1
|
Cohen E, Johnson C, Redmond CJ, Nair RR, Coulombe PA. Revisiting the significance of keratin expression in complex epithelia. J Cell Sci 2022; 135:jcs260594. [PMID: 36285538 PMCID: PMC10658788 DOI: 10.1242/jcs.260594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 03/17/2023] Open
Abstract
A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine J. Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raji R. Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Nemec S, Ganda S, Al Taief K, Kopecky C, Kuchel R, Lebhar H, Marquis CP, Thordarson P, Kilian KA. A Tunable Tumor Microenvironment through Recombinant Bacterial Collagen-Hyaluronic Acid Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:4581-4588. [PMID: 35670558 DOI: 10.1021/acsabm.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laboratory models of the tumor microenvironment require control of mechanical and biochemical properties to ensure accurate mimicry of patient disease. In contrast to pure natural or synthetic materials, hybrid approaches that pair recombinant protein fragments with synthetic scaffolding show many advantages. Here we demonstrate production of a recombinant bacterial collagen-like protein (CLP) for thiol-ene pairing to norbornene functionalized hyaluronic acid (NorHA). The resultant hydrogel material shows an adjustable modulus with evidence for strain-stiffening behavior that resembles natural tumor matrices. Cysteine terminated peptide binding motifs are incorporated to adjust the cell-adhesion points. The modular hybrid gel shows good biocompatibility and was demonstrated to control cell adhesion, proliferation, and the invasive properties of MCF7 and MD-MBA-231 breast adenocarcinoma cells. The ease in which multiple structural and bioactive components can be integrated provides a robust framework to form models of the tumor microenvironment for fundamental studies and drug development.
Collapse
Affiliation(s)
- Stephanie Nemec
- School of Materials Science & Engineering, University of New South Wales, Sydney, Australia 2052
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia 2052
| | - Sylvia Ganda
- School of Chemistry, University of New South Wales, Sydney, Australia 2052
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia 2052
| | - Karrar Al Taief
- School of Chemistry, University of New South Wales, Sydney, Australia 2052
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia 2052
- UNSW RNA Institute, University of New South Wales, Sydney, Australia 2052
| | - Chantal Kopecky
- School of Chemistry, University of New South Wales, Sydney, Australia 2052
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia 2052
| | - Rhiannon Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia 2052
| | - Hélène Lebhar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052
| | - Christopher P Marquis
- UNSW RNA Institute, University of New South Wales, Sydney, Australia 2052
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, Australia 2052
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia 2052
- UNSW RNA Institute, University of New South Wales, Sydney, Australia 2052
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, Australia 2052
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia 2052
| |
Collapse
|
3
|
Comparative Analysis of Type I Keratin Expression By Nail Consistency: An Immunohistochemistry Study. Appl Immunohistochem Mol Morphol 2022; 30:298-303. [PMID: 35384880 DOI: 10.1097/pai.0000000000001011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
The nail plate is one of the essential structures of the nail apparatus and is highly keratinized, making it difficult to handle this tissue experimentally. Different types of nail consistency were identified by applying distal pressure to the nail plate. To analyze the relationship between the keratins expressed in the nail plate and nail consistency, we chose a sample of 32 adult individuals (age 49.81±3.21 y) with the same number of each sex, who had a similar percentage of nail consistency types (56.25% hard consistency nails and 43.75% soft consistency nails). Immunohistochemical analyses showed that hard consistency nails contain more keratin 17 than soft consistency nails (P=0.026). These novel results allow nail consistency to be defined by the differential expression of keratins in the nail plate, and have potential clinical implications for the diagnosis of possible nail disorders and/or systemic disease.
Collapse
|
4
|
Yu B, Kong D, Cheng C, Xiang D, Cao L, Liu Y, He Y. Assembly and recognition of keratins: A structural perspective. Semin Cell Dev Biol 2021; 128:80-89. [PMID: 34654627 DOI: 10.1016/j.semcdb.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Keratins are one of the major components of cytoskeletal network and assemble into fibrous structures named intermediate filaments (IFs), which are important for maintaining the mechanical properties of cells and tissues. Over the past decades, evidence has shown that the functions of keratins go beyond providing mechanical support for cells, they interact with multiple cellular components and are widely involved in the pathways of cell proliferation, differentiation, motility and death. However, the structural details of keratins and IFs are largely missing and many questions remain regarding the mechanisms of keratin assembly and recognition. Here we briefly review the current structural models and assembly of keratins as well as the interactions of keratins with the binding partners, which may provide a structural view for understanding the mechanisms of keratins in the biological activities and the related diseases.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dandan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Parry DAD, Winter DJ. Keratin intermediate filament chains in the European common wall lizard (Podarcis muralis) and a potential keratin filament crosslinker. J Struct Biol 2021; 213:107793. [PMID: 34481988 DOI: 10.1016/j.jsb.2021.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - David J Winter
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
6
|
Post Zygotic, Somatic, Deletion in KERATIN 1 V1 Domain Generates Structural Alteration of the K1/K10 Dimer, Producing a Monolateral Palmar Epidermolytic Nevus. Int J Mol Sci 2021; 22:ijms22136901. [PMID: 34199056 PMCID: PMC8269197 DOI: 10.3390/ijms22136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Palmoplantar keratodermas (PPKs) are characterized by thickness of stratum corneum and epidermal hyperkeratosis localized in palms and soles. PPKs can be epidermolytic (EPPK) or non epidermolytic (NEPPK). Specific mutations of keratin 16 (K16) and keratin 1 (K1) have been associated to EPPK, and NEPPK. Cases of mosaicism in PPKs due to somatic keratin mutations have also been described in scientific literature. We evaluated a patient presenting hyperkeratosis localized monolaterally in the right palmar area, characterized by linear yellowish hyperkeratotic lesions following the Blaschko lines. No other relatives of the patient showed any dermatological disease. Light and confocal histological analysis confirmed the presence of epidermolityic hyperkeratosis. Genetic analysis performed demonstrates the heterozygous deletion NM_006121.4:r.274_472del for a total of 198 nucleotides, in KRT1 cDNA obtained by a palmar lesional skin biopsy, corresponding to the protein mutation NP_006112.3:p.Gly71_Gly137del. DNA extracted from peripheral blood lymphocytes did not display the presence of the mutation. These results suggest a somatic mutation causing an alteration in K1 N-terminal variable domain (V1). The deleted sequence involves the ISIS subdomain, containing a lysine residue already described as fundamental for epidermal transglutaminases in the crosslinking of IF cytoskeleton. Moreover, a computational analysis of the wild-type and V1-mutated K1/K10 keratin dimers, suggests an unusual interaction between these keratin filaments. The mutation taster in silico analysis also returned a high probability for a deleterious mutation. These data demonstrate once again the importance of the head domain (V1) of K1 in the formation of a functional keratinocyte cytoskeleton. Moreover, this is a further demonstration of the presence of somatic mutations arising in later stages of the embryogenesis, generating a mosaic phenotype.
Collapse
|
7
|
Parry DAD. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids). Genes (Basel) 2021; 12:591. [PMID: 33920614 PMCID: PMC8072682 DOI: 10.3390/genes12040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
The epidermal appendages of birds and reptiles (the sauropsids) include claws, scales, and feathers. Each has specialized physical properties that facilitate movement, thermal insulation, defence mechanisms, and/or the catching of prey. The mechanical attributes of each of these appendages originate from its fibril-matrix texture, where the two filamentous structures present, i.e., the corneous ß-proteins (CBP or ß-keratins) that form 3.4 nm diameter filaments and the α-fibrous molecules that form the 7-10 nm diameter keratin intermediate filaments (KIF), provide much of the required tensile properties. The matrix, which is composed of the terminal domains of the KIF molecules and the proteins of the epidermal differentiation complex (EDC) (and which include the terminal domains of the CBP), provides the appendages, with their ability to resist compression and torsion. Only by knowing the detailed structures of the individual components and the manner in which they interact with one another will a full understanding be gained of the physical properties of the tissues as a whole. Towards that end, newly-derived aspects of the detailed conformations of the two filamentous structures will be discussed and then placed in the context of former knowledge.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Parry DAD, Winter DJ. Keratin intermediate filament chains in tuatara (Sphenodon punctatus): A comparison of tuatara and human sequences. J Struct Biol 2021; 213:107706. [PMID: 33577903 DOI: 10.1016/j.jsb.2021.107706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Determination of the sequences of the keratin intermediate filament chains in tuatara has shown that these are closely akin to the α-keratins in human and other vertebrates, especially in the central, coiled-coil rod region. The domain lengths within the rod are preserved exactly, both Type I and Type II chains have been recognised, and sequence identity/homology exists between their respective chains. Nonetheless, there are characteristic differences in amino acid composition and sequence between their respective head (N-terminal) domains and their tail (C-terminal) domains, though some similarities are retained. Further, there is evidence of tandem repeats of a variety of lengths in the tuatara heads and tails indicative of sequence duplication events. These are not evident in human α-keratins and would therefore have implications for the physical attributes of the tissues in the two species. Multiple families of keratin-associated proteins that are ultra-high cysteine-rich or glycine + tyrosine-rich in human and other species do not have direct equivalents in the tuatara. Although high-sulphur proteins are present in tuatara the cysteine residue contents are significantly lower than in human. Further, no sequence homologies between the HS proteins in the two species have been found, thereby casting considerable doubt as to whether any matrix-forming high-sulphur proteins exist in tuatara. These observations may be correlated with the numerous cysteine-rich β-keratins (corneous β-proteins) that are present in tuatara, but which are conspicuously absent in mammals.
Collapse
Affiliation(s)
- David A D Parry
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| | - David J Winter
- School of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
9
|
Parker RN, Trent A, Roth Stefaniak KL, Van Dyke ME, Grove TZ. A comparative study of materials assembled from recombinant K31 and K81 and extracted human hair keratins. ACTA ACUST UNITED AC 2020; 15:065006. [PMID: 32485704 DOI: 10.1088/1748-605x/ab98e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration. However, studies of structure-function relationships in keratin biomaterials have been hindered by the lack of homogeneous preparations of materials extracted and isolated from natural sources such as wool and hair fibers. Here we present a side-by-side comparison of natural and recombinant human hair keratin proteins K31 and K81. When combined, the recombinant proteins (i.e. rhK31 and rhK81) assemble into characteristic intermediate filament-like fibers. Coatings made from natural and recombinant dimers were compared side-by-side and investigated for coating characteristics and cell adhesion. In comparison to control substrates, the recombinant keratin materials show a higher propensity for inducing involucrin and hence, maturation in terms of potential skin cell differentiation.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24060. Authors contributed equally to this work
| | | | | | | | | |
Collapse
|
10
|
Serum lipids, retinoic acid and phenol red differentially regulate expression of keratins K1, K10 and K2 in cultured keratinocytes. Sci Rep 2020; 10:4829. [PMID: 32179842 PMCID: PMC7076045 DOI: 10.1038/s41598-020-61640-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Abnormal keratinocyte differentiation is fundamental to pathologies such as skin cancer and mucosal inflammatory diseases. The ability to grow keratinocytes in vitro allows the study of differentiation however any translational value is limited if keratinocytes get altered by the culture method. Although serum lipids (SLPs) and phenol red (PR) are ubiquitous components of culture media their effect on differentiation is largely unknown. We show for the first time that PR and SLP themselves suppress expression of differentiation-specific keratins K1, K10 and K2 in normal human epidermal keratinocytes (NHEK) and two important cell lines, HaCaT and N/TERT-1. Removal of SLP increased expression of K1, K10 and K2 in 2D and 3D cultures, which was further enhanced in the absence of PR. The effect was reversed for K1 and K10 by adding all-trans retinoic acid (ATRA) but increased for K2 in the absence of PR. Furthermore, retinoid regulation of differentiation-specific keratins involves post-transcriptional mechanisms as we show KRT2 mRNA is stabilised whilst KRT1 and KRT10 mRNAs are destabilised in the presence of ATRA. Taken together, our results indicate that the presence of PR and SLP in cell culture media may significantly impact in vitro studies of keratinocyte differentiation.
Collapse
|
11
|
Lee CH, Kim MS, Li S, Leahy DJ, Coulombe PA. Structure-Function Analyses of a Keratin Heterotypic Complex Identify Specific Keratin Regions Involved in Intermediate Filament Assembly. Structure 2020; 28:355-362.e4. [PMID: 31995743 DOI: 10.1016/j.str.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
Intermediate filaments (IFs) provide vital mechanical support in a broad array of cell types. Interference with this role causes cell fragility and accounts for a large number of human diseases. Gaining an understanding of the structure of IFs is paramount to understanding their function and designing therapeutic agents for relevant diseases. Here, we report the 2.6-Å resolution crystal structure of a complex of interacting 2B domains of keratin 5 (K5) and K14. K5 and K14 form a long-range, left-handed coiled coil, with participating α helices aligned in parallel and in register. Follow-up mutagenesis revealed that specific contacts between interacting 2B domains play a crucial role during 10-nm IF assembly, likely at the step of octamer-octamer association. The resulting structural model represents an atomic-resolution visualization of 2B-2B interactions important to filament assembly and provides insight into the defects introduced by mutations in IF genes associated with human skin diseases.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Min-Sung Kim
- Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Shuang Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Shibuya K, Tsutsui S, Nakamura O. Fugu, Takifugu ruberipes, mucus keratins act as defense molecules against fungi. Mol Immunol 2019; 116:1-10. [PMID: 31561060 DOI: 10.1016/j.molimm.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Keratin is a cytoskeletal protein that constitutes the intermediate filament. Its distribution is restricted to epithelial tissues in mammals, but is wider in fish. An interesting feature of fish keratin is that it is abundant in the cutaneous mucus. However, the biological function of keratin in the mucus has not been explored. In the present study, we hypothesized that mucus keratins of fugu Takifugu rubripes function as antimicrobial molecules. To verify this hypothesis, we first identified all of the keratins expressed in the epidermis and present in mucus. Five of 15 keratins including Tr-K4 expressed in the epidermis were identified in the mucus. Subsequently, we examined the interaction of keratin molecules present in fugu mucus with yeast. Affinity chromatography using yeast as a carrier and subsequent LC-MS/MS analysis revealed that three types of keratin were bound to the yeast. Furthermore, yeast incubated with fugu mucus was agglutinated, and this was inhibited by anti-recombinant Tr-K4 (rTr-K4) antibody. Immunohistochemical analysis also revealed that keratin was attached to the surface of agglutinated yeasts. These findings indicate that mucus keratin agglutinates yeast. Furthermore, we found insoluble clumps in fugu mucus, which were mainly comprised of keratin. After incubation of yeast with soluble mucus fraction, insoluble clumps incorporating yeast were formed. This observation suggests that fugu mucus keratin sequesters microbes into insoluble clumps, which are eventually eliminated from the mucus. Here, we present our finding of the novel function of keratin as a defense molecule in fish mucus.
Collapse
Affiliation(s)
- Ko Shibuya
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
13
|
Jang KH, Yoon HN, Lee J, Yi H, Park SY, Lee SY, Lim Y, Lee HJ, Cho JW, Paik YK, Hancock WS, Ku NO. Liver disease-associated keratin 8 and 18 mutations modulate keratin acetylation and methylation. FASEB J 2019; 33:9030-9043. [PMID: 31199680 DOI: 10.1096/fj.201800263rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Keratin 8 (K8) and keratin 18 (K18) are the intermediate filament proteins whose phosphorylation/transamidation associate with their aggregation in Mallory-Denk bodies found in patients with various liver diseases. However, the functions of other post-translational modifications in keratins related to liver diseases have not been fully elucidated. Here, using a site-specific mutation assay combined with nano-liquid chromatography-tandem mass spectrometry, we identified K8-Lys108 and K18-Lys187/426 as acetylation sites, and K8-Arg47 and K18-Arg55 as methylation sites. Keratin mutation (Arg-to-Lys/Ala) at the methylation sites, but not the acetylation sites, led to decreased stability of the keratin protein. We compared keratin acetylation/methylation in liver disease-associated keratin variants. The acetylation of K8 variants increased or decreased to various extents, whereas the methylation of K18-del65-72 and K18-I150V variants increased. Notably, the highly acetylated/methylated K18-I150V variant was less soluble and exhibited unusually prolonged protein stability, which suggests that additional acetylation of highly methylated keratins has a synergistic effect on prolonged stability. Therefore, the different levels of acetylation/methylation of the liver disease-associated variants regulate keratin protein stability. These findings extend our understanding of how disease-associated mutations in keratins modulate keratin acetylation and methylation, which may contribute to disease pathogenesis.-Jang, K.-H., Yoon, H.-N., Lee, J., Yi, H., Park, S.-Y., Lee, S.-Y., Lim, Y., Lee, H.-J., Cho, J.-W., Paik, Y.-K., Hancock, W. S., Ku, N.-O. Liver disease-associated keratin 8 and 18 mutations modulate keratin acetylation and methylation.
Collapse
Affiliation(s)
- Kwi-Hoon Jang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Jongeun Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Hayan Yi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Sang-Yoon Park
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Hyoung-Joo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Jin-Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Young-Ki Paik
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| | - Williams S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea.,Department of Bio-Convergence Integrated Science and Engineering Division, Underwood International College, Yonsei University, Seoul, Korea
| |
Collapse
|
14
|
Role of the keratin 1 and keratin 10 tails in the pathogenesis of ichthyosis hystrix of Curth Macklin. PLoS One 2018; 13:e0195792. [PMID: 29689068 PMCID: PMC5918167 DOI: 10.1371/journal.pone.0195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/29/2018] [Indexed: 01/03/2023] Open
Abstract
Ichthyosis Hystrix of Curth-Macklin (IH-CM) is a rare manifestation of epidermolytic ichthyosis (EI) that is characterised by generalised spiky or verrucous hyperkeratosis. The disorder is further distinguished by the presence of binucleated cells in the affected skin, whereas epidermolysis and clumping of tonofilaments, as seen in EI, are absent. While IH-CM is associated with mutations in the keratin 1 (KRT1) gene, reports to date have indicated that mutations in the KRT1 gene result in an aberrant and truncated protein tail, essentially affecting the function of the V2 domain. Here, we studied a female sporadic patient who was born with diffused erythrodermic hyperkeratosis and who presented at the age of 13 months with an intense and widespread hyperkeratosis with a papillomatous appearance and typical palmoplantar keratoderma. Genetic analysis demonstrated a “de novo” mutation in the keratin 10 gene (KRT10) consisting of a three-base-pair deletion, resulting in the substitution of amino acids p.Glu445 and p.Ile446 by Asp at the end of the 2B domain of the protein. We performed structural and functional studies showing that this mutation modifies the structure of the paired 2B and V2 K1/10 domains, leading to the disease phenotype. Our results highlight the importance and complexity of the KRT1/10 V2 domain in keratin dimer formation and the potential consequences of its alteration.
Collapse
|
15
|
Fraser RDB, Parry DAD. Structural Hierarchy of Trichocyte Keratin Intermediate Filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1054:57-70. [PMID: 29797268 DOI: 10.1007/978-981-10-8195-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although trichocyte keratins (hair, wool, quill, claw) have been studied since the 1930s it is only over the last 30 years or so that major advances have been made in our understanding of the complex structural hierarchy of the filamentous component of this important filament-matrix composite. A variety of techniques, including amino acid sequence analysis, computer modelling, X-ray fibre diffraction and protein crystallography, various forms of electron microscopy, and crosslinking methods have now combined to reveal much of the structural detail. The heterodimeric structure of the keratin molecule is clear, as are the highly-specific modes by which these molecules aggregate to form functionally viable IF. The observation that hair keratin can adopt not one but two structurally-distinct conformations, one formed in the living cells at the base of the hair follicle in a reducing environment and the second in the fully differentiated hair in dead cells in an oxidized state, was unexpected but has major implications for the mechanism of hair growth. Insights have also been made into the mechanism of the uppermost level of hair superstructure, relating to the assembly of the IF in the paracortical and orthocortical macrofibrils.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,, Tewantin, QLD, Australia
| | - David A D Parry
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
16
|
Parker RN, Roth KL, Kim C, McCord JP, Van Dyke ME, Grove TZ. Homo- and heteropolymer self-assembly of recombinant trichocytic keratins. Biopolymers 2017; 107. [PMID: 28741310 DOI: 10.1002/bip.23037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by-products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero- and one-dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self-assembly mechanism highlights the importance of disulfide crosslinking in keratin self-assembly.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Kristina L Roth
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Christina Kim
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Jennifer P McCord
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24060
| | - Tijana Z Grove
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| |
Collapse
|
17
|
Consequences of Keratin Phosphorylation for Cytoskeletal Organization and Epithelial Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:171-225. [DOI: 10.1016/bs.ircmb.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Structural Transition of Trichocyte Keratin Intermediate Filaments During Development in the Hair Follicle. Subcell Biochem 2017; 82:131-149. [PMID: 28101861 DOI: 10.1007/978-3-319-49674-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intermediate filaments (IF) in trichocyte (hard α-) keratin are unique amongst the various classes of IF in having not one but two topologically-distinct structures. The first is formed at an early stage of hair development in a reducing environment within the cells in the lower part of the follicle. The second structure occurs at a later stage of hair development in the upper part of the follicle, where there is a transition to an oxidizing environment. Crosslinking studies reveal that molecular slippage occurs within the IF upon oxidation and that this results in many cysteine residues lying in near axial alignment, thereby facilitating disulphide bond formation. The disulphide bonds so formed stabilize the assembly of IF molecules and convert the keratin fibre into a tough, resilient and insoluble structure suitable for its function in vivo as a thermo-regulator and a protector of the animal against its external environment.
Collapse
|
19
|
Abstract
We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.
Collapse
|
20
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
|
22
|
Premchandar A, Kupniewska A, Tarnowski K, Mücke N, Mauermann M, Kaus-Drobek M, Edelman A, Herrmann H, Dadlez M. Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange. J Struct Biol 2015; 192:426-440. [DOI: 10.1016/j.jsb.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
|
23
|
Abstract
Keratins comprise the type I and type II intermediate filament-forming proteins and occur primarily in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Keratins serve multiple homeostatic and stress-enhanced mechanical and nonmechanical functions in epithelia, including the maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications as well as keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility and/or altered tissue homeostasis. Moreover, keratin mutation or misregulation represents risk factors or genetic modifiers for several acute and chronic diseases. This chapter focuses on keratins that are expressed in skin epithelia, and details a number of basic protocols and assays that have proven useful for analyses being carried out in skin.
Collapse
Affiliation(s)
- Fengrong Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abigail Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
24
|
Parry DAD. Using Data Mining and Computational Approaches to Study Intermediate Filament Structure and Function. Methods Enzymol 2015; 568:255-76. [PMID: 26795474 DOI: 10.1016/bs.mie.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Experimental and theoretical research aimed at determining the structure and function of the family of intermediate filament proteins has made significant advances over the past 20 years. Much of this has either contributed to or relied on the amino acid sequence databases that are now available online, and the data mining approaches that have been developed to analyze these sequences. As the quality of sequence data is generally high, it follows that it is the design of the computational and graphical methodologies that are of especial importance to researchers who aspire to gain a greater understanding of those sequence features that specify both function and structural hierarchy. However, these techniques are necessarily subject to limitations and it is important that these be recognized. In addition, no single method is likely to be successful in solving a particular problem, and a coordinated approach using a suite of methods is generally required. A final step in the process involves the interpretation of the results obtained and the construction of a working model or hypothesis that suggests further experimentation. While such methods allow meaningful progress to be made it is still important that the data are interpreted correctly and conservatively. New data mining methods are continually being developed, and it can be expected that even greater understanding of the relationship between structure and function will be gleaned from sequence data in the coming years.
Collapse
Affiliation(s)
- David A D Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
25
|
Kim HJ, Choi WJ, Lee CH. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition. Biomol Ther (Seoul) 2015; 23:301-12. [PMID: 26157545 PMCID: PMC4489823 DOI: 10.4062/biomolther.2015.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022] Open
Abstract
Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Won Jun Choi
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
26
|
Petrosyan A, Ali MF, Cheng PW. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem 2015; 290:6256-69. [PMID: 25605727 PMCID: PMC4358263 DOI: 10.1074/jbc.m114.618702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Core 2 N-acetylglucosaminyltransferase 2/M (C2GnT-M) synthesizes all three β6GlcNAc branch structures found in secreted mucins. Loss of C2GnT-M leads to development of colitis and colon cancer. Recently we have shown that C2GnT-M targets the Golgi at the Giantin site and is recycled by binding to non-muscle myosin IIA, a motor protein, via the cytoplasmic tail (CT). But how this enzyme is retained in the Golgi is not known. Proteomics analysis identifies keratin type II cytoskeletal 1 (KRT1) as a protein pulled down with anti-c-Myc antibody or C2GnT-M CT from the lysate of Panc1 cells expressing bC2GnT-M tagged with c-Myc. Yeast two-hybrid analysis shows that the rod domain of KRT1 interacts directly with the WKR(6) motif in the C2GnT-M CT. Knockdown of KRT1 does not affect Golgi morphology but increases the interaction of C2GnT-M with non-muscle myosin IIA and its transportation to the endoplasmic reticulum, ubiquitination, and degradation. During Golgi recovery after brefeldin A treatment, C2GnT-M forms a complex with Giantin before KRT1, demonstrating CT-mediated sequential events of Golgi targeting and retention of C2GnT-M. In HeLa cells transiently expressing C2GnT-M-GFP, knockdown of KRT1 does not affect Golgi morphology but leaves C2GnT-M outside of the Golgi, resulting in the formation of sialyl-T antigen. Interaction of C2GnT-M and KRT1 was also detected in the goblet cells of human colon epithelial tissue and primary culture of colonic epithelial cells. The results indicate that glycosylation and thus the function of glycoconjugates can be regulated by a protein that helps retain a glycosyltransferase in the Golgi.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F Ali
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
27
|
Gentil BJ, Tibshirani M, Durham HD. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 2015; 360:609-20. [PMID: 25567110 DOI: 10.1007/s00441-014-2082-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada,
| | | | | |
Collapse
|
28
|
Antunes E, Cruz CF, Azoia NG, Cavaco-Paulo A. The effects of solvent composition on the affinity of a peptide towards hair keratin: experimental and molecular dynamics data. RSC Adv 2015. [DOI: 10.1039/c4ra13901a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular dynamics simulations with a developed hair protofibril model demonstrated the ability to improve peptide uptake by hair shafts.
Collapse
Affiliation(s)
- Egipto Antunes
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Célia F. Cruz
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Nuno G. Azoia
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Artur Cavaco-Paulo
- CEB – Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| |
Collapse
|
29
|
Beyond expectations: novel insights into epidermal keratin function and regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:265-306. [PMID: 24952920 DOI: 10.1016/b978-0-12-800179-0.00007-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermis is a stratified epithelium that relies on its cytoskeleton and cell junctions to protect the body against mechanical injury, dehydration, and infections. Keratin intermediate filament proteins are involved in many of these functions by forming cell-specific cytoskeletal scaffolds crucial for the maintenance of cell and tissue integrity. In response to various stresses, the expression and organization of keratins are altered at transcriptional and posttranslational levels to restore tissue homeostasis. Failure to restore tissue homeostasis in the presence of keratin gene mutations results in acute and chronic skin disorders for which currently no rational therapies are available. Here, we review the recent progress on the role of keratins in cytoarchitecture, adhesion, signaling, and inflammation. By focusing on epidermal keratins, we illustrate the contribution of keratin isotypes to differentiated epithelial functions.
Collapse
|
30
|
Affiliation(s)
- Rebecca L Haines
- Epithelial Biology Group, Institute of Medical Biology, Immunos, Singapore
| | | |
Collapse
|
31
|
Gentil BJ, Mushynski WE, Durham HD. Heterogeneity in the properties of NEFL mutants causing Charcot-Marie-Tooth disease results in differential effects on neurofilament assembly and susceptibility to intervention by the chaperone-inducer, celastrol. Int J Biochem Cell Biol 2013; 45:1499-508. [PMID: 23618875 DOI: 10.1016/j.biocel.2013.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/05/2013] [Indexed: 11/25/2022]
Abstract
Aberrant aggregation of neurofilament proteins is a common feature of neurodegenerative diseases. For example, neurofilament light protein (NEFL) mutants causing Charcot-Marie-Tooth disease induce misassembly of neurofilaments. This study demonstrated that mutations in different functional domains of NEFL have different effects on filament assembly and susceptibility to interventions to restore function. The mouse NEFL mutants, NEFL(Q333P) and NEFL(P8R), exhibited different assembly properties in SW13-cells, cells lacking endogenous intermediate filaments, indicating different consequences of these mutations on the biochemical properties of NEFL. The p.Q333P mutation caused reversible misfolding of the protein. NEFL(Q333P) could be refolded and form coil-coiled dimers, in vitro using chaotropic agent, and in cultured cells by induction of HSPA1 and HSPB1. Celastrol, an inducer of chaperone proteins, induced HSPA1 expression in motor neurons and prevented the formation of neurofilament inclusions and mitochondrial shortening induced by expression of NEFL(Q333P), but not in sensory neurons. Conversely, celastrol had a protective effect against the toxicity of NEFL(P8R), a mutant which is sensitive to HSBP1 but not HSPA1 chaperoning, only in large-sized sensory neurons, not in motor neurons. Importantly, sensory and motor neurons do not respond identically to celastrol and different chaperones are upregulated by the same treatment. Thus, effective therapy of CMT not only depends on the identity of the mutated gene, but the consequences of the specific mutation on the properties of the protein and the neuronal population targeted.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, Montreal, QC, Canada.
| | | | | |
Collapse
|
32
|
Gandolfi B, Alhaddad H, Joslin SEK, Khan R, Filler S, Brem G, Lyons LA. A splice variant in KRT71 is associated with curly coat phenotype of Selkirk Rex cats. Sci Rep 2013; 3:2000. [PMID: 23770706 PMCID: PMC3683669 DOI: 10.1038/srep02000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/22/2013] [Indexed: 11/09/2022] Open
Abstract
One of the salient features of the domestic cat is the aesthetics of its fur. The Selkirk Rex breed is defined by an autosomal dominant woolly rexoid hair (ADWH) abnormality that is characterized by tightly curled hair shafts. A genome-wide case - control association study was conducted using 9 curly coated Selkirk Rex and 29 controls, including straight-coated Selkirk Rex, British Shorthair and Persian, to localize the Selkirk autosomal dominant rexoid locus (SADRE). Although the control cats were from different breed lineages, they share recent breeding histories and were validated as controls by Bayesian clustering, multi-dimensional scaling and genomic inflation. A significant association was found on cat chromosome B4 (Praw = 2.87 × 10(-11)), and a unique haplotype spanning ~600 Kb was found in all the curly coated cats. Direct sequencing of four candidate genes revealed a splice site variant within the KRT71 gene associated with the hair abnormality in Selkirk Rex.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hassan H, Thaung C, Ebenezer ND, Larkin G, Hardcastle AJ, Tuft SJ. Severe Meesmann's epithelial corneal dystrophy phenotype due to a missense mutation in the helix-initiation motif of keratin 12. Eye (Lond) 2012; 27:367-73. [PMID: 23222558 DOI: 10.1038/eye.2012.261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To describe a severe phenotype of Meesmann's epithelial corneal dystrophy (MECD) and to determine the underlying molecular cause. METHODS We identified a 30-member family affected by MECD and examined 11 of the 14 affected individuals. Excised corneal tissue from one affected individual was examined histologically. We used PCR and direct sequencing to identify mutation of the coding regions of the KRT3 and KRT12 genes. RESULTS Cases had an unusually severe phenotype with large numbers of intraepithelial cysts present from infancy and they developed subepithelial fibrosis in the second to third decade. In some individuals, the cornea became superficially vascularized, a change accompanied by the loss of clinically obvious epithelial cysts. Visual loss from amblyopia or corneal opacity was common and four individuals were visually impaired (≤6/24 bilaterally) and one was blind (<6/60 bilaterally). In all affected family members, there was a heterozygous missense mutation c. 395T>C (p. L132P) in exon 1 of the KRT12 gene, which codes for the helix-initiation motif of the K12 polypeptide. This sequence change was not found in unaffected family members or in 100 unaffected controls. CONCLUSIONS The Leu132Pro missense mutation is within the helix-initiation motif of the keratin and is predicted to result in a significant structural change of the K12 protein. The clinical effects are markedly more severe than the phenotype usually associated with the Arg135Thr mutation within this motif, most frequently seen in European patients with MECD.
Collapse
Affiliation(s)
- H Hassan
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | |
Collapse
|
34
|
Chou CC, Buehler MJ. Structure and mechanical properties of human trichocyte keratin intermediate filament protein. Biomacromolecules 2012; 13:3522-32. [PMID: 22963508 DOI: 10.1021/bm301254u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Keratin is a protein in the intermediate filament family and the key component of hair, nail, and skin. Here we report a bottom-up atomistic model of the keratin dimer, using the complete human keratin type k35 and k85 amino acid sequence. A detailed analysis of geometric and mechanical properties through full-atomistic simulation with validation against experimental results is presented. We introduce disulfide cross-links in a keratin tetramer and compare the mechanical behavior of the disulfide bonded systems with a system without disulfide bonds. Disulfide bond results in a higher strength (20% increase) and toughness (49% increase), but the system loses α-helical structures under loading, suggesting that disulfide bonds play a significant role in achieving the characteristic mechanical properties of trichocyte α-keratin. Our study provides general insight into the effect of disulfide cross-link on mechanical properties. Moreover, the availability of an atomistic model of this protein opens the possibility to study the mechanical properties of hair fibrils and other fibers from a bottom-up perspective.
Collapse
Affiliation(s)
- Chia-Ching Chou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A,B, Cambridge, MA 02139, USA
| | | |
Collapse
|
35
|
Lee CH, Kim MS, Chung BM, Leahy DJ, Coulombe PA. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat Struct Mol Biol 2012; 19:707-15. [PMID: 22705788 PMCID: PMC3864793 DOI: 10.1038/nsmb.2330] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/18/2012] [Indexed: 01/07/2023]
Abstract
There is as yet no high-resolution data regarding the structure and organization of keratin intermediate filaments, which are obligate heteropolymers providing vital mechanical support in epithelia. We report the crystal structure of interacting 2B regions from the central coiled-coil domains of keratins 5 and 14 (K5 and K14), expressed in progenitor keratinocytes of epidermis. The interface of the K5-K14 coiled-coil heterodimer has asymmetric salt bridges, hydrogen bonds and hydrophobic contacts, and its surface exhibits a notable charge polarization. A trans-dimer homotypic disulfide bond involving Cys367 in K14's stutter region occurs in the crystal and in skin keratinocytes, where it is concentrated in a keratin filament cage enveloping the nucleus. We show that K14-Cys367 impacts nuclear shape in cultured keratinocytes and that mouse epidermal keratinocytes lacking K14 show aberrations in nuclear structure, highlighting a new function for keratin filaments.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min-Sung Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byung Min Chung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Nanashima N, Ito K, Ishikawa T, Nakano M, Nakamura T. Damage of hair follicle stem cells and alteration of keratin expression in external radiation-induced acute alopecia. Int J Mol Med 2012; 30:579-84. [PMID: 22692500 DOI: 10.3892/ijmm.2012.1018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/28/2012] [Indexed: 11/06/2022] Open
Abstract
Alopecia is known as a symptom of acute radiation, yet little is known concerning the mechanism of this phenomenon and the alteration of hair protein profiles. To examine this, 6-week-old male C57/BL6 mice were exposed to 6 Gy of X-ray irradiation, which caused acute alopecia. Their hair and skin were collected, and hair proteins were analyzed with liquid chromatography/electrospray-ionization mass spectrometry and immunohistochemistry. No change was observed in the composition of major hair keratins, such as Krt81, Krt83 and Krt86. However, cytokeratin Krt15 and CD34, which are known as hair follicle stem cell markers, were decreased in alopecic mice. Cytokeratin Krt5, which is known as a marker for basal and undifferentiated keratinocytes, was increased in the epidermis of alopecic mice. These findings suggest that radiation damages hair stem cells and the differentiation of keratinocytes in the epidermis. For the evaluation of radiation exposure, chromosomal aberration is considered to be the gold standard, yet our results suggest that Krt5 may be a novel biological marker for acute radiation symptoms.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.
| | | | | | | | | |
Collapse
|
37
|
Strnad P, Usachov V, Debes C, Gräter F, Parry DAD, Omary MB. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. J Cell Sci 2012; 124:4221-32. [PMID: 22215855 DOI: 10.1242/jcs.089516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin 'mutation hotspot' residues and their wild-type counterparts.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Stabilization of vimentin coil2 fragment via an engineered disulfide. J Struct Biol 2012; 177:46-53. [DOI: 10.1016/j.jsb.2011.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/21/2022]
|
39
|
Natsuga K, Nishie W, Smith BJ, Shinkuma S, Smith TA, Parry DAD, Oiso N, Kawada A, Yoneda K, Akiyama M, Shimizu H. Consequences of two different amino-acid substitutions at the same codon in KRT14 indicate definitive roles of structural distortion in epidermolysis bullosa simplex pathogenesis. J Invest Dermatol 2011; 131:1869-76. [PMID: 21593775 DOI: 10.1038/jid.2011.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Numerous inherited diseases develop due to missense mutations, leading to an amino-acid substitution. Whether an amino-acid change is pathogenic depends on the level of deleterious effects caused by the amino-acid alteration. We show an example of different structural and phenotypic consequences caused by two individual amino-acid changes at the same position. Epidermolysis bullosa simplex (EBS) is a genodermatosis resulting from KRT5 or KRT14 mutations. Mutation analysis of an EBS family revealed that affected individuals were heterozygous for a, to our knowledge, previously unreported mutation of c.1237G>C (p.Ala413Pro) in KRT14. Interestingly, 2 of 100 unrelated normal controls were heterozygous, and 1 of the 100 was homozygous for a different mutation in this position, c.1237G>A (p.Ala413Thr). In silico modeling of the protein demonstrated deleterious structural effects from proline substitution but not from threonine substitution. In vitro transfection studies revealed a significantly larger number of keratin-clumped cells in HaCaT cells transfected with mutant KRT14 complementary DNA (cDNA) harboring p.Ala413Pro than those transfected with wild-type KRT14 cDNA or mutant KRT14 cDNA harboring p.Ala413Thr. These results show that changes in two distinct amino acids at a locus are destined to elicit different phenotypes due to the degree of structural distortion resulting from the amino-acid alterations.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gandolfi B, Outerbridge CA, Beresford LG, Myers JA, Pimentel M, Alhaddad H, Grahn JC, Grahn RA, Lyons LA. The naked truth: Sphynx and Devon Rex cat breed mutations in KRT71. Mamm Genome 2010; 21:509-15. [PMID: 20953787 PMCID: PMC2974189 DOI: 10.1007/s00335-010-9290-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/13/2010] [Indexed: 01/25/2023]
Abstract
Hair is a unique structure, characteristic of mammals, controlling body homeostasis, as well as cell and tissue integration. Previous studies in dog, mouse, and rat have identified polymorphisms in Keratin 71 (KRT71) as responsible for the curly/wavy phenotypes. The coding sequence and the 3′ UTR of KRT71 were directly sequenced in randomly bred and pedigreed domestic cats with different pelage mutations, including hairless varieties. A SNP altering a splice site was identified in the Sphynx breed and suggested to be the hairless (hr) allele, and a complex sequence alteration, also causing a splice variation, was identified in the Devon Rex breed and suggested to be the curly (re) allele. The polymorphisms were genotyped in approximately 200 cats. All the Devon Rex were homozygous for the complex alterations and most of the Sphynx were either homozygous for the hr allele or compound heterozygotes with the Devon-associated re allele, suggesting that the phenotypes are a result of the identified SNPs. Two Sphynx carrying the proposed hr mutation did not carry the Devon-associated alteration. No other causative mutations for eight different rexoid and hairless cat phenotypes were identified. The allelic series KRT71+ > KRT71hr > KRT71re is suggested.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Catherine A. Outerbridge
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California—Davis, Davis, CA 95616 USA
| | - Leslie G. Beresford
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Jeffrey A. Myers
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Monica Pimentel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Jennifer C. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Robert A. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| |
Collapse
|
41
|
Maier CJ, Maier RH, Hintner H, Bauer JW, Önder K. Coupled Yeast 2-Hybrid–Mammalian 2-Hybrid Reading-Frame-Independent and Site-Specific Recombinational Cloning Vector System. Assay Drug Dev Technol 2010; 8:625-9. [DOI: 10.1089/adt.2009.0266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christina J. Maier
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | - Richard H. Maier
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | - Helmut Hintner
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | - Johann W. Bauer
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | - Kamil Önder
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
42
|
Clausen I, Duncker GI, Grünauer-Kloevekorn C. Identification of a novel mutation in the cornea specific keratin 12 gene causing Meesmann's corneal dystrophy in a German family. Mol Vis 2010; 16:954-60. [PMID: 20577595 PMCID: PMC2890559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 05/20/2010] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To report a novel missense mutation of the cornea specific keratin 12 (KRT12) gene in two generations of a German family diagnosed with Meesmann;s corneal dystrophy. METHODS Ophthalmologic examination of the proband and sequencing of keratin 3 (KRT3) and KRT12 of the proband and three other family members were performed. Restriction enzyme analysis was used to confirm the detected mutation in affected individuals of the family. RESULTS Slit-lamp biomicroscopy of the proband revealed multiple intraepithelial microcysts comparable to a Meesmann dystrophy phenotype. A novel heterozygous A-->G transversion at the first nucleotide position of codon 129 (ATG>GTG, M129V) in exon 1 of KRT12 was detected in the proband, her two affected sons but not in her unaffected husband or 50 control individuals. CONCLUSIONS We have identified a novel missense mutation within the highly conserved helix-initiation motif of KRT12 causing Meesmann;s corneal dystrophy in a German family.
Collapse
|
43
|
Jeřábková B, Marek J, Bučková H, Kopečková L, Veselý K, Valíčková J, Fajkus J, Fajkusová L. Keratin mutations in patients with epidermolysis bullosa simplex: correlations between phenotype severity and disturbance of intermediate filament molecular structure. Br J Dermatol 2010; 162:1004-13. [DOI: 10.1111/j.1365-2133.2009.09626.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Kuramoto T, Hirano R, Kuwamura M, Serikawa T. Identification of the rat Rex mutation as a 7-bp deletion at splicing acceptor site of the Krt71 gene. J Vet Med Sci 2010; 72:909-12. [PMID: 20179389 DOI: 10.1292/jvms.09-0554] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat autosomal dominant Rex (Re) mutation on chromosome 7 causes curly hair in Re/+ and hair loss in Re/Re rats. Histopathologically, the Re/+ rat showed dilatation of the hair follicle and hairs with irregularly-coated cuticles, and the Re/Re rat showed more severe effects. We identified Re as a 7-bp deletion at the splicing acceptor site of intron 1 of the keratin 71 (Krt71) gene, which is located within the Re critical chromosomal region and plays an important role in hair formation. The deletion provoked a 6-amino acid in-frame deletion (p.Val149_Gln154del) in the alpha-helical rod domain of KRT71 protein. Identification of the Re mutation (Krt71(Re)) enables us to further understand the biological function of KRT71.
Collapse
|
45
|
Jeřábková B, Marek J, Bučková H, Kopečková L, Veselý K, Valíčková J, Fajkus J, Fajkusová L. Keratin mutations in patients with epidermolysis bullosa simplex: correlations between phenotype severity and disturbance of intermediate filament molecular structure. Br J Dermatol 2010. [DOI: 10.1111/j.1365-2133.2010.09626.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol 2009; 10:96. [PMID: 20035625 PMCID: PMC2804594 DOI: 10.1186/1471-2121-10-96] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 12/26/2009] [Indexed: 01/13/2023] Open
Abstract
Background Oncogenesis in breast cancer is often associated with excess estrogen receptor α(ERα) activation and overexpression of its coactivators. LRP16 is both an ERα target gene and an ERα coactivator, and plays a crucial role in ERα activation and proliferation of MCF-7 breast cancer cells. However, the regulation of the functional availability of this coactivator protein is not yet clear. Results Yeast two-hybrid screening, GST pulldown and coimmunoprecipitation (CoIP) identified the cytoplasmic intermediate filament protein keratin 18 (K18) as a novel LRP16-interacting protein. Fluorescence analysis revealed that GFP-tagged LRP16 was primarily localized in the nuclei of mock-transfected MCF-7 cells but was predominantly present in the cytoplasm of K18-transfected cells. Immunoblotting analysis demonstrated that the amount of cytoplasmic LRP16 was markedly increased in cells overexpressing K18 whereas nuclear levels were depressed. Conversely, knockdown of endogenous K18 expression in MCF-7 cells significantly decreased the cytoplasmic levels of LRP16 and increased levels in the nucleus. CoIP failed to detect any interaction between K18 and ERα, but ectopic expression of K18 in MCF-7 cells significantly blunted the association of LRP16 with ERα, attenuated ERα-activated reporter gene activity, and decreased estrogen-stimulated target gene expression by inhibiting ERα recruitment to DNA. Furthermore, BrdU incorporation assays revealed that K18 overexpression blunted the estrogen-stimulated increase of S-phase entry of MCF-7 cells. By contrast, knockdown of K18 in MCF-7 cells significantly increased ERα-mediated signaling and promoted cell cycle progression. Conclusions K18 can effectively associate with and sequester LRP16 in the cytoplasm, thus attenuating the final output of ERα-mediated signaling and estrogen-stimulated cell cycle progression of MCF-7 breast cancer cells. Loss of K18 increases the functional availability of LRP16 to ERα and promotes the proliferation of ERα-positive breast tumor cells. K18 plays an important functional role in regulating the ERα signaling pathway.
Collapse
|
47
|
Trost A, Costa I, Jakab M, Ritter M, Haim M, Hintner H, Bauer JW, Önder K. K16 is a further new candidate for homotypic intermediate filament protein interactions. Exp Dermatol 2009; 19:e241-50. [DOI: 10.1111/j.1600-0625.2010.01071.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Herrmann H, Strelkov SV, Burkhard P, Aebi U. Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 2009; 119:1772-83. [PMID: 19587452 DOI: 10.1172/jci38214] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intermediate filaments (IFs) are major constituents of the cytoskeleton and nuclear boundary in animal cells. They are of prime importance for the functional organization of structural elements. Depending on the cell type, morphologically similar but biochemically distinct proteins form highly viscoelastic filament networks with multiple nanomechanical functions. Besides their primary role in cell plasticity and their established function as cellular stress absorbers, recently discovered gene defects have elucidated that structural alterations of IFs can affect their involvement both in signaling and in controlling gene regulatory networks. Here, we highlight the basic structural and functional properties of IFs and derive a concept of how mutations may affect cellular architecture and thereby tissue construction and physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Group Functional Architecture of the Cell, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
49
|
Coulombe PA, Kerns ML, Fuchs E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J Clin Invest 2009; 119:1784-93. [PMID: 19587453 PMCID: PMC2701872 DOI: 10.1172/jci38177] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidermolysis bullosa (EB) simplex is a rare genetic condition typified by superficial bullous lesions that result from frictional trauma to the skin. Most cases are due to dominantly acting mutations in either keratin 14 (K14) or K5, the type I and II intermediate filament (IF) proteins tasked with forming a pancytoplasmic network of 10-nm filaments in basal keratinocytes of the epidermis and in other stratified epithelia. Defects in K5/K14 filament network architecture cause basal keratinocytes to become fragile and account for their trauma-induced rupture. Here we review how laboratory investigations centered on keratin biology have deepened our understanding of the etiology and pathophysiology of EB simplex and revealed novel avenues for its therapy.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
50
|
Di Bella MA, Carbone MC, D'Amato M, Alessandro R, De Leo G. The identification and localization of two intermediate filament proteins in the tunic of Styela plicata (Tunicata, Styelidae). Tissue Cell 2009; 41:381-9. [PMID: 19524277 DOI: 10.1016/j.tice.2009.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/10/2009] [Indexed: 11/26/2022]
Abstract
The intermediate filament (IF) proteins Styela C and Styela D from the tunicate Styela (Urochordata) are co-expressed in all epidermal cells and they are thought to behave as type I and type II keratins. These two IF proteins, Styela C and Styela D, were identified in immunoblots of proteins isolated from the tunic of Styela plicata. The occurrence and distribution of these proteins within the tunic of this ascidian was examined by means of immunofluorescence and immunoperoxidase techniques, using anti-Styela C and anti-Styela D antibodies. In addition, immuno-electron microscopy of the tunic showed that the two proteins are located in the cuticle layer and in the tunic matrix. These results represent the first data about the presence of IF proteins in the tunic of adult ascidian S. plicata. The possible involvement of these IF proteins in reinforcing the integrity of the tunic, that represents the interface between the animal body and the external environment, is discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Dipartimento di Biopatologia e Metodologie Biomediche, Sezione di Biologia e Genetica, Università degli Studi di Palermo, Italy.
| | | | | | | | | |
Collapse
|