1
|
Lin Y, Liu K, Lu F, Zhai C, Cheng F. Programmed cell death in Helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 2024; 14:1416819. [PMID: 39145306 PMCID: PMC11322058 DOI: 10.3389/fcimb.2024.1416819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
Collapse
Affiliation(s)
- Yukun Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of Rheumatism, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. Microbiol Spectr 2024; 12:e0001524. [PMID: 38682907 PMCID: PMC11237807 DOI: 10.1128/spectrum.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Here, we identified the differences in gastric inflammation, atrophy, and metaplasia associated with HP and HF infection in mice. PMSS1 HP strain or the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages revealing that both bacteria exhibit similar immunostimulatory effects in vitro. Next, C57BL/6J mice were infected with HP or HF and were assessed 2 months post-infection. HP-infected mice caused modest inflammation within both the gastric corpus and antrum, and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced the expression of pyloric metaplasia (PM) markers. HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for studies on the effects of gastric inflammation on tumorigenesis. . IMPORTANCE Mouse infection models with Helicobacter species are widely used to study Helicobacter pathogenesis and gastric cancer initiation. However, Helicobacter pylori is not a natural mouse pathogen, and mouse-adapted H. pylori strains are poorly immunogenic. In contrast, Helicobacter felis is a natural mouse pathogen that induces robust gastric inflammation and is often used in mice to investigate gastric cancer initiation. Although both bacterial strains are widely used, their disease pathogenesis in mice differs dramatically. However, few studies have directly compared the pathogenesis of these bacterial species in mice, and the contrasting features of these two models are not clearly defined. This study directly compares the gastric inflammation, atrophy, and metaplasia development triggered by the widely used PMSS1 H. pylori and CS1 H. felis strains in mice. It serves as a useful resource for researchers to select the experimental model best suited for their studies.
Collapse
Affiliation(s)
- Sara R. Druffner
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Shrinidhi Venkateshwaraprabu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Benjamin C. Duncan
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Maeve T. Morris
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Fredrick H. Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan T. Busada
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Ray J, Sapp DG, Fairn GD. Phosphatidylinositol 3,4-bisphosphate: Out of the shadows and into the spotlight. Curr Opin Cell Biol 2024; 88:102372. [PMID: 38776601 DOI: 10.1016/j.ceb.2024.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Phosphoinositide 3-kinases regulate many cellular functions, including migration, growth, proliferation, and cell survival. Early studies equated the inhibition of Class I PI3Ks with loss of; phosphatidylinositol 3,4,5-trisphosphate (PIP3), but over time, it was realised that these; treatments also depleted phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In recent years, the; use of better tools and an improved understanding of its metabolism have allowed for the; identification of specific roles of PI(3,4)P2. This includes the production of PI(3,4)P2 and the; activation of its effector Akt2 in response to growth factor signalling. In contrast, a lysosomal pool of PI(3,4)P2 is a negative regulator of mTORC1 during growth factor deprivation. A growing body of literature also demonstrates that PI(3,4)P2 controls many dynamic plasmalemmal processes. The significance of PI(3,4)P2 in cell biology is increasingly evident.
Collapse
Affiliation(s)
- Jayatee Ray
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David G Sapp
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gregory D Fairn
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
4
|
Ahmad SO, AlAmr M, Taftafa A, AlMazmomy AM, Alkahmous N, Alharran AM, Almarri AM, Alyaqout F, Saad AR, Alazmi AM, Alharran YM, Abotela M, Abu-Zaid A. Exploring the Relationship Between Helicobacter pylori Infection and Biliary Diseases: A Comprehensive Analysis Using the United States National Inpatient Sample (2016-2020). Cureus 2024; 16:e61238. [PMID: 38939288 PMCID: PMC11210440 DOI: 10.7759/cureus.61238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is widely recognized for its association with gastric diseases. Prior studies on the relationship between H. pylori infection and biliary diseases have faced constraints, including inadequate control of confounding factors and small sample sizes. This study aims to explore the association between H. pylori infection and biliary diseases using a large, population-based sample with adequate control for various covariates. METHODS The National Inpatient Sample (NIS) from 2016 to 2020 was used to investigate the association between H. pylori infection and biliary diseases. We identified patients with H. pylori infection using the International Classification of Diseases, Tenth Revision (ICD-10) code (B96.81). Descriptive analysis and inferential statistics, including univariate and multivariate regression, were performed to explore the relationship between H. pylori and selected biliary diseases. Results: Overall, 32,966,720 patients were analyzed. Among them, 736,585 patients had biliary diseases (n=1,637 with H. pylori and n=734,948 without H. pylori). The baseline characteristics revealed notable differences in demographics and healthcare variables between both groups. Univariate regression analysis demonstrated significant associations between H. pylori infection and various biliary diseases such as gallbladder stones, gallbladder cancer, cholangitis, acute cholecystitis, and biliary pancreatitis, with the highest risk for chronic cholecystitis (odds ratio: 5.21; 95% confidence interval: 4.1-6.62; p<0.0001). Multivariate regression analysis, after adjusting for various covariates, confirmed these associations, providing insights into the potential causal relationship between H. pylori and biliary diseases. CONCLUSION This study strengthens the evidence suggesting a potential association between H. pylori infection and biliary diseases. The findings need to be validated in prospective clinical studies.
Collapse
Affiliation(s)
- Syed O Ahmad
- Department of Medicine, Brigham and Women's Hospital, Boston, USA
| | - Mohammad AlAmr
- Department of Family Medicine, Dr. Sulaiman Al Habib Medical Group, Riyadh, SAU
| | | | | | | | - Abdullah M Alharran
- College of Medicine and Medical Science, Arabian Gulf University, Manama, BHR
| | - Abdulhadi M Almarri
- College of Medicine and Medical Science, Arabian Gulf University, Manama, BHR
| | - Fajer Alyaqout
- College of Medicine and Medical Science, Arabian Gulf University, Manama, BHR
| | - Abdulbadih R Saad
- College of Medicine and Medical Science, Arabian Gulf University, Manama, BHR
| | - Abdulaziz M Alazmi
- College of Medicine and Medical Science, Arabian Gulf University, Manama, BHR
| | | | | | | |
Collapse
|
5
|
Soutto M, Zhang X, Bhat N, Chen Z, Zhu S, Maacha S, Genoula M, El-Gazzaz O, Peng D, Lu H, McDonald OG, Chen XS, Cao L, Xu Z, El-Rifai W. Fibroblast growth factor receptor-4 mediates activation of Nuclear Factor Erythroid 2-Related Factor-2 in gastric tumorigenesis. Redox Biol 2024; 69:102998. [PMID: 38154380 PMCID: PMC10787301 DOI: 10.1016/j.redox.2023.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the leading risk factor for gastric carcinogenesis. Fibroblast growth factor receptor 4 (FGFR4) is a member of transmembrane tyrosine kinase receptors that are activated in cancer. We investigated the role of FGFR4 in regulating the cellular response to H. pylori infection in gastric cancer. High levels of oxidative stress signature and FGFR4 expression were detected in gastric cancer samples. Gene set enrichment analysis (GSEA) demonstrated enrichment of NRF2 signature in samples with high FGFR4 levels. H. pylori infection induced reactive oxygen species (ROS) with a cellular response manifested by an increase in FGFR4 with accumulation and nuclear localization NRF2. Knocking down FGFR4 significantly reduced NRF2 protein and transcription activity levels, leading to higher levels of ROS and DNA damage following H. pylori infection. We confirmed the induction of FGFR4 and NRF2 levels using mouse models following infection with a mouse-adapted H. pyloristrain. Pharmacologic inhibition of FGFR4 using H3B-6527, or its knockdown, remarkably reduced the level of NRF2 with a reduction in the size and number of gastric cancer spheroids. Mechanistically, we detected binding between FGFR4 and P62 proteins, competing with NRF2-KEAP1 interaction, allowing NRF2 to escape KEAP1-dependent degradation with subsequent accumulation and translocation to the nucleus. These findings demonstrate a novel functional role of FGFR4 in cellular homeostasis via regulating the NRF2 levels in response to H. pylori infection in gastric carcinogenesis, calling for testing the therapeutic efficacy of FGFR4 inhibitors in gastric cancer models.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Selma Maacha
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Melanie Genoula
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Omar El-Gazzaz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Oliver G McDonald
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xi Steven Chen
- Division of Biostatistics, Department of Public Health Science, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Liu T, Guo Y, Liao Y, Liu J. Mechanism-guided fine-tuned microbiome potentiates anti-tumor immunity in HCC. Front Immunol 2023; 14:1333864. [PMID: 38169837 PMCID: PMC10758498 DOI: 10.3389/fimmu.2023.1333864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in shaping distal and proximal anti-tumor immunity. Mounting evidence showed that commensal microbiome critically modulates immunophenotyping of hepatocellular carcinoma (HCC), a leading cause of cancer-related death. However, their role in anti-tumor surveillance of HCC is still poorly understood. Herein, we spotlighted growing interests in how the microbiome influences the progression and immunotherapeutic responses of HCC via changing local tumor microenvironment (TME) upon translocating to the sites of HCC through different "cell-type niches". Moreover, we summarized not only the associations but also the deep insight into the mechanisms of how the extrinsic microbiomes interplay with hosts to shape immune surveillance and regulate TME and immunotherapeutic responses. Collectively, we provided a rationale for a mechanism-guided fine-tuned microbiome to be neoadjuvant immunotherapy in the near future.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Chattopadhyay I, Gundamaraju R, Rajeev A. Diversification and deleterious role of microbiome in gastric cancer. Cancer Rep (Hoboken) 2023; 6:e1878. [PMID: 37530125 PMCID: PMC10644335 DOI: 10.1002/cnr2.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.
Collapse
Affiliation(s)
| | - Rohit Gundamaraju
- ER stress and Mucosal Immunology TeamSchool of Health Sciences, University of TasmaniaLauncestonTasmaniaAustralia
| | - Ashwin Rajeev
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurIndia
| |
Collapse
|
8
|
Yu M, Xu M, Shen Y, Liu Y, Xu C, Feng T, Zhang P. Hp0521 inhibited the virulence of H. pylori 26,695 strain via regulating CagA expression. Heliyon 2023; 9:e17881. [PMID: 37539313 PMCID: PMC10395286 DOI: 10.1016/j.heliyon.2023.e17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Hp0521 is the number of cag pathogenicity island (cagPAI) family in Helicobacter pylori (H. pylori, Hp), which encoded Cag2 protein. The aim of this study was to investigate the role of hp0521 on the H. pylori 26,695 strain. We constructed the recombinant prokaryotic expression plasmid pET-32a-hp0521 and pET-32a-hpc0521. Then, we co-cultured the H. pylori wild strain 26,695 and Δhp0521 strain with GES-1 cells to detect CagA protein transport and IL-8 secretion. We found that Δhp0521 mutation increased the expression of cagA, rpoB and promoted the transportation of CagA protein in GES-1 cells. In addition, we also observed that Δhp0521 mutation had no effect on other cagPAI protein stability and the expression of IL-8. Our findings suggested that hp0521 may down-regulated the expression of cagA, rpoB and inhibited the transportation of CagA protein in GES-1 cells and had no effect on growth.
Collapse
Affiliation(s)
- Min Yu
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Min Xu
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yixin Shen
- Department of Medical Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Liu
- Department of Medical Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Chi Xu
- Digestive Disease Center, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Tongbao Feng
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| |
Collapse
|
9
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
10
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
11
|
Sarkar S, Alipour Talesh G, Menheniott TR, Sutton P. Targeting Host Sulphonyl Urea Receptor 2 Can Reduce Severity of Helicobacter pylori Associated Gastritis. GASTRO HEP ADVANCES 2023; 2:721-732. [PMID: 39129876 PMCID: PMC11307979 DOI: 10.1016/j.gastha.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/06/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims While most Helicobacter pylori-infected individuals remain asymptomatic throughout their lifetime, in a significant proportion, the resulting severe chronic gastritis drives the development of gastric cancer. In this study, we examine a new therapeutic target, a host potassium channel regulatory subunit, SUR2 (encoded by ABCC9), with potential to protect against H pylori-associated diseases. Methods SUR2 gene (ABCC9) expression in human gastric biopsies was analyzed by quantitative polymerase chain reactions. Helicobacter-infected mice were administered the SUR2-channel agonists, pinacidil and nicorandil, then gastric tissues analyzed by histology, immunohistochemistry and quantitative polymerase chain reaction, and splenic tissues by enzyme-linked immunosorbent assays. In vitro studies were performed on human and mouse macrophages, human gastric epithelial cells and mouse splenocytes. Results ABCC9 expression in human and mouse stomachs is downregulated with H pylori infection. Treatment of Helicobacter-infected mice with SUR2 channel modulators, pinacidil or nicorandil, significantly reduced gastritis severity. In gastric epithelial cells, nicorandil-induced opening of the SUR2 channel increased intracellular K+ and prevented H pylori-mediated Ca2+ influx and downstream pro-inflammatory signaling. Conclusion SUR2 is a novel host factor that regulates Helicobacter pathogenesis. Pharmacological targeting of SUR2 provides a potential approach for reducing the severity of H pylori-associated gastritis, without eradicating infection.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ghazal Alipour Talesh
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Trevelyan R. Menheniott
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Philip Sutton
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Guo Y, Cao XS, Zhou MG, Yu B. Gastric microbiota in gastric cancer: Different roles of Helicobacter pylori and other microbes. Front Cell Infect Microbiol 2023; 12:1105811. [PMID: 36704105 PMCID: PMC9871904 DOI: 10.3389/fcimb.2022.1105811] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. The gastric microbiota plays a critical role in the development of GC. First, Helicobacter pylori (H. pylori) infection is considered a major risk factor for GC. However, recent studies based on microbiota sequencing technology have found that non-H. pylori microbes also exert effects on gastric carcinogenesis. Following the infection of H. pylori, gastric microbiota dysbiosis could be observed; the stomach is dominated by H. pylori and the abundances of non-H. pylori microbes reduce substantially. Additionally, decreased microbial diversity, alterations in the microbial community structure, negative interactions between H. pylori and other microbes, etc. occur, as well. With the progression of gastric lesions, the number of H. pylori decreases and the number of non-H. pylori microbes increases correspondingly. Notably, H. pylori and non-H. pylori microbes show different roles in different stages of gastric carcinogenesis. In the present mini-review, we provide an overview of the recent findings regarding the role of the gastric microbiota, including the H. pylori and non-H. pylori microbes, in the development of GC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xue-Shan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Meng-Ge Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
13
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhang X, Soutto M, Chen Z, Bhat N, Zhu S, Eissmann MF, Ernst M, Lu H, Peng D, Xu Z, El-Rifai W. Induction of Fibroblast Growth Factor Receptor 4 by Helicobacter pylori via Signal Transducer and Activator of Transcription 3 With a Feedforward Activation Loop Involving SRC Signaling in Gastric Cancer. Gastroenterology 2022; 163:620-636.e9. [PMID: 35588797 PMCID: PMC9629135 DOI: 10.1053/j.gastro.2022.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori (H pylori) infection is the main risk factor for gastric cancer. The role of fibroblast growth factor receptors (FGRFs) in H pylori-mediated gastric tumorigenesis remains largely unknown. This study investigated the molecular and mechanistic links between H pylori, inflammation, and FGFR4 in gastric cancer. METHODS Cell lines, human and mouse gastric tissue samples, and gastric organoids models were implemented. Infection with H pylori was performed using in vitro and in vivo models. Western blot, real-time quantitative reverse-transcription polymerase chain reaction, flow cytometry, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and luciferase reporter assays were used for molecular, mechanistic, and functional studies. RESULTS Analysis of FGFR family members using The Cancer Genome Atlas data, followed by validation, indicated that FGFR4 messenger (m)RNA was the most significantly overexpressed member in human gastric cancer tissue samples (P < .001). We also detected high levels of Fgfr4 mRNA and protein in gastric dysplasia and adenocarcinoma lesions in mouse models. Infection with J166, 7.13, and PMSS1 cytotoxin-associated gene A (CagA)+ H pylori strains induced FGFR4 mRNA and protein expression in in vitro and in vivo models. This was associated with a concordant activation of signal transducer and activator of transcription 3 (STAT3). Analysis of the FGFR4 promoter suggested several putative binding sites for STAT3. Using chromatin immunoprecipitation assay and an FGFR-promoter luciferase reporter containing putative STAT3 binding sites and their mutants, we confirmed a direct functional binding of STAT3 on the FGFR4 promoter. Mechanistically, we also discovered a feedforward activation loop between FGFR4 and STAT3 where the fibroblast growth factor 19–FGFR4 axis played an essential role in activating STAT3 in a SRC proto-oncogene non-receptor tyrosine kinase dependent manner. Functionally, we found that FGFR4 protected against H pylori-induced DNA damage and cell death. CONCLUSIONS Our findings demonstrated a link between infection, inflammation, and FGFR4 activation, where a feedforward activation loop between FGFR4 and STAT3 is established via SRC proto-oncogene non-receptor tyrosine kinase in response to H pylori infection. Given the relevance of FGFR4 to the etiology and biology of gastric cancer, we propose FGFR4 as a druggable molecular vulnerability that can be tested in patients with gastric cancer.
Collapse
Affiliation(s)
- Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Moritz F Eissmann
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
15
|
Su H, Bak EJ, Kim A, Tissera K, Cha JH, Jang S. Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin. J Microbiol 2022; 60:849-858. [DOI: 10.1007/s12275-022-2130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
|
16
|
Yang J, Hu Y, Zhang B, Liang X, Li X. The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Front Immunol 2022; 13:881396. [PMID: 35558079 PMCID: PMC9090529 DOI: 10.3389/fimmu.2022.881396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation has emerged as a key player in regulating cancer initiation, progression, and therapeutics, acting as a double edged sword either facilitating cancer progression and therapeutic resistance or inducing anti-tumor immune responses. Accumulating evidence has linked the epigenetic modifications of histones to inflammation and cancer, and histone modifications-based strategies have shown promising therapeutic potentials against cancer. The jumonji C domain-containing (JMJD) family histone demethylases have exhibited multiple regulator functions in inflammatory processes and cancer development, and a number of therapeutic strategies targeting JMJD histone demethylases to modulate inflammatory cells and their products have been successfully evaluated in clinical or preclinical tumor models. This review summarizes current understanding of the functional roles and mechanisms of JMJD histone demethylases in crosstalk between inflammation and cancer, and highlights recent clinical and preclinical progress on harnessing the JMJD histone demethylases to regulate cancer-related inflammation for future cancer therapeutics.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Hu
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Contino KF, Yadav H, Shiozawa Y. The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochem Pharmacol 2022; 197:114916. [PMID: 35041811 PMCID: PMC8858876 DOI: 10.1016/j.bcp.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota, an often forgotten organ, have a tremendous impact on human health. It has long been known that the gut microbiota are implicated in cancer development, and more recently, the gut microbiota have been shown to influence cancer metastasis to distant organs. Although one of the most common sites of distant metastasis is the bone, and the skeletal system has been shown to be a subject of interactions with the gut microbiota to regulate bone homeostasis, little research has been done regarding how the gut microbiota control the development of bone metastasis. This review will discuss the mechanisms through which the gut microbiota and derived microbial compounds (i) regulate gastrointestinal cancer disease progression and metastasis, (ii) influence skeletal remodeling and potentially modulate bone metastasis, and (iii) affect and potentially enhance immunotherapeutic treatments for bone metastasis.
Collapse
Affiliation(s)
- Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair and Institute for Microbiome, University of South Florida, Tampa, FL 33612, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
19
|
Stergiou IE, Chatzis L, Papanikolaou A, Giannouli S, Tzioufas AG, Voulgarelis M, Kapsogeorgou EK. Akt Signaling Pathway Is Activated in the Minor Salivary Glands of Patients with Primary Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms222413441. [PMID: 34948236 PMCID: PMC8709495 DOI: 10.3390/ijms222413441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune exocrinopathy of mainly the salivary and lacrimal glands associated with high prevalence of lymphoma. Akt is a phosphoinositide-dependent serine/threonine kinase, controlling numerous pathological processes, including oncogenesis and autoimmunity. Herein, we sought to examine its implication in pSS pathogenesis and related lymphomagenesis. The expression of the entire and activated forms of Akt (partially and fully activated: phosphorylated at threonine-308 (T308) and serine-473 (S473), respectively), and two of its substrates, the proline-rich Akt-substrate of 40 kDa (PRAS40) and FoxO1 transcription factor has been immunohistochemically examined in minor salivary glands (MSG) of pSS patients (n = 29; including 9 with pSS-associated lymphoma) and sicca-complaining controls (sicca-controls; n = 10). The entire and phosphorylated Akt, PRAS40, and FoxO1 molecules were strongly, uniformly expressed in the MSG epithelia and infiltrating mononuclear cells of pSS patients, but not sicca-controls. Morphometric analysis revealed that the staining intensity of the fully activated phospho-Akt-S473 in pSS patients (with or without lymphoma) was significantly higher than sicca-controls. Akt pathway activation was independent from the extent or proximity of infiltrates, as well as other disease features, including lymphoma. Our findings support that the Akt pathway is specifically activated in MSGs of pSS patients, revealing novel therapeutic targets.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | | | - Stavroula Giannouli
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
- Correspondence: ; Tel.: +30-210-746-2670
| |
Collapse
|
20
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
21
|
Pirzadeh M, Khalili N, Rezaei N. The interplay between aryl hydrocarbon receptor, H. pylori, tryptophan, and arginine in the pathogenesis of gastric cancer. Int Rev Immunol 2020; 41:299-312. [DOI: 10.1080/08830185.2020.1851371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
22
|
Thanaphongdecha P, Karinshak SE, Ittiprasert W, Mann VH, Chamgramol Y, Pairojkul C, Fox JG, Suttiprapa S, Sripa B, Brindley PJ. Infection with Helicobacter pylori Induces Epithelial to Mesenchymal Transition in Human Cholangiocytes. Pathogens 2020; 9:E971. [PMID: 33233485 PMCID: PMC7700263 DOI: 10.3390/pathogens9110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
Recent reports suggest that the East Asian liver fluke infection, caused by Opisthorchis viverrini, which is implicated in opisthorchiasis-associated cholangiocarcinoma, serves as a reservoir of Helicobacter pylori. The opisthorchiasis-affected cholangiocytes that line the intrahepatic biliary tract are considered to be the cell of origin of this malignancy. Here, we investigated interactions in vitro among human cholangiocytes, Helicobacter pylori strain NCTC 11637, and the congeneric bacillus, Helicobacter bilis. Exposure to increasing numbers of H. pylori at 0, 1, 10, 100 bacilli per cholangiocyte of the H69 cell line induced phenotypic changes including the profusion of thread-like filopodia and a loss of cell-cell contact, in a dose-dependent fashion. In parallel, following exposure to H. pylori, changes were evident in levels of mRNA expression of epithelial to mesenchymal transition (EMT)-encoding factors including snail, slug, vimentin, matrix metalloprotease, zinc finger E-box-binding homeobox, and the cancer stem cell marker CD44. Analysis to quantify cellular proliferation, migration, and invasion in real-time by both H69 cholangiocytes and CC-LP-1 line of cholangiocarcinoma cells using the xCELLigence approach and Matrigel matrix revealed that exposure to 10 H. pylori bacilli per cell stimulated migration and invasion by the cholangiocytes. In addition, 10 bacilli of H. pylori stimulated contact-independent colony establishment in soft agar. These findings support the hypothesis that infection by H. pylori contributes to the malignant transformation of the biliary epithelium.
Collapse
Affiliation(s)
- Prissadee Thanaphongdecha
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shannon E. Karinshak
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Wannaporn Ittiprasert
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Victoria H. Mann
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| | - Yaovalux Chamgramol
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Paul J. Brindley
- Research Center for Neglected Tropical Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.T.); (S.E.K.); (W.I.); (V.H.M.)
| |
Collapse
|
23
|
PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 2020; 262:118513. [PMID: 33011222 DOI: 10.1016/j.lfs.2020.118513] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
PI3K/AKT/mTOR pathway is one of the most important signaling pathways involved in normal cellular processes. Its aberrant activation modulates autophagy, epithelial-mesenchymal transition, apoptosis, chemoresistance, and metastasis in many human cancers. Emerging evidence demonstrates that some infections as well as epigenetic regulatory mechanisms can control PI3K/AKT/mTOR signaling pathway. In this review, we focused on the role of this pathway in gastric cancer development, prognosis, and metastasis, with an emphasis on epigenetic alterations including DNA methylation, histone modifications, and post-transcriptional modulations through non-coding RNAs fluctuations as well as H. pylori and Epstein-Barr virus infections. Finally, we reviewed different molecular targets and therapeutic agents in clinical trials as a potential strategy for gastric cancer treatment through the PI3K/AKT/mTOR pathway.
Collapse
|
24
|
Kim SH, Kim H. Transcriptome Analysis of the Inhibitory Effect of Astaxanthin on Helicobacter pylori-Induced Gastric Carcinoma Cell Motility. Mar Drugs 2020; 18:md18070365. [PMID: 32679742 PMCID: PMC7404279 DOI: 10.3390/md18070365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection promotes the metastasis of gastric carcinoma cells by modulating signal transduction pathways that regulate cell proliferation, motility, and invasion. Astaxanthin (ASTX), a xanthophyll carotenoid, is known to inhibit cancer cell migration and invasion, however the mechanism of action of ASTX in H. pylori-infected gastric epithelial cells is not well understood. To gain insight into this process, we carried out a comparative RNA sequencing (RNA-Seq) analysis of human gastric cancer AGS (adenocarcinoma gastric) cells as a function of H. pylori infection and ASTX administration. The results were used to identify genes that are differently expressed in response to H. pylori and ASTX. Gene ontology (GO) analysis identified differentially expressed genes (DEGs) to be associated with cell cytoskeleton remodeling, motility, and/or migration. Among the 20 genes identified, those encoding c-MET, PI3KC2, PLCγ1, Cdc42, and ROCK1 were selected for verification by real-time PCR analysis. The verified genes were mapped, using signaling networks contained in the KEGG database, to create a signaling pathway through which ASTX might mitigate the effects of H. pylori-infection. We propose that H. pylori-induced upregulation of the upstream regulator c-MET, and hence, its downstream targets Cdc42 and ROCK1, is suppressed by ASTX. ASTX is also suggested to counteract H. pylori-induced activation of PI3K and PLCγ. In conclusion, ASTX can suppress H. pylori-induced gastric cancer progression by inhibiting cytoskeleton reorganization and reducing cell motility through downregulation of c-MET, EGFR, PI3KC2, PLCγ1, Cdc42, and ROCK1.
Collapse
|
25
|
Chen X, Wang R, Bao C, Zhang J, Zhang J, Li R, Wu S, Wen J, Yang T, Wei S, Li H, Wei Y, Ren S, Zhao Y. Palmatine ameliorates Helicobacter pylori-induced chronic atrophic gastritis by inhibiting MMP-10 through ADAM17/EGFR. Eur J Pharmacol 2020; 882:173267. [PMID: 32569674 DOI: 10.1016/j.ejphar.2020.173267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023]
Abstract
Palmatine (Pal), a plant-based isoquinoline alkaloid, was initially isolated from Coptidis Rhizoma (CR, Huanglian in Chinese) and considered to be a potential non-antibiotic therapeutic agent that can safely and effectively improve Helicobacter pylori (H. pylori) induced chronic atrophic gastritis (CAG). However, underlying mechanisms are unclear. In this study, we explored the protective effect of Pal on H. pylori induced CAG in vivo and in vitro. As a result, Pal alleviated the histological damage of gastric mucosa and the morphological changes of gastric epithelial cell (GES-1) caused by H. pylori. Furthermore, Pal significantly inhibited the expression of EGFR-activated ligand genes, including a disintegrin and metalloproteinase 17 (ADAM17) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), and the proinflammatory factors, such as chemokine 16 (CXCL-16) and interleukin 8 (IL-8), were suppressed. In addition, Pal attenuated inflammatory infiltration of CD8+ T cells while promoted Reg3a expression to enhance host defense. Taken together, we concluded that Pal attenuated the MMP-10 dependent inflammatory response in the gastric mucosa by blocking ADAM17/EGFR signaling, which contributed to its gastrointestinal protective effect.
Collapse
Affiliation(s)
- Xing Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Ruilin Wang
- Integrative Medical Center, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Chunmei Bao
- Division of Clinical Microbiology, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Jianzhong Zhang
- Center of Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Juling Zhang
- Division of Clinical Microbiology, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Shihua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Jianxian Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Tao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Ying Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Sichen Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
26
|
TAZ Controls Helicobacter pylori-Induced Epithelial-Mesenchymal Transition and Cancer Stem Cell-Like Invasive and Tumorigenic Properties. Cells 2020; 9:cells9061462. [PMID: 32545795 PMCID: PMC7348942 DOI: 10.3390/cells9061462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection, the main risk factor for gastric cancer (GC), leads to an epithelial–mesenchymal transition (EMT) of gastric epithelium contributing to gastric cancer stem cell (CSC) emergence. The Hippo pathway effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ) control cancer initiation and progression in many cancers including GC. Here, we investigated the role of TAZ in the early steps of H. pylori-mediated gastric carcinogenesis. TAZ implication in EMT, invasion, and CSC-related tumorigenic properties were evaluated in three gastric epithelial cell lines infected by H. pylori. We showed that H. pylori infection increased TAZ nuclear expression and transcriptional enhancer TEA domain (TEAD) transcription factors transcriptional activity. Nuclear TAZ and zinc finger E-box-binding homeobox 1 (ZEB1) were co-overexpressed in cells harboring a mesenchymal phenotype in vitro, and in areas of regenerative hyperplasia in gastric mucosa of H. pylori-infected patients and experimentally infected mice, as well as at the invasive front of gastric carcinoma. TAZ silencing reduced ZEB1 expression and EMT phenotype, and strongly inhibited invasion and tumorsphere formation induced by H. pylori. In conclusion, TAZ activation in response to H. pylori infection contributes to H. pylori-induced EMT, invasion, and CSC-like tumorigenic properties. TAZ overexpression in H. pylori-induced pre-neoplastic lesions and in GC could therefore constitute a biomarker of early transformation in gastric carcinogenesis.
Collapse
|
27
|
Zheng Y, Guo C, Zhang X, Wang X, Ma A. Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway. Oncol Lett 2020; 20:667-676. [PMID: 32565991 PMCID: PMC7285879 DOI: 10.3892/ol.2020.11585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide; however, treatment options other than surgery remain limited. Neoadjuvant chemotherapy has the potential to suppress of gastric tumorigenesis. Garcinol has been reported to exert inhibitory effects on the progression of numerous carcinomas. However, its effects in GC remain unclear. Therefore, the aim of the present study was to investigate the effects of garcinol on the proliferation, invasion and apoptosis of gastric carcinoma cells and then to explore the underlying mechanisms. Garcinol significantly decreased the proliferation and invasion of GC cells and increased apoptosis in a dose-dependent manner. Additionally, the expression of AKTp-Thr308, cyclin D1, Bcl-2, BAX, matrix metalloprotease (MMP-2) and MMP-9 in HGC-27 cells following treatment with garcinol. The results obtained in the present study suggested that garcinol may inhibit gastric tumorigenesis by suppressing the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai 200072, P.R. China
| | - Xiaoping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaoli Wang
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| | - A'Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
28
|
Gastric cancer: genome damaged by bugs. Oncogene 2020; 39:3427-3442. [PMID: 32123313 PMCID: PMC7176583 DOI: 10.1038/s41388-020-1241-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. The role of the microorganisms in gastric tumorigenesis attracts much attention in recent years. These microorganisms include bacteria, virus, and fungi. Among them, Helicobacter pylori (H. pylori) infection is by far the most important risk factor for GC development, with special reference to the early-onset cases. H. pylori targets multiple cellular components by utilizing various virulence factors to modulate the host proliferation, apoptosis, migration, and inflammatory response. Epstein–Barr virus (EBV) serves as another major risk factor in gastric carcinogenesis. The virus protein, EBER noncoding RNA, and EBV miRNAs contribute to the tumorigenesis by modulating host genome methylation and gene expression. In this review, we summarized the related reports about the colonized microorganism in the stomach and discussed their specific roles in gastric tumorigenesis. Meanwhile, we highlighted the therapeutic significance of eradicating the microorganisms in GC treatment.
Collapse
|
29
|
Zhou S, Chen H, Yuan P, Shi N, Wang X, Hu J, Liu L. Helicobacter pylori infection promotes epithelial-to-mesenchymal transition of gastric cells by upregulating LAPTM4B. Biochem Biophys Res Commun 2019; 514:893-900. [PMID: 31084933 DOI: 10.1016/j.bbrc.2019.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 01/13/2023]
Abstract
Helicobacter pylori infection can lead to epithelial-to-mesenchymal transition (EMT) and the progression of gastric cancer (GC); however, the underlying mechanism is poorly understood. Lysosomal-associated protein transmembrane 4β (LAPTM4B) has been implicated in carcinogenesis, including in GC, and we previously showed that LAPTM4B-35 overexpression was an independent prognostic factor in GC. In this study, we demonstrate that upregulation of LAPTM4B promotes GES-1 human gastric epithelial cell proliferation, migration, and invasion and EMT. Conversely, LAPTM4B downregulation inhibited proliferation, migration, invasion, and EMT in SGC7901 GC cells. We also found that H. pylori infection enhanced LAPTM4B expression and induced EMT in GES-1 cells. Thus, EMT in GC is promoted by a combination of LAPTM4B overexpression and H. pylori infection. These results provide a basis for the development of novel two-pronged therapeutic strategies for the treatment of GC.
Collapse
Affiliation(s)
- Shengfei Zhou
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Hui Chen
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Peihua Yuan
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Ning Shi
- Department of Gastroenterology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China
| | - Xiao Wang
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China
| | - Jinxia Hu
- Department of Molecular Biology and Biochemistry, Binzhou Medical University, Yantai, Shandong Province, China.
| | - Luying Liu
- Department of Pathology, Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
30
|
Wu MC, Cheng HH, Yeh TS, Li YC, Chen TJ, Sit WY, Chuu CP, Kung HJ, Chien S, Wang WC. KDM4B is a coactivator of c-Jun and involved in gastric carcinogenesis. Cell Death Dis 2019; 10:68. [PMID: 30683841 PMCID: PMC6347645 DOI: 10.1038/s41419-019-1305-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/08/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
KDM4/JMJD2 Jumonji C-containing histone lysine demethylases (KDM4A–D) constitute an important class of epigenetic modulators in the transcriptional activation of cellular processes and genome stability. Interleukin-8 (IL-8) is overexpressed in gastric cancer, but the mechanisms and particularly the role of the epigenetic regulation of IL-8, are unclear. Here, we report that KDM4B, but not KDM4A/4C, upregulated IL-8 production in the absence or presence of Helicobacter pylori. Moreover, KDM4B physically interacts with c-Jun on IL-8, MMP1, and ITGAV promoters via its demethylation activity. The depletion of KDM4B leads to the decreased expression of integrin αV, which is exploited by H. pylori carrying the type IV secretion system, reducing IL-8 production and cell migration. Elevated KDM4B expression is significantly associated with the abundance of p-c-Jun in gastric cancer and is linked to a poor clinical outcome. Together, our results suggest that KDM4B is a key regulator of JNK/c-Jun-induced processes and is a valuable therapeutic target.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Yi-Chen Li
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Tsan-Jan Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Wei Yang Sit
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, 95616, USA. .,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 350, Taiwan.
| | - Shu Chien
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 300, Taiwan.
| |
Collapse
|
31
|
Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? Int J Mol Sci 2018; 19:ijms19082361. [PMID: 30103451 PMCID: PMC6121492 DOI: 10.3390/ijms19082361] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
In this critical review, plant sources used as effective antibacterial agents against Helicobacter pylori infections are carefully described. The main intrinsic bioactive molecules, responsible for the observed effects are also underlined and their corresponding modes of action specifically highlighted. In addition to traditional uses as herbal remedies, in vitro and in vivo studies focusing on plant extracts and isolated bioactive compounds with anti-H. pylori activity are also critically discussed. Lastly, special attention was also given to plant extracts with urease inhibitory effects, with emphasis on involved modes of action.
Collapse
|
32
|
Teal E, Steele NG, Chakrabarti J, Holokai L, Zavros Y. Mouse- and Human-derived Primary Gastric Epithelial Monolayer Culture for the Study of Regeneration. J Vis Exp 2018. [PMID: 29782013 DOI: 10.3791/57435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro studies of gastric wound repair typically involves the use of gastric cancer cell lines in a scratch-wound assay of cellular proliferation and migration. One critical limitation of such assays, however, is their homogenous assortment of cellular types. Repair is a complex process which demands the interaction of several cell types. Therefore, to study a culture devoid of cellular subtypes, is a concern that must be overcome if we are to understand the repair process. The gastric organoid model may alleviate this issue whereby the heterogeneous collection of cell types closely reflects that of the gastric epithelium or other native tissues in vivo. Demonstrated here is a novel, in vitro scratch-wound assay derived from human or mouse 3-dimensional organoids which can then be transferred to a gastric epithelial monolayer as either intact organoids or as a single cell suspension of dissociated organoids. The goal of the protocol is to establish organoid-derived gastric epithelial monolayers that can be used in a novel scratch-wound assay system to study gastric regeneration.
Collapse
Affiliation(s)
- Emma Teal
- Department of Pharmacology and Systems Physiology, University of Cincinnati
| | - Nina G Steele
- Department of Cell & Developmental Biology, University of Michigan
| | - Jayati Chakrabarti
- Department of Pharmacology and Systems Physiology, University of Cincinnati
| | - Loryn Holokai
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati
| | - Yana Zavros
- Department of Pharmacology and Systems Physiology, University of Cincinnati;
| |
Collapse
|
33
|
N-Acetylcysteine Reduces ROS-Mediated Oxidative DNA Damage and PI3K/Akt Pathway Activation Induced by Helicobacter pylori Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1874985. [PMID: 29854076 PMCID: PMC5944265 DOI: 10.1155/2018/1874985] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/14/2018] [Indexed: 01/14/2023]
Abstract
Background H. pylori infection induces reactive oxygen species- (ROS-) related DNA damage and activates the PI3K/Akt pathway in gastric epithelial cells. N-Acetylcysteine (NAC) is known as an inhibitor of ROS; the role of NAC in H. pylori-related diseases is unclear. Aim The aim of this study was to evaluate the role of ROS and the protective role of NAC in the pathogenesis of H. pylori-related diseases. Method An in vitro coculture system and an in vivo Balb/c mouse model of H. pylori-infected gastric epithelial cells were established. The effects of H. pylori infection on DNA damage and ROS were assessed by the comet assay and fluorescent dichlorofluorescein assay. The level of PI3K/Akt pathway-related proteins was evaluated by Western blotting. The protective role of N-acetylcysteine (NAC) was also evaluated with in vitro and in vivo H. pylori infection models. Results The results revealed that, in vitro and in vivo, H. pylori infection increased the ROS level and induced DNA damage in gastric epithelial cells. NAC treatment effectively reduced the ROS level and inhibited DNA damage in GES-1 cells and the gastric mucosa of Balb/c mice. H. pylori infection induced ROS-mediated PI3K/Akt pathway activation, and NAC treatment inhibited this effect. However, the gastric mucosa pathological score of the NAC-treated group was not significantly different from that of the untreated group. Furthermore, chronic H. pylori infection decreased APE-1 expression in the gastric mucosa of Balb/c mice. Conclusions An increased ROS level is a critical mechanism in H. pylori pathogenesis, and NAC may be beneficial for the treatment of H. pylori-related gastric diseases linked to oxidative DNA damage.
Collapse
|
34
|
Han F, Ren J, Zhang J, Sun Y, Ma F, Liu Z, Yu H, Jia J, Li W. JMJD2B is required for Helicobacter pylori-induced gastric carcinogenesis via regulating COX-2 expression. Oncotarget 2018; 7:38626-38637. [PMID: 27232941 PMCID: PMC5122416 DOI: 10.18632/oncotarget.9573] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the strongest risk factor for the initiation and progression of gastric cancer. However, the mechanism of H. pylori-induced pathogenesis remains unclear. In this study, we investigate the role of H. pylori infection in JMJD2B upregulation and the mechanism underlying gastric carcinogenesis. We find that JMJD2B can be induced by H. pylori infection via β-catenin pathway. β-catenin directly binds to JMJD2B promoter and stimulates JMJD2B expression following H. pylori infection. Increased JMJD2B, together with NF-κB, binds to COX-2 promoter to enhance its transcription by demethylating H3K9me3 locally. JMJD2B and COX-2 expression is upregulated in H. pylori infected mice in vivo. Furthermore, JMJD2B and COX-2 expression is gradually increased in human gastric tissues from gastritis to gastric cancer. The level of JMJD2B and COX-2 in H. pylori-positive gastritis tissues is significantly higher than that in H. pylori-negative tissues. Moreover, a positive correlation between JMJD2B and COX-2 expression is found in both gastritis and gastric cancer tissues. Therefore, JMJD2B is a crucial factor in triggering H. pylori-induced chronic inflammation and progression of gastric carcinogenesis and it may serve as a novel target for the intervention of gastric cancer.
Collapse
Affiliation(s)
- Fengjuan Han
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Juchao Ren
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China.,Department of Urology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Jinjin Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Fang Ma
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, PR China
| | - Han Yu
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Wenjuan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
35
|
NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression. Cell Death Dis 2018; 9:12. [PMID: 29317648 PMCID: PMC5849037 DOI: 10.1038/s41419-017-0020-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 12/29/2022]
Abstract
Infection with Helicobacter pylori (H. pylori) and the resulting gastric inflammation is regarded as the strongest risk factor for gastric carcinogenesis and progression. NF-κB plays an important role in linking H. pylori-mediated inflammation to cancer. However, the underlying mechanisms are poorly understood. In this study, we find that H. pylori infection induces miR-223-3p expression in H. pylori CagA-dependent manner. NF-κB stimulates miR-223-3p expression via directly binding to the promoter of miR-223-3p and is required for H. pylori CagA-mediated upregulation of miR-223-3p. miR-223-3p promotes the proliferation and migration of gastric cancer cells by directly targeting ARID1A and decreasing its expression. Furthermore, miR-223-3p/ARID1A axis is involved in CagA-induced cell proliferation and migration. In the clinical setting, the level of miR-223-3p is upregulated, while ARID1A is downregulated significantly in human gastric cancer tissues compared with the corresponding noncancerous tissues. The expression level of miR-223-3p is significantly higher in H. pylori-positive gastric cancer tissues than that in H. pylori-negative tissues. Moreover, a negative correlation between miR-223-3p and ARID1A expression is found in the gastric cancer tissues. Taken together, our findings suggested NF-κB/miR-223-3p/ARID1A axis may link the process of H. pylori-induced chronic inflammation to gastric cancer, thereby providing a new insight into the mechanism underlying H. pylori-associated gastric diseases.
Collapse
|
36
|
Establishment of Human- and Mouse-Derived Gastric Primary Epithelial Cell Monolayers from Organoids. Methods Mol Biol 2018; 1817:145-155. [PMID: 29959711 DOI: 10.1007/978-1-4939-8600-2_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organoid cultures generated from gastrointestinal tissues have been an invaluable advancement for in vitro studies of physiological function and disease. Here we present a comprehensive protocol for the establishment and culture of human- and mouse-derived 3-dimensional gastric organoids transferred to 2-dimensional gastric epithelial cell monolayers. We introduce two methods that include the establishment of monolayers from: (1) intact organoids, and (2) single cells dissociated from intact organoids.
Collapse
|
37
|
Lan KH, Lee WP, Wang YS, Liao SX, Lan KH. Helicobacter pylori CagA protein activates Akt and attenuates chemotherapeutics-induced apoptosis in gastric cancer cells. Oncotarget 2017; 8:113460-113471. [PMID: 29371922 PMCID: PMC5768339 DOI: 10.18632/oncotarget.23050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Infection with cagA-positive Helicobacter pylori is associated with a higher risk of gastric cancer. The cagA gene product, CagA, is translocated into gastric epithelial cells and perturbs host cellular biological functions. Etoposide, a topoisomerase II inhibitor widely used to couple DNA damage to apoptosis, is a common cytotoxic agent used for advanced gastric cancer. We investigate the effect of CagA on etoposide-induced apoptosis in gastric cancer cells to elucidate whether CagA play a role in gastric carcinogenesis via impairing DNA damage-dependent apoptosis. AGS cell lines stably expressing CagA isolated from H. pylori 26695 strain were established. In the presence of etoposide, viability of parental AGS cells was decreased in a time-and dose-dependent manner, whereas CagA-expressing AGS cells were less susceptible to etoposide induced cell-killing effect. Suppression of etoposide-induced apoptosis was shown in CagA-expressing but not in parental AGS cells by DNA fragmentation, cell cycle, and annexin-V assays. This inhibitory effect of etoposide-induced apoptosis conferred by CagA was also demonstrated in SCM1 and MKN45 gastric cancer cell lines, with two additional chemotherapeutics, 5-FU and cisplatin. The effect of Akt activation on inhibition of etoposide-induced cytotoxicity by CagA was also evaluated. CagA expression and etoposide administration activate Akt in a dose-dependent manner. Enhancement of etoposide cytotoxicity by a PI-3-kinase inhibitor, LY294002, was evident in parental but was attenuated in CagA-expressing AGS cells. CagA may activate Akt, either in the absence or presence of etoposide, potentially contributing to gastric carcinogenesis associated with H. pylori infection and therapeutic resistance by impairing DNA damage-dependent apoptosis.
Collapse
Affiliation(s)
- Keng-Hsueh Lan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital National Taiwan University Cancer Center, Taipei, Taiwan
| | - Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department and Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Shan Wang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
38
|
Liu C, Xing J, Gao Y. UNBS5162 inhibits the proliferation of human A549 non-small-cell lung cancer cells by promoting apoptosis. Thorac Cancer 2017; 9:105-111. [PMID: 29130641 PMCID: PMC5754305 DOI: 10.1111/1759-7714.12546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
Abstract
Background Lung cancer is one of the most frequently diagnosed malignancies in the world, thus developing novel anticancer reagents for lung cancer treatment is critical. Methods We performed cell counting kit‐8 and cell colony formation assays to investigate the role of UNBS5162 in the proliferation of A549 cells. Invasion and migration assays were applied to study the inhibitory effect of UNBS5162 on non‐small cell lung cancer cells. To detect the effect of UNBS5162 on A549 cell apoptosis, Annexin‐V fluorescein isothiocyanate and propidium iodide staining methods were used. Protein expression was analyzed using Western blot assay. Results UNBS5162 not only inhibited proliferation but also decreased invasion and migration in A549 cells. Most cells were intact (96.93%) under control conditions, but the number of intact cells decreased (84.8%) after 24 hours of treatment with UNBS5162, and the number of early and late apoptotic cells significantly increased (P < 0.05). Anti‐apoptotic protein Bcl‐2 expression in the UNBS5162 group was significantly decreased (P < 0.05), and expression of proapoptotic proteins Bim, Bax, and active caspase‐3 were significantly increased (P < 0.05) compared to the control. In the PI3K signaling pathway, phospo‐AKT and phospo‐mTOR levels were significantly decreased (P < 0.05), while S6K and Cyclin D1 protein levels were significantly decreased in UNBS5162 treated A549 cells (P < 0.05). Conclusion These findings suggest that UNBS5162 could inhibit A549 cell proliferation and metastasis by inhibiting PI3K pathway mediated apoptosis.
Collapse
Affiliation(s)
- Cuicui Liu
- Department of Oncology, Linyi City People's Hospital, Linyi, China
| | - Jiaqiang Xing
- Department of Thoracic Surgery, Linyi Cancer Hospital, Linyi, China
| | - Yujun Gao
- Department of Thoracic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
39
|
Endoscopic and Colonoscopic Findings in Patients with Iron Deficiency Anemia: The Risk of Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Canales J, Valenzuela M, Bravo J, Cerda-Opazo P, Jorquera C, Toledo H, Bravo D, Quest AFG. Helicobacter pylori Induced Phosphatidylinositol-3-OH Kinase/mTOR Activation Increases Hypoxia Inducible Factor-1α to Promote Loss of Cyclin D1 and G0/G1 Cell Cycle Arrest in Human Gastric Cells. Front Cell Infect Microbiol 2017; 7:92. [PMID: 28401064 PMCID: PMC5368181 DOI: 10.3389/fcimb.2017.00092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a human gastric pathogen that has been linked to the development of several gastric pathologies, such as gastritis, peptic ulcer, and gastric cancer. In the gastric epithelium, the bacterium modifies many signaling pathways, resulting in contradictory responses that favor both proliferation and apoptosis. Consistent with such observations, H. pylori activates routes associated with cell cycle progression and cell cycle arrest. H. pylori infection also induces the hypoxia-induced factor HIF-1α, a transcription factor known to promote expression of genes that permit metabolic adaptation to the hypoxic environment in tumors and angiogenesis. Recently, however, also roles for HIF-1α in the repair of damaged DNA and inhibition of gene expression were described. Here, we investigated signaling pathways induced by H. pylori in gastric cells that favor HIF-1α expression and the consequences thereof in infected cells. Our results revealed that H. pylori promoted PI3K/mTOR-dependent HIF-1α induction, HIF-1α translocation to the nucleus, and activity as a transcription factor as evidenced using a reporter assay. Surprisingly, however, transcription of known HIF-1α effector genes evaluated by qPCR analysis, revealed either no change (LDHA and GAPDH), statistically insignificant increases SLC2A1 (GLUT-1) or greatly enhance transcription (VEGFA), but in an HIF-1α-independent manner, as quantified by PCR analysis in cells with shRNA-mediated silencing of HIF-1α. Instead, HIF-1α knockdown facilitated G1/S progression and increased Cyclin D1 protein half-life, via a post-translational pathway. Taken together, these findings link H. pylori-induced PI3K-mTOR activation to HIF-1α induced G0/G1 cell cycle arrest by a Cyclin D1-dependent mechanism. Thus, HIF-1α is identified here as a mediator between survival and cell cycle arrest signaling activated by H. pylori infection.
Collapse
Affiliation(s)
- Jimena Canales
- Laboratorio de Comunicaciones Celulares, Facultad De Medicina, Centro de Estudios Moleculares De la Célula, Centro de Estudios Avanzados en Enfermedades Crónicas, Programa De Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Manuel Valenzuela
- Laboratorio de Comunicaciones Celulares, Facultad De Medicina, Centro de Estudios Moleculares De la Célula, Centro de Estudios Avanzados en Enfermedades Crónicas, Programa De Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile; Facultad de Ciencias de la Salud, Universidad Central de ChileSantiago, Chile
| | - Jimena Bravo
- Laboratorio de Comunicaciones Celulares, Facultad De Medicina, Centro de Estudios Moleculares De la Célula, Centro de Estudios Avanzados en Enfermedades Crónicas, Programa De Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Paulina Cerda-Opazo
- Laboratorio de Comunicaciones Celulares, Facultad De Medicina, Centro de Estudios Moleculares De la Célula, Centro de Estudios Avanzados en Enfermedades Crónicas, Programa De Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Carla Jorquera
- Laboratorio de Comunicaciones Celulares, Facultad De Medicina, Centro de Estudios Moleculares De la Célula, Centro de Estudios Avanzados en Enfermedades Crónicas, Programa De Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Héctor Toledo
- Laboratorio de Microbiología Molecular, Facultad de Medicina, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Departamento de Patología y Medicina Oral, Facultad De Odontología, Universidad de Chile Santiago, Chile
| | - Andrew F G Quest
- Laboratorio de Comunicaciones Celulares, Facultad De Medicina, Centro de Estudios Moleculares De la Célula, Centro de Estudios Avanzados en Enfermedades Crónicas, Programa De Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| |
Collapse
|
41
|
Zhang XY, Zhang PY, Aboul-Soud MAM. From inflammation to gastric cancer: Role of Helicobacter pylori. Oncol Lett 2016; 13:543-548. [PMID: 28356927 PMCID: PMC5351277 DOI: 10.3892/ol.2016.5506] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is a multifactorial disease and a leading cause of mortality and the risk factors for this include environmental factors and factors that influence host-pathogen interaction and complex interplay between these factors. Gastric adenocarcinomas are of two types, namely intestinal and diffuse type, and Helicobacter pylori (H. pylori) infection has been suspected of being causally linked to the initiation of chronic active gastritis, which leads to adenocarcinoma of the intestinal type. Even though most individuals with H. pylori infection do not show any clinical symptoms, long-term infection leads to inflammation of gastric epithelium and approximately 10% of infected patients develop peptic ulcers and 1–3% of patients develop gastric adenocarcinoma. Among the several mechanisms involved in tumorigenesis, CagA and peptidoglycan of H. pylori, which enter the infected gastric epithelial cells play an important role by triggering oncogenic pathways. Inflammation induced by H. pylori in gastric epithelium, which involves the cyclooxygenase-2/prostaglandin E2 pathway and IL-1β, is also an important factor that triggers chronic active gastritis and adenocarcinoma. H. pylori infection induced oxidative stress and dysregulated E-cadherin/β-catenin/p120 interactions and function also play a critical role in tumorigenesis. Environmental and dietary factors, in particular salt intake, are known to modify the pathogenesis induced by H. pylori. Gastric cancer induced by H. pylori appears to involve several mechanisms, making this mode of tumorigenesis a highly complicated process. Nevertheless, there are many events in this tumorigenesis that remain to be clarified and investigated.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- Nanjing University of Chinese Medicine, Information Institute, Nanjing, Jiangsu 221009, P.R. China
| | - Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Mourad A M Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Mnich E, Kowalewicz-Kulbat M, Sicińska P, Hinc K, Obuchowski M, Gajewski A, Moran AP, Chmiela M. Impact of Helicobacter pylori on the healing process of the gastric barrier. World J Gastroenterol 2016; 22:7536-7558. [PMID: 27672275 PMCID: PMC5011668 DOI: 10.3748/wjg.v22.i33.7536] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the impact of selected well defined Helicobacter pylori (H. pylori) antigens on gastric barrier cell turnover.
METHODS In this study, using two cellular models of gastric epithelial cells and fibroblasts, we have focused on exploring the effects of well defined H. pylori soluble components such as glycine acid extract antigenic complex (GE), subunit A of urease (UreA), cytotoxin associated gene A protein (CagA) and lipopolysaccharide (LPS) on cell turnover by comparing the wound healing capacity of the cells in terms of their proliferative and metabolic activity as well as cell cycle distribution. Toxic effects of H. pylori components have been assessed in an association with damage to cell nuclei and inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation.
RESULTS We showed that H. pylori GE, CagA and UreA promoted regeneration of epithelial cells and fibroblasts, which is necessary for effective tissue healing. However, in vivo increased proliferative activity of these cells may constitute an increased risk of gastric neoplasia. In contrast, H. pylori LPS showed a dose-dependent influence on the process of wound healing. At a low concentration (1 ng/mL) H. pylori LPS accelerated of healing epithelial cells, which was linked to significantly enhanced cell proliferation and MTT reduction as well as lack of alterations in cell cycle and downregulation of epidermal growth factor (EGF) production as well as cell nuclei destruction. By comparison, H. pylori LPS at a high concentration (25 ng/mL) inhibited the process of wound repair, which was related to diminished proliferative activity of the cells, cell cycle arrest, destruction of cell nuclei and downregulation of the EGF/STAT3 signalling pathway.
CONCLUSION In vivo H. pylori LPS driven effects might lead to the maintenance of chronic inflammatory response and pathological disorders on the level of the gastric mucosal barrier.
Collapse
|
43
|
Liu T, He W, Li Y. Helicobacter pylori Infection of Gastric Epithelial Cells Affects NOTCH Pathway In Vitro. Dig Dis Sci 2016; 61:2516-21. [PMID: 27073072 DOI: 10.1007/s10620-016-4161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/04/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Helicobacter pylori infection is exceptionally prevalent, and it is an important risk factor for gastritis, gastroduodenal ulcers, and gastric cancer. However, the pathogenic mechanisms of H. pylori are not entirely clear. The aim of this study was to assess which signal pathway is initially activated by H. pylori. METHODS Using the Human Signal Transduction Pathway Finder RT(2) Profiler PCR Array, we screened for alterations in the expression of genes encoding members of ten different signal transduction pathways in GES-1 cells co-cultured with H. pylori. qPCR and Western blotting were used to verify the expression of four key genes in NOTCH pathway. RESULTS Of the 84 genes represented in the array, 22 genes demonstrated more than twofold difference (p < 0.05) in GES-1 cells grown in the presence of H. pylori 11637 compared to cells without H. pylori 11637. Ten genes were up-regulated in the co-culture group, whereas 12 appeared to be down-regulated. Further analysis using the SA Biosciences online program revealed that NOTCH pathway was the most significantly affected network. There was a significant reduction in the mRNA expression level of NOTCH1 and NOTCH2, together with a reduced level of active forms of NOTCH1 (NICD1) and NOTCH2 (NICD2). Meanwhile, the expression level of the ligand DLL4 was found to be significantly increased. CONCLUSIONS NOTCH signaling may play an important role in H. pylori-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Tao Liu
- Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China
- Key Laboratory of Digestive System Tumors, Lanzhou, Gansu Province, China
| | - Wenting He
- Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China
- Key Laboratory of Digestive System Tumors, Lanzhou, Gansu Province, China
| | - Yumin Li
- Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China.
- Key Laboratory of Digestive System Tumors, Lanzhou, Gansu Province, China.
| |
Collapse
|
44
|
Yang Z, Xie C, Xu W, Liu G, Cao X, Li W, Chen J, Zhu Y, Luo S, Luo Z, Lu N. Phosphorylation and inactivation of PTEN at residues Ser380/Thr382/383 induced by Helicobacter pylori promotes gastric epithelial cell survival through PI3K/Akt pathway. Oncotarget 2016; 6:31916-26. [PMID: 26376616 PMCID: PMC4741650 DOI: 10.18632/oncotarget.5577] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation of PTEN at residues Ser380/Thr382/383 leads to loss of phosphatase activity and tumor suppressor function. Here, we found that phosphorylation of PTEN at residues Ser380/Thr382/383 was increased with gastric carcinogenesis, and more importantly, Helicobacter pylori was a trigger of this modification in chronic non-atrophic gastritis. H. pylori could phosphorylate and inactivate PTEN in vivo and in vitro, resulting in survival of gastric epithelial cells. Furthermore, stable expression of dominant-negative mutant PTEN or inhibition of Akt prevented the enhanced survival induced by H. pylori. These results indicate that PTEN phosphorylation at residues Ser380/Thr382/383 is a novel mechanism of PTEN inactivation in gastric carcinogenesis, and H. pylori triggers this modification, resulting in activation of the PI3K/Akt pathway and promotion of cell survival.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gongmeizi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ximei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhijun Luo
- The Medical College of Nanchang University, Nanchang, Jiangxi, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
45
|
Garay J, Piazuelo MB, Majumdar S, Li L, Trillo-Tinoco J, Del Valle L, Schneider BG, Delgado AG, Wilson KT, Correa P, Zabaleta J. The homing receptor CD44 is involved in the progression of precancerous gastric lesions in patients infected with Helicobacter pylori and in development of mucous metaplasia in mice. Cancer Lett 2016; 371:90-8. [PMID: 26639196 PMCID: PMC4714604 DOI: 10.1016/j.canlet.2015.10.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/09/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) leads to inflammatory events that can promote gastric cancer development. Immune cells transition from the circulation into the infected mucosa through the interaction of their receptors and ligands in the endothelial compartment. CD44 expression is increased in advanced gastric lesions. However, the association of this molecule with the progression of these lesions over time has not been investigated. In addition, there is a lack of understanding of the CD44-dependent cellular processes that lead to gastritis, and possibly to gastric cancer. Here we studied H. pylori-positive subjects with gastric lesions that ranged from multifocal atrophic gastritis to dysplasia to determine gene expression changes associated with disease progression over a period of 6 years. We report that CD44 expression is significantly increased in individuals whose gastric lesions progressed along the gastric precancerous cascade. We also show that CD44-/- mice develop less severe and less extensive H. pylori-induced metaplasia, and show fewer infiltrating Gr1+ cells compared to wild type mice. We present data suggesting that CD44 is associated with disease progression. Mechanisms associated with these effects include induction of interferon gamma responses.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Cells, Cultured
- Chemotaxis, Leukocyte
- Disease Models, Animal
- Disease Progression
- Female
- Gastric Mucosa/immunology
- Gastric Mucosa/metabolism
- Gastric Mucosa/microbiology
- Gastric Mucosa/pathology
- Gastritis, Atrophic/diagnosis
- Gastritis, Atrophic/genetics
- Gastritis, Atrophic/immunology
- Gastritis, Atrophic/metabolism
- Gastritis, Atrophic/microbiology
- Helicobacter Infections/diagnosis
- Helicobacter Infections/genetics
- Helicobacter Infections/immunology
- Helicobacter Infections/metabolism
- Helicobacter Infections/microbiology
- Helicobacter pylori/immunology
- Helicobacter pylori/pathogenicity
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Interferon-gamma/metabolism
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice, Knockout
- Neutrophil Infiltration
- Neutrophils/immunology
- Neutrophils/metabolism
- Precancerous Conditions/diagnosis
- Precancerous Conditions/genetics
- Precancerous Conditions/immunology
- Precancerous Conditions/metabolism
- Precancerous Conditions/microbiology
- Signal Transduction
- Stomach Neoplasms/diagnosis
- Stomach Neoplasms/genetics
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Time Factors
Collapse
Affiliation(s)
- Jone Garay
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumana Majumdar
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Li Li
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | | | - Luis Del Valle
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA; Department of Pathology, LSUHSC, New Orleans, LA, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA; Department of Pediatrics, LSUHSC New Orleans, LA, USA.
| |
Collapse
|
46
|
Amieva M, Peek RM. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016; 150:64-78. [PMID: 26385073 PMCID: PMC4691563 DOI: 10.1053/j.gastro.2015.09.004] [Citation(s) in RCA: 572] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Colonization of the human stomach by Helicobacter pylori and its role in causing gastric cancer is one of the richest examples of a complex relationship among human cells, microbes, and their environment. It is also a puzzle of enormous medical importance given the incidence and lethality of gastric cancer worldwide. We review recent findings that have changed how we view these relationships and affected the direction of gastric cancer research. For example, recent data have indicated that subtle mismatches between host and microbe genetic traits greatly affect the risk of gastric cancer. The ability of H pylori and its oncoprotein CagA to reprogram epithelial cells and activate properties of stemness show the sophisticated relationship between H pylori and progenitor cells in the gastric mucosa. The observation that cell-associated H pylori can colonize the gastric glands and directly affect precursor and stem cells supports these observations. The ability to mimic these interactions in human gastric organoid cultures as well as animal models will allow investigators to more fully unravel the extent of H pylori control on the renewing gastric epithelium. Finally, our realization that external environmental factors, such as dietary components and essential micronutrients, as well as the gastrointestinal microbiota, can change the balance between H pylori's activity as a commensal or a pathogen has provided direction to studies aimed at defining the full carcinogenic potential of this organism.
Collapse
Affiliation(s)
- Manuel Amieva
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California; Department of Pediatrics, Stanford University, Palo Alto, California
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
47
|
Hu TZ, Huang LH, Xu CX, Liu XM, Wang Y, Xiao J, Zhou L, Luo L, Jiang XX. Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis. Med Oncol 2015; 32:265. [PMID: 26563475 DOI: 10.1007/s12032-015-0711-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are crucial modulators of gene expression during the development and progression of gastric carcinoma. Helicobacter pylori (H. pylori) is one of the most significant risk factors of gastric carcinoma, and it is widely known that chronic inflammation with H. pylori infection triggers gastric carcinogenesis through inflammation-carcinoma chain [gastric carcinogenesis stages: non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric carcinoma (GC)], but its mechanism regarding changed TFs remains unknown. In this study, we investigated the expressional profiles of 345 transcription factors in gastric mucosa of healthy volunteers and patients at different gastric carcinogenesis stages using protein/DNA array-based approach. The data demonstrated the up-regulated TFs such as GATA-3, AP4, c-Myc and Pbx1 in the gastric mucosa of GC patients compared with the healthy volunteers, while other TFs, particularly CCAAT and CACC, showed the consistently decreasing trend along the gastric carcinogenesis. The increased expressions of AP4, Pbx1 and C/EBPα were further validated by quantitative real-time PCR and Western blot in various H. pylori-infected models such as clinical gastric tissues, gastric epithelial cell lines and Mongolian gerbils. This study provides insights into and potential laws for gene transcriptional regulation by identifying potential TFs targets against the development of H. pylori-associated gastric carcinoma.
Collapse
Affiliation(s)
- Ting-Zi Hu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Li-Hua Huang
- Center for Medical Experiment, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, China.
| | - Xiao-Ming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Yu Wang
- Department of Internal Medicine, The Third People's Hospital of Huaihua, Huaihua, 418000, Hunan Province, China
| | - Jing Xiao
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Li Zhou
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Ling Luo
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Xiao-Xia Jiang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| |
Collapse
|
48
|
King CC, Obonyo M. Helicobacter pylori modulates host cell survival regulation through the serine-threonine kinase, 3-phosphoinositide dependent kinase 1 (PDK-1). BMC Microbiol 2015; 15:222. [PMID: 26487493 PMCID: PMC4618363 DOI: 10.1186/s12866-015-0543-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection affects cell survival signaling pathways including cell apoptosis and proliferation, which are considered risk factors for the development of gastric cancer when unregulated. In the present study, we investigated the effect of H. pylori infection on the phosphorylation state of 3-phosphoinositide-dependent kinase-1 (PDK-1), a master kinase that regulates phosphorylation of Akt (also known as protein kinase B, PKB) and cell survival. METHODS The activity of PDK-1 was examined in human gastric epithelial cells incubated in the presence or absence of different H. pylori strains. In addition, the role of H. pylori type IV secretion system and the mechanism of H. pylori effect on PDK-1 activity was examined. RESULTS In the presence of H. pylori, phosphorylation of the activation loop (serine 241) PDK-1 was rapidly lost suggesting that dephosphorylation of PDK-1 is a target for H. pylori to modulate cell survival. The extent of dephosphorylation was strain dependent with H. pylori 60190 being the most effective. H. pylori infection of gastric epithelial cells resulted in altered phosphorylation and degradation of Akt, suggesting that PDK-1 dephosphorylation affects cell survival pathways and thereby may contribute to disease pathogenesis. CONCLUSION We propose that dephosphorylation of PDK-1 and the resulting changes to Akt phosphorylation is one of the mechanisms by which infection with H. pylori alter the balance between apoptosis and cell proliferation and identify a host molecular mechanism regulated by H. pylori that ultimately contributes to carcinogenesis. Our studies therefore provide insights into one of the mechanisms by which H. pylori infection contributes to gastric cancer by regulating the activity of a cell survival signaling pathway.
Collapse
Affiliation(s)
- Charles C King
- Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Marygorret Obonyo
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
49
|
Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761501. [PMID: 26557697 PMCID: PMC4628739 DOI: 10.1155/2015/761501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion.
Collapse
|
50
|
Hammond CE, Beeson C, Suarez G, Peek RM, Backert S, Smolka AJ. Helicobacter pylori virulence factors affecting gastric proton pump expression and acid secretion. Am J Physiol Gastrointest Liver Physiol 2015; 309:G193-201. [PMID: 26045613 PMCID: PMC4525105 DOI: 10.1152/ajpgi.00099.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/28/2015] [Indexed: 01/31/2023]
Abstract
Acute Helicobacter pylori infection of gastric epithelial cells and human gastric biopsies represses H,K-ATPase α subunit (HKα) gene expression and inhibits acid secretion, causing transient hypochlorhydria and supporting gastric H. pylori colonization. Infection by H. pylori strains deficient in the cag pathogenicity island (cag PAI) genes cagL, cagE, or cagM, which do not transfer CagA into host cells or induce interleukin-8 secretion, does not inhibit HKα expression, nor does a cagA-deficient strain that induces IL-8. To test the hypothesis that virulence factors other than those mediating CagA translocation or IL-8 induction participate in HKα repression by activating NF-κB, AGS cells transfected with HKα promoter-Luc reporter constructs containing an intact or mutated NF-κB binding site were infected with wild-type H. pylori strain 7.13, isogenic mutants lacking cag PAI genes responsible for CagA translocation and/or IL-8 induction (cagA, cagζ, cagε, cagZ, and cagβ), or deficient in genes encoding two peptidoglycan hydrolases (slt and cagγ). H. pylori-induced AGS cell HKα promoter activities, translocated CagA, and IL-8 secretion were measured by luminometry, immunoblotting, and ELISA, respectively. Human gastric biopsy acid secretion was measured by microphysiometry. Taken together, the data showed that HKα repression is independent of IL-8 expression, and that CagA translocation together with H. pylori transglycosylases encoded by slt and cagγ participate in NF-κB-dependent HKα repression and acid inhibition. The findings are significant because H. pylori factors other than CagA and IL-8 secretion are now implicated in transient hypochlorhydria which facilitates gastric colonization and potential triggering of epithelial progression to neoplasia.
Collapse
Affiliation(s)
- Charles E. Hammond
- 1Department of Medicine, Medical University of South Carolina, Charleston, South Carolina,
| | - Craig Beeson
- 2Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina;
| | - Giovanni Suarez
- 3Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Richard M. Peek
- 3Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | | | - Adam J. Smolka
- 1Department of Medicine, Medical University of South Carolina, Charleston, South Carolina,
| |
Collapse
|