1
|
Chen L, Tang Y, Lang JJ, Lin Y, Yu Z, Li X, Zheng X, Mi P, Lv Y, Lin YW. Design, synthesis and evaluation of C-5 substituted pyrrolopyridine derivatives as potent Janus Kinase 1 inhibitors with excellent selectivity. Eur J Med Chem 2024; 267:116210. [PMID: 38359535 DOI: 10.1016/j.ejmech.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The development of highly selective Janus Kinase 1 (JAK1) inhibitors is crucial for improving efficacy and minimizing adverse effects in the clinical treatment of autoimmune diseases. In a prior study, we designed a series of C-5 4-pyrazol substituted pyrrolopyridine derivatives that demonstrated significant potency against JAK1, with a 10 ∼ 20-fold selectivity over Janus Kinase 2 (JAK2). Building on this foundation, we adopted orthogonal strategy by modifying the C-5 position with 3-pyrazol/4-pyrazol/3-pyrrol groups and tail with substituted benzyl groups on the pyrrolopyridine head to enhance both potency and selectivity. In this endeavor, we have identified several compounds that exhibit excellent potency and selectivity for JAK1. Notably, compounds 12b and 12e, which combined 4-pyrazol group at C-5 site and meta-substituted benzyl tails, displayed IC50 value with 2.4/2.2 nM and high 352-/253-fold selectivity for JAK1 over JAK2 in enzyme assays. Additionally, both compounds showed good JAK1-selective in Ba/F3-TEL-JAK1/2 cell-based assays. These findings mark a substantial improvement, as these compounds are 10-fold more potent and over 10-fold more selective than the best compound identified in our previous study. The noteworthy potency and selectivity properties of compounds 12b and 12e suggest their potential utility in furthering the development of drugs for autoimmune diseases.
Collapse
Affiliation(s)
- Limei Chen
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Yahua Tang
- The Affiliated Nanhua Hospital, Department of Pharmacy, Institute of Clinical Pharmacy, Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Jia-Jia Lang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Yuqing Lin
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhixin Yu
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinhao Li
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, 410004, China
| | - Pengbing Mi
- Department of Pharmacy, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan, 421001, China.
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lang JJ, Lv Y, Kobe B, Chen H, Tan Y, Chen L, Wang X, Mi P, Zheng X, Lin YW. Discovery of C-5 Pyrazole-Substituted Pyrrolopyridine Derivatives as Potent and Selective Inhibitors for Janus Kinase 1. J Med Chem 2023; 66:6725-6742. [PMID: 37163463 DOI: 10.1021/acs.jmedchem.3c00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Developing selective inhibitors for Janus kinase 1 (JAK1) is a significant focus for improving the efficacy and alleviating the adverse effects in treating immune-inflammatory diseases. Herein, we report the discovery of a series of C-5 pyrazole-modified pyrrolopyrimidine derivatives as JAK1-selective inhibitors. The potential hydrogen bond between the pyrazole group and E966 in JAK1 is the key point that enhances JAK1 selectivity. These compounds exhibit 10- to 20-fold JAK1 selectivity over JAK2 in enzyme assays. Compound 12b also exhibits excellent JAK1 selectivity in Ba/F3-TEL-JAK cellular assays. Metabolism studies and the results of the hair growth model in mice indicate that compound 12b may be a viable lead compound for the development of highly JAK1-selective inhibitors for immune and inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Jia Lang
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hengyang Medical College, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hongfei Chen
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Tan
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Limei Chen
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Pengbing Mi
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha 410004, China
| | - Ying-Wu Lin
- Hengyang Medical College, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
6
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1015] [Impact Index Per Article: 253.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
7
|
Wilkinson B, Krishnaswami S, van Vollenhoven RF. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 2014; 371:1163-4. [PMID: 25229926 DOI: 10.1056/nejmc1408607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Genetic deletion of Mst1 alters T cell function and protects against autoimmunity. PLoS One 2014; 9:e98151. [PMID: 24852423 PMCID: PMC4031148 DOI: 10.1371/journal.pone.0098151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.
Collapse
|
9
|
Pharmacological control of receptor of advanced glycation end-products and its biological effects in psoriasis. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2013; 9:112-22. [PMID: 24170986 PMCID: PMC3809352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/27/2013] [Indexed: 11/11/2022]
Abstract
Receptor for advanced glycation end-products is implicated in a development of chronic inflammatory response. Aim of this paper is to provide a review on commercial and experimental medicines that can interfere with RAGE and signaling through RAGE. We searched three bibliographical databases (PubMed, Web of Science and MEDLINE) for the publications from 2005 to March 2012 and identified 5 major groups of agents that can interfere with RAGE biological effects. In the first part of this paper, we discuss AGE crosslink breakers. These chemicals destroy advanced glycation end products (AGEs) that are crosslinked to the extracellular matrix proteins and can interact with RAGE as ligands. Then, we describe two non-conventional agents SAGEs and KIOM-79 that abolish certain biological effects of RAGE and have a strong anti-inflammatory potential. In the third part, we evaluate the inhibitors of the signaling cascades that underlie RAGE. Particularly, we discuss two groups of kinase inhibitors tyrphostins and the inhibitors of JAK kinases. Considering RAGE as a potential master regulator of processes that are crucial for the pathogenesis of psoriasis, we propose that these medicins may help in controlling the disease by abolishing the chronic inflammation in skin lesions.
Collapse
|
10
|
Abstract
Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathways play crucial roles in lymphopoiesis. In particular, JAK3 has unique functions in the lymphoid system such that JAK3 ablation results in phenotypes resembling severe combined immunodeficiency syndrome. This review focuses on the biochemistry, immunological functions, and clinical significance of JAK3. Compared with other members of the JAK family, the biochemical properties of JAK3 are relatively less well characterized and thus largely inferred from studies of JAK2. Furthermore, new findings concerning the cross-talks between Notch and JAK signaling pathways through ubiquitin-mediated protein degradation are discussed in more detail.
Collapse
Affiliation(s)
- Wei Wu
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA
| | | |
Collapse
|
11
|
Xiao S, Manley NR. Impaired thymic selection and abnormal antigen-specific T cell responses in Foxn1(Δ/Δ) mutant mice. PLoS One 2010; 5:e15396. [PMID: 21079757 PMCID: PMC2973975 DOI: 10.1371/journal.pone.0015396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/09/2010] [Indexed: 01/14/2023] Open
Abstract
Background Foxn1Δ/Δ mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells that develop from an atypical progenitor population. In the current study, we tested the effects of these defects on thymic selection. Methodology/Principal Findings We used Foxn1Δ/Δ; DO11 Tg and Foxn1Δ/Δ; OT1 Tg mice as positive selection and Foxn1Δ/Δ; MHCII I-E mice as negative selection models. We also used an in vivo system of antigen-specific reactivity to test the function of peripheral T cells. Our data show that the capacity for positive and negative selection of both CD4 and CD8 SP thymocytes was reduced in Foxn1Δ/Δ mutants compared to Foxn1+/Δ control mice. These defects were associated with reduction of both MHC Class I and Class II expression, although the resulting peripheral T cells have a broad TCR Vβ repertoire. In this deficient thymic environment, immature CD4 and CD8 SP thymocytes emigrate from the thymus into the periphery. These T cells had an incompletely activated profile under stimulation of the TCR signal in vitro, and were either hypersensitive or hyporesponsive to antigen-specific stimulation in vivo. These cell-autonomous defects were compounded by the hypocellular peripheral environment caused by low thymic output. Conclusions/Significance These data show that a primary defect in the thymic microenvironment can cause both direct defects in selection which can in turn cause indirect effects on the periphery, exacerbating functional defects in T cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Female
- Flow Cytometry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Coverdell Center, University of Georgia, Athens, Georgia, United States of America.
| | | |
Collapse
|
12
|
Abstract
Although the role of Jak3 in lymphoid development has been well-characterized, increasing evidence demonstrates that activation of the Jak3 pathway plays an important role in myeloid differentiation as well. Overexpression of Jak3 in murine myeloid 32Dcl3 cells has been shown to result in an acceleration of granulocytic differentiation induced by G-CSF. Early onset of G1 cell cycle arrest along with upregulation of the cyclin dependent kinase inhibitor p27Kip1 and downregulation of Cdk2, Cdk4, Cdk6, and Cyclin E has also been observed in Jak3-overexpressing 32Dcl3 cells. In addition, Jak3 overexpression in normal mouse bone marrow cells results in accelerated granulocytic and monocytic differentiation in response to GM-CSF, while pharmacological inhibition of Jak3 results in a block to GM-CSF-induced colony formation in normal mouse bone marrow cells. Jak3 is unique among the members of the Jak kinase family in that it is inducibly expressed and is a target for regulation at the level of transcription. Recent studies have demonstrated that upregulation of Jak3 during myeloid differentiation is achieved through the cooperative action of Sp1 and STAT3, consistent with evidence indicative of a crucial role for STAT3 in myeloid differentiation. These results suggest that cytokine-inducible activation of Jak3 plays a critical role in integrating the processes of growth arrest and differentiation of myeloid cells.
Collapse
Affiliation(s)
- James K Mangan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadephia, PA 19140, USA
| | | |
Collapse
|
13
|
|
14
|
Abstract
The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jaks in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical disorders, which are also evident in mouse models. A striking phenotype associated with inactivating Jak3 mutations is severe combined immunodeficiency syndrome, whereas mutation of Tyk2 results in another primary immunodeficiency termed autosomal recessive hyperimmunoglobulin E syndrome. By contrast, complete deletion of Jak1 or Jak2 in the mouse are not compatible with life and, unsurprisingly, do not have counterparts in human disease. However, activating mutations of each of the Jaks are found in association with malignant transformation, the most common being gain-of-function mutations of Jak2 in polycythemia vera and other myeloproliferative disorders. Our existing knowledge on Jak signaling pathways and fundamental work on their biochemical structure and intracellular interactions allow us to develop new strategies for controlling autoimmune diseases or malignancies by developing selective Jak inhibitors, which are now coming into clinical use. Despite the fact that Jaks were discovered only a little more than a decade ago, at the time of writing there are 20 clinical trials underway testing the safety and efficacy of Jak inhibitors.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
15
|
Awasthi A, Samarakoon A, Dai X, Wen R, Wang D, Malarkannan S. Deletion of PI3K-p85alpha gene impairs lineage commitment, terminal maturation, cytokine generation and cytotoxicity of NK cells. Genes Immun 2008; 9:522-35. [PMID: 18548087 DOI: 10.1038/gene.2008.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Class IA phosphotidylinositol-3-kinases (PI3Ks) are a family of p85/p110 heterodimeric lipid kinases that are important in regulating signaling events in B and T cells. However, their role in natural killer (NK) cells is not understood. Here, using mice that lack the regulatory p85alpha subunit and its alternatively spliced variants p55alpha/p50alpha (collectively termed as p85alpha(-/-)), we defined the role of PI3K in NK cell development and function. p85alpha(-/-) mice had impaired lineage commitment leading to reduced NK cellularity in the bone marrow and liver. p85alpha(-/-) NK cells showed a defective Ly49 subset specification and a decreased expression of CD43. Lack of p85alpha severely reduced the NK-mediated cytotoxicity against tumor cells representing 'induced-self' and 'missing-self'. More importantly, NKG2D and NK1.1 receptor-mediated cytokine and chemokine generation was significantly compromised in p85alpha(-/-) NK cells. These results reveal a previously unrecognized role of p85alpha in the development, terminal maturation, cytokine/chemokine generation and tumor clearance of NK cells.
Collapse
Affiliation(s)
- A Awasthi
- Laboratory of Molecular Immunology, Blood Research Institute, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
16
|
Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, Durum SK. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 2005; 16:513-33. [PMID: 15996891 DOI: 10.1016/j.cytogfr.2005.05.004] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-7 is essential for the development and survival of T lymphocytes. This review is primarily from the perspective of the cell biology of the responding T cell. Beginning with IL-7 receptor structure and regulation, the major signaling pathways appear to be via PI3K and Stat5, although the requirement for either has yet to be verified by published knockout experiments. The proliferation pathway induced by IL-7 differs from conventional growth factors and is primarily through posttranslational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating phosphatase. The survival function of IL-7 is largely through maintaining a favorable balance of bcl-2 family members including Bcl-2 itself and Mcl-1 on the positive side, and Bax, Bad and Bim on the negative side. There are also some remarkable metabolic effects of IL-7 withdrawal. Studies of IL-7 receptor signaling have yet to turn up unique pathways, despite the unique requirement for IL-7 in T cell biology. There remain significant questions regarding IL-7 production and the major producing cells have yet to be fully characterized.
Collapse
Affiliation(s)
- Qiong Jiang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Podder H, Kahan BD. Janus kinase 3: a novel target for selective transplant immunosupression. Expert Opin Ther Targets 2005; 8:613-29. [PMID: 15584866 DOI: 10.1517/14728222.8.6.613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Existing immunosuppressants inhibit lymphocyte activation and T cell cytokine signal transduction pathways, reducing the rate of acute rejection episodes to < 10%. However, the widespread tissue distribution of their molecular targets engenders pleiotropic toxicities. One strategy to address this problem seeks to identify compounds that selectively inhibit a target restricted in distribution to the lymphoid system. Janus kinase (Jak) 3 is such a molecule; it mediates signal transduction via the gamma common chain of lymphokine surface receptors. Disruption of this lymphoid-restricted enzyme would not be predicted to produce collateral damage in other organ systems. Development of selective Jak3 inhibitors has been difficult due to crossreactivity with its homologue, Jak2. In contrast to all other putative antagonists, which are discussed in detail herein, one Jak3 inhibitor, NC1153, shows at least 40-fold greater selective inhibition for Jak3 than for Jak2, is robustly synergistic with calcineurin antagonists, and, either alone or in combination with cyclosporin, produces no adverse effects in rodents preconditioned to be at heightened risk for nephrotoxicity, bone marrow suppression, or altered lipid metabolism.
Collapse
Affiliation(s)
- Hemangshu Podder
- The University of Texas Medical School at Houston, Division of Immunology and Organ Transplantation, 6431 Fannin Street, Suite 6.240, Houston, TX 77030, USA
| | | |
Collapse
|
18
|
Saemann MD, Zeyda M, Stulnig TM, Bohmig GA, Wekerle T, Horl WH, Zlabinger GJ. Janus kinase-3 (JAK3) inhibition: a novel immunosuppressive option for allogeneic transplantation. Transpl Int 2004. [DOI: 10.1111/j.1432-2277.2004.tb00476.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Säemann MD, Zeyda M, Stulnig TM, Böhmig GA, Wekerle T, Hörl WH, Zlabinger GJ. Janus kinase-3 (JAK3) inhibition: a novel immunosuppressive option for allogeneic transplantation. Transpl Int 2004; 17:481-9. [PMID: 15368094 DOI: 10.1007/s00147-004-0756-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2003] [Revised: 06/24/2004] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Current immunosuppressive therapy in clinical organ transplantation is based on drugs that suppress various functions of immunocompetent cells but still affect cells and organ compartments other than the immune system. Hence, these drugs have considerable side effects which lead to increased morbidity and reduced life-quality of transplant recipients. A major step forward in the rationale design of clinical immunosuppression resides in the elucidation of molecular targets that play a critical role specifically within the immune system. Recently, Janus kinase 3 (JAK3) has been identified as such a molecule. Genetic absence or ablation of this tyrosine kinase is associated with defective T-cell immunity that results in severe combined immunodeficiency (SCID) without apparent changes in other organ systems. Furthermore, pharmacological inhibition has significantly prolonged allograft survival in several experimental models of organ transplantation. The present review provides an overview of the emerging role of JAK3 in the immune system and the development of JAK3-inhibiting drugs. The potential clinical application of JAK3 inhibitors in organ transplantations is discussed in the light of a recent series of successful kidney transplantations in non-human primates immunosuppressed solely with a novel JAK3 inhibitor.
Collapse
Affiliation(s)
- Marcus D Säemann
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kim HJ, Hart J, Knatz N, Hall MW, Wewers MD. Janus kinase 3 down-regulates lipopolysaccharide-induced IL-1 beta-converting enzyme activation by autocrine IL-10. THE JOURNAL OF IMMUNOLOGY 2004; 172:4948-55. [PMID: 15067075 DOI: 10.4049/jimmunol.172.8.4948] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ProIL-1 beta processing by IL-1 beta-converting enzyme (ICE) and the subsequent release of mature IL-1 beta are highly regulated events in the monocyte/macrophage response to pathogens. This process occurs in a controlled way through the activation of the constitutively expressed 45-kDa ICE precursor (proICE). To characterize the signaling pathways involved in ICE regulation in human monocytes/macrophages, we analyzed ICE activation in the presence of specific inhibitors of classic signaling pathways. Although LPS-induced ICE activity was not significantly affected by interruption of extracellular signal-regulated kinase, p38 kinase, or phosphoinositol 3-kinase, Janus kinase 3 (JAK3) inhibition produced a significant dose-dependent enhancement of LPS-induced ICE activity. Support for the inhibitory role of JAK3 was shown by the fact that IL-4 (which uses JAK1 and JAK3 signaling) suppressed LPS-induced ICE activity and by the finding that JAK3 knockout macrophages have increased LPS-induced ICE activation. To understand how JAK3 down-regulates LPS-induced ICE activity in monocytes, we hypothesized that JAK3 signaling enhances IL-10 production. In support of this model we show that LPS-induced IL-10 expression was synchronous with ICE deactivation, IL-4 induced the release of IL-10, exogenous IL-10 suppressed LPS-induced ICE activity, a neutralizing IL-10 Ab increased LPS-induced ICE activity, and, finally, JAK3 knockout macrophages displayed significantly reduced LPS-induced IL-10 production. These findings support a model in which JAK3 signaling enhances IL-10 production leading to down-regulation of ICE activation and suppression of IL-1 beta processing and release.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Division of Pulmonary and Critical Care Medicine, and Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
21
|
Hofmann SR, Lam AQ, Frank S, Zhou YJ, Ramos HL, Kanno Y, Agnello D, Youle RJ, O'Shea JJ. Jak3-independent trafficking of the common gamma chain receptor subunit: chaperone function of Jaks revisited. Mol Cell Biol 2004; 24:5039-49. [PMID: 15143194 PMCID: PMC416416 DOI: 10.1128/mcb.24.11.5039-5049.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Janus kinases (Jaks) play an essential role in cytokine signaling and have been reported to regulate plasma membrane expression of their cognate receptors. In this study, we examined whether Jak3 and the common gamma chain (gamma(c)) reciprocally regulate their plasma membrane expression. In contrast to interleukin-2Ralpha, gamma(c) localized poorly to the plasma membrane and accumulated in endosomal-lysosomal compartments. However, gamma(c) was expressed at comparable levels on the surface of cells lacking Jak3, and plasma membrane turnover of gamma(c) was independent of Jak3. Nonetheless, overexpression of Jak3 enhanced accumulation of gamma(c) at the plasma membrane. Without gamma(c), Jak3 localized in the cytosol, whereas in the presence of the receptor, it colocalized with gamma(c) in endosomes and at the plasma membrane. Although the Jak FERM domain is necessary and sufficient for receptor binding, the requirement for full-length Jak3 in gamma(c) membrane trafficking was remarkably stringent; using truncation and deletion mutants, we showed that the entire Jak3 molecule was required, although kinase activity was not. Thus, unlike other cytokine receptors, gamma(c) does not require Jak3 for receptor membrane expression. However, full-length Jak3 is required for normal trafficking of this cytokine receptor/Jak pair, a finding that has important structural and clinical implications.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, 10 Center Dr., Bldg. 10, Rm. 9N256, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mangan JK, Rane SG, Kang AD, Amanullah A, Wong BC, Reddy EP. Mechanisms associated with IL-6-induced up-regulation of Jak3 and its role in monocytic differentiation. Blood 2004; 103:4093-101. [PMID: 14976041 DOI: 10.1182/blood-2003-06-2165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here that Janus kinase 3 (Jak3) is a primary response gene for interleukin-6 (IL-6) in macrophage differentiation, and ectopic overexpression of Jak3 accelerates monocytic differentiation of normal mouse bone marrow cells stimulated with cytokines. Furthermore, we show that incubation of normal mouse bone marrow cells with a JAK3-specific inhibitor results in profound inhibition of myeloid colony formation in response to granulocyte-macrophage colony-stimulating factor or the combination of stem cell factor, IL-3, and IL-6. In addition, mutagenesis of the Jak3 promoter has revealed that Sp1 binding sites within a -67 to -85 element and a signal transducer and activator of transcription (Stat) binding site at position -44 to -53 are critical for activation of Jak3 transcription in murine M1 myeloid leukemia cells stimulated with IL-6. Electrophoretic mobility shift assay (EMSA) analysis has demonstrated that Sp1 can bind to the -67 to -85 element and Stat3 can bind to the -44 to -53 STAT site in IL-6-stimulated M1 cells. Additionally, ectopic overexpression of Stat3 enhanced Jak3 promoter activity in M1 cells. This mechanism of activation of the murine Jak3 promoter in myeloid cells is distinct from a recently reported mechanism of activation of the human JAK3 promoter in activated T cells.
Collapse
Affiliation(s)
- James K Mangan
- Temple University School of Medicine, Fels Institute for Cancer Research and Molecular Biology, 3307 N Broad St, AHP Room 154, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
23
|
Säemann MD, Zeyda M, Diakos C, Szekeres A, Böhmig GA, Kelemen P, Parolini O, Stockinger H, Prieschl EE, Stulnig TM, Baumruker T, Zlabinger GJ. Suppression of early T-cell-receptor-triggered cellular activation by the Janus kinase 3 inhibitor WHI-P-154. Transplantation 2003; 75:1864-72. [PMID: 12811247 DOI: 10.1097/01.tp.0000065738.58742.a9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Therapeutic targeting of Janus kinase 3 (JAK3) has received particular attention, because it is associated with the common gamma signaling of cytokine receptors and thus vitally influences T-cell growth and survival. Recent evidence, however, indicates a critical role for JAK3 in signaling linked to the T-cell antigen receptor. METHODS In this study we investigated whether targeting JAK3 with a rationally designed inhibitor affects early T-cell activation events. T cells were stimulated by CD3 and CD28 cross-linking, and interleukin (IL)-2 production, activation marker expression, increase of free intracellular Ca2+ concentration, activation of the extracellular-related kinase, and nuclear translocation of transcription factors were evaluated. RESULTS We found that JAK3 inhibitor treatment dramatically impaired T-cell-receptor (TCR)-induced IL-2 production, surface activation marker expression (CD69, CD154), and homotypic T-cell aggregation. Accordingly, mRNA production of IL-2, interferon-gamma, and IL-10 was profoundly inhibited. Molecular analysis revealed that TCR-triggered phosphorylation of phospholipase C-gamma1, increase in cytoplasmic Ca2+ concentration, and activation of extracellular-related kinase were markedly reduced by the JAK3 inhibitor, resulting in substantially decreased DNA binding of nuclear factor of activated T cells and alkaline phosphatase-1 and subsequent IL-2 promoter activation. Remarkably, on TCR-independent stimulation, IL-2 production, CD69 expression, and blast formation were completely insensitive to JAK3 inhibitor treatment. CONCLUSION These data indicate that pharmacologic targeting of JAK3 uncouples early TCR-triggered signaling from essential downstream events, which may have important implications for the use of such compounds in T-cell-mediated disorders such as allograft rejection or graft-versus-host disease.
Collapse
|
24
|
Doan LL, Kitay MK, Yu Q, Singer A, Herblot S, Hoang T, Bear SE, Morse HC, Tsichlis PN, Grimes HL. Growth factor independence-1B expression leads to defects in T cell activation, IL-7 receptor alpha expression, and T cell lineage commitment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2356-66. [PMID: 12594258 DOI: 10.4049/jimmunol.170.5.2356] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T cell differentiation in the thymus is dependent upon signaling through the TCR and is characterized by the resulting changes in expression patterns of CD4 and CD8 surface coreceptor molecules. Although recent studies have characterized the effects of proximal TCR signaling on T cell differentiation, the downstream integration of these signals remains largely unknown. The growth factor independence-1 (GFI1) and GFI1B transcriptional repressors may regulate cytokine signaling pathways to affect lymphocyte growth and survival. In this study, we show that Gfi1 expression is induced upon induction of the T cell program. Gfi1B expression is low and dynamic during T cell development, but is terminated in mature thymocytes. Transgenic expression of GFI1 and GFI1B in T cells allowed us to determine the functional consequences of constitutive expression. GFI1 potentiates response to TCR stimulation and IL-2, whereas GFI1B-transgenic T cells are defective in T cell activation. Moreover, GFI1B-transgenic thymocytes display reduced expression of the late-activation marker IL-7R alpha, and a decrease in CD4(-)8(+) single-positive T cells that can be mitigated by transgenic expression of BCL2 or GFI1. These data show that GFI1 and GFI1B are functionally unique, and implicate a role for GFI1 in the integration of activation and survival signals.
Collapse
Affiliation(s)
- Loretta L Doan
- Institute for Cellular Therapeutics and Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ellery JM, Nicholls PJ. Possible mechanism for the alpha subunit of the interleukin-2 receptor (CD25) to influence interleukin-2 receptor signal transduction. Immunol Cell Biol 2002; 80:351-7. [PMID: 12121224 DOI: 10.1046/j.1440-1711.2002.01097.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptors for interleukin 2 (IL-2) and interleukin 15 (IL-15) in T cells share the IL-2R beta subunit (CD122) and gamma(C) subunit but have private alpha subunits. Despite utilizing the same receptor chains known to be necessary and sufficient to transduce IL-2 signals the two cytokines manifest different cellular effects. It is commonly held that the alpha subunit of the IL-2R (CD25) is involved solely in the generation of a high affinity receptor complex. This is questioned by the development of autoimmune diseases in instances where the expression of CD25 is absent. The timely expression of CD25 in the thymus has been linked with clonal deletion. Evidence from peripheral T cells indicates that survival signals arising from the intermediate affinity IL-2R (lacking CD25) do not require the activation of Janus kinase 3 (Jak3) but do require the presence of the membrane proximal region of the gamma(C) chain. This particular signalling pathway is not observed in the high affinity receptor complex where Jak3 is activated. Recent data point to CD25 having a surface distribution consistent with it being localized within membrane microdomains. Here we suggest that in the absence of CD25 expression, IL-2R activation occurs within the soluble membrane fraction. This membrane environment and the absence of CD25 promotes Jak3 independent signal transduction and induction of antiapoptotic mechanisms. T cell antigen receptor (TCR) signalling leads to the induction of CD25 expression, which localizes to membrane microdomains. There is a dynamic pre-association of CD25 and CD122 leading to the loose association of the heterodimer with membrane microdomains. High affinity IL-2R signalling in the context of CD25 and the microdomain environment is characterized by Jak3 activation. The relative levels of high to intermediate affinity receptor signalling determines whether a cell proliferates or undergoes activation induced cell death dependent upon cell status.
Collapse
Affiliation(s)
- Jonathan M Ellery
- Department of Biosciences, University of Kent at Canterbury, Canterbury, UK
| | | |
Collapse
|
26
|
DeLuca D, Clark DR. Interleukin-7 negatively regulates the development of mature T cells in fetal thymus organ cultures. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:365-384. [PMID: 11888651 DOI: 10.1016/s0145-305x(01)00085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We added antibody specific for interleukin-7 (IL-7) to chimeric fetal thymus organ cultures (FTOC) to investigate the involvement of this cytokine at distinct stages of T cell development. We report that the neutralization of IL-7 early in fetal T cell development results in a decrease in the production of mature CD4 or CD8 ('single positive', SP) or CD4/8 negative ('double negative', DN) T cell phenotypes, as defined by their expression of CD3. This loss of T cell development was not complete, but it did include the development of gammadelta T cells. However, if IL-7 was neutralized at later stages of FTOC, the production of CD4/8 positive ('double positive', DP) T cells was increased, and if the addition of the antibody was delayed further, the production of mature SP T cells was increased. This last result could be extended to both alphabeta and gammadelta T cells. These data suggested that IL-7 played a negative regulatory role in the development of progressively mature T cells. Tissue sections of FTOC showed that IL-7 was expressed in the subcapsular region of the tissue where immature T cells reside. However, IL-7 was not detected in the medullary region where mature T cells are located. These data suggest that IL-7 not only supports the development of immature fetal T cells, but it may inhibit the development of mature T cells. The production of mature fetal T cells may, therefore, be delayed until their precursors enter the medullary microenvironment, where IL-7 production is low. In this way, T cells may be prevented from maturing until negative selection or anergy events eliminate or inactivate autoreactive clones.
Collapse
Affiliation(s)
- Dominick DeLuca
- Department of Microbiology and Immunology, The University of Arizona, LSN 648, 1501 N Cambell Ave., Tucson, AZ 85724-5049, USA.
| | | |
Collapse
|
27
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 803] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
28
|
Frucht DM, Gadina M, Jagadeesh GJ, Aksentijevich I, Takada K, Bleesing JJ, Nelson J, Muul LM, Perham G, Morgan G, Gerritsen EJ, Schumacher RF, Mella P, Veys PA, Fleisher TA, Kaminski ER, Notarangelo LD, O'Shea JJ, Candotti F. Unexpected and variable phenotypes in a family with JAK3 deficiency. Genes Immun 2001; 2:422-32. [PMID: 11781709 DOI: 10.1038/sj.gene.6363802] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 08/09/2001] [Accepted: 08/09/2001] [Indexed: 11/09/2022]
Abstract
Mutations of the Janus kinase 3 (JAK3) have been previously described to cause an autosomal recessive variant of severe combined immunodeficiency (SCID) usually characterized by the near absence of T and NK cells, but preserved numbers of B lymphocytes (T-B+SCID). We now report a family whose JAK3 mutations are associated with the persistence of circulating T cells, resulting in previously undescribed clinical presentations, ranging from a nearly unaffected 18-year-old subject to an 8-year-old sibling with a severe lymphoproliferative disorder. Both siblings were found to be compound heterozygotes for the same deleterious JAK3 mutations: an A96G initiation start site mutation, resulting in a dysfunctional, truncated protein product and a G2775(+3)C mutation in the splice donor site sequence of intron 18, resulting in a splicing defect and a predicted premature stop. These mutations were compatible with minimal amounts of functional JAK3 expression, leading to defective cytokine-dependent signaling. Activated T cells in these patients failed to express Fas ligand (FasL) in response to IL-2, which may explain the accumulation of T cells with an activated phenotype and a skewed T cell receptor (TcR) Vbeta family distribution. We speculate that residual JAK3 activity accounted for the maturation of thymocytes, but was insufficient to sustain IL-2-mediated homeostasis of peripheral T cells via Fas/FasL interactions. These data demonstrate that the clinical spectrum of JAK3 deficiency is quite broad and includes immunodeficient patients with accumulation of activated T cells, and indicate an essential role for JAK3 in the homeostasis of peripheral T cells in humans.
Collapse
Affiliation(s)
- D M Frucht
- Arthritis and Rheumatism Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bassiri H, Carding SR. A requirement for IL-2/IL-2 receptor signaling in intrathymic negative selection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5945-54. [PMID: 11342609 DOI: 10.4049/jimmunol.166.10.5945] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nature of the signals that influence thymocyte selection and determine the fate of CD4(+)8(+) (double positive) thymocytes remains unclear. Cytokines produced locally in the thymus may modulate signals delivered by TCR-MHC/peptide interactions and thereby influence the fate of double-positive thymocytes. Because the IL-2/IL-2R signaling pathway has been implicated in thymocyte and peripheral T cell survival, we investigated the possibility that IL-2/IL-2R interactions contribute to the deletion of self-reactive, Ag-specific thymocytes. By using nontransgenic and transgenic IL-2-sufficient and -deficient animal model systems, we have shown that during TCR-mediated thymocyte apoptosis, IL-2 protein is expressed in situ in the thymus, and apoptotic thymocytes up-regulate expression of IL-2RS: IL-2R(+) double-positive and CD4 single-positive thymocytes undergoing activation-induced cell death bind and internalize IL-2. IL-2-deficient thymocytes are resistant to TCR/CD3-mediated apoptotic death, which is overcome by providing exogenous IL-2 to IL-2(-/-) mice. Furthermore, disruption or blockade of IL-2/IL-2R interactions in vivo during Ag-mediated selection rescues some MHC class II-restricted thymocytes from apoptosis. Collectively, these findings provide evidence for the direct involvement of the IL-2/IL-2R signaling pathway in the deletion of Ag-specific thymocyte populations and suggest that CD4 T cell hyperplasia and autoimmunity in IL-2(-/-) mice is a consequence of ineffective deletion of self-reactive T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Apoptosis/immunology
- Clonal Deletion/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Immune Sera/pharmacology
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Interleukin-2/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Binding/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin-2/antagonists & inhibitors
- Receptors, Interleukin-2/immunology
- Receptors, Interleukin-2/metabolism
- Receptors, Interleukin-2/physiology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- H Bassiri
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA 19014, USA
| | | |
Collapse
|
30
|
Gozalo-Sanmillan S, McNally JM, Lin MY, Chambers CA, Berg LJ. Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3- and CTLA-4-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:727-30. [PMID: 11145642 DOI: 10.4049/jimmunol.166.2.727] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine receptor signaling and costimulatory receptor signaling play distinct roles in T cell activation. Nonetheless, deficiencies in either of these pathways lead to seemingly similar phenotypes of impaired T cell homeostasis. A dramatic expansion of CD4(+) peripheral T cells with an activated phenotype has been observed in both Janus kinase (Jak) 3-deficient and CTLA-4-deficient mice. Despite these similarities, the mechanisms driving T cell expansion may be distinct. To address this possibility, we examined the TCR repertoire of peripheral T cells in Jak3(-/-) and CTLA-4(-/-) mice using complementarity-determining region 3 spectratype analysis. Interestingly, a restricted and highly biased TCR repertoire was observed in the Jak3(-/-) T cells, strongly supporting a role for foreign Ag in the activation and expansion of these cells. In contrast, CTLA-4(-/-) T cells had a diverse and unbiased TCR repertoire, suggestive of a universal, Ag-independent mechanism of activation and expansion. These findings provide insight into the diverse mechanisms controlling T cell homeostasis.
Collapse
Affiliation(s)
- S Gozalo-Sanmillan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
31
|
Tomita K, Saijo K, Yamasaki S, Iida T, Nakatsu F, Arase H, Ohno H, Shirasawa T, Kuriyama T, O'Shea JJ, Saito T. Cytokine-independent Jak3 Activation upon T Cell Receptor (TCR) Stimulation through Direct Association of Jak3 and the TCR Complex. J Biol Chem 2001; 276:25378-85. [PMID: 11349123 DOI: 10.1074/jbc.m011363200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.
Collapse
Affiliation(s)
- K Tomita
- Department of Molecular Genetics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8790, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Porter BO, Malek TR. Thymic and intestinal intraepithelial T lymphocyte development are each regulated by the gammac-dependent cytokines IL-2, IL-7, and IL-15. Semin Immunol 2000; 12:465-74. [PMID: 11085179 DOI: 10.1006/smim.2000.0264] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both thymic and extrathymic T lineage development are characterized by cytokine-dependent regulation of complex proliferative, differentiative, and anti-apoptotic processes. The role of the gammac-dependent cytokines in this program has been interpreted as limited to the activity of IL-7. However, through the analysis of double knock-out mice, which lack signaling through the IL-7R and other gammac-dependent cytokines, we revealed a role for IL-15 in the production of early thymic pro-T cells. Although IL-2 does not function in the production of thymocytes, thymic restoration of IL-2R expression prevented fatal autoimmunity associated with IL-2- or IL-2R-deficient mice, suggesting that IL-2R functions non-redundantly at the level of the thymus to regulate self-reactivity. Moreover, IL-2, IL-7, and IL-15 also extend their developmental effects beyond the thymus to other sites of T lymphocyte production, including the gut. Here, their redundant and non-redundant activities are directly correlated to the development of phenotypically diverse subsets of intestinal intraepithelial lymphocytes.
Collapse
Affiliation(s)
- B O Porter
- Department of Microbiology and Immunology, University of Miami, School of Medicine, FL 33101, USA
| | | |
Collapse
|
33
|
Malek TR, Porter BO, Codias EK, Scibelli P, Yu A. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2905-14. [PMID: 10706676 DOI: 10.4049/jimmunol.164.6.2905] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The importance of IL-2Rbeta function for immune regulation is highlighted by the severe impairment in lymphoid cell function in IL-2Rbeta-deficient mice. It has been speculated that failed IL-2/IL-2R signaling in peripheral T cells causes the associated autoimmunity, imbalanced peripheral lymphoid homeostasis, and defective T cell function. This study explored the requirement for IL-2Rbeta function in mature T lymphocytes. We show that transgenic thymic expression of the IL-2R beta-chain in IL-2Rbeta-deficient mice prevents lethal autoimmunity, restores normal production of B lymphocytes, and results in a peripheral T cell compartment that is responsive to triggering through the TCR, but not the IL-2R. The dysfunction of the IL-2R is illustrated by the near complete failure of mature T cells to proliferate to IL-2 in vitro and in vivo, to differentiate into CTL, and to up-regulate IL-2Ralpha expression. These data indicate that lymphoid homeostasis is largely maintained despite a nonfunctional IL-2R in mature T lymphocytes and suggest that IL-2Rbeta provides an essential signal during thymic development to regulate self-reactivity.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/mortality
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Homeostasis/genetics
- Homeostasis/immunology
- Immune Tolerance/genetics
- Interleukin-2/administration & dosage
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/deficiency
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/physiology
- Syndrome
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- T R Malek
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
34
|
Ehrhardt RO, Lúdvíksson BR. When immunization leads to autoimmunity: chronic inflammation as a result of thymic and mucosal dysregulation in IL-2 knock-out mice. Int Rev Immunol 2000; 18:591-612. [PMID: 10672503 DOI: 10.3109/08830189909088500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- R O Ehrhardt
- Protein Design Labs, Inc., Fremont, CA 94555, USA.
| | | |
Collapse
|
35
|
Notarangelo LD, Candotti F. JAK3-DEFICIENT SEVERE COMBINED IMMUNODEFICIENCY. Radiol Clin North Am 2000. [DOI: 10.1016/s0033-8389(22)00181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
|
37
|
Nakajima H, Noguchi M, Leonard WJ. Role of the common cytokine receptor gamma chain (gammac) in thymocyte selection. IMMUNOLOGY TODAY 2000; 21:88-94. [PMID: 10652467 DOI: 10.1016/s0167-5699(99)01555-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During thymocyte development, T-cell receptor (TCR) alphabeta-mediated intracellular signals can elicit two entirely different cellular responses: positive selection (resulting in rescue from death and maturation or differentiation) and negative selection (induction of apoptosis). Here, Hiroshi Nakajima and colleagues discuss how survival signals that are dependent on the common cytokine receptor gamma chain (gammac) might affect the TCR-driven selection process in thymocytes, underscoring the potential role of cytokines in this process.
Collapse
Affiliation(s)
- H Nakajima
- Dept of Internal Medicine II, Chiba University School of Medicine, Chiba 260-8670, Japan
| | | | | |
Collapse
|
38
|
Suzuki K, Nakajima H, Saito Y, Saito T, Leonard WJ, Iwamoto I. Janus kinase 3 (Jak3) is essential for common cytokine receptor gamma chain (gamma(c))-dependent signaling: comparative analysis of gamma(c), Jak3, and gamma(c) and Jak3 double-deficient mice. Int Immunol 2000; 12:123-32. [PMID: 10653847 DOI: 10.1093/intimm/12.2.123] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The common cytokine receptor gamma chain (gamma(c)) is an essential receptor component for IL-2, IL-4, IL-7, IL-9 and IL-15, and thereby gamma(c)-deficient mice exhibit impaired T cell and B cell development. The Janus family tyrosine kinase 3 (Jak3) is known to be associated with gamma(c), and the reported phenotypes of gamma(c)-deficient (gamma(c)(-)) and Jak3-deficient (Jak3(-)) mice are similar, indicating that Jak3 is an essential transducer of gamma(c)-dependent signals. Nevertheless, certain differences have been suggested related to the range of actions of gamma(c) and Jak3. To clarify whether gamma(c)-dependent cytokines can partially transduce their signals without Jak3, we compared lymphocyte development in gamma(c)(-), Jak3(-), and gamma(c) and Jak3 double-deficient (gamma(c)(-)Jak3(-)) mice in the same genetic background. With the exception that T and B cells in Jak3(-) mice express high levels of gamma(c), the defects in thymocyte and peripheral T cell and B cell development are indistinguishable among gamma(c)(-), Jak3(-) and gamma(c)(-)Jak3(-) mice. Interestingly, although Bcl-2 induction was previously suggested to be Jak3-independent, IL-7 cannot induce Bcl-2 expression in CD4 single-positive (SP) thymocytes in either gamma(c)(-) or Jak3(-) mice nor can IL-7 rescue CD4 SP thymocytes from dexamethasone-induced cell death in gamma(c)(-) or Jak3(-) mice. These results indicate that Jak3 is absolutely essential for gamma(c)-dependent T cell and B cell development, and for gamma(c)-dependent prevention of thymocyte apoptosis.
Collapse
Affiliation(s)
- K Suzuki
- Department of Internal Medicine II, Chiba University School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Ortmann RA, Cheng T, Visconti R, Frucht DM, O'Shea JJ. Janus kinases and signal transducers and activators of transcription: their roles in cytokine signaling, development and immunoregulation. ARTHRITIS RESEARCH 2000; 2:16-32. [PMID: 11094415 PMCID: PMC129988 DOI: 10.1186/ar66] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/14/2023]
Abstract
Cytokines play a critical role in the normal development and function of the immune system. On the other hand, many rheumatologic diseases are characterized by poorly controlled responses to or dysregulated production of these mediators. Over the past decade tremendous strides have been made in clarifying how cytokines transmit signals via pathways using the Janus kinase (Jak) protein tyrosine kinases and the Signal transducer and activator of transcription (Stat) proteins. More recently, research has focused on several distinct proteins responsible for inhibiting these pathways. It is hoped that further elucidation of cytokine signaling through these pathways will not only allow for a better comprehension of the etiopathogenesis of rheumatologic illnesses, but may also direct future treatment options.
Collapse
Affiliation(s)
- R A Ortmann
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
40
|
Thomis DC, Aramburu J, Berg LJ. The Jak Family Tyrosine Kinase Jak3 Is Required for IL-2 Synthesis by Naive/Resting CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The Jak family tyrosine kinase, Jak3, is involved in signaling through cytokine receptors using the common γ-chain. Mice deficient in Jak3 have mature T cells, all of which have an activated/memory cell phenotype but are unresponsive to in vitro stimulation. Due to this activated phenotype, it has been impossible to determine whether Jak3 plays a role in the responsiveness of naive/resting T cells. To circumvent this difficulty, we generated naive/resting Jak3-negative T cells by two genetic approaches. After stimulation, these cells failed to produce significant amounts of IL-2. Although no signaling defect could be detected, we did find that naive/resting Jak3-negative T cells have substantially reduced levels of the transcription factor NF-AT1 and moderately reduced levels of c-Jun and c-Fos. On the basis of these data, we propose that Jak3-dependent cytokine signals may be required to maintain the normal levels of basal transcription factors required for immediate responsiveness to Ag activation.
Collapse
Affiliation(s)
- Daniel C. Thomis
- *Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | | | - Leslie J. Berg
- *Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
41
|
Lúdvíksson BR, Ehrhardt RO, Strober W. Role of IL-12 in Intrathymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.8.4349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Cytokines are central regulatory elements in peripheral lymphocyte differentiation, but their role in T cell ontogeny is poorly defined. In the present study, we evaluated the role of IL-12 in thymocyte selection more directly by determining its role in two models of in vivo negative selection. In initial studies we demonstrated that abundant intrathymic IL-12 synthesis occurs during OVA peptide-induced negative selection of thymocytes in neonatal OVA-TCR transgenic mice, and such synthesis is associated with increased IL-12R β2-chain expression as well as STAT4 intracellular signaling. In further studies, we showed that this form of negative selection was occurring at the αβTCRlowCD4lowCD8low stage and was prevented by the coadministration of anti-IL-12. In addition, the IL-12-dependent thymocyte depletion was occurring through an intrathymic apoptosis mechanism, also prevented by administration of anti-IL-12. Finally, we showed that IL-12 p40−/− mice displayed aberrant negative selection of double positive CD4+CD8+ thymocytes when injected with anti-CD3 mAb. These studies suggest that intact intrathymic IL-12 production is necessary for the negative selection of thymocytes occurring in relation to a high “self” Ag load, possible through its ability to induce the thymocyte maturation and cytokine production necessary for such selection.
Collapse
Affiliation(s)
- Björn R. Lúdvíksson
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rolf O. Ehrhardt
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Kubo M, Yamashita M, Abe R, Tada T, Okumura K, Ransom JT, Nakayama T. CD28 Costimulation Accelerates IL-4 Receptor Sensitivity and IL-4-Mediated Th2 Differentiation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The development of Th1 and Th2 cells is determined by the type of antigenic stimulation involved in the initial cell activation step. Evidence indicates that costimulatory signals, such as those delivered by CD28, play an important role in Th2 development, but little is known about how CD28 costimulation contributes to Th2 development. In this study, TCR cross-linking was insufficient for Th2 development, while the addition of CD28 costimulation drastically increased Th2 generation through the IL-4-mediated pathway. Th2 generation following CD28 costimulation was not simply explained by the enhancement of IL-4 production in naive T cells. To generate Th2 cells after TCR cross-linking only, it was necessary to add a 20- to 200-fold excess of IL-4 generated after TCR and CD28 stimulation. TCR cross-linking increased the expression level and binding property of the IL-4R, but enhanced the sensitivity to IL-4 only slightly. In contrast, as evidenced by the enhanced phosphorylation of Jak3, the IL-4Rα-chain, and STAT6 following IL-4 stimulation, CD28 costimulation increased IL-4R sensitivity without affecting its expression and binding property. This evidence of the enhancement of IL-4R sensitivity increases our understanding of how CD28 costimulation accelerates Th2 development.
Collapse
Affiliation(s)
- Masato Kubo
- *Division of Immunobiology, Research Institute for Biological Sciences, Science University of Tokyo, Noda City, Chiba, Japan
| | - Masakatsu Yamashita
- *Division of Immunobiology, Research Institute for Biological Sciences, Science University of Tokyo, Noda City, Chiba, Japan
- †Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ryo Abe
- *Division of Immunobiology, Research Institute for Biological Sciences, Science University of Tokyo, Noda City, Chiba, Japan
| | - Tomio Tada
- *Division of Immunobiology, Research Institute for Biological Sciences, Science University of Tokyo, Noda City, Chiba, Japan
| | - Ko Okumura
- ‡Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- §CREST, Japan Science and Technology Corporation, Tokyo, Japan; and
| | | | - Toshinori Nakayama
- *Division of Immunobiology, Research Institute for Biological Sciences, Science University of Tokyo, Noda City, Chiba, Japan
- †Department of Molecular Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
43
|
Aringer M, Cheng A, Nelson JW, Chen M, Sudarshan C, Zhou YJ, O'Shea JJ. Janus kinases and their role in growth and disease. Life Sci 1999; 64:2173-86. [PMID: 10374907 DOI: 10.1016/s0024-3205(98)00538-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Janus kinases (JAK) play a crucial role in the initial steps of cytokine signaling. Each of the four members (JAK1, JAK2, JAK3, TYK2) of this non-receptor tyrosine kinase family is indispensable for the effects of distinct cytokines. Moreover, recent reports have added to our knowledge on their highly specific functions: JAK3 knockout mice and JAK3 deficient patients cannot signal through the interleukin-2,4,7,9, or 15 receptors and suffer from severe combined immunodeficiency (SCID). JAK1 and JAK2 knockout mice do not survive, their cells again showing distinct patterns of cytokine signaling deficits. At the other end of the spectrum, JAK fusion proteins have been shown to play a role in leukemias. In addition, a new class of JAK-specific inhibitors was described by several groups, the CIS/SOCS/Jab family. This review on the rapidly growing field focuses on JAK function and regulation, and on their emerging role in development and human disease.
Collapse
Affiliation(s)
- M Aringer
- Lymphocyte Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
AbstractTo study constitutive Janus kinase signaling, chimeric proteins were generated between the pointed domain of the etstranscription factor TEL and the cytosolic tyrosine kinase Jak2. The effects of these proteins on interleukin-3 (IL-3)–dependent proliferation of the hematopoietic cell line, Ba/F3, were studied. Fusion of TEL to the functional kinase (JH1) domain of Jak2 resulted in conversion of Ba/F3 cells to factor-independence. Importantly, fusion of TEL to the Jak2 pseudokinase (JH2) domain or a kinase-inactive Jak2 JH1 domain had no effect on IL-3–dependent proliferation of Ba/F3 cells. Active TEL-Jak2 constructs (consisting of either Jak2 JH1 or Jak2 JH2+JH1 domain fusions) were constitutively tyrosine-phosphorylated but did not affect phosphorylation of endogeneous Jak1, Jak2, or Jak3. TEL-Jak2 activation resulted in the constitutive tyrosine phosphorylation of Stat1, Stat3, and Stat5 as determined by detection of phosphorylation using activation-specific antibodies and by binding of each protein to a preferential GAS sequence in electrophoretic mobility shift assays. Elucidation of signaling events downstream of TEL-Jak2 activation may provide insight into the mechanism of leukemogenesis mediated by this oncogenic fusion protein.
Collapse
|
45
|
Abstract
To study constitutive Janus kinase signaling, chimeric proteins were generated between the pointed domain of the etstranscription factor TEL and the cytosolic tyrosine kinase Jak2. The effects of these proteins on interleukin-3 (IL-3)–dependent proliferation of the hematopoietic cell line, Ba/F3, were studied. Fusion of TEL to the functional kinase (JH1) domain of Jak2 resulted in conversion of Ba/F3 cells to factor-independence. Importantly, fusion of TEL to the Jak2 pseudokinase (JH2) domain or a kinase-inactive Jak2 JH1 domain had no effect on IL-3–dependent proliferation of Ba/F3 cells. Active TEL-Jak2 constructs (consisting of either Jak2 JH1 or Jak2 JH2+JH1 domain fusions) were constitutively tyrosine-phosphorylated but did not affect phosphorylation of endogeneous Jak1, Jak2, or Jak3. TEL-Jak2 activation resulted in the constitutive tyrosine phosphorylation of Stat1, Stat3, and Stat5 as determined by detection of phosphorylation using activation-specific antibodies and by binding of each protein to a preferential GAS sequence in electrophoretic mobility shift assays. Elucidation of signaling events downstream of TEL-Jak2 activation may provide insight into the mechanism of leukemogenesis mediated by this oncogenic fusion protein.
Collapse
|
46
|
Sebzda E, Mariathasan S, Ohteki T, Jones R, Bachmann MF, Ohashi PS. Selection of the T cell repertoire. Annu Rev Immunol 1999; 17:829-74. [PMID: 10358775 DOI: 10.1146/annurev.immunol.17.1.829] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Advances in gene technology have allowed the manipulation of molecular interactions that shape the T cell repertoire. Although recognized as fundamental aspects of T lymphocyte development, only recently have the mechanisms governing positive and negative selection been examined at a molecular level. Positive selection refers to the active process of rescuing MHC-restricted thymocytes from programmed cell death. Negative selection refers to the deletion or inactivation of potentially autoreactive thymocytes. This review focuses on interactions during thymocyte maturation that define the T cell repertoire, with an emphasis placed on current literature within this field.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Mohan C, Yu Y, Morel L, Yang P, Wakeland EK. Genetic Dissection of Sle Pathogenesis: Sle3 on Murine Chromosome 7 Impacts T Cell Activation, Differentiation, and Cell Death. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Polyclonal, generalized T cell defects, as well as Ag-specific Th clones, are likely to contribute to pathology in murine lupus, but the genetic bases for these mechanisms remain unknown. Mapping studies indicate that loci on chromosomes 1 (Sle1), 4 (Sle2), 7 (Sle3), and 17 (Sle4) confer disease susceptibility in the NZM2410 lupus strain. B6.NZMc7 mice are C57BL/6 (B6) mice congenic for the NZM2410-derived chromosome 7 susceptibility interval, bearing Sle3. Compared with B6 controls, B6.NZMc7 mice exhibit elevated CD4:CD8 ratios (2.0 vs 1.34 in 1- to 3-mo-old spleens); an age-dependent accumulation of activated CD4+ T cells (33.4% vs 21.9% in 9- to 12-mo-old spleens); a more diffuse splenic architecture; and a stronger immune response to T-dependent, but not T-independent, Ags. In vitro, Sle3-bearing T cells show stronger proliferation, increased expansion of CD4+ T cells, and reduced apoptosis (with or without anti-Fas) following stimulation with anti-CD3. With age, the B cells in this strain acquire an activated phenotype. Thus, the NZM2410 allele of Sle3 appears to impact generalized T cell activation, and this may be causally related to the low grade, polyclonal serum autoantibodies seen in this strain. Epistatic interactions with other loci may be required to transform this relatively benign phenotype into overt autoimmunity, as seen in the NZM2410 strain.
Collapse
Affiliation(s)
- Chandra Mohan
- *Simmons Arthritis Research Center and Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Ying Yu
- †Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- †Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Ping Yang
- †Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Edward K. Wakeland
- *Simmons Arthritis Research Center and Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| |
Collapse
|
48
|
Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D, Hoffmeyer A, van Deursen J, Sangster MY, Bunting KD, Grosveld GC, Ihle JN. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 1999; 10:249-59. [PMID: 10072077 DOI: 10.1016/s1074-7613(00)80025-4] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many cytokines activate two highly homologous Stat proteins, 5a and 5b. Mice deficient in both genes lack all growth hormone and prolactin functions but retain functions associated with cytokines such as erythropoietin. Here, we demonstrate that, while lymphoid development is normal, Stat5a/b mutant peripheral T cells are profoundly deficient in proliferation and fail to undergo cell cycle progression or to express genes controlling cell cycle progression. In addition, the mice lack NK cells, develop splenomegaly, and have T cells with an activated phenotype, phenotypes seen in IL-2 receptor beta chain-deficient mice. These phenotypes are not seen in mice lacking Stat5a or Stat5b alone. The results demonstrate that the Stat5 proteins, redundantly, are essential mediators of IL-2 signaling in T cells.
Collapse
Affiliation(s)
- R Moriggl
- Howard Hughes Medical Institute, and Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Malek TR, Porter BO, He YW. Multiple gamma c-dependent cytokines regulate T-cell development. IMMUNOLOGY TODAY 1999; 20:71-6. [PMID: 10098325 DOI: 10.1016/s0167-5699(98)01391-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutations in the common gamma chain (gamma c) of cytokine receptors account for human X-linked severe combined immunodeficiency disease. gamma c contributes to ligand binding and signaling as a component of five cytokine receptors: interleukin-2-receptor (IL-2R), IL-4R, IL-7R, IL-9R and IL-15R. Here, Thomas Malek and colleagues discuss the contribution of individual gamma c-dependent cytokines in both conventional and intraepithelial T-cell development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/toxicity
- Cell Differentiation
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Humans
- Interleukins/physiology
- Mice
- Mice, Knockout
- Models, Immunological
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Receptors, Cytokine/physiology
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/genetics
- Receptors, Interleukin/physiology
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Severe Combined Immunodeficiency/pathology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Thymus Gland/pathology
- X Chromosome/genetics
Collapse
Affiliation(s)
- T R Malek
- Dept of Microbiology and Immunology, University of Miami School of Medicine, FL 33136, USA.
| | | | | |
Collapse
|
50
|
Eynon EE, Livák F, Kuida K, Schatz DG, Flavell RA. Distinct Effects of Jak3 Signaling on αβ and γδ Thymocyte Development. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Janus kinase 3 (Jak3) plays a central role in the transduction of signals mediated by the IL-2 family of cytokine receptors. Targeted deletion of the murine Jak3 gene results in severe reduction of αβ and complete elimination of γδ lineage thymocytes and NK cells. The developmental blockade appears to be imposed on early thymocyte differentiation and/or expansion. In this study, we show that bcl-2 expression and in vivo survival of immature thymocytes are greatly compromised in Jak3−/− mice. There is no gross deficiency in rearrangements of the TCRδ and certain γ loci in pre-T cells, and a functional γδ TCR transgene cannot rescue γδ lineage differentiation in Jak3−/− mice. In contrast, a TCRβ transgene is partially able to restore αβ thymocyte development. These data suggest that the signals mediated by Jak3 are critical for survival of all thymocyte precursors particularly during TCRβ-chain gene rearrangement, and are continuously required in the γδ lineage. The results also emphasize the fundamentally different requirements for differentiation of the αβ and γδ T cell lineages.
Collapse
Affiliation(s)
| | | | | | - David G. Schatz
- *Section of Immunobiology and
- †Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - Richard A. Flavell
- *Section of Immunobiology and
- †Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|