1
|
Xing M, Hu G, Wang X, Wang Y, He F, Dai W, Wang X, Niu Y, Liu J, Liu H, Zhang X, Xu J, Cai Q, Zhou D. An intranasal combination vaccine induces systemic and mucosal immunity against COVID-19 and influenza. NPJ Vaccines 2024; 9:64. [PMID: 38509167 PMCID: PMC10954707 DOI: 10.1038/s41541-024-00857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Despite prolonged surveillance and interventions, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses continue to pose a severe global health burden. Thus, we developed a chimpanzee adenovirus-based combination vaccine, AdC68-HATRBD, with dual specificity against SARS-CoV-2 and influenza virus. When used as a standalone vaccine, intranasal immunization with AdC68-HATRBD induced comprehensive and potent immune responses consisting of immunoglobin (Ig) G, mucosal IgA, neutralizing antibodies, and memory T cells, which protected the mice from BA.5.2 and pandemic H1N1 infections. When used as a heterologous booster, AdC68-HATRBD markedly improved the protective immune response of the licensed SARS-CoV-2 or influenza vaccine. Therefore, whether administered intranasally as a standalone or booster vaccine, this combination vaccine is a valuable strategy to enhance the overall vaccine efficacy by inducing robust systemic and mucosal immune responses, thereby conferring dual lines of immunological defenses for these two viruses.
Collapse
Affiliation(s)
- Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yixin Niu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Liu
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
3
|
Srivastava V, Singh A, Jain GK, Ahmad FJ, Shukla R, Kesharwani P. Viral vectors as a promising nanotherapeutic approach against neurodegenerative disorders. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury. Cells 2021; 10:cells10082102. [PMID: 34440872 PMCID: PMC8394044 DOI: 10.3390/cells10082102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma that can cause permanent disability, life-long chronic issues for sufferers and is a big socioeconomic burden. Regenerative medicine aims to overcome injury caused deficits and restore function after SCI through gene therapy and tissue engineering approaches. SCI has a multifaceted pathophysiology. Due to this, producing therapies that target multiple different cellular and molecular mechanisms might prove to be a superior approach in attempts at regeneration. Both biomaterials and nucleic acid delivery via lentiviral vectors (LVs) have proven to promote repair and restoration of function post SCI in animal models. Studies indicate that a combination of biomaterials and LVs is more effective than either approach alone. This review presents studies supporting the use of LVs and LVs delivered with biomaterials in therapies for SCI and summarises methods to combine LVs with biomaterials for SCI treatment. By summarising this knowledge this review aims to demonstrate how LV delivery with biomaterials can augment/compliment both LV and biomaterial therapeutic effects in SCI.
Collapse
|
5
|
Tanaka E, Uchida D, Shiraha H, Kato H, Ohyama A, Iwamuro M, Watanabe M, Kumon H, Okada H. Promising Gene Therapy Using an Adenovirus Vector Carrying REIC/Dkk-3 Gene for the Treatment of Biliary Cancer. Curr Gene Ther 2021; 20:64-70. [PMID: 32148193 DOI: 10.2174/1566523220666200309125709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND We previously demonstrated that the reduced expression in immortalized cells (REIC)/dikkopf-3 (Dkk-3) gene was downregulated in various malignant tumors, and that an adenovirus vector carrying the REIC/Dkk-3 gene, termed Ad-REIC induced cancer-selective apoptosis in pancreatic cancer and hepatocellular carcinoma. OBJECTIVE In this study, we examined the therapeutic effects of Ad-REIC in biliary cancer using a second- generation Ad-REIC (Ad-SGE-REIC). METHODS Human biliary cancer cell lines (G-415, TFK-1) were used in this study. The cell viability and apoptotic effect of Ad-SGE-REIC were assessed in vitro using an MTT assay and Hoechst staining. The anti-tumor effect in vivo was assessed in a mouse xenograft model. We also assessed the therapeutic effects of Ad-SGE-REIC therapy with cisplatin. Cell signaling was assessed by Western blotting. RESULTS Ad-SGE-REIC reduced cell viability, and induced apoptosis in biliary cancer cell lines via the activation of the c-Jun N-terminal kinase pathway. Ad-SGE-REIC also inhibited tumor growth in a mouse xenograft model. This effect was further enhanced in combination with cisplatin. CONCLUSION Ad-SGE-REIC induced apoptosis and inhibited tumor growth in biliary cancer cells. REIC/Dkk-3 gene therapy using Ad-SGE-REIC is an attractive therapeutic tool for biliary cancer.
Collapse
Affiliation(s)
- Emi Tanaka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Atsushi Ohyama
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masami Watanabe
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Surface Modification of Adenovirus Vector to Improve Immunogenicity and Tropism. Methods Mol Biol 2020. [PMID: 32959253 DOI: 10.1007/978-1-0716-0795-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Although adenovirus is a popular vector for delivering genes, there are several drawbacks that limit its effectiveness, including tropism and both the innate and adaptive immune responses. One approach that has been used to ameliorate these drawbacks is PEGylation of the virus with subsequent modification to add functional moieties for the purpose of cell targeting or enhancing infection. Here, we describe a general approach for PEGylating adenovirus and conjugating cell-penetrating peptides to the surface of the virus to impart the ability to transduce CAR-negative cells.
Collapse
|
7
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Wagner J, Li L, Simon J, Krutzke L, Landfester K, Mailänder V, Müllen K, Ng DYW, Wu Y, Weil T. Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirus 5. Angew Chem Int Ed Engl 2020; 59:5712-5720. [PMID: 31943635 PMCID: PMC7155148 DOI: 10.1002/anie.201913708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Indexed: 12/03/2022]
Abstract
Amphiphilic surface groups play an important role in many biological processes. The synthesis of amphiphilic polyphenylene dendrimer branches (dendrons), providing alternating hydrophilic and lipophilic surface groups and one reactive ethynyl group at the core is reported. The amphiphilic surface groups serve as biorecognition units that bind to the surface of adenovirus 5 (Ad5), which is a common vector in gene therapy. The Ad5/dendron complexes showed high gene transduction efficiencies in coxsackie-adenovirus receptor (CAR)-negative cells. Moreover, the dendrons offer incorporation of new functions at the dendron core by in situ post-modifications, even when bound to the Ad5 surface. Surfaces coated with these dendrons were analyzed for their blood-protein binding capacity, which is essential to predict their performance in the blood stream. A new platform for introducing bioactive groups to the Ad5 surface without chemically modifying the virus particles is provided.
Collapse
Affiliation(s)
- Jessica Wagner
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Longjie Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology1037 Luoyu Road430074WuhanChina
| | - Johanna Simon
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg-University MainzLangenbeckstr. 155131MainzGermany
| | - Lea Krutzke
- University UlinicDepartment of Gene TherapyHelmholtzstr. 8/189081UlmGermany
| | | | - Volker Mailänder
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg-University MainzLangenbeckstr. 155131MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - David Y. W. Ng
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Yuzhou Wu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology1037 Luoyu Road430074WuhanChina
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
9
|
Bajrovic I, Schafer SC, Romanovicz DK, Croyle MA. Novel technology for storage and distribution of live vaccines and other biological medicines at ambient temperature. SCIENCE ADVANCES 2020; 6:eaau4819. [PMID: 32181330 PMCID: PMC7056310 DOI: 10.1126/sciadv.aau4819] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/11/2019] [Indexed: 05/10/2023]
Abstract
A novel, thin-film platform that preserves live viruses, bacteria, antibodies, and enzymes without refrigeration for extended periods of time is described. Studies with recombinant adenovirus in an optimized formulation that supports recovery of live virus through 16 freeze-thaw cycles revealed that production of an amorphous solid with a glass transition above room temperature and nitrogen-hydrogen bonding between virus and film components are critical determinants of stability. Administration of live influenza virus in the optimized film by the sublingual and buccal routes induced antibody-mediated immune responses as good as or better than those achieved by intramuscular injection. This work introduces the possibility of improving global access to a variety of medicines by offering a technology capable of reducing costs of production, distribution, and supply chain maintenance.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/immunology
- Administration, Buccal
- Administration, Sublingual
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- HEK293 Cells
- Humans
- Immunization/methods
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Injections, Intramuscular
- Male
- Membranes, Artificial
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Preservation, Biological/methods
- Temperature
- Vaccine Potency
- Vaccines, Attenuated/biosynthesis
- Vaccines, Attenuated/pharmacology
Collapse
Affiliation(s)
- Irnela Bajrovic
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen C. Schafer
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dwight K. Romanovicz
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maria A. Croyle
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Wagner J, Li L, Simon J, Krutzke L, Landfester K, Mailänder V, Müllen K, Ng DYW, Wu Y, Weil T. Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirus 5. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica Wagner
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| | - Longjie Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road 430074 Wuhan China
| | - Johanna Simon
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Dermatology University Medical Center of the Johannes Gutenberg-University Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - Lea Krutzke
- University Ulinic Department of Gene Therapy Helmholtzstr. 8/1 89081 Ulm Germany
| | | | - Volker Mailänder
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Dermatology University Medical Center of the Johannes Gutenberg-University Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road 430074 Wuhan China
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
11
|
Abstract
The optimal clinical exploitation of viruses as gene therapy or oncolytic vectors will require them to be administered intravenously. Strategies must therefore be deployed to enable viruses to survive the harsh neutralizing environment of the bloodstream and achieve deposition within and throughout target tissues or tumor deposits. This chapter describes the genetic and chemical engineering approaches that are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Claudia A P Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Sun Y, Lv X, Ding P, Wang L, Sun Y, Li S, Zhang H, Gao Z. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomater 2019; 97:93-104. [PMID: 31386928 DOI: 10.1016/j.actbio.2019.06.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Adenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of Ad vectors and well accomplished to evade the host immune response, block CAR-dependant cellular uptake, and reduce accumulation in the liver. In addition, shielding Ad vectors with targeted polymers (including targeting ligand-conjugated polymers and bio-responsive polymers) can also efficiently retarget Ad vectors to tumor tissues and reduce their distribution in nontargeted tissues. With its potential to evade the immune response and retarget Ad vectors, modification with polymers has been generally regarded as a promising strategy to facilitate the clinical applications of Ad vectors for virotherapy. STATEMENT OF SIGNIFICANCE: There is no doubt that Adenovirus (Ads) are attractive vectors for gene therapy, with high sophistication and effectiveness in overcoming both extra- and intracellular barriers, which cannot be exceeded by any other nonviral gene vectors. Unfortunately, their clinical applications are still restricted by some critical hurdles, including immunogenicity and native broad tropism. Therefore, a variety of elegant strategies have been developed from various angles to address these hurdles. Among these various strategies, coating Ads with nonimmunogenic polymers has attracted much attention. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. In addition, the key factors in Ad modification with polymers have been highlighted and summarized to provide guiding theory for the design of more effective and safer polymer-Ad hybrid gene vectors.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoqian Lv
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuo Li
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huimin Zhang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
13
|
Francini N, Cochrane D, Illingworth S, Purdie L, Mantovani G, Fisher K, Seymour LW, Spain SG, Alexander C. Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity In Vitro and In Vivo. Bioconjug Chem 2019; 30:1244-1257. [PMID: 30874432 DOI: 10.1021/acs.bioconjchem.9b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.
Collapse
Affiliation(s)
- Nora Francini
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Daniel Cochrane
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Sam Illingworth
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Laura Purdie
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Giuseppe Mantovani
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Kerry Fisher
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Leonard W Seymour
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Sebastian G Spain
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Cameron Alexander
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
14
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Pelliccia M, Andreozzi P, Paulose J, D'Alicarnasso M, Cagno V, Donalisio M, Civra A, Broeckel RM, Haese N, Jacob Silva P, Carney RP, Marjomäki V, Streblow DN, Lembo D, Stellacci F, Vitelli V, Krol S. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat Commun 2016; 7:13520. [PMID: 27901019 PMCID: PMC5141364 DOI: 10.1038/ncomms13520] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022] Open
Abstract
Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10−8–10−6 M) or polyethylene glycol (PEG, molecular weight ∼8,000 Da, 10−7–10−4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ∼48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step. Keeping viral vaccines cold from the manufacturers to patients is problematic and costly. Here, Krol and others show additives that can significantly improve at very low concentrations the storage of adenovirus type 5 at ambient and elevated temperature.
Collapse
Affiliation(s)
- Maria Pelliccia
- European School of Molecular Medicine (SEMM), IFOM-IEO-Campus, via Adamello 16, Milan 20139, Italy.,Università degli Studi di Milano, Milan 20122, Italy.,Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello 16, Milan 20139, Italy
| | - Patrizia Andreozzi
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello 16, Milan 20139, Italy
| | - Jayson Paulose
- Instituut-Lorentz for theoretical physics, Leiden University, 271, Niels Bohrweg 2, NL 2333 CA Leiden, The Netherlands
| | - Marco D'Alicarnasso
- European School of Molecular Medicine (SEMM), IFOM-IEO-Campus, via Adamello 16, Milan 20139, Italy.,Università degli Studi di Milano, Milan 20122, Italy.,Fondazione CEN-European Centre for Nanomedicine, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Valeria Cagno
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Andrea Civra
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Rebecca M Broeckel
- Vaccine &Gene Therapy Institute, Oregon Health &Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Nicole Haese
- Vaccine &Gene Therapy Institute, Oregon Health &Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Paulo Jacob Silva
- Institute of Materials and Interfaculty Bioengineering Institute, École polytechnique fédérale de Lausanne, STI IMX SUNMIL MXG 030, Station 12, CH-1015 Lausanne, Switzerland
| | - Randy P Carney
- Institute of Materials and Interfaculty Bioengineering Institute, École polytechnique fédérale de Lausanne, STI IMX SUNMIL MXG 030, Station 12, CH-1015 Lausanne, Switzerland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskyla, Survontie 9, 40500 Jyväskyla, Finland
| | - Daniel N Streblow
- Vaccine &Gene Therapy Institute, Oregon Health &Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Francesco Stellacci
- Institute of Materials and Interfaculty Bioengineering Institute, École polytechnique fédérale de Lausanne, STI IMX SUNMIL MXG 030, Station 12, CH-1015 Lausanne, Switzerland
| | - Vincenzo Vitelli
- Instituut-Lorentz for theoretical physics, Leiden University, 271, Niels Bohrweg 2, NL 2333 CA Leiden, The Netherlands
| | - Silke Krol
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, IFOM-IEO-campus, via Adamello 16, Milan 20139, Italy.,Laboratory of Translational Nanotechnology, I.R.C.C.S. Istituto Tumori Giovanni Paolo II, viale Orazio, Flacco 65, Bari 70124, Italy
| |
Collapse
|
16
|
Krutzke L, Prill JM, Engler T, Schmidt CQ, Xu Z, Byrnes AP, Simmet T, Kreppel F. Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: Preventing vector clearance and preserving infectivity. J Control Release 2016; 235:379-392. [PMID: 27302248 DOI: 10.1016/j.jconrel.2016.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
Abstract
The biodistribution of adenovirus type 5 (Ad5) vector particles is heavily influenced by interaction of the particles with plasma proteins, including coagulation factor X (FX), which binds specifically to the major Ad5 capsid protein hexon. FX mediates hepatocyte transduction by intravenously-injected Ad5 vectors and shields vector particles from neutralization by natural antibodies and complement. In mice, mutant Ad5 vectors that are ablated for FX-binding become detargeted from hepatocytes, which is desirable for certain applications, but unfortunately such FX-nonbinding vectors also become sensitive to neutralization by mouse plasma proteins. To improve the properties of Ad5 vectors for systemic delivery, we developed a strategy to replace the natural FX shield by a site-specific chemical polyethylene glycol shield. Coupling of polyethylene glycol to a specific site in hexon hypervariable region 1 yielded vector particles that were protected from neutralization by natural antibodies and complement although they were unable to bind FX. These vector particles evaded macrophages in vitro and showed significantly improved pharmacokinetics and hepatocyte transduction in vivo. Thus, site-specific shielding of Ad5 vectors with polyethylene glycol rendered vectors FX-independent and greatly improved their properties for systemic gene therapy.
Collapse
Affiliation(s)
- L Krutzke
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - J M Prill
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - T Engler
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - C Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Z Xu
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - A P Byrnes
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - T Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - F Kreppel
- Department of Gene Therapy, Ulm University, Ulm, Germany.
| |
Collapse
|
17
|
Jonsson-Schmunk K, Wonganan P, Choi JH, Callahan SM, Croyle MA. Integrin Receptors Play a Key Role in the Regulation of Hepatic CYP3A. ACTA ACUST UNITED AC 2016; 44:758-70. [PMID: 26868618 DOI: 10.1124/dmd.115.068874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
Landmark studies describing the effect of microbial infection on the expression and activity of hepatic CYP3A used bacterial lipopolysaccharide as a model antigen. Our efforts to determine whether these findings were translatable to viral infections led us to observations suggesting that engagement of integrin receptors is key in the initiation of processes responsible for changes in hepatic CYP3A4 during infection and inflammation. Studies outlined in this article were designed to evaluate whether engagement of integrins, receptors commonly used by a variety of microbes to enter cellular targets, is vital in the regulation of CYP3A in the presence and absence of virus infection. Mice infected with a recombinant adenovirus (AdlacZ) experienced a 70% reduction in hepatic CYP3A catalytic activity. Infection with a mutant virus with integrin-binding arginine-glycine-aspartic acid (RGD) sequences deleted from the penton base protein of the virus capsid (AdΔRGD) did not alter CYP3A activity. CYP3A mRNA and protein levels in AdlacZ-treated animals were also suppressed, whereas those of mice given AdΔRGD were not significantly different from uninfected control mice. Silencing of the integrinβ-subunit reverted adenovirus-mediated CYP3A4 suppression in vitro. Silencing of theα-subunit did not. Suppression of integrin subunits had a profound effect on nuclear receptors pregnane X receptor and constitutive androstane receptor, whereas retinoid X receptorαwas largely unaffected. To our knowledge, this is the first time that extracellular receptors, like integrins, have been indicated in the regulation of CYP3A. This finding has several implications owing to the important role of integrins in normal physiologic process and in many disease states.
Collapse
Affiliation(s)
- Kristina Jonsson-Schmunk
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Piynauch Wonganan
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Shellie M Callahan
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Maria A Croyle
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
18
|
Choi JH, Schafer SC, Freiberg AN, Croyle MA. Bolstering Components of the Immune Response Compromised by Prior Exposure to Adenovirus: Guided Formulation Development for a Nasal Ebola Vaccine. Mol Pharm 2015; 12:2697-711. [PMID: 25549696 PMCID: PMC4525322 DOI: 10.1021/mp5006454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The
severity and longevity of the current Ebola outbreak highlight
the need for a fast-acting yet long-lasting vaccine for at-risk populations
(medical personnel and rural villagers) where repeated prime-boost
regimens are not feasible. While recombinant adenovirus (rAd)-based
vaccines have conferred full protection against multiple strains of
Ebola after a single immunization, their efficacy is impaired by pre-existing
immunity (PEI) to adenovirus. To address this important issue, a panel
of formulations was evaluated by an in vitro assay
for their ability to protect rAd from neutralization. An amphiphilic
polymer (F16, FW ∼39,000) significantly improved transgene
expression in the presence of anti-Ad neutralizing antibodies (NAB)
at concentrations of 5 times the 50% neutralizing dose (ND50). In vivo performance of rAd in F16 was compared
with unformulated virus, virus modified with poly(ethylene) glycol
(PEG), and virus incorporated into poly(lactic-co-glycolic) acid (PLGA) polymeric beads. Histochemical analysis of
lung tissue revealed that F16 promoted strong levels of transgene
expression in naive mice and those that were exposed to adenovirus
in the nasal cavity 28 days prior to immunization. Multiparameter
flow cytometry revealed that F16 induced significantly more polyfunctional
antigen-specific CD8+ T cells simultaneously producing
IFN-γ, IL-2, and TNF-α than other test formulations. These
effects were not compromised by PEI. Data from formulations that provided
partial protection from challenge consistently identified specific
immunological requirements necessary for protection. This approach
may be useful for development of formulations for other vaccine platforms
that also employ ubiquitous pathogens as carriers like the influenza
virus.
Collapse
Affiliation(s)
- Jin Huk Choi
- †Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephen C Schafer
- †Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander N Freiberg
- ‡Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Maria A Croyle
- †Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,§Center for Infectious Disease, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Li S, Chen J, Xu H, Long J, Xie X, Zhang Y. The targeted transduction of MMP-overexpressing tumor cells by ACPP-HPMA copolymer-coated adenovirus conjugates. PLoS One 2014; 9:e100670. [PMID: 25000246 PMCID: PMC4085062 DOI: 10.1371/journal.pone.0100670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 05/30/2014] [Indexed: 01/08/2023] Open
Abstract
We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5) particles into matrix metalloproteinase (MMP)-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP) was designed and attached to the reactive 4-nitrophenoxy groups of HPMA polymers by the C-terminal amino acid (asparagine, N). ACPPs are activatable cell penetrating peptides (CPPs) with a linker between polycationic and polyanionic domains, and MMP-mediated cleavage releases the CPP portion and its attached cargo to enable cell entry. Our data indicate that the transport of these HPMA polymer conjugates by a single ACPP molecule to the cytoplasm occurs via a nonendocytotic and concentration-independent process. The uptake was observed to finish within 20 minutes by inverted fluorescence microscopy. In contrast, HPMA polymer-coated Ad5 without ACPPs was internalized solely by endocytosis. The optimal formulation was not affected by the presence of Ad5 neutralizing antibodies during transduction, and ACPP/polymer-coated Ad5 also retained high targeting capability to several MMP-overexpressing tumor cell types. For the first time, ACPP-mediated cytoplasmic delivery of polymer-bound Ad5 to MMP-overexpressing tumor cells was demonstrated. These findings are significant, as they demonstrate the use of a polymer-based system for the targeted delivery into MMP-overexpressing solid tumors and highlight how to overcome major cellular obstacles to achieve intracellular macromolecular delivery.
Collapse
Affiliation(s)
- Shuhua Li
- Department of Pathology and Stomatology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Juanzhi Chen
- Department of Pathology and Stomatology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology and Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huiyong Xu
- Department of Pathology and Stomatology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology and Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Long
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yajie Zhang
- Department of Pathology and Stomatology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Wonganan P, Jonsson-Schmunk K, Callahan SM, Choi JH, Croyle MA. Evaluation of the HC-04 cell line as an in vitro model for mechanistic assessment of changes in hepatic cytochrome P450 3A during adenovirus infection. Drug Metab Dispos 2014; 42:1191-201. [PMID: 24764148 DOI: 10.1124/dmd.113.056663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
HC-04 cells were evaluated as an in vitro model for mechanistic study of changes in the function of hepatic CYP3A during virus infection. Similar to in vivo observations, infection with a first generation recombinant adenovirus significantly inhibited CYP3A4 catalytic activity in an isoform-specific manner. Virus (MOI 100) significantly reduced expression of the retinoid X receptor (RXR) by 30% 96 hours after infection. Cytoplasmic concentrations of the pregnane X receptor (PXR) were reduced by 50%, whereas the amount of the constitutive androstane receptor (CAR) in the nuclear fraction doubled with respect to uninfected controls. Hepatocyte nuclear factor 4α (HNF-4α) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) were also reduced by ∼70% during infection. Virus suppressed CYP3A4 activity in the presence of the PXR agonist rifampicin and did not affect CYP3A4 activity in the presence of the CAR agonist CITCO [6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime], suggesting that virus-induced modification of PXR may be responsible for observed changes in hepatic CYP3A4. The HC-04 cell line is easy to maintain, and CYP3A4 in these cells was responsive to known inducers and suppressors. Dexamethasone (200 μM) and phenobarbital (500 μM) increased activity by 230 and 124%, whereas ketoconazole (10 μM) and lipopolysaccharide (LPS) (10 μg/ml) reduced activity by 90 and 92%, respectively. This suggests that HC-04 cells can be a valuable tool for mechanistic study of drug metabolism during infection and for routine toxicological screening of novel compounds prior to use in the clinic.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Kristina Jonsson-Schmunk
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Shellie M Callahan
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| | - Maria A Croyle
- Division of Pharmaceutics, College of Pharmacy (P.W., K. J.-S., S. M. C., J.-H. C. and M. A. C.) and the Institute of Cellular and Molecular Biology (M. A. C.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
22
|
Liang M, Yan M, Lu Y, Chen ISY. Retargeting vesicular stomatitis virus glycoprotein pseudotyped lentiviral vectors with enhanced stability by in situ synthesized polymer shell. Hum Gene Ther Methods 2013; 24:11-8. [PMID: 23327104 DOI: 10.1089/hgtb.2012.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to introduce transgenes with precise specificity to the desired target cells or tissues is key to a more facile application of genetic therapy. Here, we describe a novel method using nanotechnology to generate lentiviral vectors with altered recognition of host cell receptor specificity. Briefly, the infectivity of the vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vectors was shielded by a thin polymer shell synthesized in situ onto the viral envelope, and new binding ability was conferred to the shielded virus by introducing acrylamide-tailored cyclic arginine-glycine-aspartic acid (cRGD) peptide to the polymer shell. We termed the resulting virus "targeting nanovirus." The targeting nanovirus had similar titer with VSV-G pseudotypes and specifically transduced Hela cells with high transduction efficiency. In addition, the encapsulation of the VSV-G pseudotyped lentivirus by the polymer shell did not change the pathway that VSV-G pseudotypes enter and fuse with cells, as well as later events such as reverse transcription and gene expression. Furthermore, the targeting nanovirus possessed enhanced stability in the presence of human serum, indicating protection of the virus by the polymer shell from human serum complement inactivation. This novel use of nanotechnology demonstrates proof of concept for an approach that could be more generally applied for redirecting viral vectors for laboratory and clinical purposes.
Collapse
Affiliation(s)
- Min Liang
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
23
|
Fishbein I, Forbes SP, Chorny M, Connolly JM, Adamo RF, Corrales RA, Alferiev IS, Levy RJ. Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction. Biomaterials 2013; 34:6938-48. [PMID: 23777912 DOI: 10.1016/j.biomaterials.2013.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/23/2013] [Indexed: 01/16/2023]
Abstract
The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolyzable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37 °C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolyzable cross-linkers with structure-specific release kinetics.
Collapse
Affiliation(s)
- Ilia Fishbein
- Division of Cardiology, The Children's Hospital of Philadelphia, Abramson Research Center, and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Postexit surface engineering of retroviral/lentiviral vectors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:253521. [PMID: 23691494 PMCID: PMC3652111 DOI: 10.1155/2013/253521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/15/2013] [Indexed: 11/25/2022]
Abstract
Gene delivery vectors based on retroviral or lentiviral particles are considered powerful tools for biomedicine and biotechnology applications. Such vectors require modification at the genomic level in the form of rearrangements to allow introduction of desired genes and regulatory elements (genotypic modification) as well as engineering of the physical virus particle (phenotypic modification) in order to mediate efficient and safe delivery of the genetic information to the target cell nucleus. Phenotypic modifications are typically introduced at the genomic level through genetic manipulation of the virus producing cells. However, this paper focuses on methods which allow modification of viral particle surfaces after they have exited the cell, that is, directly on the viral particles in suspension. These methods fall into three categories: (i) direct covalent chemical modification, (ii) membrane-topic reagents, and (iii) adaptor systems. Current applications of such techniques will be introduced and their advantages and disadvantages will be discussed.
Collapse
|
25
|
PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J Virol 2013; 87:3752-9. [PMID: 23325695 DOI: 10.1128/jvi.02832-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic virus is that human infections are rare and preexisting anti-VSV immunity is typically lacking in cancer patients, which is very important for clinical success. However, our studies show that nonimmune human and mouse serum can neutralize clinical-grade VSV, reducing the titer by up to 4 log units in 60 min. In addition, we show that neutralizing anti-VSV antibodies negate the antitumor efficacy of VSV, a concern for repeat VSV administration. We have investigated the potential use of covalent modification of VSV with polyethylene glycol (PEG) or a function-spacer-lipid (FSL)-PEG construct to inhibit serum neutralization and to limit hepatosplenic sequestration of systemically delivered VSV. We report that in mice passively immunized with neutralizing anti-VSV antibodies, PEGylation of VSV improved the persistence of VSV in the blood circulation, maintaining a more than 1-log-unit increase in VSV genome copies for up to 1 h compared to the genome copy numbers for the non-PEGylated virus, which was mostly cleared within 10 min after intravenous injection. We are currently investigating if this increase in PEGylated VSV circulating half-life can translate to increased virus delivery and better efficacy in mouse models of multiple myeloma.
Collapse
|
26
|
Tutykhina IL, Sedova ES, Gribova IY, Ivanova TI, Vasilev LA, Rutovskaya MV, Lysenko AA, Shmarov MM, Logunov DY, Naroditsky BS, Tillib SV, Gintsburg AL. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral Res 2012; 97:318-28. [PMID: 23274786 DOI: 10.1016/j.antiviral.2012.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023]
Abstract
One effective method for the prevention and treatment of influenza infection is passive immunization. In our study, we examined the feasibility of creating an antibody-based preparation with a prolonged protective effect against influenza virus. Single-domain antibodies (sdAbs) specific for influenza virus hemagglutinin were generated. Experiments in mouse models showed 100% survivability for both intranasal sdAbs administration 24h prior to influenza challenge and 24h after infection. sdAb-gene delivery by an adenoviral vector led to gene expression for up to 14days. Protection by a recombinant adenovirus containing the sdAb gene was observed in cases of administration prior to influenza infection (14d-24h). We also demonstrated that the single administration of a combined preparation containing sdAb DNA and protein expanded the protection time window from 14d prior to 48h after influenza infection. This approach and the application of a broad-spectrum sdAbs will allow the development of efficient drugs for the prevention and treatment of viral infections produced by pandemic virus variants and other infections.
Collapse
Affiliation(s)
- Irina L Tutykhina
- Gamaleya Research Institute for Epidemiology and Microbiology, 18, Gamaleya Street, Moscow 123098, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang X, Forier K, Steukers L, Van Vlierberghe S, Dubruel P, Braeckmans K, Glorieux S, Nauwynck HJ. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking. PLoS One 2012; 7:e51054. [PMID: 23236432 PMCID: PMC3517622 DOI: 10.1371/journal.pone.0051054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/29/2012] [Indexed: 01/15/2023] Open
Abstract
Pseudorabies virus (PRV) initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated) nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: −31.8±1.5 mV) experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (−49.8±0.6 mV) and positively (36.7±1.1 mV) charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (−9.6±0.8 mV) diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV) was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV was due to complex mucoadhesive interactions including charge interactions rather than size exclusion.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Katrien Forier
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Harelbekestraat, Ghent, Belgium
| | - Lennert Steukers
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | | | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat, Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Harelbekestraat, Ghent, Belgium
| | - Sarah Glorieux
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
28
|
Polymer coatings for delivery of nucleic acid therapeutics. J Control Release 2012; 161:537-53. [PMID: 22366547 DOI: 10.1016/j.jconrel.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 12/15/2022]
Abstract
Gene delivery remains the greatest challenge in applying nucleic acid therapeutic for a broad range of diseases. Combining stability during the delivery phase with activation and transgene expression following arrival at the target site requires sophisticated vectors that can discriminate between cell types and respond to target-associated conditions to trigger expression. Efficient intravenous delivery is the greatest single hurdle, with synthetic vectors frequently found to be unstable in the harsh conditions of the bloodstream, and viral vectors often recognized avidly by both the innate and the adaptive immune system. Both types of vectors benefit from coating with hydrophilic polymers. Self-assembling polyelectrolyte non-viral vectors can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Both types of vectors may also have their tropism changed following chemical linkage of novel ligands to the polymer coating. These families of vectors go some way towards realizing the goal of efficient systemic delivery of genes and should find a range of important uses in bringing this still-emerging field to fruition.
Collapse
|
29
|
Duffy MR, Parker AL, Bradshaw AC, Baker AH. Manipulation of adenovirus interactions with host factors for gene therapy applications. Nanomedicine (Lond) 2012; 7:271-88. [DOI: 10.2217/nnm.11.186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine based on the use of adenovirus vectors for therapeutic gene delivery shows broad potential. Specific targeting for many gene therapy applications, such as metastatic cancers or cardiovascular diseases requires intravascular delivery of the vector. However, a major barrier to successful adenovirus vector targeting follows systemic delivery, as upon contact with the bloodstream the virus interacts with a variety of host proteins, in particular coagulation factor X, which mediates profound liver gene transfer. This inherent hepatic tropism combined with macrophage scavenging minimizes the efficacy of the virus at the desired sites and induces toxic side effects. Understanding the complex, multifaceted interactions of adenovirus with host factors is of vital importance to the design of safer vectors with improved efficacy and pharmacokinetic profiles. Increased knowledge of adenovirus biology provides the opportunity to develop innovative strategies to detarget the virus from the liver following intravascular delivery and redirect the vector to disease areas.
Collapse
Affiliation(s)
- Margaret R Duffy
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Alan L Parker
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Angela C Bradshaw
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- British Heart Foundation Glasgow Cardiovascular Research Center, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
30
|
Bartel M, Schaffer D, Büning H. Enhancing the Clinical Potential of AAV Vectors by Capsid Engineering to Evade Pre-Existing Immunity. Front Microbiol 2011; 2:204. [PMID: 22065962 PMCID: PMC3207363 DOI: 10.3389/fmicb.2011.00204] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 11/27/2022] Open
Abstract
Vectors based on adeno-associated viruses (AAV) have shown considerable promise in both preclinical models and increasingly in clinical trials. However, one formidable challenge is pre-existing immunity due to widespread exposure to numerous AAV variants and serotypes within the human population, which affect efficacy of clinical trials due to the accompanying high levels of anti-capsid neutralizing antibodies. Transient immunosuppression has promise in mitigating cellular and humoral responses induced by vector application in naïve hosts, but cannot overcome the problem that pre-existing neutralizing antibodies pose toward the goal of safe and efficient gene delivery. Shielding of AAV from antibodies, however, may be possible by covalent attachment of polymers to the viral capsid or by encapsulation of vectors inside biomaterials. In addition, there has been considerable progress in using rational mutagenesis, combinatorial libraries, and directed evolution approaches to engineer capsid variants that are not recognized by anti-AAV antibodies generally present in the human population. While additional progress must be made, such strategies, alone or in combination with immunosuppression to avoid de novo induction of antibodies, have strong potential to significantly enhance the clinical efficacy of AAV vectors.
Collapse
Affiliation(s)
- Melissa Bartel
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley Berkeley, CA, USA
| | | | | |
Collapse
|
31
|
Khare R, Chen CY, Weaver EA, Barry MA. Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 2011; 11:241-58. [PMID: 21453281 PMCID: PMC3267160 DOI: 10.2174/156652311796150363] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
Abstract
Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral "sinks" must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect.
Collapse
Affiliation(s)
- Reeti Khare
- Virology and Gene Therapy Program, Mayo Graduate School
| | - Christopher Y Chen
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
| | - Eric A Weaver
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
| | - Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
- Department of Molecular Medicine, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers. Front Chem Sci Eng 2011. [DOI: 10.1007/s11705-011-1203-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Jang JH, Schaffer DV, Shea LD. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther 2011; 19:1407-15. [PMID: 21629221 DOI: 10.1038/mt.2011.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integrating viral gene delivery with engineered biomaterials is a promising strategy to overcome a number of challenges associated with virus-mediated gene delivery, including inefficient delivery to specific cell types, limited tropism, spread of vectors to distant sites, and immune responses. Viral vectors can be combined with biomaterials either through encapsulation within the material or immobilization onto a material surface. Subsequent biomaterial-based delivery can increase the vector's residence time within the target site, thereby potentially providing localized delivery, enhancing transduction, and extending the duration of gene expression. Alternatively, physical or chemical modification of viral vectors with biomaterials can be employed to modulate the tropism of viruses or reduce inflammatory and immune responses, both of which may benefit transduction. This review describes strategies to promote viral gene delivery technologies using biomaterials, potentially providing opportunities for numerous applications of gene therapy to inherited or acquired disorders, infectious disease, and regenerative medicine.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|
34
|
Kim KP, Cha JD, Jang EH, Klumpp J, Hagens S, Hardt WD, Lee KY, Loessner MJ. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb Biotechnol 2011; 1:247-57. [PMID: 21261844 PMCID: PMC3815886 DOI: 10.1111/j.1751-7915.2008.00028.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The increasing occurrence of antibiotic-resistant pathogens is of growing concern, and must be counteracted by alternative antimicrobial treatments. Bacteriophages represent the natural enemies of bacteria. However, the strong immune response following application of phages and rapid clearance from the blood stream are hurdles which need to be overcome. Towards our goal to render phages less immunogenic and prolong blood circulation time, we have chemically modified intact bacteriophages by conjugation of the non-immunogenic polymer monomethoxy-polyethylene glycol (mPEG) to virus proteins. As a proof of concept, we have used two different polyvalent and strictly virulent phages of the Myoviridae, representing typical candidates for therapeutical approaches: Felix-O1 (infects Salmonella) and A511 (infects Listeria). Loss of phage infectivity after PEGylation was found to be proportional to the degree of modification, and could be conveniently controlled by adjusting the PEG concentration. When injected into naïve mice, PEGylated phages showed a strong increase in circulation half-life, whereas challenge of immunized mice did not reveal a significant difference. Our results suggest that the prolonged half-life is due to decreased susceptibility to innate immunity as well as avoidance of cellular defence mechanisms. PEGylated viruses elicited significantly reduced levels of T-helper type 1-associated cytokine release (IFN-γ and IL-6), in both naïve and immunized mice. This is the first study demonstrating that PEGylation can increases survival of infective phage by delaying immune responses, and indicates that this approach can increase efficacy of bacteriophage therapy.
Collapse
Affiliation(s)
- Kwang-Pyo Kim
- Institute of Food Science and Nutrition, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zeng Q, Saha S, Lee LA, Barnhill H, Oxsher J, Dreher T, Wang Q. Chemoselective modification of turnip yellow mosaic virus by Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding. Bioconjug Chem 2010; 22:58-66. [PMID: 21166476 DOI: 10.1021/bc100351n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Turnip yellow mosaic virus (TYMV) is an icosahedral plant virus with a diameter of 28-30 nm that can be isolated in gram quantities from turnip or Chinese cabbage inexpensively. In this study, TYMV combined with spatially addressable surface chemistries was selected as a prototype bionanoparticle for modulating patterns of cell adhesion, morphology, and proliferation. We exploited the chemical reactivity of TYMV using the mild conditions of Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reaction, the best example of "click" chemistry. Oligo-ethylene glycol (OEG) short chain, coumarintriazole, and RGD-containing peptide were grafted on the surface of TYMV via carbodiimide activation and CuAAC reaction. The bioconjugation to intact viral particles was confirmed by MS, TEM, FPLC, and SDS-PAGE with fluorescence visualization analysis. Therefore, this method is a generally useful means of incorporating various types of functionalities onto the TYMV surface. Further studies were done to learn the behavior of NIH-3T3 fibroblast cells on the modified or unmodified TYMV surfaces. OEG-modified TYMV surfaces retarded cell attachment and growth, while cell adhesion, spreading, and proliferation were dramatically enhanced on RGD-modified TYMV surfaces. Compared with RGD immobilized 3-aminopropyltriethoxysilane-coated glass surface, the cells are more ready to spread fully and proliferate on TYMV-RGD coated surface, which thus provides a more cell-friendly environment with nanometer-scale surface features. This illustrates the potential application of plant virus based materials in tissue engineering, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Qingbing Zeng
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, 1023 Southern Shatai Road, Guangdong, GD, 510515, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tutykhina IL, Logunov DY, Shcherbinin DN, Shmarov MM, Tukhvatulin AI, Naroditsky BS, Gintsburg AL. Development of adenoviral vector-based mucosal vaccine against influenza. J Mol Med (Berl) 2010; 89:331-41. [PMID: 21104066 DOI: 10.1007/s00109-010-0696-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/24/2010] [Accepted: 10/13/2010] [Indexed: 12/25/2022]
Abstract
The recent pandemic threat of the influenza virus makes the increased safety and efficiency of vaccination against the pathogen a most important issue. It has been well established that for maximum protective effect, the vaccination should mimic natural infection. Therefore, recent efforts to develop a new influenza vaccine have focused on intranasal immunization strategies. Intranasal immunization is capable of inducing secretory IgA and serum IgG responses to provide a double defense against mucosal pathogens. On the other hand, it is desirable that a live pathogen is not present in the vaccine. In addition, for optimal induction of the immune responses via the nasal route, efficient and safe mucosal adjuvants are also required. This is possible to attain using an adenoviral vector for vaccine development. Adenoviral vectors are capable of delivering and protecting the antigen encoding sequence. They also possess a natural mechanism for penetrating into the nasal mucous membrane and are capable of activating the innate immune response. This review describes the basic prerequisites for the involvement of recombinant adenoviruses for mucosal (nasal) vaccine development against the influenza virus.
Collapse
Affiliation(s)
- Irina L Tutykhina
- Laboratory of Molecular Biotechnology, Gamaleya Research Institute of Epidemiology and Microbiology, ul. Gamaleya 18, Moscow 123098, Russia
| | | | | | | | | | | | | |
Collapse
|
37
|
Modifications of adenovirus hexon allow for either hepatocyte detargeting or targeting with potential evasion from Kupffer cells. Mol Ther 2010; 19:83-92. [PMID: 20959811 DOI: 10.1038/mt.2010.229] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In vivo gene transfer with adenovirus vectors would significantly benefit from a tight control of the adenovirus-inherent liver tropism. For efficient hepatocyte transduction, adenovirus vectors need to evade from Kupffer cell scavenging while delivery to peripheral tissues or tumors could be improved if both scavenging by Kupffer cells and uptake by hepatocytes were blocked. Here, we provide evidence that a single point mutation in the hexon capsomere designed to enable defined chemical capsid modifications may permit both detargeting from and targeting to hepatocytes with evasion from Kupffer cell scavenging. Vector particles modified with small polyethylene glycol (PEG) moieties specifically on hexon exhibited decreased transduction of hepatocytes by shielding from blood coagulation factor binding. Vector particles modified with transferrin or, surprisingly, 5,000 Da PEG or dextran increased hepatocyte transduction up to 18-fold independent of the presence of Kupffer cells. We further show that our strategy can be used to target high-capacity adenovirus vectors to hepatocytes emphasizing the potential for therapeutic liver-directed gene transfer. Our approach may lead to a detailed understanding of the interactions between adenovirus vectors and Kupffer cells, one of the most important barriers for adenovirus-mediated gene delivery.
Collapse
|
38
|
Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010; 2:2290-2355. [PMID: 21994621 PMCID: PMC3185574 DOI: 10.3390/v2102290] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023] Open
Abstract
Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated “stealth” vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.
Collapse
|
39
|
Banerjee PS, Ostapachuk P, Hearing P, Carrico I. Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells. J Am Chem Soc 2010; 132:13615-7. [PMID: 20831164 PMCID: PMC4086407 DOI: 10.1021/ja104547x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate here a novel two-step "click" labeling process in which adenoviral particles are first metabolically labeled during production with unnatural azido sugars. Subsequent chemoselective modification allows access to viruses decorated with a broad array of effector functionality. Adenoviruses modified with folate, a known cancer-targeting motif, demonstrated a marked increase in gene delivery to a murine cancer cell line.
Collapse
Affiliation(s)
- Partha Sarathi Banerjee
- Department of Chemistry, State University of New York Stony Brook, NY 11790
- Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook, NY 11790
| | - Philomena Ostapachuk
- Department of Molecular Genetics and Microbiology, State University of New York Stony Brook, NY 11790
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, State University of New York Stony Brook, NY 11790
| | - Isaac Carrico
- Department of Chemistry, State University of New York Stony Brook, NY 11790
- Institute of Chemical Biology and Drug Discovery, State University of New York Stony Brook, NY 11790
| |
Collapse
|
40
|
Wonganan P, Clemens CC, Brasky K, Pastore L, Croyle MA. Species differences in the pharmacology and toxicology of PEGylated helper-dependent adenovirus. Mol Pharm 2010; 8:78-92. [PMID: 20822161 DOI: 10.1021/mp100216h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically relevant doses of helper-dependent adenoviruses (HDAds) provoke the host response against capsid proteins in primates and rodents. To determine if PEGylation truly affects this, baboons and mice were given either HDAd or PEG-HDAd expressing beta-galactosidase at 5 × 10¹¹ or 3 × 10¹² virus particles per kilogram (vp/kg) by iv infusion. Serum cytokines and blood chemistries were assessed for 96 h. PEG-HDAd reduced IL-6 6-fold in mice and 3-fold in the primate. This vector reduced IL-12 by 50% in both animal models. PEGylation reduced serum transaminases by approximately 50% at each dose in the primate and the mouse. PEGylation did not alter hepatic transduction efficiency in the mouse but did reduce transduction efficiency in the liver and the spleen of primates. Unmodified and PEGylated virus suppressed hepatic CYP3A activity in both animal models. PEGylation doubled the half-life (t(½)) of the virus in the mouse and cut plasma clearance (CL) in half without affecting the half-life in primates. These results suggest that there are notable species-specific differences in the biodistribution of and response to PEG-modified vectors which may be linked to differences in binding properties to coagulation factors, receptor density and tissue architecture in the liver.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
41
|
Espenlaub S, Corjon S, Engler T, Fella C, Ogris M, Wagner E, Kochanek S, Kreppel F. Capsomer-Specific Fluorescent Labeling of Adenoviral Vector Particles Allows for Detailed Analysis of Intracellular Particle Trafficking and the Performance of Bioresponsive Bonds for Vector Capsid Modifications. Hum Gene Ther 2010; 21:1155-67. [DOI: 10.1089/hum.2009.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sigrid Espenlaub
- Department of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
| | - Stéphanie Corjon
- Department of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
- Université de Lyon I-Claude Bernard, Faculté de Médecine Laënnec, Virologie et Pathologie Humaine, CNRS FRE-3011, 69372 Lyon Cedex 08, France
| | - Tatjana Engler
- Department of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
| | - Carolin Fella
- Pharmaceutical Biology-Biotechnology, Center for Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Manfred Ogris
- Pharmaceutical Biology-Biotechnology, Center for Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biology-Biotechnology, Center for Drug Research, and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
| | - Florian Kreppel
- Department of Gene Therapy, University of Ulm, D-89081 Ulm, Germany
| |
Collapse
|
42
|
Drake DM, Keswani RK, Pack DW. Effect of serum on transfection by polyethylenimine/virus-like particle hybrid gene delivery vectors. Pharm Res 2010; 27:2457-65. [PMID: 20730559 DOI: 10.1007/s11095-010-0238-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/04/2010] [Indexed: 01/14/2023]
Abstract
PURPOSE Murine leukemia virus-like particles (M-VLP) complexed with polymers to promote cellular uptake and endosomal escape represent a new class of effective gene delivery vectors. Building upon recent studies of viral-synthetic hybrid vectors, we report the effects of serum on the formation, activity and stability of PEI/M-VLP complexes. METHODS M-VLP were produced by cells grown in serum-supplemented media (M-VLP-S), serum-free media (M-VLP-SF) or serum-free Opti-MEM® I (M-VLP-OM). PEI/M-VLP stoichiometry was varied to investigate complex formation and optimal transfection conditions. The effects of prolonged storage, freeze-thaw cycles, and ultracentrifugation of M-VLP on the stability of vector transduction efficiency were also observed. RESULTS M-VLP-S required more PEI to form infective complexes than M-VLP-SF and M-VLP-OM. The stoichiometry of PEI/M-VLP-S was dependent on total PEI concentration (7-8 μg/100 μL M-VLP supernatant), while optimal infectivity of PEI/M-VLP-SF and PEI/M-VLP-OM depended on PEI/M-VLP ratios (12-17 μg and 10-14 μg PEI/10(9) M-VLP, respectively). PEI/M-VLP-SF and PEI/M-VLP-OM complexes were significantly more efficient than PEI/M-VLP-S. Stability of the hybrid vectors was not significantly affected by serum. CONCLUSIONS PEI/M-VLP complexes exhibiting increased efficiency were constructed by producing M-VLP in serum-free media. M-VLP could be stored by freezing or refrigeration and concentrated by ultracentrifugation without unacceptable loss of infectivity.
Collapse
Affiliation(s)
- David M Drake
- Department of Chemical and Biomolecular Engineering, University of Illinois, Box C-3, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
43
|
Chitosan modification of adenovirus to modify transfection efficiency in bovine corneal epithelial cells. PLoS One 2010; 5:e12085. [PMID: 20711466 PMCID: PMC2919409 DOI: 10.1371/journal.pone.0012085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/08/2010] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of this study is to modulate the transfection efficiency of adenovirus (Ad) on the cornea by the covalent attachment of chitosan on adenoviral capsids via a thioether linkage between chitosan modified with 2-iminothiolane and Ad cross-linked with N-[γ-maleimidobutyryloxy]succinimide ester (GMBS). Methodology/Principal Findings Modified Ad was obtained by reaction with the heterobifunctional crosslinking reagent, GMBS, producing maleimide-modified Ad (Ad-GMBS). Then, the chitosan-SH was conjugated to Ad-GMBS via a thioether bond at different ratios of Ad to GMBS to chitosan-SH. The sizes and zeta potentials of unmodified Ad and chitosan-modified Ads were measured, and the morphologies of the virus particles were observed under transmission electron microscope. Primary cultures of bovine corneal epithelial cells were transfected with Ads and chitosan-modified Ads in the absence or presence of anti-adenovirus antibodies. Chitosan modification did not significantly change the particle size of Ad, but the surface charge of Ad increased significantly from −24.3 mV to nearly neutral. Furthermore, primary cultures of bovine corneal epithelial cells were transfected with Ad or chitosan-modified Ad in the absence or presence of anti-Ad antibodies. The transfection efficiency was attenuated gradually with increasing amounts of GMBS. However, incorporation of chitosan partly restored transfection activity and rendered the modified antibody resistant to antibody neutralization. Conclusions/Significance Chitosan can provide a platform for chemical modification of Ad, which offers potential for further in vivo applications.
Collapse
|
44
|
Sutton TC, Scott MD. The effect of grafted methoxypoly(ethylene glycol) chain length on the inhibition of respiratory syncytial virus (RSV) infection and proliferation. Biomaterials 2010; 31:4223-30. [PMID: 20153523 PMCID: PMC7112411 DOI: 10.1016/j.biomaterials.2010.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/15/2010] [Indexed: 11/17/2022]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of morbidity in humans. To date, no effective treatments exist and current prophylactic therapy access is limited and is only approximately 50% effective. To attenuate the risk of RSV infection, we hypothesized that bioengineering of either the virus particle or host cell via the covalent grafting of methoxypoly(ethylene glycol) [mPEG] would prevent infection. To this end, the anti-viral effects of grafting concentration, linker chemistry and polymer length on RSV infection was assessed. For viral modification, short chain polymers (2 kDa) were significantly more effective than long chain (20 kDa) polymers. In contrast, modification of host cells with small polymers provided no (approximately 0%) protection while long chain polymers effectively prevented infection. For example, at 48 hours post-infection at a multiplicity of infection of 0.5 and grafting concentrations of 5, 7.5, and 15 mm, 20 kDa mPEG decreased infection by 45, 83, and 91%, respectively. Importantly, both viral and host cell PEGylation strategies were able to provide near complete protection against RSV infection of both non-polarized and polarized cells. In conclusion, mPEG-modification of either RSV or the host cell is a highly effective prophylactic strategy for preventing viral infection.
Collapse
Affiliation(s)
- Troy C Sutton
- Canadian Blood Services, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
45
|
An ex vivo loop system models the toxicity and efficacy of PEGylated and unmodified adenovirus serotype 5 in whole human blood. Gene Ther 2010; 17:752-62. [PMID: 20220781 DOI: 10.1038/gt.2010.18] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polyethylene glycol coating (PEGylation) of adenovirus serotype 5 (Ad5) has been shown to effectively reduce immunogenicity and increase circulation time of intravenously administered virus in mouse models. Herein, we monitored clot formation, complement activation, cytokine release and blood cell association upon addition of uncoated or PEGylated Ad5 to human whole blood. We used a novel blood loop model where human blood from healthy donors was mixed with virus and incubated in heparin-coated PVC tubing while rotating at 37 degrees C for up to 8 h. Production of the complement components C3a and C5a and the cytokines IL-8, RANTES and MCP-1 was significantly lower with 20K-PEGylated Ad5 than with uncoated Ad5. PEGylation prevented clotting and reduced Ad5 binding to blood cells in blood with low ability to neutralize Ad5. The effect was particularly pronounced in monocytes, granulocytes, B-cells and T-cells, but could also be observed in erythrocytes and platelets. In conclusion, PEGylation of Ad5 can reduce the immune response mounted in human blood, although the protective effects are rather modest in contrast to published mouse data. Our findings underline the importance of developing reliable models and we propose the use of human whole blood models in pre-clinical screening of gene therapy vectors.
Collapse
|
46
|
Park JW, Mok H, Park TG. Physical adsorption of PEG grafted and blocked poly-l-lysine copolymers on adenovirus surface for enhanced gene transduction. J Control Release 2010; 142:238-44. [DOI: 10.1016/j.jconrel.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/21/2009] [Accepted: 11/01/2009] [Indexed: 12/18/2022]
|
47
|
Development of a nasal adenovirus-based vaccine: Effect of concentration and formulation on adenovirus stability and infectious titer during actuation from two delivery devices. Vaccine 2010; 28:2137-48. [DOI: 10.1016/j.vaccine.2009.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022]
|
48
|
Wonganan P, Croyle MA. PEGylated Adenoviruses: From Mice to Monkeys. Viruses 2010; 2:468-502. [PMID: 21994645 PMCID: PMC3185605 DOI: 10.3390/v2020468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-512-471-1972; Fax: +1-512-471-7474
| |
Collapse
|
49
|
Howarth JL, Lee YB, Uney JB. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 2009; 26:1-20. [PMID: 19830583 PMCID: PMC2817806 DOI: 10.1007/s10565-009-9139-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/24/2009] [Indexed: 02/06/2023]
Abstract
In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described.
Collapse
|
50
|
Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA, Ehrhardt A. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 2009; 4:547-64. [PMID: 19373227 DOI: 10.1038/nprot.2009.4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-capacity adenoviral vectors (HC-AdVs) lacking all viral coding sequences were shown to result in long-term transgene expression and phenotypic correction in small and large animal models. It has been established that HC-AdVs show significantly reduced toxicity profiles compared with early-generation adenoviral vectors. Furthermore, with capsid-modified HC-AdV becoming available, we are just starting to understand the full potential of this vector system. However, for many researchers, the wide-scale use of HC-AdV is hampered by labor-intensive and complex production procedures. Herein, we provide a feasible and detailed protocol for efficient generation of HC-AdV. We introduce an efficient cloning strategy for the generation of recombinant HC-AdV vector genomes. Infection and amplification of the HC-AdV are performed in a spinner culture system. For purification, we routinely apply cesium chloride gradients. Finally, we describe various methods for establishing vector titers. Generation of high-titer HC-AdV can be achieved in 3 weeks.
Collapse
Affiliation(s)
- Lorenz Jager
- Department of Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|