1
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Su B, Mao Q, Li D, Wu Y, Wang B, Wang X. Mechanism of Fuzheng Qudu prescription in the treatment of lung cancer based on network pharmacology and experimental validation. Heliyon 2024; 10:e37546. [PMID: 39309919 PMCID: PMC11416244 DOI: 10.1016/j.heliyon.2024.e37546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This research utilized network pharmacology to investigate the potential of Fuzheng Qudu prescription (FZQDP) in treating lung cancer (LC). Methods The components and their targets of FZQDP were analyzed for their relationship with LC-related targets using bioinformatics tools. Mouse Lewis lung carcinoma (LLC) cells were cultured in vitro and treated with FZQDP or cisplatin (DDP) before applying the MTT assay to determine FZQDP concentrations, and the IC50 value. According to the IC50 value, the effect of FZQDP on apoptosis and cell cycle was detected by flow cytometry. Mouse tumor growth was recorded using live animal imaging, and measurements of tumor and spleen weight were used to calculate the tumor inhibition rate and spleen index. The effects on mouse liver and kidneys were observed by analyzing levels of AST, ALT, BUN, and CRE in blood and hematoxylin and eosin (H & E) stained sections. Additionally, levels of IL-2, IL-10, IL-6, and IFN-γ in serum, along with the frequencies of CD4+ and CD8+ T cells in the spleen, were measured using Mouse multiple Cytokine Assay and flow cytometry, respectively. Results SRC, STAT3, MAPK3, and MAPK1 could be crucial targets of FZQDP in the treatment of LC. FZQDP demonstrated inhibition of LC cell proliferation and tumor growth, as well as enhancement of apoptosis and induction of G2 phase cell cycle arrest. Furthermore, FZQDP led to elevated levels of IL-2 and IFN-γ, increased frequencies of CD4+ T cells and decreased levels of IL-6 and IL-10. Importantly, FZQDP did not exhibit any noticeable hepatotoxic or nephrotoxic effects in mice. Conclusion FZQDP may target multiple signaling pathways to treat LC. In a LC mouse model, FZQDP was found to inhibit tumor growth and improve immune function.
Collapse
Affiliation(s)
- Binjie Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Qiyuan Mao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Daorui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yingyi Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Bo Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Experimental Animal Center, Xinjiang Medical University, Urumqi, 830017, Xinjiang China
| | - Xueqian Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
3
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2024:10.1007/s12015-024-10782-8. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Calabrò A, Drommi F, Sidoti Migliore G, Pezzino G, Vento G, Freni J, Costa G, Cavaliere R, Bonaccorsi I, Sionne M, Nigro S, Navarra G, Ferlazzo G, De Pasquale C, Campana S. Neutrophil-like Monocytes Increase in Patients with Colon Cancer and Induce Dysfunctional TIGIT+ NK Cells. Int J Mol Sci 2024; 25:8470. [PMID: 39126041 PMCID: PMC11313383 DOI: 10.3390/ijms25158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of immune cells including granulocytic (CD14neg/CD15+/HLA-DRneg) and monocytic subtypes (CD14+/CD15neg/HLA-DRneg). In the present study, we found a population of monocytes expressing the granulocyte marker CD15 that significantly increased in both peripheral blood (PB) and tumoral tissues of patients with colorectal cancer (CRC). Further phenotypical analysis confirmed the granulocytic-like features of this monocyte subpopulation that is associated with an increase in granulocyte-monocyte precursors (GMPs) in the PB of these patients (pts). Mechanistically, this granulocyte-like monocyte population suppressed NK cell activity by inducing TIGIT and engaging NKp30. Accordingly, an increased frequency of TIGIT+ NK cells with impaired functions was found in both the PB and tumoral tissue of CRC pts. Collectively, we provided new mechanistic explanations for tumor immune escape occurring in CRC by showing the increase in this new kind of MDSC, in both PB and CRC tissue, which is able to significantly impair the effector functions of NK cells, thereby representing a potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, BLDG 50, RM 6308, Bethesda, MD 20892, USA;
| | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy;
| | - José Freni
- Laboratory of Histology, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Gregorio Costa
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
- Clinical Pathology Unit, University Hospital Policlinico G. Martino, 98125 Messina, Italy;
| | - Riccardo Cavaliere
- Clinical Pathology Unit, University Hospital Policlinico G. Martino, 98125 Messina, Italy;
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
- Clinical Pathology Unit, University Hospital Policlinico G. Martino, 98125 Messina, Italy;
| | - Mariagrazia Sionne
- Oncologic Surgery, Department of Human Pathology of Adult and Evolutive Age, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (M.S.); (S.N.); (G.N.)
| | - Stefania Nigro
- Oncologic Surgery, Department of Human Pathology of Adult and Evolutive Age, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (M.S.); (S.N.); (G.N.)
| | - Giuseppe Navarra
- Oncologic Surgery, Department of Human Pathology of Adult and Evolutive Age, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (M.S.); (S.N.); (G.N.)
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy;
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| |
Collapse
|
5
|
Calderon-Espinosa E, De Ridder K, Benoot T, Jansen Y, Vanhonacker D, Heestermans R, De Becker A, Van Riet I, Decoster L, Goyvaerts C. The crosstalk between lung cancer and the bone marrow niche fuels emergency myelopoiesis. Front Immunol 2024; 15:1397469. [PMID: 39148724 PMCID: PMC11324509 DOI: 10.3389/fimmu.2024.1397469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Modest response rates to immunotherapy observed in advanced lung cancer patients underscore the need to identify reliable biomarkers and targets, enhancing both treatment decision-making and efficacy. Factors such as PD-L1 expression, tumor mutation burden, and a 'hot' tumor microenvironment with heightened effector T cell infiltration have consistently been associated with positive responses. In contrast, the predictive role of the abundantly present tumor-infiltrating myeloid cell (TIMs) fraction remains somewhat uncertain, partly explained by their towering variety in terms of ontogeny, phenotype, location, and function. Nevertheless, numerous preclinical and clinical studies established a clear link between lung cancer progression and alterations in intra- and extramedullary hematopoiesis, leading to emergency myelopoiesis at the expense of megakaryocyte/erythroid and lymphoid differentiation. These observations affirm that a continuous crosstalk between solid cancers such as lung cancer and the bone marrow niche (BMN) must take place. However, the BMN, encompassing hematopoietic stem and progenitor cells, differentiated immune and stromal cells, remains inadequately explored in solid cancer patients. Subsequently, no clear consensus has been reached on the exact breadth of tumor installed hematopoiesis perturbing cues nor their predictive power for immunotherapy. As the current era of single-cell omics is reshaping our understanding of the hematopoietic process and the subcluster landscape of lung TIMs, we aim to present an updated overview of the hierarchical differentiation process of TIMs within the BMN of solid cancer bearing subjects. Our comprehensive overview underscores that lung cancer should be regarded as a systemic disease in which the cues governing the lung tumor-BMN crosstalk might bolster the definition of new biomarkers and druggable targets, potentially mitigating the high attrition rate of leading immunotherapies for NSCLC.
Collapse
Affiliation(s)
- Evelyn Calderon-Espinosa
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemistry, University of Warwick, Warwick, United Kingdom
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Benoot
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yanina Jansen
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Domien Vanhonacker
- Department of Anesthesiology, Perioperative and Pain Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Robbe Heestermans
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Team Hematology and Immunology (HEIM), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Lore Decoster
- Department of Medical Oncology, Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center (TORC), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Tomić S, Wang S, Čolić M. Editorial: Myeloid-derived suppressor cells in health and diseases: harnessing their roles in the development of new immunotherapy approaches. Front Immunol 2024; 15:1411391. [PMID: 38903510 PMCID: PMC11188466 DOI: 10.3389/fimmu.2024.1411391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
7
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Chen W, Ning X, Liu Y, Shen T, Liu M, Yin H, Ding Y, Zhou J, Yin R, Cai L, Wu Y, Qian L. Myeloid-derived suppressor cells from tumour-bearing mice induce the population expansion of CD19 hiFcγRIIb hi regulatory B cells via PD-L1. Immunology 2024; 172:127-143. [PMID: 38332630 DOI: 10.1111/imm.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood. Here, we report that either monocytic MDSCs or polymorphonuclear MDSCs can promote increases in interleukin (IL)-10-expressing CD19hiFcγRIIbhi regulatory B cells in vitro and in vivo. Splenic transitional-1, -2, and -3 cells and marginal zone B cells, but not follicular B cells, differentiate into IL-10-expressing CD19hiFcγRIIbhi regulatory B cells. The adoptive transfer of CD19hiFcγRIIbhi regulatory B cells via tail vein injection can promote subcutaneous 3LL tumour growth in mice. The expression of programmed death-ligand 1 on MDSCs was found to be strongly associated with CD19hiFcγRIIbhi regulatory B cell population expansion. Furthermore, the frequency of circulating CD19+FcγRIIhi regulatory B cells was significantly increased in advanced-stage lung cancer patients. Our results unveil a critical role of MDSCs in regulatory B-cell differentiation and population expansion in lung cancer patients.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomin Ning
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Mengru Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yue Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Rui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuhan Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| |
Collapse
|
10
|
Bertrand BP, Heim CE, Koepsell SA, Kielian T. Elucidating granulocytic myeloid-derived suppressor cell heterogeneity during Staphylococcus aureus biofilm infection. J Leukoc Biol 2024; 115:620-632. [PMID: 38095415 DOI: 10.1093/jleuko/qiad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/02/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated immature myeloid cells with immunosuppressive activity that expand during chronic inflammation, such as cancer and prosthetic joint infection (PJI). Myeloid-derived suppressor cells can be broadly separated into 2 populations based on surface marker expression and function: monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs). Granulocytic myeloid-derived suppressor cells are the most abundant leukocyte infiltrate during PJI; however, how this population is maintained in vivo and cellular heterogeneity is currently unknown. In this study, we identified a previously unknown population of Ly6G+Ly6C+F4/80+MHCII+ MDSCs during PJI that displayed immunosuppressive properties ex vivo. We leveraged F4/80 and MHCII expression by these cells for further characterization using cellular indexing of transcriptomes and epitopes by sequencing, which revealed a distinct transcriptomic signature of this population. F4/80+MHCII+ MDSCs displayed gene signatures resembling G-MDSCs, neutrophils, and monocytes but had significantly increased expression of pathways involved in cytokine response/production, inflammatory cell death, and mononuclear cell differentiation. To determine whether F4/80+MHCII+ MDSCs represented an alternate phenotypic state of G-MDSCs, Ly6G+Ly6C+F4/80-MHCII- G-MDSCs from CD45.1 mice were adoptively transferred into CD45.2 recipients using a mouse model of PJI. A small percentage of transferred G-MDSCs acquired F4/80 and MHCII expression in vivo, suggesting some degree of plasticity in this population. Collectively, these results demonstrate a previously unappreciated phenotype of F4/80+MHCII+ MDSCs during PJI, revealing that a granulocytic-to-monocytic transition can occur during biofilm infection.
Collapse
Affiliation(s)
- Blake P Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Scott A Koepsell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| |
Collapse
|
11
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Savardekar H, Allen C, Jeon H, Li J, Quiroga D, Schwarz E, Wu RC, Zelinskas S, Lapurga G, Abreo A, Stiff A, Shaffer J, Blaser BW, Old M, Wesolowski R, Xin G, Kendra KL, Chung D, Carson WE. Single-Cell RNA-Seq Analysis of Patient Myeloid-Derived Suppressor Cells and the Response to Inhibition of Bruton's Tyrosine Kinase. Mol Cancer Res 2024; 22:308-321. [PMID: 38015751 PMCID: PMC10922705 DOI: 10.1158/1541-7786.mcr-22-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 μmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1β, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004). IMPLICATIONS scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.
Collapse
Affiliation(s)
- Himanshu Savardekar
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carter Allen
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jianying Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dionisia Quiroga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Emily Schwarz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Richard C. Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Sara Zelinskas
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alexander Abreo
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Jami Shaffer
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Bradley W. Blaser
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Old
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kari L. Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
14
|
Cui A, Li B, Wallace MS, Gonye ALK, Oetheimer C, Patel H, Tonnerre P, Holmes JA, Lieb D, Yao BS, Ma A, Roberts K, Damasio M, Chen JH, Piou D, Carlton-Smith C, Brown J, Mylvaganam R, Hon Fung JM, Sade-Feldman M, Aneja J, Gustafson J, Epstein ET, Salloum S, Brisac C, Thabet A, Kim AY, Lauer GM, Hacohen N, Chung RT, Alatrakchi N. Single-cell atlas of the liver myeloid compartment before and after cure of chronic viral hepatitis. J Hepatol 2024; 80:251-267. [PMID: 36972796 DOI: 10.1016/j.jhep.2023.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND & AIMS Chronic viral infections present serious public health challenges; however, direct-acting antivirals (DAAs) are now able to cure nearly all patients infected with hepatitis C virus (HCV), representing the only cure of a human chronic viral infection to date. DAAs provide a valuable opportunity to study immune pathways in the reversal of chronic immune failures in an in vivo human system. METHODS To leverage this opportunity, we used plate-based single-cell RNA-seq to deeply profile myeloid cells from liver fine needle aspirates in patients with HCV before and after DAA treatment. We comprehensively characterised liver neutrophils, eosinophils, mast cells, conventional dendritic cells, plasmacytoid dendritic cells, classical monocytes, non-classical monocytes, and macrophages, and defined fine-grained subpopulations of several cell types. RESULTS We discovered cell type-specific changes post-cure, including an increase in MCM7+STMN1+ proliferating CD1C+ conventional dendritic cells, which may support restoration from chronic exhaustion. We observed an expected downregulation of interferon-stimulated genes (ISGs) post-cure as well as an unexpected inverse relationship between pre-treatment viral load and post-cure ISG expression in each cell type, revealing a link between viral loads and sustained modifications of the host's immune system. We found an upregulation of PD-L1/L2 gene expression in ISG-high neutrophils and IDO1 expression in eosinophils, pinpointing cell subpopulations crucial for immune regulation. We identified three recurring gene programmes shared by multiple cell types, distilling core functions of the myeloid compartment. CONCLUSIONS This comprehensive single-cell RNA-seq atlas of human liver myeloid cells in response to cure of chronic viral infections reveals principles of liver immunity and provides immunotherapeutic insights. CLINICAL TRIAL REGISTRATION This study is registered at ClinicalTrials.gov (NCT02476617). IMPACT AND IMPLICATIONS Chronic viral liver infections continue to be a major public health problem. Single-cell characterisation of liver immune cells during hepatitis C and post-cure provides unique insights into the architecture of liver immunity contributing to the resolution of the first curable chronic viral infection of humans. Multiple layers of innate immune regulation during chronic infections and persistent immune modifications after cure are revealed. Researchers and clinicians may leverage these findings to develop methods to optimise the post-cure environment for HCV and develop novel therapeutic approaches for other chronic viral infections.
Collapse
Affiliation(s)
- Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bo Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University Virology Program, Harvard Medical School, Boston, MA, USA
| | - Michael S Wallace
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna L K Gonye
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher Oetheimer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hailey Patel
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pierre Tonnerre
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Institut de Recherche Saint-Louis, Université Paris Cité, Inserm U976 (HIPI), Team ATIP-Avenir, Paris, France
| | - Jacinta A Holmes
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - David Lieb
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brianna S Yao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aileen Ma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kela Roberts
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcos Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Daphnee Piou
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles Carlton-Smith
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joelle Brown
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ravi Mylvaganam
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Moshe Sade-Feldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jenna Gustafson
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eliana T Epstein
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadi Salloum
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cynthia Brisac
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashraf Thabet
- Department of Interventional Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Nadia Alatrakchi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Zhang K, Zakeri A, Alban T, Dong J, Ta HM, Zalavadia AH, Branicky A, Zhao H, Juric I, Husich H, Parthasarathy PB, Rupani A, Drazba JA, Chakraborty AA, Ching-Cheng Huang S, Chan T, Avril S, Wang LL. VISTA promotes the metabolism and differentiation of myeloid-derived suppressor cells by STAT3 and polyamine-dependent mechanisms. Cell Rep 2024; 43:113661. [PMID: 38175754 PMCID: PMC10851928 DOI: 10.1016/j.celrep.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) impair antitumor immune responses. Identifying regulatory circuits during MDSC development may bring new opportunities for therapeutic interventions. We report that the V-domain suppressor of T cell activation (VISTA) functions as a key enabler of MDSC differentiation. VISTA deficiency reduced STAT3 activation and STAT3-dependent production of polyamines, which causally impaired mitochondrial respiration and MDSC expansion. In both mixed bone marrow (BM) chimera mice and myeloid-specific VISTA conditional knockout mice, VISTA deficiency significantly reduced tumor-associated MDSCs but expanded monocyte-derived dendritic cells (DCs) and enhanced T cell-mediated tumor control. Correlated expression of VISTA and arginase-1 (ARG1), a key enzyme supporting polyamine biosynthesis, was observed in multiple human cancer types. In human endometrial cancer, co-expression of VISTA and ARG1 on tumor-associated myeloid cells is associated with poor survival. Taken together, these findings unveil the VISTA/polyamine axis as a central regulator of MDSC differentiation and warrant therapeutically targeting this axis for cancer immunotherapy.
Collapse
Affiliation(s)
- Keman Zhang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Amin Zakeri
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Tyler Alban
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Juan Dong
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Hieu M Ta
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Ajay H Zalavadia
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Andrelie Branicky
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Haoxin Zhao
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Ivan Juric
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Hanna Husich
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Prerana B Parthasarathy
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Amit Rupani
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Judy A Drazba
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Stanley Ching-Cheng Huang
- Department of Pathology, University Hospitals Cleveland Medical Center, and Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Timothy Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Stefanie Avril
- Department of Pathology, University Hospitals Cleveland Medical Center, and Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
16
|
LaMarche NM, Hegde S, Park MD, Maier BB, Troncoso L, Le Berichel J, Hamon P, Belabed M, Mattiuz R, Hennequin C, Chin T, Reid AM, Reyes-Torres I, Nemeth E, Zhang R, Olson OC, Doroshow DB, Rohs NC, Gomez JE, Veluswamy R, Hall N, Venturini N, Ginhoux F, Liu Z, Buckup M, Figueiredo I, Roudko V, Miyake K, Karasuyama H, Gonzalez-Kozlova E, Gnjatic S, Passegué E, Kim-Schulze S, Brown BD, Hirsch FR, Kim BS, Marron TU, Merad M. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 2024; 625:166-174. [PMID: 38057662 PMCID: PMC11189607 DOI: 10.1038/s41586-023-06797-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.
Collapse
Affiliation(s)
- Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara B Maier
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Theodore Chin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda M Reid
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iván Reyes-Torres
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erika Nemeth
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruiyuan Zhang
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Deborah B Doroshow
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas C Rohs
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge E Gomez
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajwanth Veluswamy
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Hall
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Venturini
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- SingHealth Duke-NUS Academic Medical Centre, Translational Immunology Institute, Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Buckup
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Igor Figueiredo
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Edgar Gonzalez-Kozlova
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Seunghee Kim-Schulze
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian S Kim
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Hernandez-Delgado LM, Laboy-Figueroa A, Lopez-Velazquez A, Flores-Ortiz C, Alicea-Torres K. In vitro generation of murine myeloid-derived suppressor cells from hematopoietic progenitor cells. Methods Cell Biol 2023; 184:159-172. [PMID: 38555155 DOI: 10.1016/bs.mcb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
One of the hallmarks of cancer is the expansion and accumulation of highly immunosuppressive myeloid cells known as myeloid-derived suppressor cells (MDSCs). To study MDSCs biology, differentiation from hematopoietic progenitor cells (HPC) is an useful tool to elucidate the biological and biochemical mechanisms associated with acquisition of immune suppressive activity and expansion in cancer. Although this is one of the protocols performed to study immune suppressive myeloid cells, differentiation of MDSCs from HPC is a method that allows to modify conditions of the supernatants used. In this protocol, we outline the process of differentiating HPCs into MDSCs in vitro using tumor explant supernatants to recapitulate the tumor microenvironment.
Collapse
|
18
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Tian X, Wang T, Shen H, Wang S. Tumor microenvironment, histone modifications, and myeloid-derived suppressor cells. Cytokine Growth Factor Rev 2023; 74:108-121. [PMID: 37598011 DOI: 10.1016/j.cytogfr.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are important components of the tumor microenvironment (TME), which drive the tumor immune escape by inducing immunosuppression. The expansion and function of MDSCs are tightly associated with signaling pathways induced by molecules from tumor cells, stromal cells, and activated immune cells in the TME. Although these pathways have been well-characterized, the understanding of the epigenetic regulators involved is incomplete. Since histone modifications are the most studied epigenetic changes in MDSCs, we summarize current knowledge on the role of histone modifications in MDSCs within this review. We first discuss the influence of the TME on histone modifications in MDSCs, with an emphasis on histone modifications and modifiers that direct MDSC differentiation and function. Furthermore, we highlight current epigenetic interventions that can reverse MDSC-induced immunosuppression by modulating histone modifications and discuss future research directions to fully appreciate the role of histone modifications in MDSCs.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Laboratory Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
20
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
21
|
Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, Gu Y, Chen J, Lin M, Deng C, Gao H, Lu Z, Zhao Y, Luo M. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621:830-839. [PMID: 37674079 DOI: 10.1038/s41586-023-06511-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoxiong Wang
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xichen Zheng
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinlan Zhang
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoyi Jiang
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Zhongshan-Xuhui Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuwei Li
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guanghui Shen
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peixuan Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunqing Gu
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiaojiao Chen
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changwen Deng
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai Gao
- Zhongshan-Xuhui Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Min Luo
- Institute of Pediatrics of Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib alters MDSC differentiation and function by activation of GCN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552588. [PMID: 37645997 PMCID: PMC10461929 DOI: 10.1101/2023.08.09.552588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effect of targeted therapeutics on anti-cancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Since ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5 , Mafg , and Zbtb7a . This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development towards monocytic lineage cells. In vivo , we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveals transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off target effects of dabrafenib.
Collapse
|
23
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
24
|
Ortega MC, Lebrón-Galán R, Machín-Díaz I, Naughton M, Pérez-Molina I, García-Arocha J, Garcia-Dominguez JM, Goicoechea-Briceño H, Vila-Del Sol V, Quintanero-Casero V, García-Montero R, Galán V, Calahorra L, Camacho-Toledano C, Martínez-Ginés ML, Fitzgerald DC, Clemente D. Central and peripheral myeloid-derived suppressor cell-like cells are closely related to the clinical severity of multiple sclerosis. Acta Neuropathol 2023; 146:263-282. [PMID: 37243699 PMCID: PMC10329064 DOI: 10.1007/s00401-023-02593-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous demyelinating disease of the central nervous system (CNS) that needs for reliable biomarkers to foresee disease severity. Recently, myeloid-derived suppressor cells (MDSCs) have emerged as an immune cell population with an important role in MS. The monocytic-MDSCs (M-MDSCs) share the phenotype with Ly-6Chi-cells in the MS animal model, experimental autoimmune encephalomyelitis (EAE), and have been retrospectively related to the severity of the clinical course in the EAE. However, no data are available about the presence of M-MDSCs in the CNS of MS patients or its relation with the future disease aggressiveness. In this work, we show for the first time cells exhibiting all the bona-fide phenotypical markers of M-MDSCs associated with MS lesions, whose abundance in these areas appears to be directly correlated with longer disease duration in primary progressive MS patients. Moreover, we show that blood immunosuppressive Ly-6Chi-cells are strongly related to the future severity of EAE disease course. We found that a higher abundance of Ly-6Chi-cells at the onset of the EAE clinical course is associated with a milder disease course and less tissue damage. In parallel, we determined that the abundance of M-MDSCs in blood samples from untreated MS patients at their first relapse is inversely correlated with the Expanded Disability Status Scale (EDSS) at baseline and after a 1-year follow-up. In summary, our data point to M-MDSC load as a factor to be considered for future studies focused on the prediction of disease severity in EAE and MS.
Collapse
Affiliation(s)
- María Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK
| | - Inmaculada Pérez-Molina
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Jennifer García-Arocha
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Jose Manuel Garcia-Dominguez
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Haydee Goicoechea-Briceño
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Virginia Vila-Del Sol
- Servicio de Citometría de Flujo, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Víctor Quintanero-Casero
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Rosa García-Montero
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Victoria Galán
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Leticia Calahorra
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Celia Camacho-Toledano
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - María Luisa Martínez-Ginés
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
25
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
26
|
Zheng Y, Wang N, Wang S, Zhang J, Yang B, Wang Z. Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Cancer Res 2023; 42:129. [PMID: 37210553 DOI: 10.1186/s13046-023-02696-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Emerging studies have identified chronic psychological stress as an independent risk factor influencing breast cancer growth and metastasis. However, the effects of chronic psychological stress on pre-metastatic niche (PMN) formation and the underlying immunological mechanisms remain largely unknown. METHODS The effects and molecular mechanisms of chronic unpredictable mild stress (CUMS) on modulating tumor-associated macrophages (TAMs) and PMN formation were clarified by multiplex immunofluorescence technique, cytokine array, chromatin immunoprecipitation, the dual-luciferase reporter assay, and breast cancer xenografts. Transwell and CD8+ T cytotoxicity detection were used to analyze the mobilization and function of myeloid-derived suppressor cells (MDSCs). mCherry-labeled tracing strategy and bone marrow transplantation were applied to explore the crucial role of splenic CXCR2+/+ MDSCs facilitating PMN formation under CUMS. RESULTS CUMS significantly promoted breast cancer growth and metastasis, accompanied by TAMs accumulation in the microenvironment. CXCL1 was identified as a crucial chemokine in TAMs facilitating PMN formation in a glucocorticoid receptor (GR)-dependent manner. Interestingly, the spleen index was significantly reduced under CUMS, and splenic MDSCs were validated as a key factor mediating CXCL1-induced PMN formation. The molecular mechanism study revealed that TAM-derived CXCL1 enhanced the proliferation, migration, and anti-CD8+ T cell functions of MDSCs via CXCR2. Moreover, CXCR2 knockout and CXCR2-/-MDSCs transplantation significantly impaired CUMS-mediated MDSC elevation, PMN formation, and breast cancer metastasis. CONCLUSION Our findings shed new light on the association between chronic psychological stress and splenic MDSC mobilization, and suggest that stress-related glucocorticoid elevation can enhance TAM/CXCL1 signaling and subsequently recruit splenic MDSCs to promote PMN formation via CXCR2.
Collapse
Affiliation(s)
- Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
27
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
28
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
30
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
31
|
Matos I, Barvalia M, Chehal MK, Robertson AG, Kulic I, Silva JAFD, Ranganathan A, Short A, Huang YH, Long E, Priatel JJ, Dhanji S, Nelson BH, Krebs DL, Harder KW. Tumor-derived GCSF Alters Tumor and Systemic Immune System Cell Subset Composition and Signaling. CANCER RESEARCH COMMUNICATIONS 2023; 3:404-419. [PMID: 36911097 PMCID: PMC9997410 DOI: 10.1158/2767-9764.crc-22-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.
Collapse
Affiliation(s)
- Israel Matos
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Maunish Barvalia
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Manreet K Chehal
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency. Vancouver, British Columbia, Canada
| | - Iva Kulic
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Jessica A F D Silva
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Abhinandan Ranganathan
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Amy Short
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Erin Long
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - John J Priatel
- ME Therapeutics Inc. Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Salim Dhanji
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.,ME Therapeutics Inc. Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
The early neutrophil-committed progenitors aberrantly differentiate into immunoregulatory monocytes during emergency myelopoiesis. Cell Rep 2023; 42:112165. [PMID: 36862552 DOI: 10.1016/j.celrep.2023.112165] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Inflammatory stimuli cause a state of emergency myelopoiesis leading to neutrophil-like monocyte expansion. However, their function, the committed precursors, or growth factors remain elusive. In this study we find that Ym1+Ly6Chi monocytes, an immunoregulatory entity of neutrophil-like monocytes, arise from progenitors of neutrophil 1 (proNeu1). Granulocyte-colony stimulating factor (G-CSF) favors the production of neutrophil-like monocytes through previously unknown CD81+CX3CR1lo monocyte precursors. GFI1 promotes the differentiation of proNeu2 from proNeu1 at the cost of producing neutrophil-like monocytes. The human counterpart of neutrophil-like monocytes that also expands in response to G-CSF is found in CD14+CD16- monocyte fraction. The human neutrophil-like monocytes are discriminated from CD14+CD16- classical monocytes by CXCR1 expression and the capacity to suppress T cell proliferation. Collectively, our findings suggest that the aberrant expansion of neutrophil-like monocytes under inflammatory conditions is a process conserved between mouse and human, which may be beneficial for the resolution of inflammation.
Collapse
|
33
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
34
|
Gorvel L, Olive D. Tumor associated macrophage in HPV + tumors: Between immunosuppression and inflammation. Semin Immunol 2023; 65:101671. [PMID: 36459926 DOI: 10.1016/j.smim.2022.101671] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Over the past few decades, with the rise of immunotherapies, tumor infiltrating immune cells were increasingly investigated. Indeed, they may represent biomarkers for patient outcome prediction, they may bear immune checkpoint markers that can be targeted by therapeutic antibodies and mechanistic studies may reveal how to tweak their activation profile so that we can re-direct them towards tumor cells. Macrophages possess a central place in tissue homeostasis for tissue remodeling and cleaning, transformed cell elimination, phagocytosis and regulation of inflammation via cytokine production. All these functions allow the discovery of approaches to target Tumor Associated Macrophages (TAMs) using immunotherapies. Indeed, TAMs express known immune checkpoint markers such as PD-L1, CD40, Sirp-α and markers such as CD163, CD204, TREM2, TREM1 associated with prognosis. In the context of therapies TAM may participate to antibody dependent cell phagocytosis (ADCP) thanks to FCγ-Receptors. Here, we will review the recent literature on TAMs in the specific context of HPV+ tumors. Indeed, HPV infection of mucosal tissue may lead to head and neck, cervical, penile, anal and vaginal cancers. HPV+ tumors exhibit a higher immune cell infiltrate, which relies on inflammation, immunosuppression and anti-viral response. In this context, and considering the many functions on macrophages, we will show the versatility of TAMs in a tumor microenvironment with viral infection features.
Collapse
Affiliation(s)
- Laurent Gorvel
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France.
| | - Daniel Olive
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France
| |
Collapse
|
35
|
Xu D, Li C, Xu Y, Huang M, Cui D, Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front Immunol 2022; 13:1021612. [PMID: 36569895 PMCID: PMC9780445 DOI: 10.3389/fimmu.2022.1021612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a highly heterogeneous group of immature cells derived from bone marrow and play critical immunosuppressive functions in autoimmune diseases. Accumulating evidence indicates that the pathophysiology of autoimmune diseases was closely related to genetic mutations and epigenetic modifications, with the latter more common. Epigenetic modifications, which involve DNA methylation, covalent histone modification, and non-coding RNA-mediated regulation, refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. Recently, numerous reports have shown that epigenetic modifications in MDSCs play important roles in the differentiation and development of MDSCs and their suppressive functions. The molecular mechanisms of differentiation and development of MDSCs and their regulatory roles in the initiation and progression of autoimmune diseases have been extensively studied, but the exact function of MDSCs remains controversial. Therefore, the biological and epigenetic regulation of MDSCs in autoimmune diseases still needs to be further characterized. This review provides a detailed summary of the current research on the regulatory roles of DNA methylation, histone modifications, and non-coding RNAs in the development and immunosuppressive activity of MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis of autoimmune diseases, in order to provide help for the diagnosis and treatment of diseases from the perspective of epigenetic regulation of MDSCs.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Cheng Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Mingyue Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| |
Collapse
|
36
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
37
|
Magalhães-Gama F, Alves-Hanna FS, Araújo ND, Barros MS, Silva FS, Catão CLS, Moraes JS, Freitas IC, Tarragô AM, Malheiro A, Teixeira-Carvalho A, Costa AG. The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Front Immunol 2022; 13:1071188. [PMID: 36532078 PMCID: PMC9751477 DOI: 10.3389/fimmu.2022.1071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The leukemic microenvironment has a high diversity of immune cells that are phenotypically and functionally distinct. However, our understanding of the biology, immunology, and clinical implications underlying these cells remains poorly investigated. Among the resident immune cells that can infiltrate the leukemic microenvironment are myeloid cells, which correspond to a heterogeneous cell group of the innate immune system. They encompass populations of neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs). These cells can be abundant in different tissues and, in the leukemic microenvironment, are associated with the clinical outcome of the patient, acting dichotomously to contribute to leukemic progression or stimulate antitumor immune responses. In this review, we detail the current evidence and the many mechanisms that indicate that the activation of different myeloid cell populations may contribute to immunosuppression, survival, or metastatic dissemination, as well as in immunosurveillance and stimulation of specific cytotoxic responses. Furthermore, we broadly discuss the interactions of tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) and MDSCs in the leukemic microenvironment. Finally, we provide new perspectives on the potential of myeloid cell subpopulations as predictive biomarkers of therapeutical response, as well as potential targets in the chemoimmunotherapy of leukemias due to their dual Yin-Yang roles in leukemia.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Mateus Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Júlia Santos Moraes
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Izabela Cabral Freitas
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
38
|
Colligan SH, Amitrano AM, Zollo RA, Peresie J, Kramer ED, Morreale B, Barbi J, Singh PK, Yu H, Wang J, Opyrchal M, Sykes DB, Nemeth MJ, Abrams SI. Inhibiting the biogenesis of myeloid-derived suppressor cells enhances immunotherapy efficacy against mammary tumor progression. J Clin Invest 2022; 132:e158661. [PMID: 36453551 PMCID: PMC9711879 DOI: 10.1172/jci158661] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
While immune checkpoint inhibitors (ICIs) have transformed the therapeutic landscape in oncology, they are effective in select subsets of patients. Efficacy may be limited by tumor-driven immune suppression, of which 1 key mechanism is the development of myeloid-derived suppressor cells (MDSCs). A fundamental gap in MDSC therapeutics is the lack of approaches that target MDSC biogenesis. We hypothesized that targeting MDSC biogenesis would mitigate MDSC burden and bolster tumor responses to ICIs. We tested a class of agents, dihydroorotate dehydrogenase (DHODH) inhibitors, that have been previously shown to restore the terminal differentiation of leukemic myeloid progenitors. DHODH inhibitors have demonstrated preclinical safety and are under clinical study for hematologic malignancies. Using mouse models of mammary cancer that elicit robust MDSC responses, we demonstrated that the DHODH inhibitor brequinar (a) suppressed MDSC production from early-stage myeloid progenitors, which was accompanied by enhanced myeloid maturation; (b) augmented the antitumor and antimetastatic activities of programmed cell death 1-based (PD-1-based) ICI therapy in ICI-resistant mammary cancer models; and (c) acted in concert with PD-1 blockade through modulation of MDSC and CD8+ T cell responses. Moreover, brequinar facilitated myeloid maturation and inhibited immune-suppressive features in human bone marrow culture systems. These findings advance the concept of MDSC differentiation therapy in immuno-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Barbi
- Department of Immunology
- Department of Thoracic Surgery
| | | | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mateusz Opyrchal
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
39
|
Bayik D, Bartels CF, Lovrenert K, Watson DC, Zhang D, Kay K, Lee J, Lauko A, Johnson S, Lo A, Silver DJ, McGraw M, Grabowski M, Mohammadi AM, Veglia F, Fan Y, Vogelbaum MA, Scacheri P, Lathia JD. Distinct Cell Adhesion Signature Defines Glioblastoma Myeloid-Derived Suppressor Cell Subsets. Cancer Res 2022; 82:4274-4287. [PMID: 36126163 PMCID: PMC9664137 DOI: 10.1158/0008-5472.can-21-3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
In multiple types of cancer, an increased frequency in myeloid-derived suppressor cells (MDSC) is associated with worse outcomes and poor therapeutic response. In the glioblastoma (GBM) microenvironment, monocytic (m) MDSCs represent the predominant subset. However, the molecular basis of mMDSC enrichment in the tumor microenvironment compared with granulocytic (g) MDSCs has yet to be determined. Here we performed the first broad epigenetic profiling of MDSC subsets to define underlying cell-intrinsic differences in behavior and found that enhanced gene accessibility of cell adhesion programs in mMDSCs is linked to their tumor-accelerating ability in GBM models upon adoptive transfer. Mouse and human mMDSCs expressed higher levels of integrin β1 and dipeptidyl peptidase-4 (DPP-4) compared with gMDSCs as part of an enhanced cell adhesion signature. Integrin β1 blockade abrogated the tumor-promoting phenotype of mMDSCs and altered the immune profile in the tumor microenvironment, whereas treatment with a DPP-4 inhibitor extended survival in preclinical GBM models. Targeting DPP-4 in mMDSCs reduced pERK signaling and their migration towards tumor cells. These findings uncover a fundamental difference in the molecular basis of MDSC subsets and suggest that integrin β1 and DPP-4 represent putative immunotherapy targets to attenuate myeloid cell-driven immune suppression in GBM. SIGNIFICANCE Epigenetic profiling uncovers cell adhesion programming as a regulator of the tumor-promoting functions of monocytic myeloid-derived suppressor cells in glioblastoma, identifying therapeutic targets that modulate the immune response and suppress tumor growth.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Cynthia F. Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Katreya Lovrenert
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Dionysios C. Watson
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen Kay
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Juyeun Lee
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Adam Lauko
- Lerner Research Institute, Cleveland Clinic, Ohio
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Case Western Reserve University, Medical Science Training Program, Cleveland, Ohio
| | | | - Alice Lo
- Lerner Research Institute, Cleveland Clinic, Ohio
| | - Daniel J. Silver
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Mary McGraw
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Ohio
| | | | | | - Filippo Veglia
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Peter Scacheri
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Justin D. Lathia
- Lerner Research Institute, Cleveland Clinic, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Ohio
| |
Collapse
|
40
|
Wu Y, Yi M, Niu M, Mei Q, Wu K. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer 2022; 21:184. [PMID: 36163047 PMCID: PMC9513992 DOI: 10.1186/s12943-022-01657-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
The clinical responses observed following treatment with immune checkpoint inhibitors (ICIs) support immunotherapy as a potential anticancer treatment. However, a large proportion of patients cannot benefit from it due to resistance or relapse, which is most likely attributable to the multiple immunosuppressive cells in the tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs), a heterogeneous array of pathologically activated immature cells, are a chief component of immunosuppressive networks. These cells potently suppress T-cell activity and thus contribute to the immune escape of malignant tumors. New findings indicate that targeting MDSCs might be an alternative and promising target for immunotherapy, reshaping the immunosuppressive microenvironment and enhancing the efficacy of cancer immunotherapy. In this review, we focus primarily on the classification and inhibitory function of MDSCs and the crosstalk between MDSCs and other myeloid cells. We also briefly summarize the latest approaches to therapies targeting MDSCs.
Collapse
Affiliation(s)
- Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
41
|
Abstract
The clinical responses observed following treatment with immune checkpoint inhibitors (ICIs) support immunotherapy as a potential anticancer treatment. However, a large proportion of patients cannot benefit from it due to resistance or relapse, which is most likely attributable to the multiple immunosuppressive cells in the tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs), a heterogeneous array of pathologically activated immature cells, are a chief component of immunosuppressive networks. These cells potently suppress T-cell activity and thus contribute to the immune escape of malignant tumors. New findings indicate that targeting MDSCs might be an alternative and promising target for immunotherapy, reshaping the immunosuppressive microenvironment and enhancing the efficacy of cancer immunotherapy. In this review, we focus primarily on the classification and inhibitory function of MDSCs and the crosstalk between MDSCs and other myeloid cells. We also briefly summarize the latest approaches to therapies targeting MDSCs.
Collapse
Affiliation(s)
- Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310003, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
42
|
IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:cells11172630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G− polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
|
43
|
Myeloid-Derived Suppressor Cells: New Insights into the Pathogenesis and Therapy of MDS. J Clin Med 2022; 11:jcm11164908. [PMID: 36013147 PMCID: PMC9410159 DOI: 10.3390/jcm11164908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic malignancies characterized by the clonal expansion of hematopoietic stem cells, bone marrow failure manifested by cytopenias, and increased risk for evolving to acute myeloid leukemia. Despite the fact that the acquisition of somatic mutations is considered key for the initiation of the disease, the bone marrow microenvironment also plays significant roles in MDS by providing the right niche and even shaping the malignant clone. Aberrant immune responses are frequent in MDS and are implicated in many aspects of MDS pathogenesis. Recently, myeloid-derived suppressor cells (MDSCs) have gained attention for their possible implication in the immune dysregulation associated with MDS. Here, we summarize the key findings regarding the expansion of MDSCs in MDS, their role in MDS pathogenesis and immune dysregulation, as well their potential as a new therapeutic target for MDS.
Collapse
|
44
|
Skubitz KM, Domingo-Musibay E, Lindgren BR, Cheng EY. Prospective Trial of Neutrophil/Lymphocyte Ratio and Other Blood Counts as Biomarkers of Survival among Patients with High-Grade Soft Tissue Sarcomas Treated with Pegylated Liposomal Doxorubicin and Ifosfamide. Cancers (Basel) 2022; 14:cancers14143419. [PMID: 35884480 PMCID: PMC9316699 DOI: 10.3390/cancers14143419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have reported an association between levels of circulating blood cells, in particular the neutrophil to lymphocyte ratio (absolute neutrophil count (ANC)/absolute lymphocyte count (ALC)) and outcomes in patients with cancer. In the current study, the association between lymphocyte, neutrophil, monocyte, and platelet counts and survival was examined in a prospective trial of preoperative pegylated-liposomal doxorubicin and ifosfamide for high-grade soft-tissue sarcomas. A statistically significant association between overall survival, but not progression free-survival, was observed with the ANC/ALC ratio at a cutoff value of ≥2 and a statistically significant trend using a cutoff of ≥5. Our results suggest that a balance between the lymphocyte count and the number of circulating myeloid cells that can suppress lymphocyte function may be predictive of survival in patients with soft-tissue sarcomas. Future research should therefore examine the role of lymphocyte-myeloid cell balance in sarcoma biology.
Collapse
Affiliation(s)
- Keith M. Skubitz
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, Minneapolis, MN 55455, USA; (B.R.L.); (E.Y.C.)
- Correspondence: ; Tel.: +1-612-626-3003; Fax: +1-(612)-626-1441
| | - Evidio Domingo-Musibay
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, Minneapolis, MN 55455, USA; (B.R.L.); (E.Y.C.)
| | - Bruce R. Lindgren
- Masonic Cancer Center, Minneapolis, MN 55455, USA; (B.R.L.); (E.Y.C.)
- Department of Orthopaedic Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Edward Y. Cheng
- Masonic Cancer Center, Minneapolis, MN 55455, USA; (B.R.L.); (E.Y.C.)
- Department of Orthopaedic Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
45
|
Mandula JK, Rodriguez PC. Tumor-directed dysregulation of erythroid progenitors drives immunosuppressive myeloid cells. Cancer Cell 2022; 40:597-599. [PMID: 35594864 DOI: 10.1016/j.ccell.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In this issue of Cancer Cell, Long et al. demonstrate that tumors can reprogram erythroid progenitors into myeloid-erythroid cells that promote immunosuppression. Erythroid-differentiated myeloid cells (EDMCs) expand in cancer-bearing individuals, resemble the functionality of myeloid-derived suppressor cells (MDSCs), and correlate with poor response to immune-checkpoint inhibitors (ICIs) and tumor-related anemia.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
46
|
Cioccarelli C, Molon B. MDSCs and T cells in solid tumors and non-Hodgkin lymphomas: an immunosuppressive speech. Clin Exp Immunol 2022; 208:147-157. [PMID: 35348617 PMCID: PMC9188344 DOI: 10.1093/cei/uxac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous subset of cells expanded during multiple pathological settings, including cancers. In tumors, MDSCs are dominant drivers of T-cell immunosuppression. To accomplish their job, they exploit multiple mechanisms ultimately leading to the paralysis of anti-tumor immunity. Among the variety of MDSC-ways of working within the tumor microenvironment, the generation of reactive species and the metabolic reprogramming have emerged as pivotal determinants of their immunosuppressive power. In this review we will overview integral mechanisms of MDSC-mediated immunosuppression in solid tumors, with a particular focus on Non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Chiara Cioccarelli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Italy
| |
Collapse
|
47
|
Quail DF, Amulic B, Aziz M, Barnes BJ, Eruslanov E, Fridlender ZG, Goodridge HS, Granot Z, Hidalgo A, Huttenlocher A, Kaplan MJ, Malanchi I, Merghoub T, Meylan E, Mittal V, Pittet MJ, Rubio-Ponce A, Udalova IA, van den Berg TK, Wagner DD, Wang P, Zychlinsky A, de Visser KE, Egeblad M, Kubes P. Neutrophil phenotypes and functions in cancer: A consensus statement. J Exp Med 2022; 219:e20220011. [PMID: 35522219 PMCID: PMC9086501 DOI: 10.1084/jem.20220011] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.
Collapse
Affiliation(s)
- Daniela F. Quail
- Rosalind and Morris Goodman Cancer Institute, Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Borko Amulic
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Betsy J. Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY
- Departments of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Evgeniy Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Zvi G. Fridlender
- Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrés Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Etienne Meylan
- Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Université Libre de Bruxelles, Anderlecht, Belgium
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Andrea Rubio-Ponce
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Irina A. Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Timo K. van den Berg
- Laboratory of Immunotherapy, Sanquin Research, Amsterdam, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Karin E. de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
- Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY
| | - Paul Kubes
- Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
48
|
Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis. Cell Rep 2022; 38:110451. [PMID: 35263597 DOI: 10.1016/j.celrep.2022.110451] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation. We identify c-Jun as a novel intracellular sensor of lactate in myeloid cells using liquid-chromatography-mass spectrometry (LC-MS) followed by CRISPR-Cas9-mediated gene disruption. Meanwhile, lactate interacts with c-Jun to protect from FBW7 ubiquitin-ligase-mediated degradation. Activation of Notch signaling and blockade of lactate import repress tumor progression by remodeling myeloid development. Consistently, the relationship between the Notch-MCT2/lactate-c-Jun axis in myeloid cells and tumorigenesis is also confirmed in clinical lung cancer biopsies. Taken together, our current study shows that lactate metabolism regulated by activated Notch signaling might participate in MDSC differentiation and TAM maturation.
Collapse
|
49
|
Bayik D, Lee J, Lathia JD. The Role of Myeloid-Derived Suppressor Cells in Tumor Growth and Metastasis. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:189-217. [PMID: 35165865 DOI: 10.1007/978-3-030-91311-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature bone marrow-derived suppressive cells that are an important component of the pathological immune response associated with cancer. Expansion of MDSCs has been linked to poor disease outcome and therapeutic resistance in patients with various malignancies, making these cells potential targets for next-generation treatment strategies. MDSCs are classified into monocytic (M-MDSC) and polymorphonuclear/granulocytic (PMN-MDSC) subtypes that undertake distinct and numerous roles in the tumor microenvironment or systemically to drive disease progression. In this chapter, we will discuss how MDSC subsets contribute to the growth of primary tumors and induce metastatic spread by suppressing the antitumor immune response, supporting cancer stem cell (CSC)/epithelial-to-mesenchymal transition (EMT) phenotypes and promoting angiogenesis. We will also summarize the signaling networks involved in the crosstalk between cancer cells and MDSCs that could represent putative immunotherapy targets.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Euclid, OH, USA
| | - Juyeun Lee
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Euclid, OH, USA.
| |
Collapse
|
50
|
Schrijver IT, Karakike E, Théroude C, Baumgartner P, Harari A, Giamarellos-Bourboulis EJ, Calandra T, Roger T. High levels of monocytic myeloid-derived suppressor cells are associated with favorable outcome in patients with pneumonia and sepsis with multi-organ failure. Intensive Care Med Exp 2022; 10:5. [PMID: 35146585 PMCID: PMC8831012 DOI: 10.1186/s40635-022-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with immunosuppressive functions sub-classified into monocytic and polymorphonuclear MDSCs (M-MDSCs and PMN-MDSCs). Clinical studies reported increased levels of MDSCs that were associated with poor outcome in sepsis patients. Since sepsis patients exhibit signs of inflammation and immunosuppression, MDSCs may provide benefit by dampening deleterious inflammation in some patients. To test this hypothesis, we measured MDSCs in critically ill sepsis patients with pneumonia and multi-organ dysfunctions and a high likelihood of death. Methods This was a prospective multicenter observational cohort study performed in eight ICUs in Athens and Thessaloniki, Greece, enrolling critically ill patients with pneumonia and sepsis with multi-organ dysfunctions. A flow cytometry approach using blood collected at study inclusion in tubes containing lyophilized antibodies combined to unsupervised clustering was developed to quantify M-MDSCs and PMN-MDSCs. Results Forty-eight patients were included, of whom 34 died within 90 days. At study inclusion, M-MDSCs and PMN-MDSCs were increased in sepsis patients when compared to healthy subjects (3.07% vs 0.96% and 22% vs 2.1% of leukocytes, respectively; p < 10–4). Increased PMN-MDSCs were associated with secondary infections (p = 0.024) and new sepsis episodes (p = 0.036). M-MDSCs were more abundant in survivors than in patients who died within 28 days (p = 0.028). Stratification of patients according to M-MDSC levels revealed that high levels of M-MDSC were associated with reduced 90-day mortality (high vs low M-MDSCs: 47% vs 84% mortality, p = 0.003, hazard ratio [HR] = 3.2, 95% CI 1.4–7.2). Combining high M-MDSC levels with low Acute Physiology and Chronic Health Evaluation (APACHE) II score improved patient stratification (M-MDSCshigh/APACHE IIlow vs M-MDSCslow/APACHE IIlow: 20% vs 80% 90-day mortality, p = 0.0096, HR = 7.2, 95% CI 1.6–32). In multivariate analyses high M-MDSCs remained correlated with improved survival in patients with low APACHE II score (p = 0.05, HR = 5.26, 95% CI 1.0–27.8). Conclusion This is the first study to associate high levels of M-MDSCs with improved survival in sepsis patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00431-0.
Collapse
Affiliation(s)
- Irene T Schrijver
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Eleni Karakike
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Pétra Baumgartner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|