1
|
Yu L, Zang C, Ye Y, Liu H, Eucker J. Effects of BYL-719 (alpelisib) on human breast cancer stem cells to overcome drug resistance in human breast cancer. Front Pharmacol 2024; 15:1443422. [PMID: 39469631 PMCID: PMC11514072 DOI: 10.3389/fphar.2024.1443422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Breast cancer continues to be a major health concern and is currently the most commonly diagnosed cancer worldwide. Relapse, metastasis, and therapy resistance are major clinical issues that doctors need to address. We believe BYL-719, which is PI3 kinase p110а inhibitor, could also inhibit the breast cancer stem cell phenotype and epithelial-to-mesenchymal transition (EMT). In addition to the PI3K/AKT signaling pathway, BYL-719 can also inhibit essential cancer-related signaling pathways, all of which would ultimately act on the microenvironment of cancer stem cells, which is quite complicated and regulates the characteristics of tumors. These include the stemness and resistance of malignant tumors, plasticity of cancer stem cells, and anti-apoptotic features. Materials and methods A three-dimensional (3D) mammosphere culture method was used in vitro to culture and collect breast cancer stem cells (BCSCs). MTT, clonogenic, and cell apoptosis assays were used to detect cell viability, self-renewal, and differentiation abilities. A sphere formation assay under 3D conditions was used to detect the mammophore inhibition rate of BYL-719. The subpopulation of CD44+CD24- was detected using flow cytometry analysis while EMT biomarkers and essential signaling pathways were detected using western blotting. All the data were analyzed using GraphPad Prism 9 software. Results BCSC-like cells were obtained by using the 3D cell culture method in vitro. We confirmed that BYL-719 could inhibit BCSC-like cell proliferation in 3D cultures and that the stemness characteristics of BCSC-like cells were inhibited. The PI3K/AKT/mTOR signaling pathway could be inhibited by BYL-719, and the Notch, JAK-STAT and MAPK/ERK signaling pathways which have crosstalk in the tumor microenvironment (TME) are also inhibited. By comparing eribulin-resistant breast cancer cell lines, we confirmed that BYL-719 could effectively overcome drug resistance. Summary/conclusion The 3D cell culture is a novel and highly effective method for enriching BCSCs in vitro. Furthermore, the stemness and EMT of BCSCs were inhibited by BYL-719 by acting on various signaling pathways. Finally, we believe that drug resistance can be overcome by targeting the BCSCs. Conjugation of BYL-719 with other anti-neoplastic agents may be a promising treatment for this in clinic.
Collapse
Affiliation(s)
- Leinan Yu
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Chuanbing Zang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Yuanchun Ye
- School of Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hongyu Liu
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Jan Eucker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- Department of Oncology, Rheumatology and Gastroenterology, Vivantes Klinikum Spandau, Berlin, Germany
| |
Collapse
|
2
|
Li H, Xu S, Li X, Wang P, Hu M, Li N, Zhou Q, Chang M, Yao S. Inhibition of the ITGB1 gene attenuates crystalline silica-induced pulmonary fibrosis via epithelial-mesenchymal transformation. Braz J Med Biol Res 2024; 57:e13486. [PMID: 39258668 PMCID: PMC11379350 DOI: 10.1590/1414-431x2024e13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/12/2024] Open
Abstract
Silicosis is a systemic disease caused by long-term exposure to high concentrations of free silica dust particles in the workplace. It is characterized by a persistent inflammatory response, fibroblast proliferation, and excessive collagen deposition, leading to pulmonary interstitial fibrosis. Epithelial interstitial transformation (EMT) can cause epithelial cells to lose their tight junctions, cell polarity, and epithelial properties, thereby enhancing the properties of interstitial cells, which can lead to the progression of fibrosis and the formation of scar tissue. Integrin 1 (ITGB1) is considered an important factor for promoting EMT and tumor invasion in a variety of tumors and also plays an important role in the progression of fibrotic diseases. Therefore, ITGB1 can be used as a potential target for the treatment of silicosis. In this study, we found that silica exposure induced epithelial-mesenchymal transformation in rats and that the expression of integrin ITGB1 was elevated along with the EMT. We used CRISPR/Cas9 technology to construct integrin ITGB1 knockdown cell lines for in vitro experiments. We compared the expression of the EMT key proteins E-cadherin and vimentin in the ITGB1 knockdown cells and wild-type cells simultaneously stimulated by silica and detected the aggregation point distribution of E-cadherin and vimentin in the cells using laser confocal microscopy. Our results showed that ITGB1 knockout inhibited the ITGB1/ILK/Snail signaling pathway and attenuated the EMT occurrence compared to control cells. These results suggested that ITGB1 is associated with silica-induced EMT and may be a potential target for the treatment of silicosis.
Collapse
Affiliation(s)
- Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Shushuo Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xinxiao Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Penghao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Meng Hu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
3
|
De Paolis L, Armando F, Montemurro V, Petrizzi L, Straticò P, Mecocci S, Guarnieri C, Pezzolato M, Fruscione F, Passeri B, Marruchella G, Razzuoli E. Epithelial-mesenchymal transition in an EcPV2-positive vulvar squamous cell carcinoma of a mare. Equine Vet J 2024; 56:768-775. [PMID: 37395141 DOI: 10.1111/evj.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) has been recently associated with Equus caballus papillomavirus type 2 (EcPV2) infection. Still, few reports concerning this disease are present in the literature. OBJECTIVE To describe a case of naturally occurring EcPV2-induced VSCC, by investigating tumour ability in undergoing the epithelial-to-mesenchymal transition (EMT). STUDY DESIGN Case report. METHODS A 13-year-old Haflinger mare was referred for a rapidly growing vulvar mass. After surgical excision, the mass was submitted to histopathology and molecular analysis. Histopathological diagnosis was consistent with a VSCC. Real-time qPCR, real-time reverse transcriptase (RT)-qPCR and RNAscope were carried out to detect EcPV2 infection and to evaluate E6/E7 oncogenes expression. To highlight the EMT, immunohistochemistry (IHC) was performed. Expression of EMT-related and innate immunity-related genes was investigated through RT-qPCR. RESULTS Real-time qPCR, RT-qPCR and RNAscope confirmed EcPV2 DNA presence and expression of EcPV2 oncoproteins (E6 and E7) within the neoplastic vulvar lesion. IHC highlighted a cadherin switch together with the expression of the EMT-related transcription factor HIF1α. With RT-qPCR, significantly increased gene expression of EBI3 (45.0 ± 1.62, p < 0.01), CDH2 (2445.3 ± 0.39, p < 0.001), CXCL8 (288.7 ± 0.40, p < 0.001) and decreased gene expression of CDH1 (0.3 ± 0.57, p < 0.05), IL12A (0.04 ± 1.06, p < 0.01) and IL17 (0.2 ± 0.64, p < 0.05) were detected. MAIN LIMITATIONS Lack of ability to generalise and danger of over-interpretation. CONCLUSION The results obtained were suggestive of an EMT event occurring within the neoplastic lesion.
Collapse
Affiliation(s)
- Livia De Paolis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Histopathology and Applied Technology Laboratory, Torino, Italy
| | - Lucio Petrizzi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Straticò
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Samanta Mecocci
- Department of Veterinary Science, University of Perugia, Perugia, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Histopathology and Applied Technology Laboratory, Torino, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genova, Italy
| |
Collapse
|
4
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
5
|
Lin S, Chen Q, Tan C, Su M, Min L, Ling L, Zhou J, Zhu T. ZEB family is a prognostic biomarker and correlates with anoikis and immune infiltration in kidney renal clear cell carcinoma. BMC Med Genomics 2024; 17:153. [PMID: 38840097 PMCID: PMC11151722 DOI: 10.1186/s12920-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Urology, Foshan First People's Hospital, Foshan City, Guangdong Province, China
| | - Canliang Tan
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Manyi Su
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lv Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Junhao Zhou
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Zhang Y, Qian L, Chen K, Gu S, Meng Z, Wang J, Li Y, Wang P. Oncolytic adenovirus in treating malignant ascites: A phase II trial and longitudinal single-cell study. Mol Ther 2024; 32:2000-2020. [PMID: 38659226 PMCID: PMC11184408 DOI: 10.1016/j.ymthe.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared with the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with upregulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ dendritic cells and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provides insights into the relevant cellular processes following oncolytic virotherapy.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Qian
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sijia Gu
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 300032, China.
| | - Ye Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Peng Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Fazal F, Khan MA, Shawana S, Rashid R, Mubarak M. Correlation of tumor-associated macrophage density and proportion of M2 subtypes with the pathological stage of colorectal cancer. World J Gastrointest Oncol 2024; 16:1878-1889. [PMID: 38764849 PMCID: PMC11099450 DOI: 10.4251/wjgo.v16.i5.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent global malignancy with complex prognostic factors. Tumor-associated macrophages (TAMs) have shown paradoxical associations with CRC survival, particularly concerning the M2 subset. AIM We aimed to establish a simplified protocol for quantifying M2-like TAMs and explore their correlation with clinicopathological factors. METHODS A cross-sectional study included histopathological assessment of paraffin-embedded tissue blocks obtained from 43 CRC patients. Using CD68 and CD163 immunohistochemistry, we quantified TAMs in tumor stroma and front, focusing on M2 proportion. Demographic, histopathological, and clinical parameters were collected. RESULTS TAM density was significantly higher at the tumor front, with the M2 proportion three times greater in both zones. The tumor front had a higher M2 proportion, which correlated significantly with advanced tumor stage (P = 0.04), pathological nodal involvement (P = 0.04), and lymphovascular invasion (LVI, P = 0.01). However, no significant association was found between the M2 proportion in the tumor stroma and clinicopathological factors. CONCLUSION Our study introduces a simplified protocol for quantifying M2-like TAMs in CRC tissue samples. We demonstrated a significant correlation between an increased M2 proportion at the tumor front and advanced tumor stage, nodal involvement, and LVI. This suggests that M2-like TAMs might serve as potential indicators of disease progression in CRC, warranting further investigation and potential clinical application.
Collapse
Affiliation(s)
- Fouzia Fazal
- Department of Pathology, Jinnah Medical and Dental College, Karachi 74800, Sindh, Pakistan
| | - Muhammad Arsalan Khan
- Department of General Surgery, Sindh Institute of Urology & Transplantation (SIUT), Karachi 74200, Sindh, Pakistan
| | - Sumayya Shawana
- Department of Pathology, Bahria University of Health Sciences, Karachi 74400, Sindh, Pakistan
| | - Rahma Rashid
- Department of Pathology, SIUT, Karachi 74200, Sindh, Pakistan
| | | |
Collapse
|
8
|
Li C, Weng J, Yang L, Gong H, Liu Z. Development of an anoikis-related gene signature and prognostic model for predicting the tumor microenvironment and response to immunotherapy in colorectal cancer. Front Immunol 2024; 15:1378305. [PMID: 38779664 PMCID: PMC11109372 DOI: 10.3389/fimmu.2024.1378305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
The effect of anoikis-related genes (ARGs) on clinicopathological characteristics and tumor microenvironment remains unclear. We comprehensively analyzed anoikis-associated gene signatures of 1057 colorectal cancer (CRC) samples based on 18 ARGs. Anoikis-related molecular subtypes and gene features were identified through consensus clustering analysis. The biological functions and immune cell infiltration were assessed using the GSVA and ssGSEA algorithms. Prognostic risk score was constructed using multivariate Cox regression analysis. The immunological features of high-risk and low-risk groups were compared. Finally, DAPK2-overexpressing plasmid was transfected to measure its effect on tumor proliferation and metastasis in vitro and in vivo. We identified 18 prognostic ARGs. Three different subtypes of anoikis were identified and demonstrated to be linked to distinct biological processes and prognosis. Then, a risk score model was constructed and identified as an independent prognostic factor. Compared to the high-risk group, patients in the low-risk group exhibited longer survival, higher enrichment of checkpoint function, increased expression of CTLA4 and PD-L1, higher IPS scores, and a higher proportion of MSI-H. The results of RT-PCR indicated that the expression of DAPK2 mRNA was significantly downregulated in CRC tissues compared to normal tissues. Increased DAPK2 expression significantly suppressed cell proliferation, promoted apoptosis, and inhibited migration and invasion. The nude mice xenograft tumor model confirmed that high expression of DAPK2 inhibited tumor growth. Collectively, we discovered an innovative anoikis-related gene signature associated with prognosis and TME. Besides, our study indicated that DAPK2 can serve as a promising therapeutic target for inhibiting the growth and metastasis of CRC.
Collapse
Affiliation(s)
- Chuanchang Li
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Yang
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hangjun Gong
- Department of Gastrointestinal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaolong Liu
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Hong GL, Kim KH, Kim YJ, Lee HJ, Cho SP, Han SY, Yang SW, Lee JS, Kang SK, Lim JS, Jung JY. Novel role of LLGL2 silencing in autophagy: reversing epithelial-mesenchymal transition in prostate cancer. Biol Res 2024; 57:25. [PMID: 38720397 PMCID: PMC11077766 DOI: 10.1186/s40659-024-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.
Collapse
Affiliation(s)
- Geum-Lan Hong
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Yae-Ji Kim
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Hui-Ju Lee
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Sung-Pil Cho
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Seung Woo Yang
- Department of Urology, College of Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Jong-Soo Lee
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea
| | - Shin-Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Jae-Sung Lim
- Department of Urology, College of Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
Armando F, Porcellato I, de Paolis L, Mecocci S, Passeri B, Ciurkiewicz M, Mechelli L, Grazia De Ciucis C, Pezzolato M, Fruscione F, Brachelente C, Montemurro V, Cappelli K, Puff C, Baumgärtner W, Ghelardi A, Razzuoli E. Vulvo-vaginal epithelial tumors in mares: A preliminary investigation on epithelial-mesenchymal transition and tumor-immune microenvironment. Vet Pathol 2024; 61:366-381. [PMID: 37909398 DOI: 10.1177/03009858231207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and β-catenin expression as well as nuclear β-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and β-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/β-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Livia de Paolis
- University of Perugia, Perugia, Italy
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | | | | | | | - Chiara Grazia De Ciucis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
- University of Pavia, Pavia, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| |
Collapse
|
11
|
Guo D, Sheng K, Zhang Q, Li P, Sun H, Wang Y, Lyu X, Jia Y, Wang C, Wu J, Zhang X, Wang D, Sun Y, Huang S, Yu J, Zhang J. Single-cell transcriptomic analysis reveals the landscape of epithelial-mesenchymal transition molecular heterogeneity in esophageal squamous cell carcinoma. Cancer Lett 2024; 587:216723. [PMID: 38342234 DOI: 10.1016/j.canlet.2024.216723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.
Collapse
Affiliation(s)
- Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Kaiwen Sheng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Qi Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Pin Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Haoqiang Sun
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yongjie Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xinxing Lyu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250117, China.
| | - Caifan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jing Wu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiaohang Zhang
- Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Dandan Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Yawen Sun
- Department of Clinical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jingze Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
12
|
Chen SY, Liu PQ, Qin DX, Lv H, Zhou HQ, Xu Y. E3 ubiquitin ligase NEDD4L inhibits epithelial-mesenchymal transition by suppressing the β-catenin/HIF-1α positive feedback loop in chronic rhinosinusitis with nasal polyps. Acta Pharmacol Sin 2024; 45:831-843. [PMID: 38052867 PMCID: PMC10943232 DOI: 10.1038/s41401-023-01190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyp (CRSwNP) is a refractory inflammatory disease with epithelial-mesenchymal transition (EMT) as one of the key features. Since ubiquitin modification has been shown to regulate the EMT process in other diseases, targeting ubiquitin ligases may be a potential strategy for the treatment of CRSwNP. In this study we investigated whether certain E3 ubiquitin ligases could regulate the EMT process in CRSwNP, and whether these regulations could be the potential drug targets as well as the underlying mechanisms. After screening the potential drug target by bioinformatic analyses, the expression levels of three potential E3 ubiquitin ligases were compared among the control, eosinophilic nasal polyp (ENP) and non-eosinophilic nasal polyp (NENP) group in clinical samples, and the significant decrement of the expression level of NEDD4L was found. Then, IP-MS, bioinformatics and immunohistochemistry studies suggested that low NEDD4L expression may be associated with the EMT process. In human nasal epithelial cells (hNECs) and human nasal epithelial cell line RPMI 2650, knockdown of NEDD4L promoted EMT, while upregulating NEDD4L reversed this effect, suggesting that NEDD4L inhibited EMT in nasal epithelial cells. IP-MS and Co-IP studies revealed that NEDD4L mediated the degradation of DDR1. We demonstrated that NEDD4L inhibited the β-catenin/HIF-1α positive feedback loop either directly (degrading β-catenin and HIF-1α) or indirectly (mediating DDR1 degradation). These results were confirmed in a murine NP model in vivo. This study for the first time reveals the regulatory role of ubiquitin in the EMT process of nasal epithelial cells, and identifies a novel drug target NEDD4L, which has promising efficacy against both ENP and NENP by suppressing β-catenin/HIF-1α positive feedback loop.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Pei-Qiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan-Xue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui-Qin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
13
|
Piedra-Delgado L, Chambergo-Michilot D, Morante Z, Fairen C, Jerves-Coello F, Luque-Benavides R, Casas F, Bustamante E, Razuri-Bustamante C, Torres-Roman JS, Fuentes H, Gomez H, Narvaez-Rojas A, De la Cruz-Ku G, Araujo J. Survival according to the site of metastasis in triple-negative breast cancer patients: The Peruvian experience. PLoS One 2024; 19:e0293833. [PMID: 38300959 PMCID: PMC10833533 DOI: 10.1371/journal.pone.0293833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Evidence regarding differences in survival associated with the site of metastasis in triple-negative breast cancer (TNBC) remains limited. Our aim was to analyze the overall survival (OS), distant relapse free survival (DRFS), and survival since the diagnosis of the relapse (MS), according to the side of metastasis. METHODS This was a retrospective study of TNBC patients with distant metastases at the Instituto Nacional de Enfermedades Neoplasicas (Lima, Peru) from 2000 to 2014. Prognostic factors were determined by multivariate Cox regression analysis. RESULTS In total, 309 patients were included. Regarding the type of metastasis, visceral metastasis accounted for 41% and the lung was the most frequent first site of metastasis (33.3%). With a median follow-up of 10.2 years, the 5-year DRFS and OS were 10% and 26%, respectively. N staging (N2-N3 vs. N0, HR = 1.49, 95%CI: 1.04-2.14), metastasis in visceral sites (vs. bone; HR = 1.55, 95%CI: 0.94-2.56), the central nervous system (vs. bone; HR = 1.88, 95% CI: 1.10-3.22), and multiple sites (vs. bone; HR = 2.55, 95%CI:1.53-4.25) were prognostic factors of OS whereas multiple metastasis (HR = 2.30, 95% CI: 1.42-3.72) was a predictor of MS. In terms of DRFS, there were no differences according to metastasis type or solid organ. CONCLUSION TNBC patients with multiple metastasis and CNS metastasis have an increased risk of death compared to those with bone metastasis in terms of OS and MS.
Collapse
Affiliation(s)
| | | | - Zaida Morante
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Carlos Fairen
- Boston Medical Center, Boston, Massachusetts, United States of America
| | | | | | - Fresia Casas
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Hugo Fuentes
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Henry Gomez
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Alexis Narvaez-Rojas
- Department of Surgical Oncology, Miller School of Medicine, University Of Miami, Miami, Florida, United States of America
| | | | - Jhajaira Araujo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Chorrillos, Lima, Peru
| |
Collapse
|
14
|
Wu Y, Sun K, Tu Y, Li P, Hao D, Yu P, Chen A, Wan Y, Shi L. miR-200a-3p regulates epithelial-mesenchymal transition and inflammation in chronic rhinosinusitis with nasal polyps by targeting ZEB1 via ERK/p38 pathway. Int Forum Allergy Rhinol 2024; 14:41-56. [PMID: 37318032 DOI: 10.1002/alr.23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Several biological processes are regulated by miR-200a-3p, including cell proliferation, migration, and epithelial-mesenchymal transition (EMT). In this study we aimed to uncover the diagnostic value and molecular mechanisms of miR-200a-3p in chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS The expressions of miR-200a-3p were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Zinc finger E-box binding homeobox 1 (ZEB1) levels were examined by qRT-PCR and immunofluorescence staining. The interaction between miR-200a-3p and ZEB1 was predicted by TargetScan Human 8.0 and confirmed by dual-luciferase reporter assays. In addition, the effect of miR-200a-3p and ZEB1 on EMT-related makers and inflammation cytokines was assessed by qRT-PCR and Western blotting in human nasal epithelial cells (hNEpCs) and primary human nasal mucosal epithelial cells (hNECs). RESULTS We found that miR-200a-3p was downregulated in non-eosinophilic and eosinophilic CRSwNP patients when compared with controls. The diagnostic value of miR-200a-3p in serum is reflected by the receiver operating characteristic curve and the 22-item Sino-Nasal Outcome Test. Bioinformatic analysis and luciferase reporter assay identified ZEB1 as a target of miR-200a-3p. ZEB1 was more highly expressed in CRSwNP than in controls. Furthermore, miR-200a-3p inhibitor or ZEB1 overexpression significantly suppressed the epithelial marker E-cadherin; promoted the activation of vimentin, α-spinal muscle atrophy, and N-cadherin; and aggravated inflammation in hNEpCs. Knockdown of ZEB1 significantly alleviated the cellular remodeling caused by miR-200a-3p inhibitor via the extracellular signal-regulated kinase (ERK)/p38 pathway in hNECs. CONCLUSIONS miR-200a-3p suppresses EMT and inflammation by regulating the expression of ZEB1 via the ERK/p38 pathway. Our study presents new ideas for protecting nasal epithelial cells from tissue remodeling and finding a possible target for disease.
Collapse
Affiliation(s)
- Yisha Wu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Kaiyue Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Yuzhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Mirjat D, Kashif M, Roberts CM. Shake It Up Baby Now: The Changing Focus on TWIST1 and Epithelial to Mesenchymal Transition in Cancer and Other Diseases. Int J Mol Sci 2023; 24:17539. [PMID: 38139368 PMCID: PMC10743446 DOI: 10.3390/ijms242417539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
TWIST1 is a transcription factor that is necessary for healthy neural crest migration, mesoderm development, and gastrulation. It functions as a key regulator of epithelial-to-mesenchymal transition (EMT), a process by which cells lose their polarity and gain the ability to migrate. EMT is often reactivated in cancers, where it is strongly associated with tumor cell invasion and metastasis. Early work on TWIST1 in adult tissues focused on its transcriptional targets and how EMT gave rise to metastatic cells. In recent years, the roles of TWIST1 and other EMT factors in cancer have expanded greatly as our understanding of tumor progression has advanced. TWIST1 and related factors are frequently tied to cancer cell stemness and changes in therapeutic responses and thus are now being viewed as attractive therapeutic targets. In this review, we highlight non-metastatic roles for TWIST1 and related EMT factors in cancer and other disorders, discuss recent findings in the areas of therapeutic resistance and stemness in cancer, and comment on the potential to target EMT for therapy. Further research into EMT will inform novel treatment combinations and strategies for advanced cancers and other diseases.
Collapse
Affiliation(s)
- Dureali Mirjat
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Muhammad Kashif
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Cai M. Roberts
- Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
16
|
Qin E, Gu S, Guo Y, Wang L, Pu G. MiRNA-30a-5p/VCAN Arrests Tumor Metastasis via Modulating the Adhesion of Lung Adenocarcinoma Cells. Appl Biochem Biotechnol 2023; 195:7568-7582. [PMID: 37032373 DOI: 10.1007/s12010-023-04444-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Previous research indicated that the dysregulation of miRNA-30a-5p has a correlation with cell metastasis of lung adenocarcinoma (LUAD). But the study about the molecular regulatory mechanism of miRNA-30a-5p in LUAD cell metastasis is limited. Thus, we discussed the mechanism of miRNA-30a-5p and its biological function in LUAD cells. By utilizing bioinformatics analysis, how miRNA-30a-5p was expressed in LUAD tissue was determined and its downstream target genes were predicted. The signaling pathways where these target genes enriched were analyzed. Several in vitro experiments were applied for cell function detection: dual-luciferase assay for validating the targeting relationship between miRNA-30a-5p and its target gene; quantitative real-time polymerase chain reaction for testing the expression of miRNA-30a-5p and its target gene in LUAD cells; MTT, transwell, cell adhesion, flow cytometry and immunofluorescence assays for examining the capabilities of LUAD cells to proliferate, migrate, invade, adhere, apoptosis and epithelial-mesenchymal transition (EMT) effect; Western blot for determining the expression of adhesion-related proteins and EMT-related proteins. Down-regulated miRNA-30a-5p was discovered in LUAD cells, but on the contrary, VCAN was upregulated. MiRNA-30a-5p overexpression notably repressed the virulent progression of LUAD cells. Besides, dual-luciferase assay validated the targeting relationship between miRNA-30a-5p and VCAN. MiRNA-30a-5p, by negatively regulating VCAN, was capable of hindering LUAD cell proliferation, migration, invasion, adhesion, viability and EMT. It was illustrated that miRNA-30a-5p could downregulate VCAN to retard the malignant progression of LUAD cells, which provides novel insights into LUAD pathogenesis, suggesting that miRNA-30a-5p/VCAN axis can be a promising anti-cancer target for LUAD.
Collapse
Affiliation(s)
- E Qin
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China
| | - Shuojia Gu
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China
| | - Yimin Guo
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China
| | - Liyan Wang
- Department of Integrated Traditional Chinese and Western Medicine & Geriatrics, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, Shaoxing City, 312000, Zhejiang Province, China
| | - Guimei Pu
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China.
| |
Collapse
|
17
|
Li L, Zheng J, Oltean S. Regulation of Epithelial-Mesenchymal Transitions by Alternative Splicing: Potential New Area for Cancer Therapeutics. Genes (Basel) 2023; 14:2001. [PMID: 38002944 PMCID: PMC10671305 DOI: 10.3390/genes14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complicated biological process in which cells with epithelial phenotype are transformed into mesenchymal cells with loss of cell polarity and cell-cell adhesion and gain of the ability to migrate. EMT and the reverse mesenchymal-epithelial transitions (METs) are present during cancer progression and metastasis. Using the dynamic switch between EMT and MET, tumour cells can migrate to neighbouring organs or metastasize in the distance and develop resistance to traditional chemotherapy and targeted drug treatments. Growing evidence shows that reversing or inhibiting EMT may be an advantageous approach for suppressing the migration of tumour cells or distant metastasis. Among different levels of modulation of EMT, alternative splicing (AS) plays an important role. An in-depth understanding of the role of AS and EMT in cancer is not only helpful to better understand the occurrence and regulation of EMT in cancer progression, but also may provide new therapeutic strategies. This review will present and discuss various splice variants and splicing factors that have been shown to play a crucial role in EMT.
Collapse
Affiliation(s)
| | | | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter EX1 2LU, UK; (L.L.)
| |
Collapse
|
18
|
Mohamed T, Melfi V, Colciago A, Magnaghi V. Hearing loss and vestibular schwannoma: new insights into Schwann cells implication. Cell Death Dis 2023; 14:629. [PMID: 37741837 PMCID: PMC10517973 DOI: 10.1038/s41419-023-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Hearing loss (HL) is the most common and heterogeneous disorder of the sensory system, with a large morbidity in the worldwide population. Among cells of the acoustic nerve (VIII cranial nerve), in the cochlea are present the hair cells, the spiral ganglion neurons, the glia-like supporting cells, and the Schwann cells (SCs), which alterations have been considered cause of HL. Notably, a benign SC-derived tumor of the acoustic nerve, named vestibular schwannoma (VS), has been indicated as cause of HL. Importantly, SCs are the main glial cells ensheathing axons and forming myelin in the peripheral nerves. Following an injury, the SCs reprogram, expressing some stemness features. Despite the mechanisms and factors controlling their biological processes (i.e., proliferation, migration, differentiation, and myelination) have been largely unveiled, their role in VS and HL was poorly investigated. In this review, we enlighten some of the mechanisms at the base of SCs transformation, VS development, and progression, likely leading to HL, and we pose great attention on the environmental factors that, in principle, could contribute to HL onset or progression. Combining the biomolecular bench-side approach to the clinical bedside practice may be helpful for the diagnosis, prediction, and therapeutic approach in otology.
Collapse
Affiliation(s)
- Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
19
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Sharma R, Faura G, Eide L, Shanker Verma R, Znaor L, Erceg S, Stieger K, Motlik J, Petrovski G, Bharti K. Progress in Stem Cells-Based Replacement Therapy for Retinal Pigment Epithelium: In Vitro Differentiation to In Vivo Delivery. Stem Cells Transl Med 2023; 12:536-552. [PMID: 37459045 PMCID: PMC10427969 DOI: 10.1093/stcltm/szad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 08/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Department of Ophthalmology, Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Taras Ardan
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe,” Stem Cell Therapies in Neurodegenerative Diseases Laboratory, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Mohamed T, Colciago A, Montagnani Marelli M, Moretti RM, Magnaghi V. Protein kinase C epsilon activation regulates proliferation, migration, and epithelial to mesenchymal-like transition in rat Schwann cells. Front Cell Neurosci 2023; 17:1237479. [PMID: 37645595 PMCID: PMC10461112 DOI: 10.3389/fncel.2023.1237479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction Protein kinase type C-ε (PKCε) plays an important role in the sensitization of primary afferent nociceptors, promoting mechanical hyperalgesia. In accordance, we showed that PKCε is present in sensory neurons of the peripheral nervous system (PNS), participating in the control of pain onset and chronification. Recently, it was found that PKCε is also implicated in the control of cell proliferation, promoting mitogenesis and metastatic invasion in some types of cancer. However, its role in the main glial cell of the PNS, the Schwann cells (SCs), was still not investigated. Methods Rat primary SCs culture were treated with different pharmacologic approaches, including the PKCε agonist dicyclopropyl-linoleic acid (DCP-LA) 500 nM, the human recombinant brain derived neurotrophic factor (BDNF) 1 nM and the TrkB receptor antagonist cyclotraxin B 10 nM. The proliferation (by cell count), the migration (by scratch test and Boyden assay) as well as some markers of SCs differentiation and epithelial-mesenchymal transition (EMT) process (by qRT-PCR and western blot) were analyzed. Results Overall, we found that PKCε is constitutively expressed in SCs, where it is likely involved in the switch from the proliferative toward the differentiated state. Indeed, we demonstrated that PKCε activation regulates SCs proliferation, increases their migration, and the expression of some markers (e.g., glycoprotein P0 and the transcription factor Krox20) of SCs differentiation. Through an autocrine mechanism, BDNF activates TrkB receptor, and controls SCs proliferation via PKCε. Importantly, PKCε activation likely promoted a partial EMT process in SCs. Discussion PKCε mediates relevant actions in the neuronal and glial compartment of the PNS. In particular, we posit a novel function for PKCε in the transformation of SCs, assuming a role in the mechanisms controlling SCs' fate and plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Roberts CM, Rojas-Alexandre M, Hanna RE, Lin ZP, Ratner ES. Transforming Growth Factor Beta and Epithelial to Mesenchymal Transition Alter Homologous Recombination Repair Gene Expression and Sensitize BRCA Wild-Type Ovarian Cancer Cells to Olaparib. Cancers (Basel) 2023; 15:3919. [PMID: 37568736 PMCID: PMC10417836 DOI: 10.3390/cancers15153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, largely due to metastasis and drug resistant recurrences. Fifteen percent of ovarian tumors carry mutations in BRCA1 or BRCA2, rendering them vulnerable to treatment with PARP inhibitors such as olaparib. Recent studies have shown that TGFβ can induce "BRCAness" in BRCA wild-type cancer cells. Given that TGFβ is a known driver of epithelial to mesenchymal transition (EMT), and the connection between EMT and metastatic spread in EOC and other cancers, we asked if TGFβ and EMT alter the susceptibility of EOC to PARP inhibition. Epithelial EOC cells were transiently treated with soluble TGFβ, and their clonogenic potential, expression, and function of EMT and DNA repair genes, and response to PARP inhibitors compared with untreated controls. A second epithelial cell line was compared to its mesenchymal derivative for EMT and DNA repair gene expression and drug responses. We found that TGFβ and EMT resulted in the downregulation of genes responsible for homologous recombination (HR) and sensitized cells to olaparib. HR efficiency was reduced in a dose-dependent manner. Furthermore, mesenchymal cells displayed sensitivity to olaparib, cisplatin, and the DNA-PK inhibitor Nu-7441. Therefore, the treatment of disseminated, mesenchymal tumors may represent an opportunity to expand the clinical utility of PARP inhibitors and similar agents.
Collapse
Affiliation(s)
- Cai M. Roberts
- Department of Pharmacology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA
| | - Mehida Rojas-Alexandre
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Ruth E. Hanna
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Z. Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| | - Elena S. Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 15 York St., New Haven, CT 06510, USA
| |
Collapse
|
22
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
23
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
24
|
Yang HL, Chang YH, Pandey S, Bhat AA, Vadivalagan C, Lin KY, Hseu YC. Antrodia camphorata and coenzyme Q 0 , a novel quinone derivative of Antrodia camphorata, impede HIF-1α and epithelial-mesenchymal transition/metastasis in human glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947447 DOI: 10.1002/tox.23785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Antrodia camphorata (AC) and Coenzyme Q0 (CoQ0 ), a novel quinone derivative of AC, exhibits antitumor activities. The present study evaluated EMT/metastasis inhibition and autophagy induction aspects of AC and CoQ0 in human glioblastoma (GBM8401) cells. Our findings revealed that AC treatment (0-150 μg/mL) hindered tumor cell proliferation and migration/invasion in GBM8401 cells. Notably, AC treatment inhibited HIF-1α and EMT by upregulating epithelial marker protein E-cadherin while downregulating mesenchymal proteins Twist, Slug, Snail, and β-catenin. There was an appearance of the autophagy markers LC3-II and p62/SQSTM1, while ATG4B was downregulated by AC treatment. We also found that CoQ0 (0-10 μM) could inhibit migration and invasion in GBM8401 cells. In particular, E-cadherin was elevated and N-cadherin, Vimentin, Twist, Slug, and Snail, were reduced upon CoQ0 treatment. In addition, MMP-2/-9 expression and Wnt/β-catenin pathways were downregulated. Furthermore, autophagy inhibitors 3-MA or CQ reversed the CoQ0 -elicited suppression of migration/invasion and metastasis-related proteins (Vimentin, Snail, and β-catenin). Results suggested autophagy-mediated antiEMT and antimetastasis upon CoQ0 treatment. CoQ0 inhibited HIF-1α and metastasis in GBM8401 cells under normoxia and hypoxia. HIF-1α knockdown using siRNA accelerated CoQ0 -inhibited migration. Finally, CoQ0 exhibited a prolonged survival rate in GBM8401-xenografted mice. Treatment with Antrodia camphorata/CoQ0 inhibited HIF-1α and EMT/metastasis in glioblastoma.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Yao-Hsien Chang
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Asif Ali Bhat
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
25
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. RSV infection does not induce EMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532506. [PMID: 36993657 PMCID: PMC10055011 DOI: 10.1101/2023.03.13.532506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections in our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, TGF-β1-driven cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
26
|
Macrophages at the interface of the co-evolving cancer ecosystem. Cell 2023; 186:1627-1651. [PMID: 36924769 DOI: 10.1016/j.cell.2023.02.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are versatile and heterogeneous innate immune cells undertaking central functions in balancing immune responses and tissue repair to maintain homeostasis. This plasticity, once co-opted by malignant outgrowth, orchestrates manifold reciprocal interactions within the tumor microenvironment, fueling the evolution of the cancer ecosystem. Here, we review the multilayered sources of influence that jointly underpin and longitudinally shape tumor-associated macrophage (TAM) phenotypic states in solid neoplasms. We discuss how, in response to these signals, TAMs steer tumor evolution in the context of natural selection, biological dispersion, and treatment resistance. A number of research frontiers to be tackled are laid down in this review to therapeutically exploit the complex roles of TAMs in cancer. Building upon knowledge obtained from currently applied TAM-targeting strategies and using next generation technologies, we propose conceptual advances and novel therapeutic avenues to rewire TAM multifaceted regulation of the co-evolving cancer ecosystem.
Collapse
|
27
|
Kadeh H, Arbabi Kalati F, Ramezaninejad M. Expression Patterns of E-Cadherin and N-Cadherin Proteins in the Periodontal Pocket Epithelium of Chronic Periodontitis. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2023; 24:125-131. [PMID: 37051502 PMCID: PMC10084554 DOI: 10.30476/dentjods.2022.92474.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 05/11/2022] [Indexed: 04/14/2023]
Abstract
Statement of the Problem E-cadherin and N-cadherin are two types of cell adhesion molecules that are involved in organ development, wound healing, and pathological conditions through the process of epithelial-mesenchymal transition (EMT). However, their role has not yet been fully elucidated in the pathogenesis of periodontal diseases. Purpose To determine the expression level of proteins associated with the EMT process (E-cadherin and N-cadherin) in chronic periodontitis. Materials and Method In this cross-sectional study, 37 samples (19 cases with healthy gingival tissue and 18 cases with severe chronic periodontitis) that referred to the Periodontology Department of Zahedan Dental School, Zahedan, Iran, in 2018 were included. The samples were immunohistochemically stained with E-cadherin and N-cadherin monoclonal antibodies. Afterward, the percentage of stained cells and the staining intensity of the cells were evaluated. Finally, the obtained data were analyzed using by IBM© SPSS© Statistics version 21 using Mann-Whitney statistical test. Results In this study, 89.5% of the healthy gingival tissue samples and 61.1% of samples with chronic periodontitis showed E-cadherin expression in more than 50% of cells. This difference between the two groups was not significant (p= 0.13); however, the E-cadherin staining intensity of the healthy gingival tissue was strong while that of the samples with chronic periodontitis was moderate (p= 0.002). The N-cadherin expression was negative in 68.4% of healthy gingival cases, while 50% of the cases with chronic periodontitis showed a high expression of N-cadherin. This difference was statistically significant (p= 0.04). Moreover, the N-cadherin staining intensity also had a significant difference between the two groups (p= 0.004). Conclusion Based on the results of the present study, the increased expression of N-cadherin and reduction of staining intensity of E-cadherin was found in chronic periodontitis compared to healthy gingival tissues. Therefore, EMT process may be involved in the pathogenesis of severe chronic periodontitis.
Collapse
Affiliation(s)
- Hamideh Kadeh
- Oral and Dental Disease Research Center, Dept. of Oral & Maxillofacial Pathology, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fereshte Arbabi Kalati
- Oral and Dental Disease Research Center, Dept. of Periodontology, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
28
|
Carvalho Leão MH, Costa ML, Mermelstein C. Epithelial-to-mesenchymal transition as a learning paradigm of cell biology. Cell Biol Int 2023; 47:352-366. [PMID: 36411367 DOI: 10.1002/cbin.11967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex biological process that occurs during normal embryogenesis and in certain pathological conditions, particularly in cancer. EMT can be viewed as a cell biology-based process, since it involves all the cellular components, including the plasma membrane, cytoskeleton and extracellular matrix, endoplasmic reticulum, Golgi apparatus, lysosomes, and mitochondria, as well as cellular processes, such as regulation of gene expression and cell cycle, adhesion, migration, signaling, differentiation, and death. Therefore, we propose that EMT could be used to motivate undergraduate medical students to learn and understand cell biology. Here, we describe and discuss the involvement of each cellular component and process during EMT. To investigate the density with which different cell biology concepts are used in EMT research, we apply a bibliometric approach. The most frequent cell biology topics in EMT studies were regulation of gene expression, cell signaling, cell cycle, cell adhesion, cell death, cell differentiation, and cell migration. Finally, we suggest that the study of EMT could be incorporated into undergraduate disciplines to improve cell biology understanding among premedical, medical and biomedical students.
Collapse
Affiliation(s)
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Lv Z, Xu H, Si X, Xu S, Li X, Li N, Zhou Q, Chang M, Yao S, Li H. XAV-939 inhibits epithelial-mesenchymal transformation in pulmonary fibrosis induced by crystalline silica via the Wnt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:460-471. [PMID: 36305172 DOI: 10.1002/tox.23693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Silicosis is an occupational lung disease that results from long-term inhalation of free silica dust, the expression is sustained inflammation response, fibroblast hyperplasia, and excessive collagen deposit, bringing about pulmonary interstitial fibrosis. Wnt signaling pathway exists in various kinds of eukaryotic cells, is a highly conservative signaling pathway in biological evolution, and participates in cell proliferation, differentiation, migration, and polarity of physiological activity, such as in embryonic development, organ morphology, and tumor. In addition, it plays an important role in the progress of fibrosis disease. At present, studies related to silicosis are increasing, but the pathogenesis of silicosis still is not clear. In recent years, more and more studies have suggested that the Wnt signaling pathway could participate in the pathogenesis of silicosis fibrosis. In the study, we explored the mechanism of the Wnt signaling pathway in the pathogenesis of silicosis fibrosis and evaluated the effect of XAV-939 treatment epithelial-mesenchymal transformation (EMT) induced by silica. In addition, the results showed that EMT and activation of the Wnt signaling pathway would occur after stimulation of silica or TGF-β1. However, after treatment with the Wnt signaling pathway inhibitor XAV-939, EMT was reversed and the expression of the β-catenin decreased. These results suggested that the Wnt signaling pathway is associated with EMT induced by silica and it could be a potential target for the treatment of silicosis.
Collapse
Affiliation(s)
- Zhihao Lv
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Hao Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xuezhe Si
- Department of Chronic Disease Prevention, Zhengzhou Erqi District Center for Disease Control and Prevention, Zhengzhou, China
| | - Shushuo Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xinxiao Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
30
|
İlhan A, Golestani S, Shafagh SG, Asadi F, Daneshdoust D, Al-Naqeeb BZT, Nemati MM, Khalatbari F, Yaseri AF. The dual role of microRNA (miR)-20b in cancers: Friend or foe? Cell Commun Signal 2023; 21:26. [PMID: 36717861 PMCID: PMC9885628 DOI: 10.1186/s12964-022-01019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs, as non-coding transcripts, modulate gene expression through RNA silencing under normal physiological conditions. Their aberrant expression has strongly associated with tumorigenesis and cancer development. MiR-20b is one of the crucial miRNAs that regulate essential biological processes such as cell proliferation, apoptosis, autophagy, and migration. Deregulated levels of miR-20b contribute to the early- and advanced stages of cancer. On the other hand, investigations emphasize the tumor suppressor ability of miR-20b. High-throughput strategies are developed to identify miR-20b potential targets, providing the proper insight into its molecular mechanism of action. Moreover, accumulated results suggest that miR-20b exerts its effects through diverse signaling pathways, including PI3K/AKT/mTOR and ERK axes. Restoration of the altered expression levels of miR-20b induces cell apoptosis and reduces invasion and migration. Further, miR-20b can be used as a biomarker in cancer. The current comprehensive review could lead to a better understanding of the miR-20b in either tumorigenesis or tumor regression that may open new avenues for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Ahmet İlhan
- grid.98622.370000 0001 2271 3229Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Shayan Golestani
- grid.411757.10000 0004 1755 5416Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Seyyed Ghavam Shafagh
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Asadi
- grid.488474.30000 0004 0494 1414Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Danyal Daneshdoust
- grid.411495.c0000 0004 0421 4102School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohammed Mahdi Nemati
- grid.412763.50000 0004 0442 8645Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fateme Khalatbari
- grid.411768.d0000 0004 1756 1744Department of Pathology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Fakhre Yaseri
- grid.412606.70000 0004 0405 433XDepartment of Genetic, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
31
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
32
|
Izadpanah MH, Forghanifard MM. TWIST1 Plays Role in Expression of Stemness State Markers in ESCC. Genes (Basel) 2022; 13:genes13122369. [PMID: 36553636 PMCID: PMC9777594 DOI: 10.3390/genes13122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stemness markers play critical roles in the maintenance of key properties of embryonic stem cells (ESCs), including the pluripotency, stemness state, and self-renewal capacities, as well as cell fate decision. Some of these features are present in cancer stem cells (CSCs). TWIST1, as a bHLH transcription factor oncogene, is involved in the epithelial-mesenchymal transition (EMT) process in both embryonic and cancer development. Our aim in this study was to investigate the functional correlation between TWIST1 and the involved genes in the process of CSCs self-renewal in human esophageal squamous cell carcinoma (ESCC) line KYSE-30. METHODS TWIST1 overexpression was enforced in the ESCC KYSE-30 cells using retroviral vector containing the specific pruf-IRES-GFP-hTWIST1 sequence. Following RNA extraction and cDNA synthesis, the mRNA expression profile of TWIST1 and the stem cell markers, including BMI1, CRIPTO1, DPPA2, KLF4, SOX2, NANOG, and MSI1, were assessed using relative comparative real-time PCR. RESULTS Ectopic expression of TWIST1 in KYSE-30 cells resulted in an increased expression of TWIST1 compared to control GFP cells by nearly 9-fold. Transduction of TWIST1-retroviral particles caused a significant enhancement in BMI1, CRIPTO1, DPPA2, KLF4, and SOX2 mRNA expression, approximately 4.5-, 3.2-, 5.5-, 3.5-, and 3.7-folds, respectively, whereas this increased TWIST1 expression caused no change in the mRNA expression of NANOG and MSI1 genes. CONCLUSIONS TWIST1 gene ectopic expression in KYSE-30 cells enhanced the level of cancer stem cell markers' mRNA expression. These results may emphasize the role of TWIST1 in the self-renewal process and may corroborate the involvement of TWIST1 in the stemness state capacity of ESCC cell line KYSE-30, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Izadpanah
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad 9196773117, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan 3671637849, Iran
- Correspondence: or ; Tel.: +98-912-711-6027
| |
Collapse
|
33
|
Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms232315335. [PMID: 36499660 PMCID: PMC9740594 DOI: 10.3390/ijms232315335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Extracellular vesicles (EVs) serve as central mediators in communication between tumor and non-tumor cells. These interactions are largely dependent on the function of the endothelial barrier and the set of receptors present on its surface, as endothelial cells (ECs) are a plenteous source of EVs. The molecular basis for EV secretion and action in the tumor microenvironment (TME) has not been fully elucidated to date. Emerging evidence suggests a prominent role of inflammatory pathways in promoting tumor progression and metastasis. Although transforming growth factor β (TGF-β) is a cytokine with strong immunomodulatory and protective activity in benign and early-stage cancer cells, it plays a pro-tumorigenic role in advanced cancer cells, which is known as the "TGF-β paradox". Thus, the aim of this review is to describe the correlation between EV release, TGF-β-dependent inflammation, and dysregulation of downstream TGF-β signaling in the context of cancer development.
Collapse
|
34
|
Tran F, Lee E, Cuddapah S, Choi BH, Dai W. MicroRNA-Gene Interactions Impacted by Toxic Metal(oid)s during EMT and Carcinogenesis. Cancers (Basel) 2022; 14:5818. [PMID: 36497298 PMCID: PMC9741118 DOI: 10.3390/cancers14235818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic environmental exposure to toxic metal(loid)s significantly contributes to human cancer development and progression. It is estimated that approximately 90% of cancer deaths are a result of metastasis of malignant cells, which is initiated by epithelial-mesenchymal transition (EMT) during early carcinogenesis. EMT is regulated by many families of genes and microRNAs (miRNAs) that control signaling pathways for cell survival, death, and/or differentiation. Recent mechanistic studies have shown that toxic metal(loid)s alter the expression of miRNAs responsible for regulating the expression of genes involved in EMT. Altered miRNA expressions have the potential to be biomarkers for predicting survival and responses to treatment in cancers. Significantly, miRNAs can be developed as therapeutic targets for cancer patients in the clinic. In this mini review, we summarize key findings from recent studies that highlight chemical-miRNA-gene interactions leading to the perturbation of EMT after exposure to toxic metal(loid)s including arsenic, cadmium, nickel, and chromium.
Collapse
Affiliation(s)
| | | | | | - Byeong Hyeok Choi
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA
| |
Collapse
|
35
|
Barboura M, Cornebise C, Hermetet F, Guerrache A, Selmi M, Salek A, Chekir-Ghedira L, Aires V, Delmas D. Tannic Acid, A Hydrolysable Tannin, Prevents Transforming Growth Factor-β-Induced Epithelial-Mesenchymal Transition to Counteract Colorectal Tumor Growth. Cells 2022; 11:cells11223645. [PMID: 36429073 PMCID: PMC9688195 DOI: 10.3390/cells11223645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Despite the medico-surgical progress that has been made in the management of patients with colorectal cancer (CRC), the prognosis at five years remains poor. This resistance of cancer cells partly results from their phenotypic characteristics in connection with the epithelial-mesenchymal transition (EMT). In the present study, we have explored the ability of a polyphenol, tannic acid (TA), to counteract CRC cell proliferation and invasion through an action on the EMT. We highlight that TA decreases human SW480 and SW620 CRC cell and murine CT26 CRC cell viability, and TA inhibits their adhesion in the presence of important factors comprising the extracellular matrix, particularly in the presence of collagen type I and IV, and fibronectin. Moreover, these properties were associated with TA's ability to disrupt CRC cell migration and invasion, which are induced by transforming growth factor-β (TGF-β), as evidence in the video microscopy experiments showing that TA blocks the TGF-β1-induced migration of SW480 and CT26 cells. At the molecular level, TA promotes a reversal of the epithelial-mesenchymal transition by repressing the mesenchymal markers (i.e., Slug, Snail, ZEB1, and N-cadherin) and re-expressing the epithelial markers (i.e., E-cadherin and β-catenin). These effects could result from a disruption of the non-canonical signaling pathway that is induced by TGF-β1, where TA strongly decreases the phosphorylation of extracellular-signal regulated kinase ERK1/2, P38 and the AKT proteins that are well known to contribute to the EMT, the cell motility, and the acquisition of invasive properties by tumor cells. Very interestingly, a preclinical study of mice with subcutaneous murine tumor colon CT26 cells has shown that TA was able to significantly delay the growth of tumors without hepato- and nephrotoxicities.
Collapse
Affiliation(s)
- Mahassen Barboura
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Abderrahmane Guerrache
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—DesCartes Team, 21000 Dijon, France
| | - Mouna Selmi
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Abir Salek
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc Center, 21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| |
Collapse
|
36
|
Payne K, Brooks J, Batis N, Taylor G, Nankivell P, Mehanna H. Characterizing the epithelial-mesenchymal transition status of circulating tumor cells in head and neck squamous cell carcinoma. Head Neck 2022; 44:2545-2554. [PMID: 35932094 PMCID: PMC9804280 DOI: 10.1002/hed.27167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs), in particular those undergoing an epithelial-mesenchymal transition (EMT), are a promising source of biomarkers in head and neck squamous cell carcinoma (HNSCC). Our aim was to validate a protocol using microfluidic enrichment (Parsortix platform) with flow-cytometry CTC characterization. METHOD Blood samples from 20 treatment naïve HNSCC patients underwent Parsortix enrichment and flow cytometry analysis to quantify CTCs and identify epithelial or EMT subgroups-correlated to clinical outcomes and EMT gene-expression in tumor tissue. RESULTS CTCs were detected in 65% of patients (mean count 4 CTCs/ml). CTCs correlated with advanced disease (p = 0.0121), but not T or N classification. Epithelial or EMT CTCs did not correlate with progression-free or overall survival. Tumor mesenchymal gene-expression did not correlate with CTC EMT expression (p = 0.347). DISCUSSION Microfluidic enrichment and flow cytometry successfully characterizes EMT CTCs in HNSCC. The lack of association between tumor and CTC EMT profile suggests CTCs may undergo an adaptive EMT in response to stimuli within the circulation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Graham Taylor
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
37
|
Okamoto S, Miyano K, Choshi T, Sugisawa N, Nishiyama T, Kotouge R, Yamamura M, Sakaguchi M, Kinoshita R, Tomonobu N, Katase N, Sasaki K, Nishina S, Hino K, Kurose K, Oka M, Kubota H, Ueno T, Hirai T, Fujiwara H, Kawai C, Itadani M, Morihara A, Matsushima K, Kanegasaki S, Hoffman RM, Yamauchi A, Kuribayashi F. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay. Biomed Pharmacother 2022; 155:113733. [DOI: 10.1016/j.biopha.2022.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
|
38
|
Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:268-278. [PMID: 36159185 PMCID: PMC9489739 DOI: 10.1016/j.jdsr.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ali A Abdulkareem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Michael R Milward
- ŌSchool of Dentistry, University of Birmingham, 5 Mill Pool Way, B5 7EG Birmingham, UK
| | - Bashar H Abdullah
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| |
Collapse
|
39
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
40
|
Zhang W, Zheng D, Jin L, Hirachan S, Bhandari A, Li Y, Chen B, Lu Y, Wen J, Lin B, Zhang X, Chen C. PDZK1IP1 gene promotes proliferation, migration, and invasion in papillary thyroid carcinoma. Pathol Res Pract 2022; 238:154091. [PMID: 36057192 DOI: 10.1016/j.prp.2022.154091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Thyroid cancer is a common malignant tumor for the adult and the potential molecular mechanism of papillary thyroid cancer cell metastasis is still unclear. We used sequencing techniques to analyze paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissue and identified a gene, PDZK1IP1, that was significantly overexpressed in thyroid cancer. We found It has been detected to play an important role in many malignant tumors. But the role in papillary thyroid cancer was still unknown, we decided to find a new marker and therapeutic target for the disease. The present study shows that PDZK1IP1 may be a potential gene that leads to thyroid cancer. In our study, silencing PDZK1IP1 can inhibit PTC cell proliferation, migration, invasion, apoptosis, and cell cycle arrest. This study surmised that PDZK1IP1 was an oncogene that correlated with tumor development.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Danni Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lingli Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Suzita Hirachan
- Department of General Surgery, Breast and Thyroid Unit, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China; Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Yulian Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Buran Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yiqiao Lu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jialiang Wen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Bangyi Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Chengze Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
41
|
Nakad Borrego S, Lengyel E, Kurnit KC. Molecular Characterizations of Gynecologic Carcinosarcomas: A Focus on the Immune Microenvironment. Cancers (Basel) 2022; 14:cancers14184465. [PMID: 36139624 PMCID: PMC9497294 DOI: 10.3390/cancers14184465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gynecologic carcinosarcomas, specifically of endometrial and ovarian origin, are aggressive and rare tumors. Treatment data are limited and are often extrapolated from other histologies and smaller retrospective studies. While the optimal therapy approach remains contentious, treatment is often multimodal and may include surgery, chemotherapy, radiation, or a combination of multiple strategies. However, despite aggressive treatment, these tumors fare worse than carcinomas of the same anatomic sites irrespective of their stage. Recent studies have described in-depth molecular characterizations of gynecologic carcinosarcomas. Although many molecular features mirror those seen in other uterine and ovarian epithelial tumors, the high prevalence of epithelial-mesenchymal transition is more unique. Recently, molecular descriptions have expanded to begin to characterize the tumor immune microenvironment. While the importance of the immune microenvironment has been well-established for other tumor types, it has been less systematically explored in gynecologic carcinosarcomas. Furthermore, the use of immunotherapy in patients with gynecologic carcinosarcomas has not been extensively evaluated. In this review, we summarize the available data surrounding gynecologic carcinosarcomas, with a focus on the immune microenvironment. We end with a discussion of potential immunotherapy uses and future directions for the field.
Collapse
|
42
|
Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022; 13:1000927. [PMID: 36131942 PMCID: PMC9483911 DOI: 10.3389/fimmu.2022.1000927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Skin malignant melanoma is a highly aggressive skin tumor, which is also a major cause of skin cancer-related mortality. It can spread from a relatively small primary tumor and metastasize to multiple locations, including lymph nodes, lungs, liver, bone, and brain. What’s more metastatic melanoma is the main cause of its high mortality. Among all organs, the lung is one of the most common distant metastatic sites of melanoma, and the mortality rate of melanoma lung metastasis is also very high. Elucidating the mechanisms involved in the pulmonary metastasis of cutaneous melanoma will not only help to provide possible explanations for its etiology and progression but may also help to provide potential new therapeutic targets for its treatment. Increasing evidence suggests that tumor-associated macrophages (TAMs) play an important regulatory role in the migration and metastasis of various malignant tumors. Tumor-targeted therapy, targeting tumor-associated macrophages is thus attracting attention, particularly for advanced tumors and metastatic tumors. However, the relevant role of tumor-associated macrophages in cutaneous melanoma lung metastasis is still unclear. This review will present an overview of the origin, classification, polarization, recruitment, regulation and targeting treatment of tumor-associated macrophages, as well as the soluble mediators involved in these processes and a summary of their possible role in lung metastasis from cutaneous malignant melanoma. This review particularly aims to provide insight into mechanisms and potential therapeutic targets to readers, interested in pulmonary metastasis melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| |
Collapse
|
43
|
Yan M, Zheng M, Niu R, Yang X, Tian S, Fan L, Li Y, Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front Cell Dev Biol 2022; 10:938289. [PMID: 36060811 PMCID: PMC9428510 DOI: 10.3389/fcell.2022.938289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis, a primary cause of death in patients with malignancies, is promoted by intrinsic changes in both tumor and non-malignant cells in the tumor microenvironment (TME). As major components of the TME, tumor-associated neutrophils (TANs) promote tumor progression and metastasis through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together establish an immunosuppressive TME. In this review, we describe the potential mechanisms by which TANs participate in tumor metastasis based on recent experimental evidence. We have focused on drugs in chemotherapeutic regimens that target TANs, thereby providing a promising future for cancer immunotherapy.
Collapse
Affiliation(s)
- Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang,
| |
Collapse
|
44
|
Pulford CS, Uppalapati CK, Montgomery MR, Averitte RL, Hull EE, Leyva KJ. A Hybrid Epithelial to Mesenchymal Transition in Ex Vivo Cutaneous Squamous Cell Carcinoma Tissues. Int J Mol Sci 2022; 23:ijms23169183. [PMID: 36012449 PMCID: PMC9408944 DOI: 10.3390/ijms23169183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
While most cases of cutaneous squamous cell carcinoma (cSCC) are benign, invasive cSCC is associated with higher mortality and is often more difficult to treat. As such, understanding the factors that influence the progression of cSCC are important. Aggressive cancers metastasize through a series of evolutionary changes, collectively called the epithelial-to-mesenchymal transition (EMT). During EMT, epithelial cells transition to a highly mobile mesenchymal cell type with metastatic capacities. While changes in expression of TGF-β, ZEB1, SNAI1, MMPs, vimentin, and E-cadherin are hallmarks of an EMT process occurring within cancer cells, including cSCC cells, EMT within tissues is not an “all or none” process. Using patient-derived cSCC and adjacent normal tissues, we show that cells within individual cSCC tumors are undergoing a hybrid EMT process, where there is variation in expression of EMT markers by cells within a tumor mass that may be facilitating invasion. Interestingly, cells along the outer edges of a tumor mass exhibit a more mesenchymal phenotype, with reduced E-cadherin, β-catenin, and cytokeratin expression and increased vimentin expression. Conversely, cells in the center of a tumor mass retain a higher expression of the epithelial markers E-cadherin and cytokeratin and little to no expression of vimentin, a mesenchymal marker. We also detected inverse expression changes in the miR-200 family and the EMT-associated transcription factors ZEB1 and SNAI1, suggesting that cSCC EMT dynamics are regulated in a miRNA-dependent manner. These novel findings in cSCC tumors provide evidence of phenotypic plasticity of the EMT process occurring within patient tissues, and extend the characterization of a hybrid EMT program occurring within a tumor mass. This hybrid EMT program may be promoting both survival and invasiveness of the tumors. A better understanding of this hybrid EMT process may influence therapeutic strategies in more invasive disease.
Collapse
Affiliation(s)
- Christopher S. Pulford
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Chandana K. Uppalapati
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | | | - Richard L. Averitte
- Affiliated Dermatology & Affiliated Laboratories, 20401 N. 73rd Street #230, Scottsdale, AZ 85255, USA
| | - Elizabeth E. Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Kathryn J. Leyva
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
- Correspondence: ; Tel.: 1-623-572-3294
| |
Collapse
|
45
|
FAM107A Inactivation Associated with Promoter Methylation Affects Prostate Cancer Progression through the FAK/PI3K/AKT Pathway. Cancers (Basel) 2022; 14:cancers14163915. [PMID: 36010909 PMCID: PMC9405870 DOI: 10.3390/cancers14163915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is a common male malignancy. FAM107A, or actin-associated protein, is commonly downregulated in PCa and is associated with a poor patient prognosis. We investigated the role of FAM107A in PCa and found that downregulation of FAM107A expression was caused by hypermethylation of CpG islands, and DNA methyltransferase 1 (DNMT1) was involved in maintaining hypermethylation. Mechanistically, FAM107A regulated PCa cell growth through the FAK/PI3K/AKT signaling pathway. Therefore, FAM107A overexpression may represent a potential treatment for PCa, while therapies targeting epigenetic events that regulate FAM107A expression may also be an effective strategy for PCa treatment. Abstract Prostate cancer (PCa) is one of the most common cancers and is the second leading cause of mortality in men. Studies exploring novel therapeutic methods are urgently needed. FAM107A, a coding gene located in the short arm of chromosome3, is generally downregulated in PCa and is associated with a poor prognosis. However, the downregulation of FAM107A in PCa and the mechanism of its action remain challenging to determine. This investigation found that downregulation of FAM107A expression in PCa was caused by hypermethylation of CpG islands. Furthermore, DNA methyltransferase 1 (DNMT1) was involved in maintaining hypermethylation. Mechanistically, overexpression of FAM107A inhibits tumor cell proliferation, migration, invasion and promotes apoptosis through the FAK/PI3K/AKT signaling pathway, indicating that FAM107A may be a molecular brake of FAK/PI3K/AKT signaling, thus limiting the active state of the FAK/PI3K/AKT pathway. These findings will contribute to a better understanding of the effect of FAM107A in PCa, and FAM107A may represent a new therapeutic target for PCa.
Collapse
|
46
|
Targeting Protein Kinase C for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14051104. [PMID: 35267413 PMCID: PMC8909172 DOI: 10.3390/cancers14051104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The protein kinase C (PKC) family belongs to serine-threonine kinases and consists of several subtypes. Increasing evidence suggests that PKCs are critical players in carcinogenesis. Interestingly, PKCs exert both promotive and suppressive effects on tumor cell growth and metastasis, which have attracted immense attention. Herein, we systematically review the current advances in the structure, regulation and biological functions of PKCs, especially the relationship of PKCs with anti-cancer therapy-induced cell death, including the current knowledge of PKCs function in tumor metabolism and microenvironment. Moreover, we discuss the potential role of PKCs as a target for therapeutic intervention in cancer from basic research and clinical trials. Abstract Protein kinase C (PKC) isoforms, a group of serine-threonine kinases, are important regulators in carcinogenesis. Numerous studies have demonstrated that PKC isoforms exert both positive and negative effects on cancer cell demise. In this review, we systematically summarize the current findings on the architecture, activity regulation and biological functions of PKCs, especially their relationship with anti-cancer therapy-induced cell death. Additionally, we elaborate on current knowledge of the effects of PKCs on tumor metabolism and microenvironment, which have gained increasing attention in oncology-related areas. Furthermore, we underscore the basic experimental and clinical implications of PKCs as a target for cancer therapy to evaluate their therapeutic benefits and potential applications.
Collapse
|
47
|
Kaur B, Mukhlis Y, Natesh J, Penta D, Musthapa Meeran S. Identification of hub genes associated with EMT-induced chemoresistance in breast cancer using integrated bioinformatics analysis. Gene 2022; 809:146016. [PMID: 34655723 DOI: 10.1016/j.gene.2021.146016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Chemoresistance is one of the major challenges in the treatment of breast cancer. Recent evidence suggests that epithelial-to-mesenchymal transition (EMT) plays a critical role in not only metastasis but also in chemoresistance, hence causing tumor relapse. This study aimed to identify the hub genes associated with EMT and chemoresistance in breast cancer affecting patient/clinical survival. Commonly differentially expressed genes (DEGs) during EMT and chemoresistance in breast cancer cells were identified using publicly available datasets, GSE23655, GSE39359, GSE33146 and GSE76540. Hierarchical clustering analysis was utilized to determine the commonly DEGs expression pattern in chemoresistant (CR) breast cancer cells. GSEA revealed that EMT-related genes sets were enriched in the CR samples. Further, we found that EMT-induced breast cancer cells showed overexpression of drug efflux transporters along with resistance to chemotherapeutic drug. Pathway enrichment analysis revealed that the commonly DEGs were enriched in immunological pathways, early endosome, protein dimerization, and proteoglycans in cancer. Further, we identified eight hub genes from the protein-protein interaction (PPI) network. We validated the gene expression levels of the hub genes among TCGA breast cancer samples using UALCAN. Survival analysis for the hub genes was performed using KM plotter, which showed a worse relapse-free survival (RFS) of the hub genes among breast cancer patients. In conclusion, this study identified eight hub genes that play an important role in the pathways underlying EMT-induced chemoresistance in breast cancer and can be used as therapeutic targets after clinical validation.
Collapse
Affiliation(s)
- Bhavjot Kaur
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Yahya Mukhlis
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
48
|
Qiu T, Zhang D, Xu J, Li X, Wang D, Zhao F, Qian Y, Xu J, Xu T, Zhang H, Chen X. Yes-associated protein gene overexpression regulated by β-catenin promotes gastric cancer cell tumorigenesi. Technol Health Care 2022; 30:425-440. [PMID: 35124617 PMCID: PMC9028613 DOI: 10.3233/thc-thc228039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Yes-associated protein (YAP) has been reported to act as a candidate human oncogene and played a critical role in the development of multiple cancer types. OBJECTIVE: We aimed to investigate the expression, function, and underlying mechanisms of YAP in gastric cancer (GC). METHODS: Expression levels of YAP in gastric tissues were tested. CCK8 assay, clonogenic assay, apoptosis assay, transwell assay, cell scratch assay and animal study were conducted to explore the function of YAP. Chromatin immunoprecipitation (ChIP) assay and luciferase reporter assay were performed to explore the underlying mechanism. Survival analysis was carried out to reveal the relationship between YAP and clinical outcome. RESULTS: YAP was upregulated in gastric cancer tissues and correlates with poor prognosis. YAP could promote GC cells proliferation, metastatic capacity, inhibit GC cells apoptosis in vitro and in vivo. Bothβ-catenin and YAP were mainly localized withi the tumor cell nuclei. β-catenincould upregulate YAP expression by binding to the promotor region of YAP. Patients with both YAP and β-catenin negetive expression had a better prognosis than others. CONCLUSIONS: YAP overexpression is driven by aberrant Wnt β-catenin signalingand then contributed to the GC tumorigenesis and progression. Thus, YAP might be a potential target for GC treatment.
Collapse
Affiliation(s)
- Tianzhu Qiu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengjiao Zhao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Qian
- Department of Respiratory, Nanjing First Hospital, Nanjing Medical University Nanjing, Jiangsu, China
| | - Jin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, PuKou Branch Hospital of Jiangsu Province Hospital (NanJing PuKou Central Hospital), Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Hu X, Xiang F, Feng Y, Gao F, Ge S, Wang C, Zhang X, Wang N. Neutrophils Promote Tumor Progression in Oral Squamous Cell Carcinoma by Regulating EMT and JAK2/STAT3 Signaling Through Chemerin. Front Oncol 2022; 12:812044. [PMID: 35155249 PMCID: PMC8831747 DOI: 10.3389/fonc.2022.812044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 01/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity. In the tumor microenvironment, tumor-associated neutrophils (TANs) can promote tumor growth, invasion, and metastasis. The aim of our study was to explore the relationship between neutrophils infiltration and Chemerin expression in tumor cells, as well as their relationship with the clinicopathological parameters and clinical prognosis of 74 cases of OSCC. We also explored the role of the interaction between neutrophils and Chemerin in the functions of OSCC cells (Cal27, SCC9, and SCC15) in vitro. Our results showed that in OSCC, Chemerin over-expression may increase neutrophils infiltration in tumor tissues. Chemerin over-expression and neutrophils infiltration were the prognostic factors of poor clinical outcomes. Furthermore, we discovered that neutrophils promoted OSCC migration, invasion, and proliferation and EMT through Chemerin. Neutrophils activated JAK2/STAT3 signaling through Chemerin and then up-regulated its downstream signaling target genes, such as Phospho-Rb, E2F1, CyclinE1, and CyclinD1. Taken together, our results revealed that neutrophils and Chemerin are potentially involved in OSCC progression and metastasis. Neutrophils may promote the JAK2/STAT3 signaling pathway and EMT in OSCC cells through Chemerin.
Collapse
Affiliation(s)
- Xiaoyuan Hu
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- Department of Pathology, Pingxiang People’s Hospital, PingXiang, China
| | - Fenggang Xiang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyong Feng
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology and The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fei Gao
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shengyou Ge
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology and The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqin Wang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Zhang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- *Correspondence: Ning Wang,
| |
Collapse
|
50
|
Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021; 10:60. [PMID: 34965886 PMCID: PMC8715617 DOI: 10.1186/s40164-021-00252-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are heterogeneous cells that present as different functional phenotypes due to their plasticity. They can be classified into two categories, namely M1- and M2-like macrophages, which are involved in processes as diverse as anti-tumor activity and immunosuppressive tumor promotion. Tumor-associated macrophages (TAMs) are defined as being of an M2-type and are considered as the active component in tumor microenvironment. TAMs are involved in multiple processes of tumor progression through the expression of cytokines, chemokines, growth factors, protein hydrolases and more, which lead to enhance tumor cell proliferation, angiogenesis, and immunosuppression, which in turn supports invasion and metastasis. It is assumed that the abundance of TAMs in major solid tumors is correlated to a negative patient prognosis. Because of the currently available data of the TAMs’ role in tumor development, these cells have emerged as a promising target for novel cancer treatment strategies. In this paper, we will briefly describe the origins and types of TAMs and will try to comprehensively show how TAMs contribute to tumorigenesis and disease progression. Finally, we will present the main TAM-based therapeutic strategies currently available.
Collapse
|