1
|
Nebert DW. Gene-Environment Interactions: My Unique Journey. Annu Rev Pharmacol Toxicol 2024; 64:1-26. [PMID: 37788491 DOI: 10.1146/annurev-pharmtox-022323-082311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA;
| |
Collapse
|
2
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
3
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Insights into the Cytochrome P450 Monooxygenase Superfamily in Osmanthus fragrans and the Role of OfCYP142 in Linalool Synthesis. Int J Mol Sci 2022; 23:ijms232012150. [PMID: 36293004 PMCID: PMC9602793 DOI: 10.3390/ijms232012150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.
Collapse
|
5
|
Zhang H, Yang D, Wang P, Zhang X, Ding Z, Zhao L. Feedback Inhibition Might Dominate the Accumulation Pattern of BR in the New Shoots of Tea Plants ( Camellia sinensis). Front Genet 2022; 12:809608. [PMID: 35273632 PMCID: PMC8902050 DOI: 10.3389/fgene.2021.809608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022] Open
Abstract
Brassinosteroid (BR), a kind of polyhydroxylated steroid hormone, plays an important role in physiological and biochemical processes in plants. Studies were mainly focused on BR signaling and its exogenous spraying to help enhance crop yields. Few research studies are centered on the accumulation pattern of BR and its mechanism. Yet, it is crucial to unlock the mystery of the function of BR and its cross action with other hormones. Tea (Camellia sinensis (L.) O. Kuntze) is one of the important economic crops in some countries, and new shoots are the raw materials for the preparation of various tea products. Different concentrations of exogenous BR were reported to have different effects on growth and development. New shoots of tea plants can thus be considered a valuable research object to study the accumulation pattern of BR. In this study, the quantity of five BR components (brassinolide, 28-norbrassinolide, 28-homobrassinolide, castasterone, and 28-norcastasterone) in different tissues of tea plants, including buds (Bud), different maturity of leaves (L1, L2), and stems (S1, S2) were determined by UPLC-MS/MS. A total of 15 cDNA libraries of the same tissue with three repetitions for each were constructed and sequenced. The BR-accumulation pattern and gene expression pattern were combined together for weighted gene co-expression network analysis (WGCNA). BR-accumulation-relative genes were then screened using two methods, based on the K.in value and BR biosynthetic pathway (ko00905), respectively. The result showed that photosynthesis-related genes and CYP450 family genes were actively involved and might play important roles in BR accumulation and/or its accumulation pattern. First and foremost, feedback inhibition was more likely to dominate the accumulation pattern of BR in the new shoots of tea plants. Moreover, three conserved miRNAs with their target transcriptional factors and target mRNAs had been figured out from negative correlation modules that might be strongly linked to the BR-accumulation pattern. Our study provided an experimental basis for the role of BR in tea plants. The excavation of genes related to the accumulation pattern of BR provided the possibility of cross-action studies on the regulation of BR biosynthesis and the study between BR and other hormones.
Collapse
Affiliation(s)
- Hanghang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dong Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Zheng Y, Xu J, Wang F, Tang Y, Wei Z, Ji Z, Wang C, Zhao K. Mutation Types of CYP71P1 Cause Different Phenotypes of Mosaic Spot Lesion and Premature Leaf Senescence in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:641300. [PMID: 33833770 PMCID: PMC8021961 DOI: 10.3389/fpls.2021.641300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants (LMMs) are ideal materials for studying programmed cell death and defense response in plants. Here we report investigations on two LMMs (msl-1 and msl-2) from the indica rice cultivar JG30 treated by ethyl methyl sulfone. Both of the mutants showed similar mosaic spot lesions at seedling stage, but they displayed different phenotypes along with development of the plants. At tillering stage, larger orange spots appeared on leaves of msl-2, while only small reddish-brown spots exhibit on leaves of msl-1. At heading stage, the msl-2 plants were completely dead, while the msl-1 plants were still alive even if showed apparent premature senility. For both the mutants, the mosaic spot lesion formation was induced by light; DAB and trypan blue staining showed a large amount of hydrogen peroxide accumulated at the lesion sites, accompanied by a large number of cell death. Consequently, reactive oxygen species were enriched in leaves of the mutants; SOD and CAT activities in the scavenging enzyme system were decreased compared with the wild type. In addition, degraded chloroplasts, decreased photosynthetic pigment content, down-regulated expression of genes associated with chloroplast synthesis/photosynthesis and up-regulated expression of genes related to senescence were detected in the mutants, but the abnormality of msl-2 was more serious than that of msl-1 in general. Genetic analysis and map-based cloning revealed that the lesion mimic and premature senescence traits of both the mutants were controlled by recessive mutated alleles of the SL (Sekiguchi lesion) gene, which encodes the CYP71P1 protein belonging to cytochrome P450 monooxygenase family. The difference of mutation sites and mutation types (SNP-caused single amino acid change and SNP-caused early termination of translation) led to the different phenotypes in severity between msl-1 and msl-2. Taken together, this work revealed that the CYP71P1 is involved in regulation of both premature senescence and cell death in rice, and its different mutation sites and mutation types could cause different phenotypes in terms of severity.
Collapse
Affiliation(s)
- Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Rice Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Blaauboer BJ, Wortelboer HM, Mennes WC. The Use of Liver Cell Cultures Derived from Different Mammalian Species in In Vitro Toxicological Studies: Implementation in Extrapolation Models? Altern Lab Anim 2020. [DOI: 10.1177/026119299001800125.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vitro techniques can be applied to obtain insight into the organotoxic potential of compounds and in the underlying mechanisms of action. During the last few decades the applicability of these techniques in toxicology has been demonstrated for an increasing number of cell types. Cultured hepatocytes have been shown to provide convenient in vitro systems for studying the role of biotransformation in the toxicity of a compound. The use of in vitro systems derived from a range of species may lead to a better understanding of species differences in the toxicity of xenobiotics, thus improving interspecies extrapolations. The applicability of this approach will be illustrated with results from experiments on the biotransformation and cytotoxicity of bromobenzene, the in vitro inducibility of biotransformation enzyme systems and the effects of hypolipidemics in primary hepatocyte cultures derived from a numberof animals.
Collapse
Affiliation(s)
- Bas J. Blaauboer
- Research Institute of Toxicology, University of Utrecht, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
| | - Heleen M. Wortelboer
- Research Institute of Toxicology, University of Utrecht, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
| | - Wim C. Mennes
- Research Institute of Toxicology, University of Utrecht, P.O. Box 80.176, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
9
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
10
|
Rendic SP, Guengerich FP. Development and Uses of Offline and Web-Searchable Metabolism Databases - The Case of Benzo[a]pyrene. Curr Drug Metab 2018; 19:3-46. [PMID: 29219051 DOI: 10.2174/1389200219666171207123939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/04/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The present work describes development of offline and web-searchable metabolism databases for drugs, other chemicals, and physiological compounds using human and model species, prompted by the large amount of data published after year 1990. The intent was to provide a rapid and accurate approach to published data to be applied both in science and to assist therapy. METHODS Searches for the data were done using the Pub Med database, accessing the Medline database of references and abstracts. In addition, data presented at scientific conferences (e.g., ISSX conferences) are included covering the publishing period beginning with the year 1976. RESULTS Application of the data is illustrated by the properties of benzo[a]pyrene (B[a]P) and its metabolites. Analysis show higher activity of P450 1A1 for activation of the (-)- isomer of trans-B[a]P-7,8-diol, while P4501B1 exerts higher activity for the (+)- isomer. P450 1A2 showed equally low activity in the metabolic activation of both isomers. CONCLUSION The information collected in the databases is applicable in prediction of metabolic drug-drug and/or drug-chemical interactions in clinical and environmental studies. The data on the metabolism of searched compound (exemplified by benzo[a]pyrene and its metabolites) also indicate toxicological properties of the products of specific reactions. The offline and web-searchable databases had wide range of applications (e.g. computer assisted drug design and development, optimization of clinical therapy, toxicological applications) and adjustment in everyday life styles.
Collapse
Affiliation(s)
| | - Frederick P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
11
|
Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem Soc Trans 2018; 46:183-196. [PMID: 29432141 PMCID: PMC5818669 DOI: 10.1042/bst20170218] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
The cytochromes P450 (P450s or CYPs) constitute a large heme enzyme superfamily, members of which catalyze the oxidative transformation of a wide range of organic substrates, and whose functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The P450 peroxygenases are a subgroup of the P450s that have evolved in microbes to catalyze the oxidative metabolism of fatty acids, using hydrogen peroxide as an oxidant rather than NAD(P)H-driven redox partner systems typical of the vast majority of other characterized P450 enzymes. Early members of the peroxygenase (CYP152) family were shown to catalyze hydroxylation at the α and β carbons of medium-to-long-chain fatty acids. However, more recent studies on other CYP152 family P450s revealed the ability to oxidatively decarboxylate fatty acids, generating terminal alkenes with potential applications as drop-in biofuels. Other research has revealed their capacity to decarboxylate and to desaturate hydroxylated fatty acids to form novel products. Structural data have revealed a common active site motif for the binding of the substrate carboxylate group in the peroxygenases, and mechanistic and transient kinetic analyses have demonstrated the formation of reactive iron-oxo species (compounds I and II) that are ultimately responsible for hydroxylation and decarboxylation of fatty acids, respectively. This short review will focus on the biochemical properties of the P450 peroxygenases and on their biotechnological applications with respect to production of volatile alkenes as biofuels, as well as other fine chemicals.
Collapse
|
12
|
Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:15-35. [PMID: 30362088 DOI: 10.1007/978-3-319-98788-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.
Collapse
|
13
|
Smith BR, Brian WR. The Role of Metabolism in Chemical-Induced Pulmonary Toxicity. Toxicol Pathol 2017. [DOI: 10.1177/0192623391019004-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lung is a target organ for the toxic effects of several chemical agents, including natural products, industrial chemicals, pesticides, environmental agents, and occasionally, drugs. Factors that establish the lung as a target organ include selective tissue exposure, high tissue oxygenation, and the presence of bioactivating systems that can generate toxic products from initially innocuous substances. Selective pulmonary exposure most often results from the fact that the lung serves as the major portal of entry for most airborne substances, but in some cases, selective exposure is the consequence of accumulation of agents, such as certain basic amines, from the circulation. Lung tumor development following long-term exposure to cigarette smoke or diesel engine exhaust is an example of pulmonary toxicity resulting from selective external exposure. Selective internal exposure, on the other hand, is exemplified by the pulmonary uptake of the herbicide paraquat from the circulation which is in part responsible for its lung-toxic effects. Although the lung contains drug metabolizing enzymes similar to those found in the liver, the enzymatic systems in the lung are sometimes highly concentrated in specific cell types. In the rabbit, for example, the lung-selective toxicity of the natural product ipomeanol is the consequence of relatively large amounts of cytochromes P450 2B1 and 4B1 in nonciliated bronchiolar epithelial cells (Clara cells) of the terminal airways. These P450 enzymes are highly proficient in vitro at converting ipomeanol to reactive products. Lung tissue contains other enzymic systems which are capable of catalyzing phase I biostransformation pathways (e.g., flavin-containing amine monooxygenase, amine oxidase, and prostaglandin synthase). Examples, however, where pulmonary metabolism by these pathways results in lung toxicity are less numerous than with P450 mediated reactions. Pulmonary prostaglandin H-synthase mediated cooxygenation has been shown to activate procarcinogens such as benzo(a)pyrene 7,8-dihydrodiol, aflatoxin B1, and monosubstituted hydrazines. The activities of pulmonary phase II (conjugation) pathways may also contribute to lung toxicity. Low glutathione transferase activity (relative to P450 mediated aryl hydrocarbon hydroxylase activity) in lung tissue has been suggested to correlate with elevated risk of lung cancer in smokers. Other examples of lung-specific toxic agents and possible causative roles of biotransformation are also discussed.
Collapse
Affiliation(s)
- Brian R. Smith
- Department of Drug Metabolism, Smithkline Beecham Pharmaceuticals, P.O. Box 1539, King of Prussia, Pennsylvania 19406
| | - William R. Brian
- Department of Drug Metabolism, Smithkline Beecham Pharmaceuticals, P.O. Box 1539, King of Prussia, Pennsylvania 19406
| |
Collapse
|
14
|
Lewis JD, Bachmann KA. Cytochrome P450 Enzymes and Drug—Drug Interactions: An Update on the Superfamily. J Pharm Technol 2016. [DOI: 10.1177/875512250602200105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeffrey D Lewis
- JEFFREY D LEWIS PharmD, Pharmacotherapy Specialist, Lexi-Comp, Inc., Hudson, OH
| | - Kenneth A Bachmann
- KENNETH A BACHMANN PhD, Distinguished University Professor of Pharmacology, College of Pharmacy, The University of Toledo, Toledo, OH
| |
Collapse
|
15
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 15. Macrorchidism as the Expression of Several Congenital and Acquired Pathologies. Pediatr Dev Pathol 2016; 19:202-18. [PMID: 25105801 DOI: 10.2350/14-05-1494-pb.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
16
|
Gricman Ł, Vogel C, Pleiss J. Identification of universal selectivity-determining positions in cytochrome P450 monooxygenases by systematic sequence-based literature mining. Proteins 2015; 83:1593-603. [DOI: 10.1002/prot.24840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Łukasz Gricman
- Institute of Technical Biochemistry, University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Constantin Vogel
- Institute of Technical Biochemistry, University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
17
|
Ravlić S, Žučko J, Tanković MS, Fafanđel M, Bihari N. Sequence analysis of novel CYP4 transcripts from Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:300-309. [PMID: 26176904 DOI: 10.1016/j.etap.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 enzymes (CYPs) are essential components of cellular detoxification system. We identified and characterized seven new cytochrome P450 gene transcript clusters in the populations of bivalve mollusc Mytilus galloprovincialis from three different locations. The phylogenetic analysis identified all transcripts as clusters within the CYP4 branch. Identified clusters, each comprising a number of transcript variants, were designated CYP4Y1, Y2, Y3, Y4, Y5, Y6 and Y7. Transcript clusters CYP4Y2 and Y7, and CYP4Y5 and Y6 showed site specificity, while the transcript clusters CYP4Y1, Y3 and Y4 were present at all investigated locations. The comparison of transcripts deduced amino acid sequences with CYP4s from vertebrate and invertebrate species showed high conservation of the residues and domains essential to the putative function of the enzyme, as terminal ω-hydroxylation and prostaglandin hydroxylation. Our results suggest the great expansion of the CYP4Y cDNAs indicative of CYP4 proteins in the mussel M. galloprovincialis presumably as a response to different environmental conditions.
Collapse
Affiliation(s)
- Sanda Ravlić
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia.
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mirta Smodlaka Tanković
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Maja Fafanđel
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Nevenka Bihari
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
18
|
Ohkawa H, Inui H. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants. PEST MANAGEMENT SCIENCE 2015; 71:824-8. [PMID: 25077812 DOI: 10.1002/ps.3871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/15/2014] [Accepted: 07/24/2014] [Indexed: 05/28/2023]
Abstract
A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity.
Collapse
Affiliation(s)
- Hideo Ohkawa
- Research Centre for Environmental Genomics, Kobe University, Kobe, Hyogo, Japan
| | | |
Collapse
|
19
|
McKinnon RA, Sorich MJ, Ward MB. Cytochrome P450 Part 1: Multiplicity and Function. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2015. [DOI: 10.1002/j.2055-2335.2008.tb00798.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Michael B Ward
- Sansom Institute, School of Pharmacy and Medical Sciences; University of South Australia; Adelaide South Australia
| |
Collapse
|
20
|
Zalata A, El-Samanoudy AZ, Osman G, Elhanbly S, Nada HA, Mostafa T. Cytochrome P450-2D6*4 polymorphism seminal relationship in infertile men. Andrologia 2014; 47:525-30. [PMID: 24865344 DOI: 10.1111/and.12298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 02/05/2023] Open
Abstract
This study aimed to assess cytochrome (CY) P450-2D6*4 polymorphism relationship with semen variables in infertile men. In all, 308 men were included; fertile normozoospermia (N) (n = 77), asthenozoospermia (A) (n = 70), asthenoteratozoospermia (AT) (n = 75) and oligoasthenoteratozoospermia (OAT) (n = 86). They were subjected to history taking, clinical examination, semen analysis, sperm acrosin activity, seminal malondialdehyde (MDA) and CYP450-2D6*4 genotyping. CYP450-2D6*4 wild-type allele was represented in 76.5% of N, 70% of A, 66.7% of AT and 57.7% of OAT men where homozygous gene mutation was present in 5.9% of N, 20% of A, 26.6% of AT and 26.9% of OAT men, respectively. Sperm acrosin activity, sperm concentration, sperm motility, linear sperm velocity and sperm normal forms were significantly higher, and seminal MDA level was significantly lower in men with CYP450-2D6*4 wild-type allele compared with men with homozygous mutation. It is concluded that CYP450-2D6*4 wild-type allele has higher frequency where homozygous-type allele has lower frequency in N men compared with A, AT and OAT men. Sperm acrosin activity index, sperm concentration, sperm motility, linear sperm velocity and sperm normal forms were significantly higher, and seminal MDA level was significantly lower in men with CYP450-2D6*4 wild-type allele compared with men with homozygous mutation.
Collapse
Affiliation(s)
- A Zalata
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | |
Collapse
|
21
|
Similarity in recombination rate and linkage disequilibrium at CYP2C and CYP2D cytochrome P450 gene regions among Europeans indicates signs of selection and no advantage of using tagSNPs in population isolates. Pharmacogenet Genomics 2013; 22:846-57. [PMID: 23089684 DOI: 10.1097/fpc.0b013e32835a3a6d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Linkage disequilibrium (LD) and recombination rate variations are known to vary considerably between human genome regions and populations mostly because of the combined effects of mutation, recombination, and demographic history. Thus, the pattern of LD is a key issue to disentangle variants associated with complex traits. Here, we aim to describe the haplotype structure and LD variation at the pharmacogenetically relevant cytochrome P450 CYP2C and CYP2D gene regions among European populations. METHODS To assess the haplotype structure, LD pattern, and recombination rate variations in the clinically significant CYP2C and CYP2D regions, we genotyped 143 single-nucleotide polymorphisms (SNPs) across these two genome regions in a diverse set of 11 European population samples and one sub-Saharan African sample. RESULTS Our results showed extended patterns of LD and in general a low rate of recombination at these loci, and a low degree of allele differentiation for the two cytochrome P450 regions among Europeans, with the exception of the Sami and the Finns as European outliers. The Sami sample showed reduced haplotype diversity and higher LD for the two cytochrome P450 regions than the other Europeans, a feature that is proposed to enhance the LD mapping of underlying common complex traits. However, recombination hotspots and LD blocks at these two regions showed highly consistent structures across Europeans including Finns and Sami. Moreover, we showed that the CEPH sample has significantly higher tag transferability among Europeans and a more efficient tagging of both the rare CYP2C9 and the common CYP2C19 functional variants than the Sami. Our data set included CYP2C9*3 (rs1057910) and CYP2C19*2 (rs4244285) enzyme activity-altering variants associated in a recent genome-wide study with acenocoumarol-induced and warfarin-induced anticoagulation or to the antiplatelet effect of clopidogrel, respectively. Including these known activity-altering variants, we showed the haplotype variation and high derived allele frequencies of novel recently identified acenocoumarol genome-wide associated SNPs at CYP2C9 (rs4086116) and CYP2C18 (rs12772169, rs1998591, rs2104543, rs1042194) loci in a comprehensive set of 11 European populations. Furthermore, a significant frequency difference of a CYP2C19*2 gene mutation causing variable drug reactions was observed among Europeans. CONCLUSION The CEPH sample representing the general European population as such in the HapMap project seems to be the optimal population sample for the LD mapping of common complex traits among Europeans. Nevertheless, it is still argued that the unique pattern of LD in the Sami may offer an advantage for further association mapping, especially if multiple rare variants play a role in disease etiology. However, besides the activity-altering CYP2C9*3 (rs1057910) and CYP2C19*2 (rs4244285) variants, the high derived allele frequencies of novel recently identified acenocoumarol genome-wide associated SNPs at CYP2C9 (rs4086116) and CYP2C18 (rs12772169, rs1998591, rs2104543, rs1042194) loci variants indicated that the CYP2C region may have been influenced by selection. Thus, this fine-scale haplotype map of the CYP2C and CYP2D regions may help to choose markers for further association mapping of complex pharmacogenetic traits at these loci.
Collapse
|
22
|
|
23
|
Shimazu S, Inui H, Ohkawa H. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2870-2875. [PMID: 20882959 DOI: 10.1021/jf102561d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.
Collapse
Affiliation(s)
- Sayuri Shimazu
- Research Center for Green Science, Fukuyama University, Fukuyama, Hiroshima, 729-0292 Japan
| | | | | |
Collapse
|
24
|
Whalen KE, Starczak VR, Nelson DR, Goldstone JV, Hahn ME. Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum. BMC Ecol 2010; 10:24. [PMID: 21122142 PMCID: PMC3022543 DOI: 10.1186/1472-6785-10-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/01/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intense consumer pressure strongly affects the structural organization and function of marine ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome P450s (CYPs), which have received little attention in marine invertebrates despite the importance of allelochemicals in their evolution. RESULTS Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate CYP4A/4F forms share identical amino acid residues at key positions within fatty acid substrate recognition sites. CONCLUSIONS These results demonstrate differential regulation of CYP transcripts in a marine consumer feeding on an allelochemical-rich diet, and significantly advance our understanding of both the adaptive molecular mechanisms that marine consumers use to cope with environmental chemical pressures and the evolutionary history of allelochemical-metabolizing enzymes in the CYP superfamily.
Collapse
Affiliation(s)
- Kristen E Whalen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Victoria R Starczak
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David R Nelson
- Department of Molecular Sciences, University of Tennessee, Memphis, TN 38163, USA
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
25
|
|
26
|
Abstract
The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.
Collapse
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences, University of Tennessee, 858 Madison Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
27
|
Brown NG, Shanker S, Prasad BVV, Palzkill T. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem 2009; 284:33703-12. [PMID: 19812041 DOI: 10.1074/jbc.m109.053819] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TEM-1 beta-lactamase is the most common plasmid-encoded beta-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A beta-lactamases share several conserved residues including Ser(70), Glu(166), and Asn(170) that coordinate a hydrolytic water involved in deacylation. Unlike Ser(70) and Glu(166), the functional significance of residue Asn(170) is not well understood even though it forms hydrogen bonds with both Glu(166) and the hydrolytic water. The goal of this study was to examine the importance of Asn(170) for catalysis and substrate specificity of beta-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn(170) side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.
Collapse
Affiliation(s)
- Nicholas G Brown
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Sanglard D, Beretta I, Wagner M, Käppeli O, Fiechter A. Functional Expression of the Alkane-Inducible Monooxygenase System of the Yeast: Candida tropicalis IN Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429008998184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- D. Sanglard
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - I. Beretta
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - M. Wagner
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - O. Käppeli
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| | - A. Fiechter
- Dept. of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093, Zürich, Switzerland
| |
Collapse
|
29
|
Müller HG. Biocatalytic Hydroxylations Catalyzed by Cytochromes P-450—Problems and Prospects. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429008998183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- H.-G. Müller
- Central Institute of Molecular Biology, Academy of Sciences of the GDR, DDR-1115, Berlin-Buch, GDR
| |
Collapse
|
30
|
Abstract
There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC) transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx) or out (efflux) of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least I I of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]). ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.
Collapse
Affiliation(s)
- Vasilis Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
31
|
Abstract
The olfactory receptor gene (OR) superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse -- most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily) has been designed similarly to that originally used for the CYP gene superfamily.
Collapse
Affiliation(s)
- Tsviya Olender
- The Crown Human Genome Center, Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
32
|
Versatile capacity of shuffled cytochrome P450s for dye production. Appl Microbiol Biotechnol 2008; 82:203-10. [PMID: 19107474 DOI: 10.1007/s00253-008-1812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 11/21/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
DNA family shuffling is a relatively new method of directed evolution used to create novel enzymes in order to improve their existing properties or to develop new features. This method of evolution in vitro has one basic requirement: a high similarity of initial parental sequences. Cytochrome P450 enzymes are relatively well conserved in their amino acid sequences. Members of the same family can have more than 40% of sequence identity at the protein level and are therefore good candidates for DNA family shuffling. These xenobiotic-metabolising enzymes have an ability to metabolise a wide range of chemicals and produce a variety of products including blue pigments such as indigo. By applying the specifically designed DNA family shuffling approach, catalytic properties of cytochrome P450 enzymes were further extended in the chimeric progeny to include a new range of blue colour formations. This mini-review evokes the possibility of exploiting directed evolution of cytochrome P450s and the novel enzymes created by DNA family shuffling for the production of new dyes.
Collapse
|
33
|
Raymond F. Robledo Mark L. Witten. ACUTE PULMONARY RESPONSE TO INHALED JP-8 JET FUEL AEROSOL IN MICE. Inhal Toxicol 2008. [DOI: 10.1080/089583798197655] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Kalapos MP. Methylglyoxal and glucose metabolism: a historical perspective and future avenues for research. ACTA ACUST UNITED AC 2008; 23:69-91. [PMID: 18533365 DOI: 10.1515/dmdi.2008.23.1-2.69] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylglyoxal, an alpha-oxoaldehyde discovered in the 1880s, has had a hectic scientific career, at times being considered of fundamental importance and at other times viewed as playing a very subordinate role. Much has been learned about methylglyoxal, but the function of its production in the metabolic machinery is still unknown. This paper gives an overview of the changing role of methylglyoxal from a historical aspect and arrives at the conclusion that methylglyoxal is tightly bound to glycolysis from an evolutionary perspective, its production therefore being inevitable. It is not situated in the main stream of the glycolytic sequence, but a role can be assigned to its production in the phosphate supply of operating glycolysis in some prokaryotes and yeast under conditions of phosphate deficiency. This function is presumed to be performed by the enzyme methylglyoxal synthase, which is specialized for the conversion of dihydroxyacetone-phosphate to methylglyoxal. However, it is still unknown whether this enzyme and this kind of regulation also exist in animals.
Collapse
|
35
|
Hormone receptor-related gene polymorphisms and prostate cancer risk in North Indian population. Mol Cell Biochem 2008; 314:25-35. [PMID: 18483761 DOI: 10.1007/s11010-008-9761-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to analyse the frequency and type of mutations in the coding region of androgen receptor (AR) and to determine the role of polymorphisms in the intron 1 of ERalpha, exon 5 of ERbeta, intron 7 of progesterone, exon 7 of the aromatase (CYP19) and exon 9 of VDR genes in the risk of prostate cancer. PCR-RFLP analysis of all above the genes was on 100 prostate cancer patients and an equal number of matching controls. The study also included PCR-SSCP analyses of exons 2-8 of AR gene. The genotype containing -/- allele of ERalpha gene was statistically significant for the risk of prostate cancer pose (OR, 2.70; 95% CI, 1.08-6.70, P = 0.032) Rr genotype of ERbeta gene also have a higher risk (OR, 1.65; 95% CI, 0.52-5.23) for prostate cancer. The Cys allele of CYP19 gene was also associated with statistically significant increased risk of prostate cancer (OR; 2.28, 95% CI, 1.20-4.35, P = 0.012). tt genotype of codon 352 of VDR gene showed an OR of 0.43 for (95% CI, 0.13-1.39) and an OR for Tt genotype was 0.65 (95% CI, 0.36-1.16). Taken together, the results showed that in North Indian population, ERalpha and CYP19 genes may be playing a role in the risk of prostate cancer.
Collapse
|
36
|
|
37
|
Nugon-Baudon L, Rabot S. Glucosinolates and Glucosinolate Derivatives: Implications for Protection Against Chemical Carcinogenesis. Nutr Res Rev 2007; 7:205-31. [DOI: 10.1079/nrr19940012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Peruffo A, Cozzi B, Ballarin C. Ontogenesis of brain aromatase P450 expression in the bovine hypothalamus. Brain Res Bull 2007; 75:60-5. [PMID: 18158096 DOI: 10.1016/j.brainresbull.2007.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 07/10/2007] [Accepted: 07/16/2007] [Indexed: 11/25/2022]
Abstract
Aromatase P450 (P450(AROM)), converting testosterone (T) into estradiol (E), plays an important role in sexual differentiation of neural structures in the developing mammalian brain. The aim of the present study was to characterize the qualitative and quantitative profile of P450(AROM) mRNA expression in the bovine hypothalamus (the region of the central nervous system in which the enzyme is mainly localized) using RT-PCR and quantitative real-time RT-PCR analysis, respectively. P450(AROM) expression was examined in the developing hypothalamus in a series of experimental groups investigated at 10 weeks interval one from the other. Our data indicate that in the bovine fetal hypothalamus P450(AROM) expression peaks at the second quarter of gestation. The presence of neural cells containing P450(AROM) in the bovine fetal hypothalamus was confirmed by immunohistochemistry, and localized in the medial preoptic area. We conclude that second quarter of the gestation is the developmental stage which represents a critical period for hypothalamic differentiation in bovine ontogenesis, an important difference with the rat and mouse, short gestation species in which P450(AROM) activity peaks around delivery.
Collapse
Affiliation(s)
- Antonella Peruffo
- Department of Experimental Veterinary Science, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Agripolis, Italy
| | | | | |
Collapse
|
39
|
Lewis DFV. Computer-Assisted methods in the evaluation of chemical toxicity. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125809.ch4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
40
|
Gumbleton M, Forbes BJ. Principles in the absorption, distribution and elimination of pharmaceuticals. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780420310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Helsby NA, Watkins WM, Mberu E, Ward SA. Inter-individual variation in the metabolic activation of the antimalarial biguanides. ACTA ACUST UNITED AC 2005; 7:120-3. [PMID: 15463463 DOI: 10.1016/0169-4758(91)90171-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aryl-biguanides proguanil and chlorproguanil were developed as part of a collaborative programme between ICI and the Liverpool School of Tropical Medicine during the 1940s. The compounds were characterized by their absence of host toxicity. However, the rapid development of parasite resistance to the actions of these drugs and the development of the 4-aminoquinoline, chloroquine, severely limited their use. The subsequent widespread development of parasite resistance to chloroquine, together with the observations that the magnitude of dihydrofolate reductase inhibitor resistance (the site of action of the biguanides) developed to pyrimethamine is not directly correlated with biguanide resistance(1,2). has resulted in renewed interest in these drugs. In particular, proguanil is now the drug of choice for malaria prophylaxis, in combination with chloroquine; used in combination with a suitable sulphonamide, it may be of value in malaria therapy.
Collapse
Affiliation(s)
- N A Helsby
- Department of Pharmacology and Therapeutics, University of Liverpool, New Medical Building, Ashton Street, PO Box 147, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
42
|
Puozzo C, Lens S, Reh C, Michaelis K, Rosillon D, Deroubaix X, Deprez D. Lack of Interaction of Milnacipran with the Cytochrome P450 Isoenzymes Frequently Involved in the Metabolism of Antidepressants. Clin Pharmacokinet 2005; 44:977-88. [PMID: 16122284 DOI: 10.2165/00003088-200544090-00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To compare the pharmacokinetics of milnacipran in extensive metabolisers (EMs) and poor metabolisers (PMs) of sparteine and mephenytoin, and to assess the influence of multiple administrations of milnacipran on the activity of cytochrome P450 (CYP) isoenzymes through its own metabolism and through various probes, namely CYP2D6 (sparteine/dextromethorphan), CYP2C19 (mephenytoin), CYP1A2 (caffeine) and CYP3A4 (endogenous 6-beta-hydroxy-cortisol excretion). METHODS Twenty-five healthy subjects, 12 EMs for both sparteine/dextromethorphan and mephenytoin, nine EMs for mephenytoin and PMs for sparteine/dextromethorphan (PM(2D6)) and four PMs for mephenytoin and EMs for sparteine/dextromethorphan (PM(2C19)) were administered milnacipran as a single 50 mg capsule on day 1 followed by a 50 mg capsule twice daily for 7 days. The pharmacokinetics of milnacipran and its oxidative metabolites were assessed after the first dose (day 1) and after multiple administration (day 8), and were compared for differences between CYP2D6 and CYP2C19 PMs and EMs. Metabolic tests were performed before (day -2), during (days 1 and 8) and after (day 20) milnacipran administration. RESULTS Milnacipran steady state was rapidly achieved. Metabolism was limited: approximately 50% unchanged drug, 30% as glucuronide and 20% as oxidative metabolite (mainly F2800 the N-dealkyl metabolite). Milnacipran administration to PM2D6 and PM2C19 subjects did not increase parent drug exposure or decrease metabolite exposure. Milnacipran oxidative metabolism is not mediated through CYP2D6 or CYP2C19 polymorphic pathways nor does it significantly interact with CYP1A2, CYP2C19, CYP2D6 or CYP3A4 activities. CONCLUSION Limited reciprocal pharmacokinetic interaction between milnacipran and CYP isoenzymes would confer flexibility in the therapeutic use of the drug when combined with antidepressants. Drug-drug interaction risk would be low, even if the combined treatments were likely to inhibit CYP2D6 and CYP2C19 isoenzyme activities.
Collapse
|
43
|
Samanta TB, Das N, Das M, Marik R. Mechanism of impairment of cytochrome P450-dependent metabolism in hamster liver during leishmaniasis. Biochem Biophys Res Commun 2004; 312:75-9. [PMID: 14630021 DOI: 10.1016/j.bbrc.2003.09.227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mechanism of impairment of cytochrome P450 (P450)-dependent metabolism in hamster liver during leishmaniasis is reported. A significant decrease in the level of P450 was observed on the 20th day of infection when the parasite load in the liver was maximum. The decrease in P450 level was accompanied by a significant increase in the level of marker enzymes of liver and degeneration of liver tissue. The impairment was isozyme-specific and concomitant with the induction of nitric oxide synthase. The results of in vitro experiments with generated nitric oxide and with scavengers demonstrated that the impairment is mediated by NO. Treatment of the infected animals with a combination therapy showed reduction in parasite load, reversal of P450 impairment, and recovery of liver enzymes and tissue close to normal.
Collapse
MESH Headings
- Animals
- Antiparasitic Agents/administration & dosage
- Cricetinae
- Cytochrome P-450 Enzyme System/metabolism
- Drug Combinations
- Leishmania donovani/parasitology
- Leishmaniasis, Visceral/complications
- Leishmaniasis, Visceral/drug therapy
- Leishmaniasis, Visceral/enzymology
- Leishmaniasis, Visceral/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/parasitology
- Liver/pathology
- Liver Diseases, Parasitic/complications
- Liver Diseases, Parasitic/drug therapy
- Liver Diseases, Parasitic/metabolism
- Liver Diseases, Parasitic/pathology
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Microsomes, Liver/parasitology
- Microsomes, Liver/ultrastructure
Collapse
Affiliation(s)
- Timir B Samanta
- Department of Microbiology, Bose Institute, 700054 Kolkata, India.
| | | | | | | |
Collapse
|
44
|
Nagamura F, Takahashi T, Takeuchi M, Iseki T, Ooi J, Tomonari A, Uchimaru K, Takahashi S, Tojo A, Tani K, Asano S. Effect of cyclophosphamide on serum cyclosporine levels at the conditioning of hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 32:1051-8. [PMID: 14625575 DOI: 10.1038/sj.bmt.1704259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We retrospectively analyzed the factors that affect serum cyclosporine (CsA) concentrations up to day 14 after allogeneic hematopoietic stem cell transplantation (HSCT). In all, 103 transplant recipients who received MTX and CsA for acute GVHD prophylaxis were analyzed. No significant relationships between serum CsA concentrations and gender, age, serum creatinine levels, AST/ALT levels, or antibiotic/fluconazole administration were found by comparing median CsA concentrations or by using longitudinal or regression multivariate analyses. However, the mean of the median serum CsA concentration in patients (n=54) receiving the regimen containing cyclophosphamide (CY) (149.7 ng/ml; 95% confidence interval (CI): 132.1-167.4) was significantly (P<0.0001) lower than that in patients (n=49) receiving the non-CY regimen (217.3 ng/ml; 95% CI: 198.9-235.6). Longitudinal analysis and regression multivariate analysis showed that only administration of CY had a significant effect on the serum CsA concentration. Our results suggest that administration of CY during conditioning can reduce the effects on serum CsA concentrations during the 2 weeks following HSCT. The mechanism of this effect is not clear, but it may be due to the autoinduction of CY.
Collapse
Affiliation(s)
- F Nagamura
- Department of Hematology/Oncology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sterling KM, Cutroneo KR. Differentiation-dependent induction of CYP1A1 in cultured rat small intestinal epithelial cells, colonocytes, and human colon carcinoma cells: basement membrane-mediated apoptosis. J Cell Biochem 2003; 86:440-50. [PMID: 12210751 DOI: 10.1002/jcb.10237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rat small intestinal epithelial cells and human colon adenocarcinoma cells cultured on Matrigel expressed the differentiation specific enzyme, sucrase-isomaltase, as determined by indirect immunofluorescence. Rat small intestinal epithelial cells, rat colonocytes, and human colon adenocarcinoma cells developed an altered morphology when cultured on Matrigel and became apoptotic within 24-48 h. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin caused a 2- and 5-fold induction, respectively, of ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene- or 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on plastic was not detected. 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment caused a 14-fold induction of transfected, rat CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment induced ethoxyresorufin-o-deethylase activity by 6- and 1.6-fold, respectively in rat colonocytes cultured on Matrigel. Induction of ethoxyresorufin-o-deethylase activity was not observed in rat colonocytes cultured on plastic. CYP1A1-promoter-luciferase activity was induced 3-fold by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat colonocytes cultured on Matrigel. Induction of CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells or rat colonocytes cultured on plastic was not observed. Ethoxyresorufin-o-deethylase activity in human colon adenocarcinoma cells, cultured on either plastic or Matrigel, was induced 7-fold by benzo[a]pyrene. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity was 2-fold greater in human colon adenocarcinoma cells cultured on Matrigel compared to cells cultured on plastic. Extracellular matrix-mediated differentiation and apoptosis of intestinal cells provide in vitro systems for study of the regulation of CYP1A1 expression, carcinogen activation in the gut and mechanism(s) of apoptosis of colon cancer cells.
Collapse
Affiliation(s)
- Kenneth M Sterling
- Dartmouth College, Department of Physics and Astronomy, 6127 Wilder Laboratory, Hanover, New Hampshire 03755-3528, USA.
| | | |
Collapse
|
46
|
Oehlmann J, Schulte-Oehlmann U. Chapter 17 Molluscs as bioindicators. TRACE METALS AND OTHER CONTAMINANTS IN THE ENVIRONMENT 2003. [DOI: 10.1016/s0927-5215(03)80147-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Matsunaga T, Ohmori S, Ishida M, Sakamoto Y, Nakasa H, Kitada M. Molecular Cloning of Monkey CYP2C43 cDNA and Expression in Yeast. Drug Metab Pharmacokinet 2002; 17:117-24. [PMID: 15618659 DOI: 10.2133/dmpk.17.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cDNA clone designated as CYP2C43 was isolated from the rhesus monkey liver cDNA library. The first 16 amino acid residues at the N-terminal region of this cDNA product were identical with those of P450 CMLd which have been purified and characterized as S-mephenytoin 4'-hydroxylase in monkey liver. The respective nucleotide and deduced amino acid sequences of CYP2C43 were 83% and 77%, identical to those of monkey CYP2C20. Antibody against CYP2C9 detected a protein in the microsomes of yeast transformed CYP2C43 expression plasmid. The specific content of recombinant CYP2C43 was 78.0 pmol/mg protein and the yield was 4.23 nmol/l of the culture. CYP2C43 was able to metabolize S-mephenytoin stereo-selectively. The activity for S-mephenytoin in the microsomes reconstituted with or without cytochrome b(5) was found to be 96.2 or 23.7 pmol/min/nmol P450, respectively. CYP2C43, however, did not show any oxidative activity for tolbutamide. These results indicate that CYP2C43 is the second identified member of the monkey CYP2C subfamily and a cDNA clone encoding P450 CMLd in monkey.
Collapse
|
48
|
Nagata K, Yamazoe Y. Genetic Polymorphism of Human Cytochrome P450 Involved in Drug Metabolism. Drug Metab Pharmacokinet 2002; 17:167-89. [PMID: 15618668 DOI: 10.2133/dmpk.17.167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in human gene analysis promoted by the human genome project have brought us a massive amount of information. These data can be seen and analyzed by personal computer through individual Web sites. As a result, the best use of bioinformatic is essential for recent molecular biology research. Genetic polymorphism of drug-metabolizing enzymes influences individual drug efficacy and safety through the alteration of pharmacokinetics and disposition of drugs. Considerable amounts of data have now accumulated as allelic differences of various drug metabolizing enzymes. Current understanding of genotype information on cytochrome P450 is hereby summarized, based on the Web site for their use in individual optimization of drug therapy.
Collapse
Affiliation(s)
- Kiyoshi Nagata
- Department of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
49
|
Cvrk T, Strobel HW. Role of LYS271 and LYS279 residues in the interaction of cytochrome P4501A1 with NADPH-cytochrome P450 reductase. Arch Biochem Biophys 2001; 385:290-300. [PMID: 11368010 DOI: 10.1006/abbi.2000.2174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been proposed that negatively charged amino acids on the surface of reductase and positively charged amino acids on the surface of P450 mediate the binding of both proteins through electrostatic interactions. In this study, we used a site-directed mutagenesis approach to determine a role for two lysine residues (Lys271 and Lys279) of cytochrome P4501A1 in the interaction of P4501A1 with reductase. We prepared two mutants P4501A1Ile271 and P4501A1Ile279 with a mutation of the lysine at positions 271 and 279, respectively. We observed a strong inhibition (>80%) of the 7-ethoxycoumarin and ethoxyresorufin deethylation activity in the reductase-supported system for both mutants. In the cumene hydroperoxide-supported system, P4501A1Ile279 exhibited wild-type activity, but the P4501A1Ile271 mutant activity remained low. The CD spectrum and substrate-binding assay indicated that the secondary structure of P4501A1Ile271 is perturbed. To evaluate further the involvement of these P4501A1 lysine residues in reductase binding, we measured the KM of reductase for wild type and mutants. Both wild type and P4501A1Ile271 reached saturation in the range of reductase concentrations tested with KM values 5.1 and 11.2 pM, respectively. The calculated KM value for P4501A1Ile279 increased 9-fold, 44.4 pM, suggesting that the mutation affected binding of reductase to P4501A1. Stopped-flow spectroscopy was employed to evaluate the effect of mutations on electron transfer from reductase to heme iron. Both wild type and P450Ile279 showed biphasic kinetics with a approximately 40% participation of the fast step in the total activity. On the other hand, only single-phase kinetics for iron reduction was observed for P450Ile271, suggesting that the low activity of this mutant can be attributed not only to major structural changes but also to a disturbance in the electron transport.
Collapse
Affiliation(s)
- T Cvrk
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, 77225, USA
| | | |
Collapse
|
50
|
Abstract
Olfactory receptors likely constitute the largest gene superfamily in the vertebrate genome. Here we present the nearly complete human olfactory subgenome elucidated by mining the genome draft with gene discovery algorithms. Over 900 olfactory receptor genes and pseudogenes (ORs) were identified, two-thirds of which were not annotated previously. The number of extrapolated ORs is in good agreement with previous theoretical predictions. The sequence of at least 63% of the ORs is disrupted by what appears to be a random process of pseudogene formation. ORs constitute 17 gene families, 4 of which contain more than 100 members each. "Fish-like" Class I ORs, previously considered a relic in higher tetrapods, constitute as much as 10% of the human repertoire, all in one large cluster on chromosome 11. Their lower pseudogene fraction suggests a functional significance. ORs are disposed on all human chromosomes except 20 and Y, and nearly 80% are found in clusters of 6-138 genes. A novel comparative cluster analysis was used to trace the evolutionary path that may have led to OR proliferation and diversification throughout the genome. The results of this analysis suggest the following genome expansion history: first, the generation of a "tetrapod-specific" Class II OR cluster on chromosome 11 by local duplication, then a single-step duplication of this cluster to chromosome 1, and finally an avalanche of duplication events out of chromosome 1 to most other chromosomes. The results of the data mining and characterization of ORs can be accessed at the Human Olfactory Receptor Data Exploratorium Web site (http://bioinfo.weizmann.ac.il/HORDE).
Collapse
Affiliation(s)
- G Glusman
- Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|