1
|
Wild AJ, Steiner FA, Kiene M, Tyborski N, Tung SY, Koehler T, Carminati A, Eder B, Groth J, Vahl WK, Wolfrum S, Lueders T, Laforsch C, Mueller CW, Vidal A, Pausch J. Unraveling root and rhizosphere traits in temperate maize landraces and modern cultivars: Implications for soil resource acquisition and drought adaptation. PLANT, CELL & ENVIRONMENT 2024; 47:2526-2541. [PMID: 38515431 DOI: 10.1111/pce.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
A holistic understanding of plant strategies to acquire soil resources is pivotal in achieving sustainable food security. However, we lack knowledge about variety-specific root and rhizosphere traits for resource acquisition, their plasticity and adaptation to drought. We conducted a greenhouse experiment to phenotype root and rhizosphere traits (mean root diameter [Root D], specific root length [SRL], root tissue density, root nitrogen content, specific rhizosheath mass [SRM], arbuscular mycorrhizal fungi [AMF] colonization) of 16 landraces and 22 modern cultivars of temperate maize (Zea mays L.). Our results demonstrate that landraces and modern cultivars diverge in their root and rhizosphere traits. Although landraces follow a 'do-it-yourself' strategy with high SRLs, modern cultivars exhibit an 'outsourcing' strategy with increased mean Root Ds and a tendency towards increased root colonization by AMF. We further identified that SRM indicates an 'outsourcing' strategy. Additionally, landraces were more drought-responsive compared to modern cultivars based on multitrait response indices. We suggest that breeding leads to distinct resource acquisition strategies between temperate maize varieties. Future breeding efforts should increasingly target root and rhizosphere economics, with SRM serving as a valuable proxy for identifying varieties employing an outsourcing resource acquisition strategy.
Collapse
Affiliation(s)
- Andreas J Wild
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Franziska A Steiner
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Marvin Kiene
- Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Nicolas Tyborski
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Shu-Yin Tung
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture, Freising, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tina Koehler
- Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Barbara Eder
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
| | - Jennifer Groth
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
| | - Wouter K Vahl
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
| | - Sebastian Wolfrum
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture, Freising, Germany
| | - Tillmann Lueders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Carsten W Mueller
- Chair of Soil Science, Institute of Ecology, Technische Universitaet Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Alix Vidal
- Soil Biology Group, Wageningen University, Wageningen, The Netherlands
| | - Johanna Pausch
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Wang C, Kuzyakov Y. Rhizosphere engineering for soil carbon sequestration. TRENDS IN PLANT SCIENCE 2024; 29:447-468. [PMID: 37867041 DOI: 10.1016/j.tplants.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
The rhizosphere is the central hotspot of water and nutrient uptake by plants, rhizodeposition, microbial activities, and plant-soil-microbial interactions. The plasticity of plants offers possibilities to engineer the rhizosphere to mitigate climate change. We define rhizosphere engineering as targeted manipulation of plants, soil, microorganisms, and management to shift rhizosphere processes for specific aims [e.g., carbon (C) sequestration]. The rhizosphere components can be engineered by agronomic, physical, chemical, biological, and genomic approaches. These approaches increase plant productivity with a special focus on C inputs belowground, increase microbial necromass production, protect organic compounds and necromass by aggregation, and decrease C losses. Finally, we outline multifunctional options for rhizosphere engineering: how to boost C sequestration, increase soil health, and mitigate global change effects.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, 37077 Goettingen, Germany.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, 37077 Goettingen, Germany.
| |
Collapse
|
3
|
Nasr Esfahani M, Sonnewald U. Unlocking dynamic root phenotypes for simultaneous enhancement of water and phosphorus uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108386. [PMID: 38280257 DOI: 10.1016/j.plaphy.2024.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
4
|
Maharajan T, Krishna TPA, Shilpha J, Ceasar SA. Effects of Individual or Combined Deficiency of Phosphorous and Zinc on Phenotypic, Nutrient Uptake, and Molecular Responses of Finger Millet ( Eleusine coracana): A Nutri-Rich Cereal Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:3378. [PMID: 37836117 PMCID: PMC10574462 DOI: 10.3390/plants12193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Deficiencies of either phosphorus (P) or zinc (Zn) or both are one of the major abiotic constraints influencing agricultural production. Research on the effects of individual or combined P and Zn deficiency is limited in cereals. This study reports the effects of the individual or combined deficiency of inorganic phosphate (Pi) and Zn on the phenotypic, root hair modification, nutrient uptake, and molecular responses of finger millet (Eleusine coracana), a nutri-rich cereal crop. Finger millet seedlings were grown hydroponically under control (+Pi+Zn), individual Pi deficiency (-Pi), individual Zn deficiency (-Zn), and combined Pi and Zn deficiency (-Pi-Zn) conditions for 30 days to find the phenotypic, root hair modification, nutrient uptake, and molecular responses. Compared to the individual -Zn condition, the individual -Pi condition had more of an effect in terms of biomass reduction. The combined -Pi-Zn condition increased the root hair length and density compared to the other three conditions. The individual -Zn condition increased the Pi uptake, while the individual -Pi condition favored the Zn uptake. EcZIP2 was highly upregulated in shoot tissues under the individual -Zn condition, and EcPHT1;2 was highly expressed in root tissues under the individual -Pi condition. This is the first study to report the effects of the individual or combined deficiency of Pi and Zn in finger millet and may lead to future studies to better manage P and Zn deficiency.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, India; (T.M.); (T.P.A.K.)
| | | | - Jayabalan Shilpha
- Department of Horticulture, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, India; (T.M.); (T.P.A.K.)
| |
Collapse
|
5
|
Xu F, Liao H, Yang J, Zhang Y, Yu P, Cao Y, Fang J, Chen S, Li L, Sun L, Du C, Wang K, Dang X, Feng Z, Cao Y, Li Y, Zhang J, Xu W. Auxin-producing bacteria promote barley rhizosheath formation. Nat Commun 2023; 14:5800. [PMID: 37726263 PMCID: PMC10509245 DOI: 10.1038/s41467-023-40916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
The rhizosheath, or the layer of soil closely adhering to roots, can help plants to tolerate drought under moderate soil drying conditions. Rhizosheath formation is the result of poorly understood interactions between root exudates, microbes, and soil conditions. Here, we study the roles played by the soil microbiota in rhizosheath formation in barley (a dry crop). We show that barley rhizosheath formation is greater in acid soil than in alkaline soil, and inoculation with microbiota from acid soil enhances rhizosheath formation in alkaline soil. The rhizosheath-promoting activity is associated with the presence of Flavobacteriaceae and Paenibacillaceae bacteria that express genes for biosynthesis of indole-3-acetic acid (IAA, a common auxin), as determined by metagenomics and metatranscriptomics. Two bacterial strains isolated from rhizosheath (Chryseobacterium culicis and Paenibacillus polymyxa) produce IAA and enhance barley rhizosheath formation, while their IAA-defective mutants are unable to promote rhizosheath formation. Co-inoculation with the IAA-producing strains enhances barley grain yield in field experiments through an increase in spike number. Our findings contribute to our understanding of barley rhizosheath formation, and suggest potential strategies for crop improvement.
Collapse
Affiliation(s)
- Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinyong Yang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingjiao Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yiying Cao
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ju Fang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shu Chen
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Li
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Leyun Sun
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongxuan Du
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ke Wang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiwei Feng
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yifan Cao
- College of Agriculture, Yangzhou University, Yangzhou, 225000, China
| | - Ying Li
- College of Agriculture, Yangzhou University, Yangzhou, 225000, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop and College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Khan F, Siddique AB, Shabala S, Zhou M, Zhao C. Phosphorus Plays Key Roles in Regulating Plants' Physiological Responses to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2861. [PMID: 37571014 PMCID: PMC10421280 DOI: 10.3390/plants12152861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and extreme temperatures. Unraveling the intricate mechanisms through which phosphorus participates in the physiological responses of plants to abiotic stresses is essential to ensure the sustainability of agricultural production systems. This review aims to analyze the influence of phosphorus supply on various aspects of plant growth and plant development under hostile environmental conditions, with a special emphasis on stomatal development and operation. Furthermore, we discuss recently discovered genes associated with P-dependent stress regulation and evaluate the feasibility of implementing P-based agricultural practices to mitigate the adverse effects of abiotic stress. Our objective is to provide molecular and physiological insights into the role of P in regulating plants' tolerance to abiotic stresses, underscoring the significance of efficient P use strategies for agricultural sustainability. The potential benefits and limitations of P-based strategies and future research directions are also discussed.
Collapse
Affiliation(s)
- Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia;
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (F.K.); (A.B.S.); (M.Z.)
| |
Collapse
|
7
|
Adu MO, Zigah N, Yawson DO, Amoah KK, Afutu E, Atiah K, Darkwa AA, Asare PA. Plasticity of root hair and rhizosheath traits and their relationship to phosphorus uptake in sorghum. PLANT DIRECT 2023; 7:e521. [PMID: 37638231 PMCID: PMC10447916 DOI: 10.1002/pld3.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/09/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023]
Abstract
Sorghum is an essential crop for resilient and adaptive responses to climate change. The root systems of crop plants significantly contribute to the tolerance of abiotic stresses. There is little information on sorghum genotypes' root systems and plasticity to external P supply. In this paper, we investigated the variations in root systems, as well as the responses, trait relationships, and plasticity of two sorghum genotypes (Naga Red and Naga White), popularly grown in Ghana, to five external P concentrations ([P]ext): 0, 100, 200, 300, and 400 mg P kg-1 soil. Sorghum plants were grown in greenhouse pots and harvested for root trait measurements at the five-leaf and growing point differentiation (GPD) developmental stages. The plants were responsive to [P]ext and formed rhizosheaths. The two genotypes showed similar characteristics for most of the traits measured but differed significantly in total and lateral root lengths in favor of the red genotype. For example, at the five-leaf growth stage, the lateral root length of the red and white genotypes was 22.8 and 16.2 cm, respectively, but 124 and 88.9 cm, at the GPD stage. The responses and plasticity of the root system traits, including rhizosheath, to [P]ext were more prominent, positive, and linear at the five-leaf stage than at the GPD growth stage. At the five-leaf growth stage, total root length increased by about 2.5-fold with increasing [P]ext compared to the unamended soil. At the GPD stage, however, total root length decreased by about 1.83-fold as [P]ext increased compared to the unamended soil. Specific rhizosheath weight correlated with RHD, albeit weakly, and together explained up to 59% of the variation in tissue P. Root hair density was more responsive to P supply than root hair length and showed a similar total and lateral root length pattern. Most desirable responses to P occurred at a rate of 200-300 mg P kg-1 soil. It is concluded that sorghum would form rhizosheath, and [P]ext could be critical for the early vigorous growth of sorghum's responsive root and shoot traits. Beyond the early days of development, additional P application might be necessary to sustain the responses and plasticity observed during the early growth period, but this requires further investigation, potentially under field conditions.
Collapse
Affiliation(s)
- Michael O. Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| | - Nathaniel Zigah
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| | - David O. Yawson
- Centre for Resource Management and Environmental Studies (CERMES)The University of the West IndiesBridgetownBarbados
| | - Kwadwo K. Amoah
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| | - Emmanuel Afutu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| | - Kofi Atiah
- Department of Soil Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| | - Alfred A. Darkwa
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| | - Paul A. Asare
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural SciencesUniversity of Cape CoastCape CoastGhana
| |
Collapse
|
8
|
Aslam MM, Fritschi FB, Di Z, Wang G, Li H, Lam HM, Waseem M, Weifeng X, Zhang J. Overexpression of LaGRAS enhances phosphorus acquisition via increased root growth of phosphorus-deficient white lupin. PHYSIOLOGIA PLANTARUM 2023; 175:e13962. [PMID: 37343119 DOI: 10.1111/ppl.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The GRAS transcription factors play an indispensable role in plant growth and responses to environmental stresses. The GRAS gene family has extensively been explored in various plant species; however, the comprehensive investigation of GRAS genes in white lupin remains insufficient. In this study, bioinformatics analysis of white lupin genome revealed 51 LaGRAS genes distributed into 10 distinct phylogenetic clades. Gene structure analyses revealed that LaGRAS proteins were considerably conserved among the same subfamilies. Notably, 25 segmental duplications and a single tandem duplication showed that segmental duplication was the major driving force for the expansion of GRAS genes in white lupin. Moreover, LaGRAS genes exhibited preferential expression in young cluster root and mature cluster roots and may play key roles in nutrient acquisition, particularly phosphorus (P). To validate this, RT-qPCR analysis of white lupin plants grown under +P (normal P) and -P (P deficiency) conditions elucidated significant differences in the transcript level of GRAS genes. Among them, LaGRAS38 and LaGRAS39 were identified as potential candidates with induced expression in MCR under -P. Additionally, white lupin transgenic hairy root overexpressing OE-LaGRAS38 and OE-LaGRAS39 showed increased root growth, and P concentration in root and leaf compared to those with empty vector control, suggesting their role in P acquisition. We believe this comprehensive analysis of GRAS members in white lupin is a first step in exploring their role in the regulation of root growth, tissue development, and ultimately improving P use efficiency in legume crops under natural environments.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Felix B Fritschi
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Zhang Di
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Muhammad Waseem
- College of Horticulture, Hainan University, Haikou, China
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Xu Weifeng
- College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
9
|
Zhao N, Sun X, Hou S, Ma S, Chen G, Chen Z, Wang X, Zhang Z. Festuca coelestis Increases Drought Tolerance and Nitrogen Use via Nutrient Supply-Demand Relationship on the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091773. [PMID: 37176832 PMCID: PMC10181188 DOI: 10.3390/plants12091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Drought and nutrient deficiency pose great challenges to the successful establishment of native plants on the Qinghai-Tibet Plateau. The dominant factors and strategies that affect the adaptation of alpine herbs to dry and nutrient-deficient environments remain unclear. Three water gradients were established using two-factor controlled experiments: low water (WL), medium water (WM), and high water (WH). The field water-holding capacities were 35%, 55%, and 75%, respectively. Nitrogen fertilizer (N) was applied at four levels: control (CK), low (FL), medium (FM), and high (FH) at 0, 110, 330, and 540 mg/kg, respectively. The results revealed that N was the main limiting factor, rather than phosphorous (P), in Festuca coelestis under drought stress. Under water shortage conditions, F. coelestis accumulated more proline and non-structural carbohydrates, especially in the aboveground parts of the leaves and stems; however, the root diameter and aboveground nitrogen use efficiency were reduced. Appropriate N addition could mitigate the adverse effects by increasing the release of N, P, and enzyme activity in the bulk soil and rhizosphere to balance their ratio, and was mainly transferred to the aboveground parts, which optimized the supply uptake relationship. The effects of water and fertilizer on the physiological adaptability and nutrient utilization of F. coelestis were verified using structural equation modeling. Based on their different sensitivities to water and nitrogen, the WHFM treatment was more suitable for F. coelestis establishment. Our results demonstrated that the disproportionate nutrient supply ability and preferential supply aboveground compared to below ground were the main factors influencing F. coelestis seedling establishment under drought conditions. This study provides evidence for a better understanding of herbaceous plants living in high mountain regions and offers important information for reducing the risk of ecological restoration failure in similar alpine regions.
Collapse
Affiliation(s)
- Ningning Zhao
- College of Resources and Environment, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
- Qiangtang Alpine Grassland Ecosystem Research Station (Jointly Built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Xingrong Sun
- Qiangtang Alpine Grassland Ecosystem Research Station (Jointly Built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Shuai Hou
- Qiangtang Alpine Grassland Ecosystem Research Station (Jointly Built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Sujie Ma
- Qiangtang Alpine Grassland Ecosystem Research Station (Jointly Built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Guohao Chen
- College of Grassland Agriculture, Northwest A & F University, Yangling 712100, China
| | - Zelin Chen
- College of Grassland Agriculture, Northwest A & F University, Yangling 712100, China
| | - Xiangtao Wang
- Qiangtang Alpine Grassland Ecosystem Research Station (Jointly Built with Lanzhou University), Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Zhixin Zhang
- College of Grassland Agriculture, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
10
|
Ren M, Li Y, Zhu J, Zhao K, Wu Z, Mao C. Phenotypes and Molecular Mechanisms Underlying the Root Response to Phosphate Deprivation in Plants. Int J Mol Sci 2023; 24:ijms24065107. [PMID: 36982176 PMCID: PMC10049108 DOI: 10.3390/ijms24065107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorus (P) is an essential macronutrient for plant growth. The roots are the main organ for nutrient and water absorption in plants, and they adapt to low-P soils by altering their architecture for enhancing absorption of inorganic phosphate (Pi). This review summarizes the physiological and molecular mechanisms underlying the developmental responses of roots to Pi starvation, including the primary root, lateral root, root hair, and root growth angle, in the dicot model plant Arabidopsis thaliana and the monocot model plant rice (Oryza sativa). The importance of different root traits and genes for breeding P-efficient roots in rice varieties for Pi-deficient soils are also discussed, which we hope will benefit the genetic improvement of Pi uptake, Pi-use efficiency, and crop yields.
Collapse
Affiliation(s)
- Meiyan Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianshu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Keju Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572100, China
| |
Collapse
|
11
|
Ogrodowicz P, Mikołajczak K, Kempa M, Mokrzycka M, Krajewski P, Kuczyńska A. Genome-wide association study of agronomical and root-related traits in spring barley collection grown under field conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1077631. [PMID: 36760640 PMCID: PMC9902773 DOI: 10.3389/fpls.2023.1077631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The root system is a key component for plant survival and productivity. In particular, under stress conditions, developing plants with a better root architecture can ensure productivity. The objectives of this study were to investigate the phenotypic variation of selected root- and yield-related traits in a diverse panel of spring barley genotypes. By performing a genome-wide association study (GWAS), we identified several associations underlying the variations occurring in root- and yield-related traits in response to natural variations in soil moisture. Here, we report the results of the GWAS based on both individual single-nucleotide polymorphism markers and linkage disequilibrium (LD) blocks of markers for 11 phenotypic traits related to plant morphology, grain quality, and root system in a group of spring barley accessions grown under field conditions. We also evaluated the root structure of these accessions by using a nondestructive method based on electrical capacitance. The results showed the importance of two LD-based blocks on chromosomes 2H and 7H in the expression of root architecture and yield-related traits. Our results revealed the importance of the region on the short arm of chromosome 2H in the expression of root- and yield-related traits. This study emphasized the pleiotropic effect of this region with respect to heading time and other important agronomic traits, including root architecture. Furthermore, this investigation provides new insights into the roles played by root traits in the yield performance of barley plants grown under natural conditions with daily variations in soil moisture content.
Collapse
|
12
|
Hanlon MT, Vejchasarn P, Fonta JE, Schneider HM, McCouch SR, Brown KM. Genome wide association analysis of root hair traits in rice reveals novel genomic regions controlling epidermal cell differentiation. BMC PLANT BIOLOGY 2023; 23:6. [PMID: 36597029 PMCID: PMC9811729 DOI: 10.1186/s12870-022-04026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus, indica, temperate japonica, and tropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets. RESULTS We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice and Arabidopsis. CONCLUSIONS Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.
Collapse
Affiliation(s)
- Meredith T Hanlon
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Phanchita Vejchasarn
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Rice Department, Ministry of Agriculture, Ubon Ratchathani Rice Research Center, Ubon Ratchathani, 34000, Thailand
| | - Jenna E Fonta
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, the Netherlands
| | - Susan R McCouch
- Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY, 14853-1901, USA
- Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853-1901, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Kou X, Han W, Kang J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1085409. [PMID: 36570905 PMCID: PMC9780461 DOI: 10.3389/fpls.2022.1085409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.
Collapse
Affiliation(s)
- Xinyue Kou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Weihua Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jian Kang
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
14
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
15
|
Das D, Ullah H, Himanshu SK, Tisarum R, Cha-Um S, Datta A. Arbuscular mycorrhizal fungi inoculation and phosphorus application improve growth, physiological traits, and grain yield of rice under alternate wetting and drying irrigation. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153829. [PMID: 36202058 DOI: 10.1016/j.jplph.2022.153829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Climate change and agricultural malpractices are exacerbating drought in many parts of the world causing a substantial agricultural production loss. The improvement of drought tolerance in rice is crucial for maintaining productivity and ensuring global food security. Alternate wetting and drying (AWD) irrigation along with plant-microbe interaction through arbuscular mycorrhizal fungi (AMF) is a potential approach for enhancing rice production through AMF-induced up-regulation of tolerance and resilience against drought stress. Therefore, the ameliorative role of AMF inoculation and phosphorus (P) application on growth, physiological traits, and grain yield of rice was evaluated under water stress imposed through AWD irrigation. A factorial experiment consisting of four fertilizer treatments where the P percentage varied along with the recommended dose of nitrogen (N) with or without AMF inoculation (P100 as the control, P100 + AMF, P75 + AMF, and P50 + AMF), three soil water potential levels (0, -15, and -30 kPa), and two cultivation methods (wet direct seeding and transplanting) was conducted in a polyhouse. The subscript values of 100, 75, and 50 under P represent 100%, 75%, and 50% of the recommended field application dose. Data were collected on selected growth parameters, physiological traits, levels of mycorrhizal colonization, yield and its components, and water productivity of rice. The results revealed that P100 + AMF inoculated plants had 11%, 14%, 74%, and 54% higher leaf greenness, leaf relative water content, net photosynthetic rate, and grain yield, respectively, for wet direct-seeded plants at reduced soil water potential (-30 kPa) compared with non-inoculated plants (P100). Free proline accumulation gradually enhanced with decreasing soil water potential, and it was maximized by 77% at -30 kPa compared with 0 kPa for P50 + AMF (for transplanted plants). Free proline accumulation was also higher with decreasing soil water potential in AMF-inoculated plants than non-inoculated plants regardless of cultivation methods. Leaf osmotic potential was reduced by -0.5 to -1.2 MPa at -30 kPa compared with 0 kPa under different fertilizer doses. However, AMF inoculation (P100 + AMF and P75 + AMF) improved leaf osmotic potential of plants under severe water stress (-30 kPa) maintained through AWD irrigation resulting in better osmotic adjustment than non-inoculated plants. AMF inoculation improved the response of most of the evaluated physiological traits of rice and enhanced grain yield with higher P availability (even with a 25% reduction in its recommended dose) in the rhizosphere under drought stress. Thus, it can be concluded that AMF inoculation coupled with judicious P management is a promising approach for improving physiological and biochemical traits, grain yield, and water productivity of rice under AWD irrigation regardless of cultivation methods.
Collapse
Affiliation(s)
- Debesh Das
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand; Agrotechnology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Hayat Ullah
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sushil K Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Rujira Tisarum
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, 12120, Thailand
| | - Suriyan Cha-Um
- National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, 12120, Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
16
|
Aslam MM, Karanja JK, Dodd IC, Waseem M, Weifeng X. Rhizosheath: An adaptive root trait to improve plant tolerance to phosphorus and water deficits? PLANT, CELL & ENVIRONMENT 2022; 45:2861-2874. [PMID: 35822342 PMCID: PMC9544408 DOI: 10.1111/pce.14395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/09/2023]
Abstract
Drought and nutrient limitations adversely affect crop yields, with below-ground traits enhancing crop production in these resource-poor environments. This review explores the interacting biological, chemical and physical factors that determine rhizosheath (soil adhering to the root system) development, and its influence on plant water uptake and phosphorus acquisition in dry soils. Identification of quantitative trait loci for rhizosheath development indicate it is genetically determined, but the microbial community also directly (polysaccharide exudation) and indirectly (altered root hair development) affect its extent. Plants with longer and denser root hairs had greater rhizosheath development and increased P uptake efficiency. Moreover, enhanced rhizosheath formation maintains contact at the root-soil interface thereby assisting water uptake from drying soil, consequently improving plant survival in droughted environments. Nevertheless, it can be difficult to determine if rhizosheath development is a cause or consequence of improved plant adaptation to dry and nutrient-depleted soils. Does rhizosheath development directly enhance plant water and phosphorus use, or do other tolerance mechanisms allow plants to invest more resources in rhizosheath development? Much more work is required on the interacting genetic, physical, biochemical and microbial mechanisms that determine rhizosheath development, to demonstrate that selection for rhizosheath development is a viable crop improvement strategy.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Center for Plant Water‐Use and Nutrition Regulation, College of Resource and EnvironmentFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgricultureYangzhou UniversityYangzhouJiangsuChina
- State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Joseph K. Karanja
- Center for Plant Water‐Use and Nutrition Regulation, College of Resource and EnvironmentFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ian C. Dodd
- The Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Xu Weifeng
- Center for Plant Water‐Use and Nutrition Regulation, College of Resource and EnvironmentFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgricultureYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
17
|
Zhang X, Li C, Lu W, Wang X, Ma B, Fu K, Li C, Li C. Comparative analysis of combined phosphorus and drought stress-responses in two winter wheat. PeerJ 2022; 10:e13887. [PMID: 36168435 PMCID: PMC9509674 DOI: 10.7717/peerj.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Phosphorus stress and drought stress are common abiotic stresses for wheat. In this study, two winter wheat varieties "Xindong20" and "Xindong23" were cultured in a hydroponic system using Hoagland nutrient solution and treated with drought stress under conventional (CP: 1.0 mmol/L) and low (LP: 0.05 mmol/L) phosphorus levels. Under drought stress, the root growth was better under LP than under CP. Under LP, root phosphorus content was increased by 94.2% in Xindong20 and decreased by 48.9% in Xindong23 at 3 d after re-watering, compared with those at 0 d under drought stress. However, the potassium (K) content was the highest among the four elements studied and the phosphorus (P) and calcium (Ca) content were reduced in the root of the two varieties. Under CP, the zinc (Zn) content was higher than that under LP in Xindong23. The GeneChip analysis showed that a total of 4,577 and 202 differentially expressed genes (DEGs) were detected from the roots of Xindong20 and Xindong23, respectively. Among them, 89.9% of DEGs were involved in organelles and vesicles in Xindong20, and 69.8% were involved in root anatomical structure, respiratory chain, electron transport chain, ion transport, and enzyme activity in Xindong23. Overall, LP was superior to CP in mitigating drought stress on wheat, and the regulatory genes were also different in the two varieties. Xindong20 had higher drought tolerance for more up-regulated genes involved in the responses compared to Xindong23.
Collapse
|
18
|
Maqbool S, Saeed F, Raza A, Rasheed A, He Z. Association of Root Hair Length and Density with Yield-Related Traits and Expression Patterns of TaRSL4 Underpinning Root Hair Length in Spring Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2235. [PMID: 36079617 PMCID: PMC9460385 DOI: 10.3390/plants11172235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Root hairs play an important role in absorbing water and nutrients in crop plants. Here we optimized high-throughput root hair length (RHL) and root hair density (RHD) phenotyping in wheat using a portable Dinolite™ microscope. A collection of 24 century wide spring wheat cultivars released between 1911 and 2016 were phenotyped for RHL and RHD. The results revealed significant variations for both traits with five and six-fold variation for RHL and RHD, respectively. RHL ranged from 1.01 mm to 1.77 mm with an average of 1.39 mm, and RHD ranged from 17.08 mm-2 to 20.8 mm-2 with an average of 19.6 mm-2. Agronomic and physiological traits collected from five different environments and their best linear unbiased predictions (BLUPs) were correlated with RHL and RHD, and results revealed that relative-water contents (RWC), biomass and grain per spike (GpS) were positively correlated with RHL in both water-limited and well-watered conditions. While RHD was negatively correlated with grain yield (GY) in four environments and their BLUPs. Both RHL and RHD had positive correlation indicating the possibility of simultaneous selection of both phenotypes during wheat breeding. The expression pattern of TaRSL4 gene involved in regulation of root hair length was determined in all 24 wheat cultivars based on RNA-seq data, which indicated the differentially higher expression of the A- and D- homeologues of the gene in roots, while B-homeologue was consistently expressed in both leaf and roots. The results were validated by qRT-PCR and the expression of TaRSL4 was consistently high in rainfed cultivars such as Chakwal-50, Rawal-87, and Margallah-99. Overall, the new phenotyping method for RHL and RHD along with correlations with morphological and physiological traits in spring wheat cultivars improved our understanding for selection of these phenotypes in wheat breeding.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fatima Saeed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Raza
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China Office, 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China Office, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
19
|
Hallett PD, Marin M, Bending GD, George TS, Collins CD, Otten W. Building soil sustainability from root-soil interface traits. TRENDS IN PLANT SCIENCE 2022; 27:688-698. [PMID: 35168900 DOI: 10.1016/j.tplants.2022.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Great potential exists to harness plant traits at the root-soil interface, mainly rhizodeposition and root hairs, to 'build' soils with better structure that can trap more carbon and resources, resist climate stresses, and promote a healthy microbiome. These traits appear to have been preserved in modern crop varieties, but scope exists to improve them further because they vary considerably between genotypes and respond to environmental conditions. From emerging evidence, rhizodeposition can act as a disperser, aggregator, and/or hydrogel in soil, and root hairs expand rhizosheath size. Future research should explore impacts of selecting these traits on plants and soils concurrently, expanding from model plants to commercial genotypes, and observing whether impacts currently limited to glasshouse studies occur in the field.
Collapse
Affiliation(s)
- Paul D Hallett
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK.
| | - Maria Marin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Timothy S George
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Chris D Collins
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Wilfred Otten
- Cranfield Soil and Agrifood Institute, College Road, Cranfield, MK43 0AL, UK
| |
Collapse
|
20
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
21
|
Brooker R, Brown LK, George TS, Pakeman RJ, Palmer S, Ramsay L, Schöb C, Schurch N, Wilkinson MJ. Active and adaptive plasticity in a changing climate. TRENDS IN PLANT SCIENCE 2022; 27:717-728. [PMID: 35282996 DOI: 10.1016/j.tplants.2022.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Better understanding of the mechanistic basis of plant plasticity will enhance efforts to breed crops resilient to predicted climate change. However, complexity in plasticity's conceptualisation and measurement may hinder fruitful crossover of concepts between disciplines that would enable such advances. We argue active adaptive plasticity is particularly important in shaping the fitness of wild plants, representing the first line of a plant's defence to environmental change. Here, we define how this concept may be applied to crop breeding, suggest appropriate approaches to measure it in crops, and propose a refocussing on active adaptive plasticity to enhance crop resilience. We also discuss how the same concept may have wider utility, such as in ex situ plant conservation and reintroductions.
Collapse
Affiliation(s)
- Rob Brooker
- Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK; Department of Ecological Sciences, James Hutton Institute, Dundee, UK.
| | - Lawrie K Brown
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Timothy S George
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Robin J Pakeman
- Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK
| | - Sarah Palmer
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Luke Ramsay
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Christian Schöb
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Mike J Wilkinson
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| |
Collapse
|
22
|
Cai G, Ahmed MA. The role of root hairs in water uptake: recent advances and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3330-3338. [PMID: 35323893 DOI: 10.1093/jxb/erac114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sufficient water is essential for plant growth and production. Root hairs connect roots to the soil, extend the effective root radius, and greatly enlarge the absorbing surface area. Although the efficacy of root hairs in nutrient uptake, especially phosphorus, has been well recognized, their role in water uptake remains contentious. Here we review recent advances in this field, discuss the factors affecting the role of root hairs in water uptake, and propose future directions. We argue that root hair length and shrinkage, in response to soil drying, explain the apparently contradictory evidence currently available. Our analysis revealed that shorter and vulnerable root hairs (i.e. rice and maize) made little, if any, contribution to root water uptake. In contrast, relatively longer root hairs (i.e. barley) had a clear influence on root water uptake, transpiration, and hence plant response to soil drying. We conclude that the role of root hairs in water uptake is species (and probably soil) specific. We propose that a holistic understanding of the efficacy of root hairs in water uptake will require detailed studies of root hair length, turnover, and shrinkage in different species and contrasting soil textures.
Collapse
Affiliation(s)
- Gaochao Cai
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95444, Bayreuth, Germany
| | - Mutez Ali Ahmed
- Chair of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95444, Bayreuth, Germany
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
23
|
Hendriks PW, Ryan PR, Hands P, Rolland V, Gurusinghe S, Weston LA, Rebetzke GJ, Delhaize E. Selection for early shoot vigour in wheat increases root hair length but reduces epidermal cell size of roots and leaves. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2499-2510. [PMID: 35195714 PMCID: PMC9015806 DOI: 10.1093/jxb/erac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/11/2022] [Indexed: 05/22/2023]
Abstract
Six cycles of recurrent selection for early shoot vigour in wheat resulted in significant increases in leaf width and shoot biomass. Here, in replicated controlled-environment studies, the effect of early shoot vigour on root biomass, rhizosheath size, root hair length, and cell size in the roots and leaves was examined across different cycles of selection. Increased shoot vigour was associated with greater root biomass, larger rhizosheath size, and longer root hairs. Our findings demonstrate that rhizosheath size was a reliable surrogate for root hair length in this germplasm. Examination of the root epidermis revealed that the 'cell body' of the trichoblasts (hair-forming cells) and the atrichoblasts (non-hair-forming cells) decreased in size as shoot vigour increased. Therefore, in higher vigour germplasm, longer root hairs emerged from smaller trichoblasts so that total trichoblast volume (root hair plus cell body) was generally similar regardless of shoot vigour. Similarly, the sizes of the four main cell types on the leaf epidermis became progressively smaller as shoot vigour increased, which also increased stomatal density. The relationship between shoot vigour and root traits is considered, and the potential contribution of below-ground root traits to performance and competitiveness of high vigour germplasm is discussed.
Collapse
Affiliation(s)
- Pieter-Willem Hendriks
- CSIRO, Agriculture and Food, Canberra, ACT, 2601, Australia
- Charles Sturt University, School of Agriculture, Environment and Veterinary Sciences, Wagga-Wagga, 14 NSW, 2650, Australia
- Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
- Correspondence:
| | - Peter R Ryan
- CSIRO, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Philip Hands
- CSIRO, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Vivien Rolland
- CSIRO, Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Saliya Gurusinghe
- Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Wagga Wagga, NSW, 2678, Australia
| | | | - Emmanuel Delhaize
- Australian Plant Phenomics Facility, Australian National University Node, 134 Linnaeus Way, Acton ACT 2601, Australia
| |
Collapse
|
24
|
Wang L, Rengel Z, Zhang K, Jin K, Lyu Y, Zhang L, Cheng L, Zhang F, Shen J. Ensuring future food security and resource sustainability: insights into the rhizosphere. iScience 2022; 25:104168. [PMID: 35434553 PMCID: PMC9010633 DOI: 10.1016/j.isci.2022.104168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Feeding the world's growing population requires continuously increasing crop yields with less fertilizers and agrochemicals on limited land. Focusing on plant belowground traits, especially root-soil-microbe interactions, holds a great promise for overcoming this challenge. The belowground root-soil-microbe interactions are complex and involve a range of physical, chemical, and biological processes that influence nutrient-use efficiency, plant growth and health. Understanding, predicting, and manipulating these rhizosphere processes will enable us to harness the relevant interactions to improve plant productivity and nutrient-use efficiency. Here, we review the recent progress and challenges in root-soil-microbe interactions. We also highlight how root-soil-microbe interactions could be manipulated to ensure food security and resource sustainability in a changing global climate, with an emphasis on reducing our dependence on fertilizers and agrochemicals.
Collapse
Affiliation(s)
- Liyang Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Zed Rengel
- Soil Science & Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split 21000, Croatia
| | - Kai Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Kemo Jin
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Yang Lyu
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Lin Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Lingyun Cheng
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Fusuo Zhang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
25
|
Short Peptides Induce Development of Root Hair Nicotiana tabacum. PLANTS 2022; 11:plants11070852. [PMID: 35406832 PMCID: PMC9002736 DOI: 10.3390/plants11070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Root hairs absorb soil nutrients and water, and anchor the plant in the soil. Treatment of tobacco (Nicotiana tabacum) roots with glycine (Gly) amino acid, and glycilglycine (GlyGly) and glycilaspartic acid (GlyAsp) dipeptides (10−7 M concentration) significantly increased the development of root hairs. In the root, peptide accumulation was tissue-specific, with predominant localization to the root cap, meristem, elongation zone, and absorption zone. Peptides penetrated the epidermal and cortical cell and showed greater localization to the nucleus than to the cytoplasm. Compared with the control, tobacco plants grown in the presence of Gly, GlyGly, and GlyAsp exhibited the activation of WER, CPC, bHLH54, and bHLH66 genes and suppression of GTL1 and GL2 genes during root hair lengthening. Although Gly, GlyGly, and GlyAsp have a similar structure, the mechanism of regulation of root hair growth in each case were different, and these differences are most likely due to the fact that neutral Gly and GlyGly and negatively charged GlyAsp bind to different motives of functionally important proteins. Short peptides site-specifically interact with DNA, and histones. The molecular mechanisms underlying the effect of exogenous peptides on cellular processes remain unclear. Since these compounds acted at low concentrations, gene expression regulation by short peptides is most likely of epigenetic nature.
Collapse
|
26
|
Kohli PS, Maurya K, Thakur JK, Bhosale R, Giri J. Significance of root hairs in developing stress-resilient plants for sustainable crop production. PLANT, CELL & ENVIRONMENT 2022; 45:677-694. [PMID: 34854103 DOI: 10.1111/pce.14237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.
Collapse
Affiliation(s)
| | - Kanika Maurya
- National Institute of Plant Genome Research, New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre of Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
27
|
Zhou M, Zhu S, Mo X, Guo Q, Li Y, Tian J, Liang C. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency. Cells 2022; 11:cells11040651. [PMID: 35203302 PMCID: PMC8870294 DOI: 10.3390/cells11040651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.
Collapse
Affiliation(s)
- Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Qi Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Yaxue Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| |
Collapse
|
28
|
Ying S, Blancaflor EB, Liao F, Scheible W. A phosphorus-limitation induced, functionally conserved DUF506 protein is a repressor of root hair elongation in plants. THE NEW PHYTOLOGIST 2022; 233:1153-1171. [PMID: 34775627 PMCID: PMC9300206 DOI: 10.1111/nph.17862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Root hairs (RHs) function in nutrient and water acquisition, root metabolite exudation, soil anchorage and plant-microbe interactions. Longer or more abundant RHs are potential breeding traits for developing crops that are more resource-use efficient and can improve soil health. While many genes are known to promote RH elongation, relatively little is known about genes and mechanisms that constrain RH growth. Here we demonstrate that a DOMAIN OF UNKNOWN FUNCTION 506 (DUF506) protein, AT3G25240, negatively regulates Arabidopsis thaliana RH growth. The AT3G25240 gene is strongly and specifically induced during phosphorus (P)-limitation. Mutants of this gene, which we call REPRESSOR OF EXCESSIVE ROOT HAIR ELONGATION 1 (RXR1), have much longer RHs, higher phosphate content and seedling biomass, while overexpression of the gene exhibits opposite phenotypes. Co-immunoprecipitation, pull-down and bimolecular fluorescence complementation (BiFC) analyses reveal that RXR1 physically interacts with a RabD2c GTPase in nucleus, and a rabd2c mutant phenocopies the rxr1 mutant. Furthermore, N-terminal variable region of RXR1 is crucial for inhibiting RH growth. Overexpression of a Brachypodium distachyon RXR1 homolog results in repression of RH elongation in Brachypodium. Taken together, our results reveal a novel DUF506-GTPase module with a prominent role in repression of plant RH elongation especially under P stress.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOK73401USA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48823USA
| | | | - Fuqi Liao
- Noble Research Institute LLCArdmoreOK73401USA
| | | |
Collapse
|
29
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
30
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021. [PMID: 34608637 DOI: 10.1111/nph.17572.hal-03379708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T Freschet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Loïc Pagès
- UR 1115 PSH, Centre PACA, site Agroparc, INRAE, 84914, Avignon cedex 9, France
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Louise H Comas
- USDA-ARS Water Management Research Unit, 2150 Centre Avenue, Bldg D, Suite 320, Fort Collins, CO, 80526, USA
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Catherine Roumet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Jitka Klimešová
- Department of Functional Ecology, Institute of Botany CAS, Dukelska 135, 37901, Trebon, Czech Republic
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Johannes A Postma
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas S Adams
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Glyn Bengough
- The James Hutton Institute, Invergowrie, Dundee,, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee,, DD1 4HN, UK
| | - Elison B Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Johannes H C Cornelissen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Ina C Meier
- Functional Forest Ecology, University of Hamburg, Haidkrugsweg 1, 22885, Barsbütel, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | | | - Laura Rose
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Peter Ryser
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, 2300 RA, the Netherlands
| | - Alexia Stokes
- INRAE, AMAP, CIRAD, IRD, CNRS, University of Montpellier, Montpellier, 34000, France
| | - Tao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Oscar J Valverde-Barrantes
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, Leipzig, 04103, Germany
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sarah A Batterman
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Moemy Gomes de Moraes
- Department of Botany, Institute of Biological Sciences, Federal University of Goiás, 19, 74690-900, Goiânia, Goiás, Brazil
| | - Štěpán Janeček
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA, Australia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - M Luke McCormack
- Center for Tree Science, Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| |
Collapse
|
31
|
Aslam MM, Waseem M, Zhang Q, Ke W, Zhang J, Xu W. Identification of ABC transporter G subfamily in white lupin and functional characterization of L.albABGC29 in phosphorus use. BMC Genomics 2021; 22:723. [PMID: 34615466 PMCID: PMC8495970 DOI: 10.1186/s12864-021-08015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White lupin (Lupinus albus) is a leguminous crop with elite adaptive ability in phosphorus-deficient soil and used as a model plant for studying phosphorus (P) use. However, the genetic basis of its adaptation to low P (LP) remains unclear. ATPase binding cassette (ABC) transports G subfamily play a crucial role in the transportation of biological molecules across the membrane. To date, identification of this subfamily has been analyzed in some plants, but no systematic analysis of these transporters in phosphorus acquisition is available for white lupin. RESULTS This study identified 66 ABCG gene family members in the white lupin genome using comprehensive approaches. Phylogenetic analysis of white lupin ABCG transporters revealed six subclades based on their counterparts in Arabidopsis, displaying distinct gene structure and motif distribution in each cluster. Influences of the whole genome duplication on the evolution of L.albABCGs were investigated in detail. Segmental duplications appear to be the major driving force for the expansion of ABCGs in white lupin. Analysis of the Ka/Ks ratios indicated that the paralogs of the L.albABCG subfamily members principally underwent purifying selection. However, it was found that L.albABCG29 was a result of both tandem and segmental duplications. Overexpression of L.albABCG29 in white lupin hairy root enhanced P accumulation in cluster root under LP and improved plant growth. Histochemical GUS staining indicated that L.albABCG29 expression increased under LP in white lupin roots. Further, overexpression of L.albABCG29 in rice significantly improved P use under combined soil drying and LP by improving root growth associated with increased rhizosheath formation. CONCLUSION Through systematic and comprehensive genome-wide bioinformatics analysis, including conserved domain, gene structures, chromosomal distribution, phylogenetic relationships, and gene duplication analysis, the L.albABCG subfamily was identified in white lupin, and L.albABCG29 characterized in detail. In summary, our results provide deep insight into the characterization of the L.albABCG subfamily and the role of L.albABCG29 in improving P use.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wang Ke
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Kowloon Tong, Hong Kong
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
32
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Mohareb F, Estelles-Lopez L, Kevei Z, Ferrández-Ayela A, Pérez-Pérez JM, Gifford ML, Pérez-Alfocea F. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. PLANT, CELL & ENVIRONMENT 2021; 44:2966-2986. [PMID: 34053093 DOI: 10.1111/pce.14121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.
Collapse
Affiliation(s)
| | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | | |
Collapse
|
33
|
Wang K, Xu F, Yuan W, Zhang D, Liu J, Sun L, Cui L, Zhang J, Xu W. Rice G protein γ subunit qPE9-1 modulates root elongation for phosphorus uptake by involving 14-3-3 protein OsGF14b and plasma membrane H + -ATPase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1603-1615. [PMID: 34216063 DOI: 10.1111/tpj.15402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+ -ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+ -ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+ -ATPase, which is required for rice P use.
Collapse
Affiliation(s)
- Ke Wang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feiyun Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Liu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Leyun Sun
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liyou Cui
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
34
|
Aslam MM, Karanja JK, Yuan W, Zhang Q, Zhang J, Xu W. Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:531-539. [PMID: 34174658 DOI: 10.1016/j.plaphy.2021.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency largely restricts plant growth and lead to severe yield losses. Therefore, identification of novel root traits to improve P uptake is needed to circumvent yield losses. White lupin (Lupinus albus) is a legume crop that develops cluster roots and has the high phosphorus use efficiency in low P soils. We aimed to investigate the association between cluster roots (CR) rhizosheath formation and P uptake in white lupin. Rhizosheath formation and P concentration were evaluated under four soil treatments. CR increased up to 2.5-fold of overall plant dry weight under SD-P compared to WW + P (control), partly attributable to variations in CR development. Our data showed that SD-P significantly increase rhizosheath weight in white lupin. Among the root segments, MCR showed improved P accumulation in the root which is associated with increased MCR rhizosheath weight. Additionally, a positive correlation was observed between MCR rhizosheath weight and P uptake. Moreover, high sucrose content was recorded in MCR, which may contribute in CR growth under SD-P. Expression analysis of genes related to sucrose accumulation (LaSUC1, LaSUC5, and LaSUC9) and phosphorus uptake (LaSPX3, LaPHO1, and LaPHT1) exhibited peaked expression in MCR under SD-P. This indicate that root sucrose status may facilitate P uptake under P starvation. Together, the ability to enhance P uptake of white lupin is largely associated with MCR rhizosheath under SD-P. Our results showed that gene expression modulation of CR forming plant species, demonstrating that these novel root structures may play crucial role in P acquisition from the soil. Our findings could be implicated for developing P and water efficient crop via CR development in sustainable agriculture.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Joseph K Karanja
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- State Key Laboratory of Agro-biotechnology in Chinese University of Hong Kong, Hong Kong Baptist University, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
35
|
Zhang Z, Zhu L, Li D, Wang N, Sun H, Zhang Y, Zhang K, Li A, Bai Z, Li C, Liu L. In situ Root Phenotypes of Cotton Seedlings Under Phosphorus Stress Revealed Through RhizoPot. FRONTIERS IN PLANT SCIENCE 2021; 12:716691. [PMID: 34527012 PMCID: PMC8435733 DOI: 10.3389/fpls.2021.716691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/28/2021] [Indexed: 06/01/2023]
Abstract
Phosphorus (P) deficiency is a common challenge in crop production because of its poor mobility through the soil. The root system plays a significant role in P absorption from the soil and is the initial indicator of low P levels. However, the phenotypic dynamics and longevity of cotton roots under P stress remain unknown. In this study, RhizoPot, an improvised in situ root observation device, was used to monitor the dynamics of root phenotypes of cotton seedlings under P-deficient (PD) and P-replete (PR) conditions. Low P stress reduced P absorption and accumulation in the roots, leading to low dry weight accumulation. Cotton seedlings responded to low P stress by increasing the number of lateral roots, specific root length, branch density, root length density, and length of root hairs. Additionally, the life span of root hairs was prolonged. Low P stress also reduced the average diameter of roots, promoted root extension, expanded the root coverage area, and increased the range of P acquisition. Principal component analysis revealed that the net root growth rate, root length density, root dry weight, P absorption efficiency, average root hair length, and taproot daily growth significantly influenced the cotton root architecture. Collectively, these results show that low P stress reduces the net growth rate of cotton seedling roots and restricts plant growth. Plants respond to P deficiency by extending the life span of root hairs and increasing specific root length and lateral root branch density. This change in root system architecture improves the adaptability of plants to low P conditions. The findings of this study may guide the selection of cotton varieties with efficient P utilization.
Collapse
|
36
|
Wang J, Ding Y, Cao Y, Xu W, Zhang Y. Rhizosheath microbes induce root immune response under soil drying. PLANT SIGNALING & BEHAVIOR 2021; 16:1920752. [PMID: 33906570 PMCID: PMC8244757 DOI: 10.1080/15592324.2021.1920752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The rhizosheath is an important drought-adaptive trait in roots of many angiosperms and has been regarded as a potential trait for future agricultural sustainability. In recent studies, we found that rice roots could form a pronounced rhizosheath under moderate soil drying (MSD) but not under continuous flooding irrigation (CF). The formation of rhizosheaths substantially changes the microbial community structure in endosphere root tissues and the rhizosphere in rice, which may induce a plant immune response. However, the manner by which the formation of rhizosheaths regulates the immune system of roots remains largely unknown. Here, we have analyzed the root transcriptomes of drought-tolerant rice and drought-sensitive rice under both MSD (rhizosheath-root) and CF (root without rhizosheath) conditions. Our results suggest that rhizosheath-associated microbes may trigger plant immune pathways in root under MSD, including the first line of defense component pattern-triggered immunity and the second line of defense component effector-triggered immunity. These data expand our understanding of rhizosheath-associated microbes and plant interactions.
Collapse
Affiliation(s)
- Jiahao Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Center for Plant Water–use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yexin Ding
- Center for Plant Water–use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiying Cao
- Center for Plant Water–use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weifeng Xu
- Center for Plant Water–use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingjiao Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Center for Plant Water–use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Burak E, Quinton JN, Dodd IC. Root hairs are the most important root trait for rhizosheath formation of barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu). ANNALS OF BOTANY 2021; 128:45-57. [PMID: 33631013 PMCID: PMC8318254 DOI: 10.1093/aob/mcab029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/15/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Rhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished. METHODS The ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species. KEY RESULTS Per unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length. CONCLUSIONS When root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.
Collapse
Affiliation(s)
- Emma Burak
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - John N Quinton
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
38
|
Wissuwa M, Kant J. Does half a millimetre matter? Root hairs for yield stability. A commentary on 'Significance of root hairs for plant performance under contrasting field conditions and water deficit'. ANNALS OF BOTANY 2021; 128:iii-v. [PMID: 33755050 PMCID: PMC8318106 DOI: 10.1093/aob/mcab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article comments on:
M. Marin, D. S. Feeney, L. K. Brown, M. Naveed, S. Ruiz, N. Koebernick, A. G. Bengough, P. D. Hallett, T. Roose, J. Puértolas, I. C. Dodd and T. S. George, Significance of root hairs for plant performance under contrasting field conditions and water deficit, Annals of Botany, Volume 128, Issue 1, 30 June 2021, Pages 3–18, 10.1093/aob/mcaa181
Collapse
Affiliation(s)
- Matthias Wissuwa
- Tropical Agricultural Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, 305-8686,Japan
| | - Josefine Kant
- Institute for Bio-& Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich, D-52425 Juelich,Germany
| |
Collapse
|
39
|
Marin M, Feeney DS, Brown LK, Naveed M, Ruiz S, Koebernick N, Bengough AG, Hallett PD, Roose T, Puértolas J, Dodd IC, George TS. Significance of root hairs for plant performance under contrasting field conditions and water deficit. ANNALS OF BOTANY 2021; 128:1-16. [PMID: 33038211 PMCID: PMC8318266 DOI: 10.1093/aob/mcaa181] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Previous laboratory studies have suggested selection for root hair traits in future crop breeding to improve resource use efficiency and stress tolerance. However, data on the interplay between root hairs and open-field systems, under contrasting soils and climate conditions, are limited. As such, this study aims to experimentally elucidate some of the impacts that root hairs have on plant performance on a field scale. METHODS A field experiment was set up in Scotland for two consecutive years, under contrasting climate conditions and different soil textures (i.e. clay loam vs. sandy loam). Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair length and density were used in the study. Root hair length, density and rhizosheath weight were measured at several growth stages, as well as shoot biomass, plant water status, shoot phosphorus (P) accumulation and grain yield. KEY RESULTS Measurements of root hair density, length and its correlation with rhizosheath weight highlighted trait robustness in the field under variable environmental conditions, although significant variations were found between soil textures as the growing season progressed. Root hairs did not confer a notable advantage to barley under optimal conditions, but under soil water deficit root hairs enhanced plant water status and stress tolerance resulting in a less negative leaf water potential and lower leaf abscisic acid concentration, while promoting shoot P accumulation. Furthermore, the presence of root hairs did not decrease yield under optimal conditions, while root hairs enhanced yield stability under drought. CONCLUSIONS Selecting for beneficial root hair traits can enhance yield stability without diminishing yield potential, overcoming the breeder's dilemma of trying to simultaneously enhance both productivity and resilience. Therefore, the maintenance or enhancement of root hairs can represent a key trait for breeding the next generation of crops for improved drought tolerance in relation to climate change.
Collapse
Affiliation(s)
- M Marin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - D S Feeney
- The James Hutton Institute, Invergowrie, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - L K Brown
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - M Naveed
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- School of Computing and Engineering, University of West London, London, UK
| | - S Ruiz
- School of Engineering, University of Southampton, Southampton, UK
| | - N Koebernick
- School of Engineering, University of Southampton, Southampton, UK
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - A G Bengough
- The James Hutton Institute, Invergowrie, Dundee, UK
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - P D Hallett
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - T Roose
- School of Engineering, University of Southampton, Southampton, UK
| | - J Puértolas
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - I C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - T S George
- The James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
40
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
41
|
Zhang Y, Xu F, Ding Y, Du H, Zhang Q, Dang X, Cao Y, Dodd IC, Xu W. Abscisic acid mediates barley rhizosheath formation under mild soil drying by promoting root hair growth and auxin response. PLANT, CELL & ENVIRONMENT 2021; 44:1935-1945. [PMID: 33629760 DOI: 10.1111/pce.14036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 05/22/2023]
Abstract
Soil drying enhances root ABA accumulation and rhizosheath formation, but whether ABA mediates rhizosheath formation is unclear. Here, we used the ABA-deficient mutant Az34 to investigate molecular and morphological changes by which ABA could affect rhizosheath formation. Mild soil drying with intermittent watering increased rhizosheath formation by promoting root and root hair elongation. Attenuated root ABA accumulation in Az34 barley constrained the promotion of root length and root hair length by drying soil, such that Az34 had a smaller rhizosheath. Pharmacological experiments of adding fluridone (an ABA biosynthesis inhibitor) and ABA to drying soil restricted and enhanced rhizosheath formation respectively in Az34 and wild-type Steptoe barley. RNA sequencing suggested that ABA accumulation mediates auxin synthesis and responses and root and root hair elongation in drying soil. In addition, adding indole-3-acetic acid (IAA) to drying soil increased rhizosheath formation by promoting root and root hair elongation in Steptoe and Az34 barley. Together, these results show that ABA accumulation induced by mild soil drying enhance barley rhizosheath formation, which may be achieved through promoting auxin response.
Collapse
Affiliation(s)
- Yingjiao Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yexin Ding
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Du
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiying Cao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Robin AHK, Ghosh S, Shahed MA. PEG-Induced Osmotic Stress Alters Root Morphology and Root Hair Traits in Wheat Genotypes. PLANTS 2021; 10:plants10061042. [PMID: 34064258 PMCID: PMC8224394 DOI: 10.3390/plants10061042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022]
Abstract
Wheat crop in drought-prone regions of Bangladesh suffers from osmotic stress. The objective of this study was to investigate the response of wheat genotypes with respect to root morphology and root hair traits under polyethylene glycol (PEG)-induced osmotic stress. A total of 22 genotypes of wheat were grown hydroponically and two treatments—0% and 10% PEG—were imposed at 14 days after germination. Plant growth was reduced in terms of plant height, number of live leaves per tiller, shoot dry weight, number of root-bearing phytomers, and roots per tiller. Notably, PEG-induced osmotic stress increased root dry weight per tiller by increasing length of the main axis and lateral roots, as well as the diameter and density of both lateral roots and root hairs of the individual roots. A biplot was drawn after a principal component analysis, taking three less-affected (high-yielding genotypes) and three highly affected (low-yielding genotypes and landrace) genotypes under 10% PEG stress, compared to control. Principal component 1 separated PEG-treated wheat genotypes from control-treated genotypes, with a high and positive coefficient for the density of lateral roots and root hairs, length and diameter of the main axis, and first-order lateral roots and leaf injury scores, indicating that these traits are associated with osmotic stress tolerance. Principal component 2 separated high-yielding and tolerant wheat genotypes from low-yielding and susceptible genotypes, with a high coefficient for root dry weight, density of root hairs and second-order lateral roots, length of the main axis, and first-order lateral roots. An increase in root dry weight in PEG-stress-tolerant wheat genotypes was achieved through an increase in length and diameter of the main axis and lateral roots. The information derived from this research could be exploited for identifying osmotic stress-tolerant QTL and for developing abiotic-tolerant cultivars of wheat.
Collapse
|
43
|
Root hairs: the villi of plants. Biochem Soc Trans 2021; 49:1133-1146. [PMID: 34013353 DOI: 10.1042/bst20200716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.
Collapse
|
44
|
Beroueg A, Lecompte F, Mollier A, Pagès L. Genetic Variation in Root Architectural Traits in Lactuca and Their Roles in Increasing Phosphorus-Use-Efficiency in Response to Low Phosphorus Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:658321. [PMID: 34012460 PMCID: PMC8128164 DOI: 10.3389/fpls.2021.658321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 06/03/2023]
Abstract
Low phosphorus (P) bioavailability in the soil and concerns over global P reserves have emphasized the need to cultivate plants that acquire and use P efficiently. Root architecture adaptation to low P can be variable depending on species or even genotypes. To assess the genetic variability of root architectural traits and their responses to low P in the Lactuca genus, we examined fourteen genotypes including wild species, ancient and commercial lettuce cultivars at low (LP, 0.1 mmol. L-1) and high P (HP, 1 mmol. L-1). Plants were grown in cylindrical pots adapted for the excavation and observation of root systems, with an inert substrate. We identified substantial genetic variation in all the investigated root traits, as well as an effect of P availability on these traits, except on the diameter of thinner roots. At low P, the main responses were a decrease in taproot diameter, an increase in taproot dominance over its laterals and an increase in the inter-branch distance. Although the genotype x P treatment effect was limited to root depth, we identified a tradeoff between the capacity to maintain a thick taproot at low P and the dominance of the taproot over its laterals. Regardless of the P level, the phosphorus-use-efficiency (PUE) varied among lettuce genotypes and was significantly correlated with total root biomass regardless of the P level. As taproot depth and maximum apical diameter were the principal determinants of total root biomass, the relative increase in PUE at low P was observed in genotypes that showed the thickest apical diameters and/or those whose maximal apical diameter was not severely decreased at low P availability. This pre-eminence of the taproot in the adaptation of Lactuca genotypes to low P contrasts with other species which rely more on lateral roots to adapt to P stress.
Collapse
Affiliation(s)
| | | | - Alain Mollier
- ISPA Unit, Bordeaux Sciences Agro, INRAE, Villenave d’Ornon, France
| | - Loïc Pagès
- PSH Unit, INRAE, F-84914, Avignon, France
| |
Collapse
|
45
|
Burke S, Sadaune E, Rognon L, Fontana A, Jourdrin M, Fricke W. A redundant hydraulic function of root hairs in barley plants grown in hydroponics. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:448-459. [PMID: 33347805 DOI: 10.1071/fp20287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The root hair-less brb of Hordeum vulgare L. (bald root barley) mutant was used to assess the significance that root hairs have for the hydraulic properties of roots and response to a limited supply of mineral nutrients in plants grown on hydroponics. The barley brb mutant and its parent wild-type (H. vulgare cv. Pallas) were grown under nutrient sufficient control conditions, and under conditions of low supply of P and N. Plants were analysed when they were 14-18 days old. Root hydraulic conductivity (Lp) was determined for excised root systems and intact transpiring plants, and cell Lp was determined through cell pressure probe measurements. The formation of Casparian bands and suberin lamellae was followed through staining of cross-sections. The presence or absence of root hairs had no effect on the overall hydraulic response of plants to nutritional treatments. Root and cell Lp did not differ between the two genotypes. The most apparent difference between brb and wild-type plants was the consistently reduced formation of apoplastic barriers in brb plants. Any hydraulic function of root hairs can be redundant in barley, at least under the hydroponic conditions tested.
Collapse
Affiliation(s)
- Shannon Burke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Emma Sadaune
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Lisa Rognon
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Alexane Fontana
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Marianne Jourdrin
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Republic of Ireland; and Corresponding author.
| |
Collapse
|
46
|
Gonzalez D, Postma J, Wissuwa M. Cost-Benefit Analysis of the Upland-Rice Root Architecture in Relation to Phosphate: 3D Simulations Highlight the Importance of S-Type Lateral Roots for Reducing the Pay-Off Time. FRONTIERS IN PLANT SCIENCE 2021; 12:641835. [PMID: 33777076 PMCID: PMC7996052 DOI: 10.3389/fpls.2021.641835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 05/22/2023]
Abstract
The rice root system develops a large number of nodal roots from which two types of lateral roots branch out, large L-types and fine S-types, the latter being unique to the species. All roots including S-types are covered by root hairs. To what extent these fine structures contribute to phosphate (P) uptake under P deficiency was investigated using a novel 3-D root growth model that treats root hairs as individual structures with their own Michaelis-Menten uptake kinetics. Model simulations indicated that nodal roots contribute most to P uptake followed by L-type lateral roots and S-type laterals and root hairs. This is due to the much larger root surface area of thicker nodal roots. This thickness, however, also meant that the investment in terms of P needed for producing nodal roots was very large. Simulations relating P costs and time needed to recover that cost through P uptake suggest that producing nodal roots represents a considerable burden to a P-starved plant, with more than 20 times longer pay-off time compared to S-type laterals and root hairs. We estimated that the P cost of these fine root structures is low enough to be recovered within a day of their formation. These results expose a dilemma in terms of optimizing root system architecture to overcome P deficiency: P uptake could be maximized by developing more nodal root tissue, but when P is growth-limiting, adding more nodal root tissue represents an inefficient use of the limiting factor P. In order to improve adaption to P deficiency in rice breeding two complementary strategies seem to exist: (1) decreasing the cost or pay-off time of nodal roots and (2) increase the biomass allocation to S-type roots and root hairs. To what extent genotypic variation exists within the rice gene pool for either strategy should be investigated.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Johannes Postma
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geoscience – IBG-2: Plant Science, Jülich, Germany
| | - Matthias Wissuwa
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- *Correspondence: Matthias Wissuwa,
| |
Collapse
|
47
|
Rongsawat T, Peltier JB, Boyer JC, Véry AA, Sentenac H. Looking for Root Hairs to Overcome Poor Soils. TRENDS IN PLANT SCIENCE 2021; 26:83-94. [PMID: 32980260 DOI: 10.1016/j.tplants.2020.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Breeding new cultivars allowing reduced fertilization and irrigation is a major challenge. International efforts towards this goal focus on noninvasive methodologies, platforms for high-throughput phenotyping of large plant populations, and quantitative description of root traits as predictors of crop performance in environments with limited water and nutrient availability. However, these high-throughput analyses ignore one crucial component of the root system: root hairs (RHs). Here, we review current knowledge on RH functions, mainly in the context of plant hydromineral nutrition, and take stock of quantitative genetics data pointing at correlations between RH traits and plant biomass production and yield components.
Collapse
Affiliation(s)
- Thanyakorn Rongsawat
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Benoît Peltier
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier 34060, France.
| |
Collapse
|
48
|
Ma X, Li X, Ludewig U. Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. ANNALS OF BOTANY 2021; 127:155-166. [PMID: 32877525 PMCID: PMC7750718 DOI: 10.1093/aob/mcaa159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/28/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS An increase in root hair length and density and the development of arbuscular mycorrhiza symbiosis are two alternative strategies of most plants to increase the root-soil surface area under phosphorus (P) deficiency. Across many plant species, root hair length and mycorrhization density are inversely correlated. Root architecture, rooting density and physiology also differ between species. This study aims to understand the relationship among root hairs, arbuscular mycorrhizal fungi (AMF) colonization, plant growth, P acquisition and mycorrhizal-specific Pi transporter gene expression in maize. METHODS Using nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency through a combined analysis of morphological, physiological and molecular factors. KEY RESULTS Wild-type root hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless mutant, as measured by in situ zymography. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The mycorrhizal dependency of maize was 33 % higher than the root hair dependency. CONCLUSIONS The results identified larger mycorrhizal dependency than root hair dependency under P deficiency in maize. Root hairs and AMF inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies compete with each other.
Collapse
Affiliation(s)
- Xiaomin Ma
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstrasse, Stuttgart, Germany
| | - Xuelian Li
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstrasse, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstrasse, Stuttgart, Germany
| |
Collapse
|
49
|
Ratajczak K, Sulewska H, Błaszczyk L, Basińska-Barczak A, Mikołajczak K, Salamon S, Szymańska G, Dryjański L. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Triticum aestivum ssp. spelta L.) Cultivated under Drought Conditions with Different Endophytic Core Microbiomes. Int J Mol Sci 2020; 21:ijms21217987. [PMID: 33121138 PMCID: PMC7662716 DOI: 10.3390/ijms21217987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
The role of the microbiome in the root zone is critically important for plants. However, the mechanism by which plants can adapt to environmental constraints, especially water deficit, has not been fully investigated to date, while the endophytic core microbiome of the roots of spelt (Triticum aestivum ssp. spelta L.) grown under drought conditions has received little attention. In this study, we hypothesize that differences in the endophytic core of spelt and common wheat root microbiomes can explain the variations in the growth and photosynthetic activity of those plants, especially under drought conditions. Our greenhouse experimental design was completely randomized in a 2 × 4 × 3 factorial scheme: two water regime levels (well-watered and drought), three spelt varieties (T. aestivum ssp. spelta L.: ‘Badenstern’, ‘Badenkrone’ and ‘Zollernspelz’ and one wheat variety: T. aestivum ssp. vulgare L: ‘Dakotana’) and three mycorrhizal levels (autoclaved soil inoculation with Rhizophagus irregularis, control (autoclaved soil) and natural inoculation (non-autoclaved soil—microorganisms from the field). During the imposed stress period, relative water content (RWC), leaf chlorophyll fluorescence, gas exchange and water use efficiency (WUE) were measured. Microscopic observations of the root surface through fungi isolation and identification were conducted. Our results indicate that ‘Badenstern’ was the most drought tolerant variety, followed by ‘Zollernspelz’ and ‘Badenkrone,’ while the common wheat variety ‘Dakotana’ was the most drought sensitive. Inoculation of ‘Badenstern’ with the mycorrhizal fungi R. irregularis contributed to better growth performance as evidenced by increased whole plant and stalk dry matter accumulation, as well as greater root length and volume. Inoculation of ‘Zollernspelz’ with arbuscular mycorrhizal fungi (AMF) enhanced the photochemical efficiency of Photosystem II and significantly improved root growth under drought conditions, which was confirmed by enhanced aboveground biomass, root dry weight and length. This study provides evidence that AMF have the potential to be beneficial for plant growth and dry matter accumulation in spelt varieties grown under drought conditions.
Collapse
Affiliation(s)
- Karolina Ratajczak
- Department of Agronomy, Poznan University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (H.S.); (G.S.)
- Correspondence:
| | - Hanna Sulewska
- Department of Agronomy, Poznan University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (H.S.); (G.S.)
| | - Lidia Błaszczyk
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznań, Poland; (L.B.); (A.B.-B.); (K.M.); (S.S.)
| | - Aneta Basińska-Barczak
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznań, Poland; (L.B.); (A.B.-B.); (K.M.); (S.S.)
| | - Katarzyna Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznań, Poland; (L.B.); (A.B.-B.); (K.M.); (S.S.)
| | - Sylwia Salamon
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska St., 60-479 Poznań, Poland; (L.B.); (A.B.-B.); (K.M.); (S.S.)
| | - Grażyna Szymańska
- Department of Agronomy, Poznan University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (H.S.); (G.S.)
| | | |
Collapse
|
50
|
Kohli PS, Kumar Verma P, Verma R, Parida SK, Thakur JK, Giri J. Genome-wide association study for phosphate deficiency responsive root hair elongation in chickpea. Funct Integr Genomics 2020; 20:775-786. [PMID: 32892252 DOI: 10.1007/s10142-020-00749-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/17/2020] [Accepted: 08/16/2020] [Indexed: 01/23/2023]
Abstract
Root hairs (RHs) are single-celled elongated epidermal cells and play a vital role in nutrient absorption, particularly for immobile minerals like phosphorus (P). As an adaptive response to P deficiency, an increase in RH length enhances root-soil contact and absorptive area for P absorption. Genetic variations have been reported for RH length and its response to P deficiency in plants. However, only a few association studies have been conducted to identify genes and genetic loci associated with RH length. Here, we screened desi chickpea accessions for RH length and its plasticity under P deficiency. Further, the genome-wide association study (GWAS) was conducted to identify the genetic loci associated with RH length in P deficient and sufficient conditions. Although high variability was observed in terms of RH length in diverse genotypes, majority of the accessions showed typical response of increase in RH length in low P. Genome-wide association mapping identified many SNPs with significant associations with RH length in P-sufficient and P-deficient conditions. A few candidate genes for RH length in P deficient (SIZ1-like and HAD superfamily protein) and sufficient (RSL2-like and SMAP1-like) conditions were identified which have known roles in RH development and P deficiency response or both. Highly associated loci and candidate genes identified in this study would be useful for genomic-assisted breeding to develop P-efficient chickpea.
Collapse
Affiliation(s)
- Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pankaj Kumar Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rita Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|