplification of oxidant stress signaling to mitochondria. Studies have shown a reduction in oxidative metabolites likely by shunting metabolism away from CYP2E1 and a resultant decrease in liver injury in animals, independent of CYP2E1 interactions. Fomepizole has been linked to few adverse effects. CONCLUSION Based on in vitro and animal studies, and bolstered by case reports, fomepizole likely offers benefit as an adjunct antidote for APAP toxicity, however this remains to be shown in a human trial. NAC remains the standard of care antidote, but given that fomepizole is approved and generally safe, it may be considered for APAP toxicity as off-label use by experienced clinicians, in rare circumstances associated with increased risk of hepatotoxicity despite standard NAC dosing. The marginal clinical benefit of fomepizole adjunct therapy beyond NAC monotherapy remains to be clearly defined, and routine use for APAP overdose is premature based on current evidence.
Collapse
Affiliation(s)
| | - Jonathan Schimmel
- Dept of Emergency Medicine, Division of Medical Toxicology, Mount Sinai Hospital Icahn School of Medicine, New York, NY, USA
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran; Data Science Institute, Southern Methodist University, Dallas, Texas, USA; Scientific Unlimited Horizon, Tucson, AZ, USA.
| |
Collapse
|
45
|
KARATAS E, BAYRAKTUTAN Z, ÇADIRCI E. Investigation of the Effects of Amlodipine on Paracetamol- Induced Acute Kidney Toxicity in Rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.891902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Göldner V, Fangmeyer J, Karst U. Development of an electrochemical flow-through cell for the fast and easy generation of isotopically labeled metabolite standards. Drug Test Anal 2021; 14:262-268. [PMID: 34634186 DOI: 10.1002/dta.3175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
In drug development, metabolite standards of new chemical entities are required for a comprehensive safety evaluation. Stable isotope-labeled internal metabolite standards at the milligram scale, which are difficult and expensive to synthesize in common bottom-up approaches, are necessary for metabolite quantification using liquid chromatography/mass spectrometry. A preparative electrochemical flow-through cell is presented here as a powerful tool for the cheap and straightforward synthesis of milligram amounts of isotopically labeled metabolite standards. The developed cell scales up established, so-called "coulometric" electrochemical cells. Problems like electrode fouling and cross contamination between syntheses are addressed by the use of exchangeable working electrodes. The applicability of the developed cell for the synthesis of metabolite standards is demonstrated using isotopically labeled acetaminophen as a model system for the generation of a biologically relevant phase II metabolite.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Jens Fangmeyer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| |
Collapse
|
47
|
Merdas M, Lagarrigue M, Umbdenstock T, Lhumeau A, Dartiguelongue F, Vanbellingen Q, Da Violante G, Pineau C. Study of the Distribution of Acetaminophen and Its Metabolites in Rats, from the Whole-Body to Isolated Organ Levels, by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging after On-Tissue Chemical Derivatization. Anal Chem 2021; 93:13242-13250. [PMID: 34546718 DOI: 10.1021/acs.analchem.1c02487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During drug development, detailed investigations of the pharmacokinetic profile of the drug are required to characterize its absorption, distribution, metabolism, and excretion properties. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an established technique for studies of the distribution of drugs and their metabolites. It has advantages over autoradiography, which is conventionally used for distribution studies: it does not require the radiolabeling of drugs and can distinguish between the drug and its metabolites directly in the tissue. However, its lack of sensitivity in certain cases remains challenging. Novel procedures, such as on-tissue chemical derivatization (OTCD), could be developed to increase sensitivity. We used OTCD to enhance the sensitivity of MALDI-MSI for one of the most widely used drugs, acetaminophen, and to study its distribution in tissues. Without derivatization, this drug and some of its metabolites are undetectable by MALDI-MSI in the tissues of treated rats. We used 2-fluoro-1-methylpyridinium p-toluene sulfonate as a derivatization reagent, to increase the ionization yield of acetaminophen and some of its metabolites. The OTCD protocol made it possible to study the distribution of acetaminophen and its metabolites in whole-body sections at a spatial resolution of 400 μm and in complex anatomical structures, such as the testis and epididymis, at a spatial resolution <50 μm. The OTCD is also shown to be compatible with the quantification of acetaminophen by MALDI-MSI in whole-body tissues. This protocol could be applied to other molecules bearing phenol groups and presenting a low ionization efficiency.
Collapse
Affiliation(s)
- Mira Merdas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France.,DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| | - Thierry Umbdenstock
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Antoine Lhumeau
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Françoise Dartiguelongue
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Quentin Vanbellingen
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Georges Da Violante
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| |
Collapse
|
48
|
Awasthi N, Yadav R, Shukla A, Kumar D. Interplay between two degenerate spin state determines the hydroxylation of 4-nitrophenol catalyzed via Cytochrome P450. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Gong Z, Wang G, Shi H, Shao S, Wang M, Lu K, Gao S. Mn(II)-Mn(III)-Mn(IV) redox cycling inhibits the removal of methylparaben and acetaminophen mediated by horseradish peroxidase: New insights into the mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147788. [PMID: 34029809 DOI: 10.1016/j.scitotenv.2021.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Catalyzed oxidative coupling reactions mediated by enzyme have been proposed as an effective remediation strategy to remove micropollutants, however, little is known about how the Mn(II) redox cycling affects the horseradish peroxidase (HRP)-mediated reactions in wastewater treatment. Here, we explored the removal of two pharmaceuticals and personal care products (PPCPs), methylparaben (MeP) and acetaminophen (AAP), in HRP-mediated reaction system with dissolved Mn (II). It was found that the conversion rate of AAP was about 284 times higher than that of MeP, and Mn (II) significantly inhibited HRP-catalyzed MeP removal but had little influence on that of AAP. X-ray photoelectron spectroscopy (XPS) and theoretical calculations demonstrated that HRP converted Mn(II) into Mn(III), and then generated MnO2 colloid, which inhibited the removal of the substrates. Moreover, the results of theoretical calculations also showed that the binding energy between HRP and Mn was 27.68 kcal/mol, which was higher than that of MeP (25.24 kcal/mol) and lower than that of AAP (30.19 kcal/mol). Therefore, when MeP and Mn (II) coexisted in the reaction system, HRP preferentially reacted with Mn(II), which explained the different impacts of Mn (II) on the removal of MeP and AAP. Additionally, Mn (II) significantly altered the product distribution by decreasing the amount of polymerization products. Overall, our work here revealed the roles of Mn (II) in the removal of MeP and AAP mediated by HRP, having strong implications for an accurate assessment of the influence of Mn(II) redox cycling on the removal of PPCPs in wastewater treatment.
Collapse
Affiliation(s)
- Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Gaobo Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, PR China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
50
|
Truong VL, Jun M, Jeong WS. Phytochemical and Over-The-Counter Drug Interactions: Involvement of Phase I and II Drug-Metabolizing Enzymes and Phase III Transporters. J Med Food 2021; 24:786-805. [PMID: 34382862 DOI: 10.1089/jmf.2021.k.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Consumption of plant-derived natural products and over-the-counter (OTC) drugs is increasing on a global scale, and studies of phytochemical-OTC drug interactions are becoming more significant. The intake of dietary plants and herbs rich in phytochemicals may affect drug-metabolizing enzymes (DMEs) and transporters. These effects may lead to alterations in pharmacokinetics and pharmacodynamics of OTC drugs when concomitantly administered. Some phytochemical-drug interactions benefit patients through enhanced efficacy, but many interactions cause adverse effects. This review discusses possible mechanisms of phytochemical-OTC drug interactions mediated by phase I and II DMEs and phase III transporters. In addition, current information is summarized for interactions between phytochemicals derived from fruits, vegetables, and herbs and OTC drugs, and counseling is provided on appropriate and safe use of OTC drugs.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Mira Jun
- Brain Busan 21 Plus Program, Department of Food Science and Nutrition, Graduate School, Center for Silver-Targeted Biomaterials, Dong-A University, Busan, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|