1
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| |
Collapse
|
2
|
Miyamoto T, Hedjazi S, Miyamoto C, Amrein H. Drosophila neuronal Glucose-6-Phosphatase is a modulator of neuropeptide release that regulates muscle glycogen stores via FMRFamide signaling. Proc Natl Acad Sci U S A 2024; 121:e2319958121. [PMID: 39008673 PMCID: PMC11287260 DOI: 10.1073/pnas.2319958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Sheida Hedjazi
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Chika Miyamoto
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX77807
| |
Collapse
|
3
|
Miyamoto T, Hedjazi S, Miyamoto C, Amrein H. Drosophila Neuronal Glucose 6 Phosphatase is a Modulator of Neuropeptide Release that Regulates Muscle Glycogen Stores via FMRFamide Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.568950. [PMID: 38077084 PMCID: PMC10705280 DOI: 10.1101/2023.11.28.568950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a non-canonical function of the Drosophila Glucose-6-Phosphatase ( G6P ) gene in a subset of neurosecretory cells in the CNS that governs systemic glucose homeostasis in food deprived flies. Here, we show that G6P expressing neurons define 6 groups of neuropeptide secreting cells, 4 in the brain and 2 in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide neuropeptides ( FMRFa G6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFa G6P neurons for attaining a prominent Golgi apparatus and secreting neuropeptides efficiently. Finally, we establish that G6P dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of neuropeptides and enhancing signaling to respective target tissues expressing cognate receptors. SIGNIFICANCE STATEMENT Glucose-6-phosphtase (G6P) is a critical enzyme in sugar synthesis and catalyzes the final step in glucose production. In Drosophila - and insects in general - where trehalose is the circulating sugar and Trehalose phosphate synthase, and not G6P, is used for sugar production, G6P has adopted a novel and unique role in peptidergic neurons in the CNS. Interestingly, flies lacking G6P show diminished Neuropeptide secretions and have a smaller Golgi apparatus in peptidergic neurons. It is hypothesized that the role of G6P is to counteract glycolysis, thereby creating a cellular environment that is more amenable to efficient neuropeptide secretion.
Collapse
|
4
|
Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, Barbosa M, dos Reis Ferreira V, Videira PA. Revisiting the immunopathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024; 15:1350101. [PMID: 38550576 PMCID: PMC10972870 DOI: 10.3389/fimmu.2024.1350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.
Collapse
Affiliation(s)
- Carlota Pascoal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Rita Francisco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Patrícia Mexia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Beatriz Luís Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Pedro Granjo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Paula Alexandra Videira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| |
Collapse
|
5
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Veiga-da-Cunha M, Wortmann SB, Grünert SC, Van Schaftingen E. Treatment of the Neutropenia Associated with GSD1b and G6PC3 Deficiency with SGLT2 Inhibitors. Diagnostics (Basel) 2023; 13:1803. [PMID: 37238286 PMCID: PMC10217388 DOI: 10.3390/diagnostics13101803] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Metabolic Research Group, de Duve Institute and UCLouvain, B-1200 Brussels, Belgium
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
- Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | | |
Collapse
|
7
|
Lédeczi Z, Pittner R, Kriván G, Kardon T, Legeza B. Empagliflozin restores neutropenia and neutrophil dysfunction in a young patient with severe congenital neutropenia type 4. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:344-346.e1. [PMID: 36309187 DOI: 10.1016/j.jaip.2022.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Zsigmond Lédeczi
- Faculty of Medicine, Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Rebeka Pittner
- Faculty of Medicine, Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Gergely Kriván
- Department of Paediatric Haematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Tamás Kardon
- Faculty of Medicine, Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Legeza
- Faculty of Medicine, Department of Molecular Biology, Semmelweis University, Budapest, Hungary; First Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Boulanger C, Stephenne X, Diederich J, Mounkoro P, Chevalier N, Ferster A, Van Schaftingen E, Veiga‐da‐Cunha M. Successful use of empagliflozin to treat neutropenia in two G6PC3-deficient children: Impact of a mutation in SGLT5. J Inherit Metab Dis 2022; 45:759-768. [PMID: 35506446 PMCID: PMC9540799 DOI: 10.1002/jimd.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Neutropenia and neutrophil dysfunction found in deficiencies in G6PC3 and in the glucose-6-phosphate transporter (G6PT/SLC37A4) are due to accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol present in blood. Lowering blood 1,5-AG with an SGLT2 inhibitor greatly improved neutrophil counts and function in G6PC3-deficient mice and in patients with G6PT-deficiency. We evaluate this treatment in two G6PC3-deficient children. While neutropenia was severe in one child (PT1), which was dependent on granulocyte cololony-stimulating factor (GCSF), it was significantly milder in the other one (PT2), which had low blood 1,5-AG levels and only required GCSF during severe infections. Treatment with the SGLT2-inhibitor empagliflozin decreased 1,5-AG in blood and 1,5-AG6P in neutrophils and improved (PT1) or normalized (PT2) neutrophil counts, allowing to stop GCSF. On empagliflozin, both children remained infection-free (>1 year - PT2; >2 years - PT1) and no side effects were reported. Remarkably, sequencing of SGLT5, the gene encoding the putative renal transporter for 1,5-AG, disclosed a rare heterozygous missense mutation in PT2, replacing the extremely conserved Arg401 by a histidine. The higher urinary clearance of 1,5-AG explains the more benign neutropenia and the outstanding response to empagliflozin treatment found in this child. Our data shows that SGLT2 inhibitors are an excellent alternative to treat the neutropenia present in G6PC3-deficiency.
Collapse
Affiliation(s)
- Cécile Boulanger
- Biologie HématologiqueCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Xavier Stephenne
- Service de Gastro‐Entérologie et Hépatologie PédiatriqueCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Jennifer Diederich
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Pierre Mounkoro
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Nathalie Chevalier
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Alina Ferster
- Department of Hematology/OncologyHôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrusselsBelgium
| | | | | |
Collapse
|
9
|
Stojkov D, Gigon L, Peng S, Lukowski R, Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S, Simon HU. Physiological and Pathophysiological Roles of Metabolic Pathways for NET Formation and Other Neutrophil Functions. Front Immunol 2022; 13:826515. [PMID: 35251008 PMCID: PMC8889909 DOI: 10.3389/fimmu.2022.826515] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most numerous cells in the leukocyte population and essential for innate immunity. To limit their effector functions, neutrophils are able to modulate glycolysis and other cellular metabolic pathways. These metabolic pathways are essential not only for energy usage, but also for specialized effector actions, such as the production of reactive oxygen species (ROS), chemotaxis, phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs). It has been demonstrated that activated viable neutrophils can produce NETs, which consists of a DNA scaffold able to bind granule proteins and microorganisms. The formation of NETs requires the availability of increased amounts of adenosine triphosphate (ATP) as it is an active cellular and therefore energy-dependent process. In this article, we discuss the glycolytic and other metabolic routes in association with neutrophil functions focusing on their role for building up NETs in the extracellular space. A better understanding of the requirements of metabolic pathways for neutrophil functions may lead to the discovery of molecular targets suitable to develop novel anti-infectious and/or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shuang Peng
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Regulation of Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
10
|
Dai R, Lv G, Li W, Tang W, Chen J, Liu Q, Yang L, Zhang M, Tian Z, Zhou L, Yan X, Wang Y, Ding Y, An Y, Zhang Z, Tang X, Zhao X. Altered Functions of Neutrophils in Two Chinese Patients With Severe Congenital Neutropenia Type 4 Caused by G6PC3 Mutations. Front Immunol 2021; 12:699743. [PMID: 34305938 PMCID: PMC8296982 DOI: 10.3389/fimmu.2021.699743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background SCN4 is an autosomal recessive disease caused by mutations in the G6PC3 gene. The clinical, molecular, and immunological features; function of neutrophils; and prognosis of patients with SCN4 have not been fully elucidated. Methods Two Chinese pediatric patients with G6PC3 mutations were enrolled in this study. Clinical data, genetic and immunologic characteristics, and neutrophil function were evaluated in patients and controls before and after granulocyte colony-stimulating factor (G-CSF) treatment. Results Both patients had histories of pneumonia, inguinal hernia, cryptorchidism, and recurrent oral ulcers. Patient 1 also had asthma and otitis media, and patient 2 presented with prominent ectatic superficial veins and inflammatory bowel disease. DNA sequencing demonstrated that both patients harbored heterozygous G6PC3 gene mutations. Spontaneous and FAS-induced neutrophil apoptosis were significantly increased in patients, and improved only slightly after G-CSF treatment, while neutrophil respiratory burst and neutrophil extracellular traps production remained impaired in patients after G-CSF treatment. Conclusion G-CSF treatment is insufficient for patients with SCN4 patients, who remain at risk of infection. Where possible, regular G-CSF treatment, long-term prevention of infection, are the optimal methods for cure of SCN4 patients. It is important to monitor closely for signs of leukemia in SCN4 patients. Once leukemia occurs in SCN4 patients, hematopoietic stem cell transplantation is the most important choice of treatment.
Collapse
Affiliation(s)
- Rongxin Dai
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ge Lv
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Liu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yan
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Wang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metab 2021; 33:1404-1417.e9. [PMID: 34043942 PMCID: PMC8266748 DOI: 10.1016/j.cmet.2021.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
Collapse
|
12
|
Khoder-Agha F, Kietzmann T. The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol 2021; 42:101888. [PMID: 33602616 PMCID: PMC8113034 DOI: 10.1016/j.redox.2021.101888] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) carry out prime physiological roles as intracellular signaling agents, yet pathologically high concentrations of ROS cause irreversible damage to biomolecules, alter cellular programs and contribute to various diseases. While decades of intensive research have identified redox-related patterns and signaling pathways, very few addressed how the glycosylation machinery senses and responds to oxidative stress. A common trait among ROS and glycans residing on glycoconjugates is that they are both highly dynamic, as they are quickly fine-tuned in response to stressors such as inflammation, cancer and infectious diseases. On this account, the delicate balance of the redox potential, which is tightly regulated by dozens of enzymes including NOXs, and the mitochondrial electron transport chain as well as the fluidity of glycan biosynthesis resulting from the cooperation of glycosyltransferases, glycosidases, and nucleotide sugar transporters, is paramount to cell survival. Here, we review the broad spectrum of the interplay between redox changes and glycosylation with respect to their principle consequences on human physiology.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland.
| |
Collapse
|
13
|
Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood 2021; 136:1033-1043. [PMID: 32294159 DOI: 10.1182/blood.2019004465] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Neutropenia and neutrophil dysfunction cause serious infections and inflammatory bowel disease in glycogen storage disease type Ib (GSD-Ib). Our discovery that accumulating 1,5-anhydroglucitol-6-phosphate (1,5AG6P) caused neutropenia in a glucose-6-phosphatase 3 (G6PC3)-deficient mouse model and in 2 rare diseases (GSD-Ib and G6PC3 deficiency) led us to repurpose the widely used antidiabetic drug empagliflozin, an inhibitor of the renal glucose cotransporter sodium glucose cotransporter 2 (SGLT2). Off-label use of empagliflozin in 4 GSD-Ib patients with incomplete response to granulocyte colony-stimulating factor (GCSF) treatment decreased serum 1,5AG and neutrophil 1,5AG6P levels within 1 month. Clinically, symptoms of frequent infections, mucosal lesions, and inflammatory bowel disease resolved, and no symptomatic hypoglycemia was observed. GCSF could be discontinued in 2 patients and tapered by 57% and 81%, respectively, in the other 2. The fluctuating neutrophil numbers in all patients were increased and stabilized. We further demonstrated improved neutrophil function: normal oxidative burst (in 3 of 3 patients tested), corrected protein glycosylation (2 of 2), and normal neutrophil chemotaxis (1 of 1), and bactericidal activity (1 of 1) under treatment. In summary, the glucose-lowering SGLT2 inhibitor empagliflozin, used for type 2 diabetes, was successfully repurposed for treating neutropenia and neutrophil dysfunction in the rare inherited metabolic disorder GSD-Ib without causing symptomatic hypoglycemia. We ascribe this to an improvement in neutrophil function resulting from the reduction of the intracellular concentration of 1,5AG6P.
Collapse
|
14
|
Liu Z, Zhang H, Hu H, Cai Z, Lu C, Liang Q, Qian J, Wang C, Jiang L. A Novel Six-mRNA Signature Predicts Survival of Patients With Glioblastoma Multiforme. Front Genet 2021; 12:634116. [PMID: 33790946 PMCID: PMC8006298 DOI: 10.3389/fgene.2021.634116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating brain tumor and displays divergent clinical outcomes due to its high degree of heterogeneity. Reliable prognostic biomarkers are urgently needed for improving risk stratification and survival prediction. In this study, we analyzed genome-wide mRNA profiles in GBM patients derived from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify mRNA-based signatures for GBM prognosis with survival analysis. Univariate Cox regression model was used to evaluate the relationship between the expression of mRNA and the prognosis of patients with GBM. We established a risk score model that consisted of six mRNA (AACS, STEAP1, STEAP2, G6PC3, FKBP9, and LOXL1) by the LASSO regression method. The six-mRNA signature could divide patients into a high-risk and a low-risk group with significantly different survival rates in training and test sets. Multivariate Cox regression analysis confirmed that it was an independent prognostic factor in GBM patients, and it has a superior predictive power as compared with age, IDH mutation status, MGMT, and G-CIMP methylation status. By combining this signature and clinical risk factors, a nomogram can be established to predict 1-, 2-, and 3-year OS in GBM patients with relatively high accuracy.
Collapse
Affiliation(s)
- Zhentao Liu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Neurosurgery, No. 988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Hao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zheng Cai
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, Shanghai Tong Ji University School of Medicine, Shanghai, China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Comprehensive multi-omics analysis of G6PC3 deficiency-related congenital neutropenia with inflammatory bowel disease. iScience 2021; 24:102214. [PMID: 33748703 PMCID: PMC7960940 DOI: 10.1016/j.isci.2021.102214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/29/2020] [Accepted: 02/17/2021] [Indexed: 11/26/2022] Open
Abstract
Autosomal recessive mutations in G6PC3 cause isolated and syndromic congenital neutropenia which includes congenital heart disease and atypical inflammatory bowel disease (IBD). In a highly consanguineous pedigree with novel mutations in G6PC3 and MPL, we performed comprehensive multi-omics analyses. Structural analysis of variant G6PC3 and MPL proteins suggests a damaging effect. A distinct molecular cytokine profile (cytokinome) in the affected proband with IBD was detected. Liquid chromatography-mass spectrometry-based proteomics analysis of the G6PC3-deficient plasma samples identified 460 distinct proteins including 75 upregulated and 73 downregulated proteins. Specifically, the transcription factor GATA4 and LST1 were downregulated while platelet factor 4 (PF4) was upregulated. GATA4 and PF4 have been linked to congenital heart disease and IBD respectively, while LST1 may have perturbed a variety of essential cell functions as it is required for normal cell-cell communication. Together, these studies provide potentially novel insights into the pathogenesis of syndromic congenital G6PC3 deficiency. Multi-omics approaches identify unique signatures Whole-exome sequencing reveals distinct cytokine profiles Expression of GATA4, PF4, and LST1 is dysregulated
Collapse
|
16
|
Lubkemann A, Carpenter H, O'Brien R, Baldwin S, Lister R. Cardiac Morphology and Collagen Deposition in A Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3) Knockout Mouse model. ACTA ACUST UNITED AC 2021. [PMID: 34263175 DOI: 10.33425/2639-944x.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Glucose-6-phosphatase-- β (3), one of multiple isoforms of glucose-6-phosphatase, catalyzes the final step in gluconeogenesis. It is known that mutated G6P3 is associated with severe neutropenia in addition to congenital heart defects, but little is known about the histological changes in cardiac tissue as a result of mutated or deleted G6PC34. Objectives We sought to further characterize the histological alterations caused by deleted G6PC3 and determine the role of collagen deposition, myocyte proliferation and apoptosis in these changes. Methods Cardiac tissue from G6PC3 knockout mice and WT mice were harvested, imbedded and stained for markers of collagen (Trichrome), proliferation (KI-67), apoptosis (caspase 3) and hematopoietic stem cells (CD34). Slides were digitally uploaded, and Leica stain quantification was calculated. Results We demonstrated that in G6PC3 knock out adult mice have significant differences in heart morphology including decreased left ventricular collagen, decreased cellular proliferation and increased apoptosis histologically. Conclusions As compared to wild type, the hearts of G6PC3 knockout mice demonstrated significantly decreased collagen globally, a crucial component for adequate strength and contractility of myocardial tissue. More investigation should be done to further explore the functional effects of such alterations via echocardiograms.
Collapse
Affiliation(s)
- Austin Lubkemann
- Vanderbilt University Medical Center, Nashville, Tennessee.,UNC Chapel Hill, North Carolina
| | - Heidi Carpenter
- Vanderbilt University Medical Center, Nashville, Tennessee.,UNC Chapel Hill, North Carolina
| | | | - Scott Baldwin
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rolanda Lister
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Metabolic abnormalities in G6PC3-deficient human neutrophils result in severe functional defects. Blood Adv 2020; 4:5888-5901. [PMID: 33259599 DOI: 10.1182/bloodadvances.2020002225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Severe congenital neutropenia type 4 (SCN-4) is an autosomal recessive condition in which mutations in the G6PC3 gene encoding for the catalytic 3 subunit of glucose-6-phosphatase-β result in neutropenia, neutrophil dysfunction, and other syndromic features. We report a child with SCN-4 caused by compound heterozygous mutations in G6PC3, a previously identified missense mutation in exon 6 (c.758G>A[p.R235H]), and a novel missense mutation in exon 2 (c.325G>A[p.G109S]). The patient had recurrent bacterial infections, inflammatory bowel disease, neutropenia, and intermittent thrombocytopenia. Administration of granulocyte colony-stimulating factor (G-CSF) resolved the neutropenia and allowed for detailed evaluation of human neutrophil function. Random and directed migration by the patient's neutrophils was severely diminished. Associated with this were defects in CD11b expression and F-actin assembly. Bactericidal activity at bacteria/neutrophil ratios >1:1 was also diminished and was associated with attenuated ingestion. Superoxide anion generation was <25% of control values, but phox proteins appeared quantitatively normal. Extensive metabolomics analysis at steady state and upon incubation with stable isotope-labeled tracers (U-13C-glucose, 13C,15N-glutamine, and U-13C-fructose) demonstrated dramatic impairments in early glycolysis (hexose phosphate levels), hexosemonophosphate shunt (required for the generation of the NADPH), and the total adenylate pool, which could explain the dramatic cell dysfunction displayed by the patient's neutrophils. Preliminary experiments with fructose supplementation to bypass the enzyme block demonstrated that the metabolic profile could be reversed, but was not sustained long enough for functional improvement. In human deficiency of G6PC3, metabolic defects resulting from the enzyme deficiency account for diverse neutrophil functional defects and present a major risk of infection.
Collapse
|
18
|
Goenka A, Doherty JA, Al-Farsi T, Jagger C, Banka S, Cheesman E, Fagbemi A, Hughes SM, Wynn RF, Hussell T, Arkwright PD. Neutrophil dysfunction triggers inflammatory bowel disease in G6PC3 deficiency. J Leukoc Biol 2020; 109:1147-1154. [PMID: 32930428 DOI: 10.1002/jlb.5ab1219-699rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/06/2022] Open
Abstract
The glucose-6-phosphatase catalytic subunit 3 (G6PC3) encodes a ubiquitously expressed enzyme that regulates cytoplasmic glucose availability. Loss-of-function biallelic G6PC3 mutations cause severe congenital neutropenia and a diverse spectrum of extra-hematological manifestations, among which inflammatory bowel disease (IBD) has been anecdotally reported. Neutrophil function and clinical response to granulocyte colony-stimulating factor (G-CSF) and hematopoietic stem cell transplantation (HSCT) were investigated in 4 children with G6PC3 deficiency-associated IBD. G6PC3 deficiency was associated with early-onset IBD refractory to treatment with steroids and infliximab. The symptoms of IBD progressed despite G-CSF treatment. In vitro studies on the patients' blood showed that neutrophils displayed higher levels of activation markers (CD11b, CD66b, and CD14), excessive IL-8 and reactive oxygen species, and increased apoptosis and secondary necrosis. Secondary necrosis was exaggerated after stimulation with Escherichia coli and could be partially rescued with supplemental exogenous glucose. HSCT led to normalization of neutrophil function and remission of gastrointestinal symptoms. We conclude that neutrophils in G6PC3 deficiency release pro-inflammatory mediators when exposed to gut bacteria, associated with intestinal inflammation, despite treatment with G-CSF. HSCT is an effective therapeutic option in patients with G6PC3 deficiency-associated IBD refractory to immune suppressants.
Collapse
Affiliation(s)
- Anu Goenka
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John A Doherty
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Tariq Al-Farsi
- Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Edmund Cheesman
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew Fagbemi
- Department of Paediatric Gastroenterology, Royal Manchester Children's Hospital, Manchester, UK
| | - Stephen M Hughes
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Robert F Wynn
- Department of Paediatric Haematology Royal Manchester Children's Hospital, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
19
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
20
|
Dienel GA. Hypothesis: A Novel Neuroprotective Role for Glucose-6-phosphatase (G6PC3) in Brain-To Maintain Energy-Dependent Functions Including Cognitive Processes. Neurochem Res 2020; 45:2529-2552. [PMID: 32815045 DOI: 10.1007/s11064-020-03113-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The isoform of glucose-6-phosphatase in liver, G6PC1, has a major role in whole-body glucose homeostasis, whereas G6PC3 is widely distributed among organs but has poorly-understood functions. A recent, elegant analysis of neutrophil dysfunction in G6PC3-deficient patients revealed G6PC3 is a neutrophil metabolite repair enzyme that hydrolyzes 1,5-anhydroglucitol-6-phosphate, a toxic metabolite derived from a glucose analog present in food. These patients exhibit a spectrum of phenotypic characteristics and some have learning disabilities, revealing a potential linkage between cognitive processes and G6PC3 activity. Previously-debated and discounted functions for brain G6PC3 include causing an ATP-consuming futile cycle that interferes with metabolic brain imaging assays and a nutritional role involving astrocyte-neuron glucose-lactate trafficking. Detailed analysis of the anhydroglucitol literature reveals that it competes with glucose for transport into brain, is present in human cerebrospinal fluid, and is phosphorylated by hexokinase. Anhydroglucitol-6-phosphate is present in rodent brain and other organs where its accumulation can inhibit hexokinase by competition with ATP. Calculated hexokinase inhibition indicates that energetics of brain and erythrocytes would be more adversely affected by anhydroglucitol-6-phosphate accumulation than heart. These findings strongly support the paradigm-shifting hypothesis that brain G6PC3 removes a toxic metabolite, thereby maintaining brain glucose metabolism- and ATP-dependent functions, including cognitive processes.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 500, Little Rock, AR, 72205, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
21
|
Al-Saleh F, Khashab F, Fadel F, Al-Kandari N, Al-Maghrebi M. Inhibition of NADPH oxidase alleviates germ cell apoptosis and ER stress during testicular ischemia reperfusion injury. Saudi J Biol Sci 2020; 27:2174-2184. [PMID: 32714044 PMCID: PMC7376125 DOI: 10.1016/j.sjbs.2020.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Testicular torsion and detorsion (TTD) is a serious urological condition affecting young males that is underlined by an ischemia reperfusion injury (tIRI) to the testis as the pathophysiological mechanism. During tIRI, uncontrolled production of oxygen reactive species (ROS) causes DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to explore whether inhibition of NADPH oxidase (NOX), a major source of intracellular ROS, will prevent tIRI-induced GCA and its association with endoplasmic reticulum (ER) stress. Sprague-Dawley rats (n = 36) were divided into three groups: sham, tIRI only and tIRI treated with apocynin (a NOX inhibitor). Rats undergoing tIRI endured an ischemic injury for 1 h followed by 4 h of reperfusion. Spermatogenic damage was evaluated histologically, while cellular damages were assessed using real time PCR, immunofluorescence staining, Western blot and biochemical assays. Disrupted spermatogenesis was associated with increased lipid and protein peroxidation and decreased antioxidant activity of the enzyme superoxide dismutase (SOD) as a result of tIRI. In addition, increased DNA double strand breaks and formation of 8-OHdG adducts associated with increased phosphorylation of the DNA damage response (DDR) protein H2AX. The ASK1/JNK apoptosis signaling pathway was also activated in response to tIRI. Finally, increased immuno-expression of the unfolded protein response (UPR) downstream targets: GRP78, eIF2-α1, CHOP and caspase 12 supported the presence of ER stress. Inhibition of NOX by apocynin protected against tIRI-induced GCA and ER stress. In conclusion, NOX inhibition minimized tIRI-induced intracellular oxidative damages leading to GCA and ER stress.
Collapse
Key Words
- 8-OHdG, 8-hydroxy-2′-deoxyguanosine
- ANOVA, analysis of variance
- ASK1, apoptosis signaling kinase 1
- ATF, activating transcription factor
- ATM, ataxia telangiectasia mutated
- BSA, bovine serum albumin
- BTB, blood-testis barrier
- CHOP, CCAAT-enhancer-binding protein homologous protein
- Chk, checkpoint kinase
- DAPI, diamidino phenylindole
- DDR, DNA damage response
- DMSO, dimethyl sulfoxide
- DNA, deoxyribonucleic acid
- ECL, electrochemiluminescence
- ELISA, enzyme-linked immunosorbent assay
- ER stress
- ER, endoplasmic reticulum
- GCA, germ cell apoptosis
- GRP78, glucose-related protein 78
- Germ cell apoptosis
- H&E, hematoxylin and eosin
- H2AX, histone variant
- H2O2, hydrogen peroxide
- IAP, inhibitors of apoptosis
- IF, immunofluorescence
- IRE1, inositol requiring kinase 1
- JNK, c-Jun N-terminal Kinase
- MDA, malondialdehyde
- NADP, nicotinamide adenine dinucleotide phosphate
- NADPH oxidase
- NOX, NADPH oxidase
- O2, molecular oxygen
- O2−, superoxide anion
- OS, oxidative stress
- Oxidative stress
- PARP, poly ADP-ribose polymerase
- PCC, protein carbonyl content
- PCR, polymerase chain reaction
- PERK, pancreatic ER kinase
- PVDF, polyvinylidene difluoride
- RIPA, radioimmunoprecipitation assay
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- RT, reverse transcription
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SOD, superoxide dismutase
- ST, seminiferous tubule
- TOS, testicular oxidative stress
- TRAF-2, tumor-necrosis-factor receptor-associated factor 2
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular ischemia Reperfusion Injury
- UPR, unfolded protein response
- cDNA, complementary DNA
- eIF2α1, eukaryotic initiation factor 2α1
- gDNA, genomic DNA
- i.p., intraperitoneal
- kDa, kilodalton
- mRNA, messenger ribonucleic acid
- p-, phosphorylated
- phox, phagocyte oxidase
- γ-H2AX, 139 serine-phosphorylated histone variant
Collapse
Affiliation(s)
- Farah Al-Saleh
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - Farah Khashab
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - Fatemah Fadel
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - Nora Al-Kandari
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| | - May Al-Maghrebi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| |
Collapse
|
22
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
23
|
Veiga‐da‐Cunha M, Van Schaftingen E, Bommer GT. Inborn errors of metabolite repair. J Inherit Metab Dis 2020; 43:14-24. [PMID: 31691304 PMCID: PMC7041631 DOI: 10.1002/jimd.12187] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
It is traditionally assumed that enzymes of intermediary metabolism are extremely specific and that this is sufficient to prevent the production of useless and/or toxic side-products. Recent work indicates that this statement is not entirely correct. In reality, enzymes are not strictly specific, they often display weak side activities on intracellular metabolites (substrate promiscuity) that resemble their physiological substrate or slowly catalyse abnormal reactions on their physiological substrate (catalytic promiscuity). They thereby produce non-classical metabolites that are not efficiently metabolised by conventional enzymes. In an increasing number of cases, metabolite repair enzymes are being discovered that serve to eliminate these non-classical metabolites and prevent their accumulation. Metabolite repair enzymes also eliminate non-classical metabolites that are formed through spontaneous (ie, not enzyme-catalysed) reactions. Importantly, genetic deficiencies in several metabolite repair enzymes lead to 'inborn errors of metabolite repair', such as L-2-hydroxyglutaric aciduria, D-2-hydroxyglutaric aciduria, 'ubiquitous glucose-6-phosphatase' (G6PC3) deficiency, the neutropenia present in Glycogen Storage Disease type Ib or defects in the enzymes that repair the hydrated forms of NADH or NADPH. Metabolite repair defects may be difficult to identify as such, because the mutated enzymes are non-classical enzymes that act on non-classical metabolites, which in some cases accumulate only inside the cells, and at rather low, yet toxic, concentrations. It is therefore likely that many additional metabolite repair enzymes remain to be discovered and that many diseases of metabolite repair still await elucidation.
Collapse
Affiliation(s)
| | - Emile Van Schaftingen
- de Duve InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)UCLouvainBrusselsBelgium
| | - Guido T. Bommer
- de Duve InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)UCLouvainBrusselsBelgium
| |
Collapse
|
24
|
Lizák B, Szarka A, Kim Y, Choi KS, Németh CE, Marcolongo P, Benedetti A, Bánhegyi G, Margittai É. Glucose Transport and Transporters in the Endomembranes. Int J Mol Sci 2019; 20:ijms20235898. [PMID: 31771288 PMCID: PMC6929180 DOI: 10.3390/ijms20235898] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.
Collapse
Affiliation(s)
- Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Yejin Kim
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
| | - Kyu-sung Choi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
| | - Csilla E. Németh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (P.M.); (A.B.)
| | - Angelo Benedetti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (P.M.); (A.B.)
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - Éva Margittai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
- Correspondence: ; Tel.: +36-459-1500 (ext. 60311); Fax: +36-1-2662615
| |
Collapse
|
25
|
Wieland A, Kamphorst AO, Valanparambil RM, Han JH, Xu X, Choudhury BP, Ahmed R. Enhancing FcγR-mediated antibody effector function during persistent viral infection. Sci Immunol 2019; 3:3/27/eaao3125. [PMID: 30242080 DOI: 10.1126/sciimmunol.aao3125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 05/28/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023]
Abstract
Persistent viral infections can interfere with FcγR-mediated antibody effector functions by excessive immune complex (IC) formation, resulting in resistance to therapeutic FcγR-dependent antibodies. We and others have previously demonstrated that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) are resistant to a wide range of depleting antibodies due to excessive IC formation. Here, we dissect the mechanisms by which two depleting antibodies overcome the obstacle of endogenous ICs and achieve efficient target cell depletion in persistently infected mice. Efficient antibody-mediated depletion during persistent LCMV infection required increased levels of antibody bound to target cells or use of afucosylated antibodies with increased affinity for FcγRs. Antibodies targeting the highly expressed CD90 antigen or overexpressed human CD20 efficiently depleted their target cells in naïve and persistently infected mice, whereas antibodies directed against less abundant antigens failed to deplete their target cells during persistent LCMV infection. In addition, we demonstrate the superior activity of afucosylated antibodies in the presence of endogenous ICs. We generated afucosylated antibodies directed against CD4 and CD8α, which, in contrast to their parental fucosylated versions, efficiently depleted their respective target cells in persistently infected mice. Efficient antibody-mediated depletion can thus be achieved if therapeutic antibodies can outcompete endogenous ICs for access to FcγRs either by targeting highly expressed antigens or by increased affinity for FcγRs. Our findings have implications for the optimization of therapeutic antibodies and provide strategies to allow efficient FcγR engagement in the presence of competing endogenous ICs in persistent viral infections, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Andreas Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Alice O Kamphorst
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jin-Hwan Han
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaojin Xu
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Biswa P Choudhury
- Glycotechnology Core Resources, University of California at San Diego, La Jolla, CA 92093, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Duplomb L, Rivière J, Jego G, Da Costa R, Hammann A, Racine J, Schmitt A, Droin N, Capron C, Gougerot-Pocidalo MA, Dubrez L, Aral B, Lafon A, Edery P, Ghoumid J, Blair E, El Chehadeh-Djebbar S, Carmignac V, Thevenon J, Guy J, Girodon F, Bastie JN, Delva L, Faivre L, Thauvin-Robinet C, Solary E. Serpin B1 defect and increased apoptosis of neutrophils in Cohen syndrome neutropenia. J Mol Med (Berl) 2019; 97:633-645. [PMID: 30843084 DOI: 10.1007/s00109-019-01754-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022]
Abstract
Cohen syndrome (CS) is a rare genetic disorder due to mutations in VPS13B gene. Among various clinical and biological features, CS patients suffer from inconsistent neutropenia, which is associated with recurrent but minor infections. We demonstrate here that this neutropenia results from an exaggerate rate of neutrophil apoptosis. Besides this increased cell death, which occurs in the absence of any endoplasmic reticulum stress or defect in neutrophil elastase (ELANE) expression or localization, all neutrophil functions appeared to be normal. We showed a disorganization of the Golgi apparatus in CS neutrophils precursors, that correlates with an altered glycosylation of ICAM-1 in these cells, as evidenced by a migration shift of the protein. Furthermore, a striking decrease in the expression of SERPINB1 gene, which encodes a critical component of neutrophil survival, was detected in CS neutrophils. These abnormalities may account for the excessive apoptosis of neutrophils leading to neutropenia in CS. KEY MESSAGES: Cohen syndrome patients' neutrophils display normal morphology and functions. Cohen syndrome patients' neutrophils have an increased rate of spontaneous apoptosis compared to healthy donors' neutrophils. No ER stress or defective ELA2 expression or glycosylation was observed in Cohen syndrome patients' neutrophils. SerpinB1 expression is significantly decreased in Cohen syndrome neutrophils as well as in VPS13B-deficient cells.
Collapse
Affiliation(s)
- Laurence Duplomb
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France.
| | - Julie Rivière
- Inserm UMR1170, Gustave Roussy Cancer Center, F-94800, Villejuif, France
| | - Gaëtan Jego
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Romain Da Costa
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Arlette Hammann
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Jessica Racine
- Laboratoire d'hématologie, CHU Dijon, F-21000, Dijon, France
| | - Alain Schmitt
- Inserm, U1016, Institut Cochin, F-75679, Paris, France.,Cnrs, UMR8104, F-75674, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, F-75000, Paris, France
| | - Nathalie Droin
- Inserm UMR1170, Gustave Roussy Cancer Center, F-94800, Villejuif, France
| | - Claude Capron
- Inserm, U1016, Institut Cochin, F-75679, Paris, France.,Cnrs, UMR8104, F-75674, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, F-75000, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- Inserm U1149-Centre de Recherche sur l'Inflammation, Université Paris Diderot, F-75890, Paris, France.,Unité Dysfonctionnement Immunitaire, CHU Xavier Bichat, F-75877, Paris, France
| | - Laurence Dubrez
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Bernard Aral
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Arnaud Lafon
- Laboratoire d'odontologie, CHU Dijon, F-21000, Dijon, France
| | - Patrick Edery
- Service de génétique clinique, Hôpital Femme Mère Enfant, CHU Lyon, HCL, F-69000, Lyon, France
| | - Jamal Ghoumid
- Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs Nord, Hôpital Jeanne de Flandres, CHRU Lille, F-59037, Lille, France
| | - Edward Blair
- Department of Clinical Genetics, Oxford Regional Genetics Service, The Churchill Hospital, Oxford, OX3 9DU, UK
| | | | - Virginie Carmignac
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Julien Thevenon
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Julien Guy
- Laboratoire d'hématologie, CHU Dijon, F-21000, Dijon, France
| | | | - Jean-Noël Bastie
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France.,Laboratoire d'hématologie, CHU Dijon, F-21000, Dijon, France
| | - Laurent Delva
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France
| | - Laurence Faivre
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France.,FHU TRANSLAD, Département de Génétique, CHU Dijon, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre de référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, CHU Dijon, F-21000, Dijon, France
| | - Christel Thauvin-Robinet
- Inserm UMR1231, Team Génétique des Anomalies du Développement, Université de Bourgogne Franche Comté, 15 bd Maréchal de Lattre de Tassigny, 21089, F-21000, Dijon, France.,FHU TRANSLAD, Département de Génétique, CHU Dijon, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,Centre de référence Déficience Intellectuelle, Hôpital d'Enfants, CHU Dijon, F-21000, Dijon, France
| | - Eric Solary
- Inserm UMR1170, Gustave Roussy Cancer Center, F-94800, Villejuif, France
| |
Collapse
|
27
|
Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. Proc Natl Acad Sci U S A 2019; 116:1241-1250. [PMID: 30626647 PMCID: PMC6347702 DOI: 10.1073/pnas.1816143116] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neutropenia presents an important clinical problem in patients with G6PC3 or G6PT deficiency, yet why neutropenia occurs is unclear. We discovered that G6PC3 and G6PT collaborate to dephosphorylate a noncanonical metabolite (1,5-anhydroglucitol-6-phosphate; 1,5AG6P) which is produced when glucose-phosphorylating enzymes erroneously act on 1,5-anhydroglucitol, a food-derived polyol present in blood. In patients or mice with G6PC3 or G6PT deficiency, 1,5AG6P accumulates and inhibits the first step of glycolysis. This is particularly detrimental in neutrophils, since their energy metabolism depends almost entirely on glycolysis. Consistent with our findings, we observed that treatment with a 1,5-anhydroglucitol-lowering drug treats neutropenia in G6PC3-deficient mice. Our findings highlight that the elimination of noncanonical side products by metabolite-repair enzymes makes an important contribution to mammalian physiology. Neutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low-KM hexokinases, which catalyze the first step in glycolysis in most tissues. We show that 1,5AG6P is made by phosphorylation of 1,5-anhydroglucitol, a compound normally present in human plasma, by side activities of ADP-glucokinase and low-KM hexokinases. Granulocytes from patients deficient in G6PC3 or G6PT accumulate 1,5AG6P to concentrations (∼3 mM) that strongly inhibit hexokinase activity. In a model of G6PC3-deficient mouse neutrophils, physiological concentrations of 1,5-anhydroglucitol caused massive accumulation of 1,5AG6P, a decrease in glucose utilization, and cell death. Treating G6PC3-deficient mice with an inhibitor of the kidney glucose transporter SGLT2 to lower their blood level of 1,5-anhydroglucitol restored a normal neutrophil count, while administration of 1,5-anhydroglucitol had the opposite effect. In conclusion, we show that the neutropenia in patients with G6PC3 or G6PT mutations is a metabolite-repair deficiency, caused by a failure to eliminate the nonclassical metabolite 1,5AG6P.
Collapse
|
28
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
29
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
30
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
31
|
Wang SS, Gao X, Solar VD, Yu X, Antonopoulos A, Friedman AE, Matich EK, Atilla-Gokcumen GE, Nasirikenari M, Lau JT, Dell A, Haslam SM, Laine RA, Matta KL, Neelamegham S. Thioglycosides Are Efficient Metabolic Decoys of Glycosylation that Reduce Selectin Dependent Leukocyte Adhesion. Cell Chem Biol 2018; 25:1519-1532.e5. [PMID: 30344053 DOI: 10.1016/j.chembiol.2018.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Metabolic decoys are synthetic analogs of naturally occurring biosynthetic acceptors. These compounds divert cellular biosynthetic pathways by acting as artificial substrates that usurp the activity of natural enzymes. While O-linked glycosides are common, they are only partially effective even at millimolar concentrations. In contrast, we report that N-acetylglucosamine (GlcNAc) incorporated into various thioglycosides robustly truncate cell surface N- and O-linked glycan biosynthesis at 10-100 μM concentrations. The >10-fold greater inhibition is in part due to the resistance of thioglycosides to hydrolysis by intracellular hexosaminidases. The thioglycosides reduce β-galactose incorporation into lactosamine chains, cell surface sialyl Lewis-X expression, and leukocyte rolling on selectin substrates including inflamed endothelial cells under fluid shear. Treatment of granulocytes with thioglycosides prior to infusion into mouse inhibited neutrophil homing to sites of acute inflammation and bone marrow by ∼80%-90%. Overall, thioglycosides represent an easy to synthesize class of efficient metabolic inhibitors or decoys. They reduce N-/O-linked glycan biosynthesis and inflammatory leukocyte accumulation.
Collapse
Affiliation(s)
- Shuen-Shiuan Wang
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - Xuefeng Gao
- TumorEnd LLC, Louisiana Emerging Technology Center, 340 East Parker Drive, Suite 246, Baton Rouge, LA 70803, USA
| | - Virginia Del Solar
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; Clinical & Translational Research Center and State University of New York, Buffalo, NY 14260, USA
| | - Xinheng Yu
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | | | - Alan E Friedman
- Department of Chemistry, State University of New York, Buffalo, NY 14260, USA
| | - Eryn K Matich
- Department of Chemistry, State University of New York, Buffalo, NY 14260, USA
| | | | - Mehrab Nasirikenari
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joseph T Lau
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Roger A Laine
- TumorEnd LLC, Louisiana Emerging Technology Center, 340 East Parker Drive, Suite 246, Baton Rouge, LA 70803, USA
| | - Khushi L Matta
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; TumorEnd LLC, Louisiana Emerging Technology Center, 340 East Parker Drive, Suite 246, Baton Rouge, LA 70803, USA.
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA; Clinical & Translational Research Center and State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
32
|
Ondruskova N, Honzik T, Kolarova H, Pakanova Z, Mucha J, Zeman J, Hansikova H. Aberrant apolipoprotein C-III glycosylation in glycogen storage disease type III and IX. Metabolism 2018; 82:135-141. [PMID: 29408683 DOI: 10.1016/j.metabol.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12808 Prague 2, Czech Republic.
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12808 Prague 2, Czech Republic.
| | - Hana Kolarova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12808 Prague 2, Czech Republic.
| | - Zuzana Pakanova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovak Republic.
| | - Jan Mucha
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovak Republic.
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12808 Prague 2, Czech Republic.
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 12808 Prague 2, Czech Republic.
| |
Collapse
|
33
|
Abstract
In the following paper, authors describe glycans present on cell membranes as they affect the folding, the spatial arrangement, the behavior and the interaction with the substrate of some membrane proteins. Authors describe the synthesis and assembly of a glycan on a protein, the formation of N-glycans, the maturation of an N-glycan in different cellular compartments, the structure of the glycocalyx and how it interacts with any pathogens. The study of the E-cadherin and the potassium channel to demonstrate how glycans affect the spatial arrangement, the stability and activity of the glycoproteins on the membranes. Subsequently, authors analyze the correlation between disorder glycosylation and human health. Authors define glycosylation disorders as a genetic defect that alter the structure or biosynthesis of glycans (sugar chains) in one or more biosynthetic pathways. Human glycosylation disorders reflect the disruption of early steps in the pathways of glycan biosynthesis. More in details, authors analyze the role of glycoprotein in tumor cell adhesion, in particular, in cells MCF-7 and MDA-MB-231 on zeolite scaffold. In the same time, the role of metalloproteinase is described in the mobilization of cancer cells and in metastasis.
Collapse
Affiliation(s)
- P. SPROVIERI
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - G. MARTINO
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
34
|
Abstract
Severe congenital neutropenias are a heterogeneous group of rare haematological diseases characterized by impaired maturation of neutrophil granulocytes. Patients with severe congenital neutropenia are prone to recurrent, often life-threatening infections beginning in their first months of life. The most frequent pathogenic defects are autosomal dominant mutations in ELANE, which encodes neutrophil elastase, and autosomal recessive mutations in HAX1, whose product contributes to the activation of the granulocyte colony-stimulating factor (G-CSF) signalling pathway. The pathophysiological mechanisms of these conditions are the object of extensive research and are not fully understood. Furthermore, severe congenital neutropenias may predispose to myelodysplastic syndromes or acute myeloid leukaemia. Molecular events in the malignant progression include acquired mutations in CSF3R (encoding G-CSF receptor) and subsequently in other leukaemia-associated genes (such as RUNX1) in a majority of patients. Diagnosis is based on clinical manifestations, blood neutrophil count, bone marrow examination and genetic and immunological analyses. Daily subcutaneous G-CSF administration is the treatment of choice and leads to a substantial increase in blood neutrophil count, reduction of infections and drastic improvement of quality of life. Haematopoietic stem cell transplantation is the alternative treatment. Regular clinical assessments (including yearly bone marrow examinations) to monitor treatment course and detect chromosomal abnormalities (for example, monosomy 7 and trisomy 21) as well as somatic pre-leukaemic mutations are recommended.
Collapse
Affiliation(s)
- Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia Zeidler
- Department of Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Karl Welte
- University Children's Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| |
Collapse
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
36
|
Letkemann R, Wittkowski H, Antonopoulos A, Podskabi T, Haslam SM, Föll D, Dell A, Marquardt T. Partial correction of neutrophil dysfunction by oral galactose therapy in glycogen storage disease type Ib. Int Immunopharmacol 2017; 44:216-225. [PMID: 28126686 DOI: 10.1016/j.intimp.2017.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/30/2023]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is characterized by impaired glucose homeostasis, neutropenia and neutrophil dysfunction. Mass spectrometric glycomic profiling of GSD-Ib neutrophils showed severely truncated N-glycans, lacking galactose. Experiments indicated the hypoglycosylation of the electron transporting subunit of NADPH oxidase, which is crucial for the defense against bacterial infections. In phosphoglucomutase 1 (PGM1) deficiency, an inherited disorder with an enzymatic defect just one metabolic step ahead, hypogalactosylation can be successfully treated by dietary galactose. We hypothesized the same pathomechanism in GSD-Ib and started a therapeutic trial with oral galactose and uridine. The aim was to improve neutrophil dysfunction through the correction of hypoglycosylation in neutrophils. The GSD-Ib patient was treated for 29weeks. Monitoring included glycomics analysis of the patient's neutrophils and neutrophil function tests including respiratory burst activity, phagocytosis and migration. Although no substantial restoration of neutrophil glycosylation was found, there was partial improvement of respiratory burst activity.
Collapse
Affiliation(s)
- Rudolf Letkemann
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Muenster, Germany.
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Imunology, University Children's Hospital Muenster, Germany.
| | | | - Teodor Podskabi
- Molecular Genetics and Metabolism Laboratory, Munich, Germany.
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK.
| | - Dirk Föll
- Department of Pediatric Rheumatology and Imunology, University Children's Hospital Muenster, Germany.
| | - Anne Dell
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK.
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Muenster, Germany.
| |
Collapse
|
37
|
Liver glucose metabolism in humans. Biosci Rep 2016; 36:BSR20160385. [PMID: 27707936 PMCID: PMC5293555 DOI: 10.1042/bsr20160385] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis).
Collapse
|
38
|
Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. Glycogen metabolism in humans. BBA CLINICAL 2016; 5:85-100. [PMID: 27051594 PMCID: PMC4802397 DOI: 10.1016/j.bbacli.2016.02.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases.
Collapse
Affiliation(s)
- María M. Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | | | | | |
Collapse
|
39
|
A Severe Congenital Neutropenia Type 4 Case (G6PC3 Mutation) Presented With Large Platelets in the Peripheral Smear. J Pediatr Hematol Oncol 2016; 38:324-8. [PMID: 26808373 DOI: 10.1097/mph.0000000000000504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe congenital neutropenia type 4 is a disorder of the hematopoietic system associated with mutations in the glucose-6-phosphatase catabolic 3 (G6PC3) gene. This disorder is characterized by neutropenia, congenital heart defects, urogenital malformations, and prominent superficial veins. To our knowledge, although intermittent thrombocytopenia is observed in this mutation, the coexistence of large thrombocytes is rarely seen. Here we present a case of severe congenital neutropenia type 4 with G6PC3 mutation and large platelets in the peripheral smear.
Collapse
|
40
|
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. SCIENTIFICA 2016; 2016:9828672. [PMID: 27051561 PMCID: PMC4804091 DOI: 10.1155/2016/9828672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 05/30/2023]
Abstract
One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Ashok K. Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Amit K. Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Srimanta Sarkar
- Dr. Reddy's Laboratories Limited, Bachupally, Hyderabad, Telangana 502325, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| |
Collapse
|
41
|
Prior KK, Wittig I, Leisegang MS, Groenendyk J, Weissmann N, Michalak M, Jansen-Dürr P, Shah AM, Brandes RP. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. J Biol Chem 2016; 291:7045-59. [PMID: 26861875 PMCID: PMC4807287 DOI: 10.1074/jbc.m115.710772] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/24/2022] Open
Abstract
Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Kim-Kristin Prior
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany the Functional Proteomics, SFB 815 Core Unit, Goethe-Universität, 60590 Frankfurt am Main, Germany, the Cluster of Excellence "Macromolecular Complexes," Goethe-Universität, 60590 Frankfurt am Main, Germany
| | - Matthias S Leisegang
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| | - Jody Groenendyk
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Norbert Weissmann
- the Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-University Member of the German Center for Lung Research (DZL), 60590 Giessen, Germany
| | - Marek Michalak
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Pidder Jansen-Dürr
- the Institute for Biomedical Ageing Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Insbruk, Austria
| | - Ajay M Shah
- the King's College London British Heart Foundation Centre, Cardiovascular Division, London WC2R 2LS, United Kingdom, and
| | - Ralf P Brandes
- From the Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, 60590 Germany, the German Center for Cardiovascular Research (DZHK), Partner site RheinMain, 60590 Frankfurt am Main, Germany
| |
Collapse
|
42
|
Abstract
Glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency was recently defined as a new severe congenital neutropenia subgroup remarkable with congenital heart defects, urogenital malformations, endocrine abnormalities, and prominent superficial veins. Here, we report 3 patients with G6PC3 deficiency presenting with recurrent diarrhea, failure to thrive, and sinopulmonary infections leading to bronchiectasis. In patient I and II, a combined immune deficiency was suspected due to early-onset disease with lymphopenia, neutropenia, and thrombocytopenia, along with variable reductions in lymphocyte subpopulations and favorable response to intravenous γ-globulin therapy. Apart from neutropenia, all 3 patients had intermittent thrombocytopenia, anemia, and lymphopenia. All patients had failure to thrive and some of the classic syndromic features of G6PC3 deficiency, including cardiac abnormalities and visibility of superficial veins in all, endocrinologic problems in PI and PIII, and urogenital abnormalities in PII. Our experience suggests that a diagnosis of congenital neutropenia due to G6PC3 may not be as straightforward in such patients with combined lymphopenia and thrombocytopenia. A high index of suspicion and the other syndromic features of G6PC3 were clues to diagnosis. Screening of all combined immune deficiencies with neutropenia may help to uncover the whole spectra of G6PC3 deficiency.
Collapse
|
43
|
Souabni H, Machillot P, Baciou L. Contribution of lipid environment to NADPH oxidase activity: influence of sterol. Biochimie 2015; 107 Pt A:33-42. [PMID: 25448770 DOI: 10.1016/j.biochi.2014.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
Abstract
The NADPH-oxidase complex, which plays beneficial or detrimental role in the inflammatory and degenerative diseases, is a membrane multi-subunit complex tightly regulated in order to produce superoxide anions, precursor of oxygen reactive species (ROS), in cells. The flavocytochrome b(558) (Cytb(558)) is the catalytic core of the NADPH oxidase which consists of two membrane proteins gp91(phox) (highly glycosylated) and p22(phox). In this work we took advantage of heterologous yeast cells engineered to express wild-type bovine Cytb(558) to analyze the properties of the NADPH oxidase activity during the biosynthesis processing steps of gp91(phox) and p22(phox) within endoplasmic reticulum (ER) and plasma membrane (Pmb). Our data showed that, in yeast, the heterodimerization at the endoplasmic reticulum membranes was concomitant with high level glycosylation of gp91(phox) and the heme acquisition. This study also demonstrated that the phagocyte NADPH oxidase was active at ER membranes and that this activity was surprisingly higher at the ER compared to the Pmb membranes. We have correlated these findings with the presence of sterols in the plasma membranes and their absence in ER membranes. This correlation was confirmed by decreased superoxide anion production rates in proteoliposomes supplemented with ergosterol or cholesterol. Our data support the idea that membrane environment might be determinant for ROS regulation and that sterols could directly interact with the membrane proteins of the NADPH oxidase constraining its capacity to produce superoxide anions.
Collapse
|
44
|
Lyons JJ, Milner JD, Rosenzweig SD. Glycans Instructing Immunity: The Emerging Role of Altered Glycosylation in Clinical Immunology. Front Pediatr 2015; 3:54. [PMID: 26125015 PMCID: PMC4463932 DOI: 10.3389/fped.2015.00054] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
Protein glycosylation is an important epigenetic modifying process affecting expression, localization, and function of numerous proteins required for normal immune function. Recessive germline mutations in genes responsible for protein glycosylation processes result in congenital disorders of glycosylation and can have profound immunologic consequences. Genetic mutations in immune signaling pathways that affect glycosylation sites have also been shown to cause disease. Sugar supplementation and in vivo alteration of glycans by medication holds therapeutic promise for some of these disorders. Further understanding of how changes in glycosylation alter immunity may provide novel treatment approaches for allergic disease, immune dysregulation, and immunodeficiency in the future.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Joshua D Milner
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health , Bethesda, MD , USA ; Primary Immunodeficiency Clinic, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
45
|
Desplantes C, Fremond ML, Beaupain B, Harousseau JL, Buzyn A, Pellier I, Roques G, Morville P, Paillard C, Bruneau J, Pinson L, Jeziorski E, Vannier JP, Picard C, Bellanger F, Romero N, de Pontual L, Lapillonne H, Lutz P, Chantelot CB, Donadieu J. Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French Severe Congenital Neutropenia Registry. Orphanet J Rare Dis 2014; 9:183. [PMID: 25491320 PMCID: PMC4279596 DOI: 10.1186/s13023-014-0183-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/05/2014] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study was to describe the natural history of severe congenital neutropenia (SCN) in 14 patients with G6PC3 mutations and enrolled in the French SCN registry. Methods Among 605 patients included in the French SCN registry, we identified 8 pedigrees that included 14 patients with autosomal recessive G6PC3 mutations. Results Median age at the last visit was 22.4 years. All patients had developed various comordibities, including prominent veins (n = 12), cardiac malformations (n = 12), intellectual disability (n = 7), and myopathic syndrome with recurrent painful cramps (n = 1). Three patients developed Crohn’s disease, and five had chronic diarrhea with steatorrhea. Neutropenia was profound (<0.5 × 109/l) in almost all cases at diagnosis and could marginally fluctuate. The bone marrow smears exhibited mild late-stage granulopoeitic defects. One patient developed myelodysplasia followed by acute myelogenous leukemia with translocation (18, 21) at age 14 years, cured by chemotherapy and hematopoietic stem cell transplantation. Four deaths occurred, including one from sepsis at age 5, one from pulmonary late-stage insufficiency at age 19, and two from sudden death, both at age 30 years. A new homozygous mutation (c.249G > A /p.Trp83*) was detected in one pedigree. Conclusions Severe congenital neutropenia with autosomal recessive G6PC3 mutations is associated with considerable clinical heterogeneity. This series includes the first described case of malignancy in this neutropenia.
Collapse
|
46
|
Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 2014; 290:3121-36. [PMID: 25488666 DOI: 10.1074/jbc.m114.628628] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infantile-onset Pompe disease is an autosomal recessive disorder caused by the complete loss of lysosomal glycogen-hydrolyzing enzyme acid α-glucosidase (GAA) activity, which results in lysosomal glycogen accumulation and prominent cardiac and skeletal muscle pathology. The mechanism by which loss of GAA activity causes cardiomyopathy is poorly understood. We reprogrammed fibroblasts from patients with infantile-onset Pompe disease to generate induced pluripotent stem (iPS) cells that were differentiated to cardiomyocytes (iPSC-CM). Pompe iPSC-CMs had undetectable GAA activity and pathognomonic glycogen-filled lysosomes. Nonetheless, Pompe and control iPSC-CMs exhibited comparable contractile properties in engineered cardiac tissue. Impaired autophagy has been implicated in Pompe skeletal muscle; however, control and Pompe iPSC-CMs had comparable clearance rates of LC3-II-detected autophagosomes. Unexpectedly, the lysosome-associated membrane proteins, LAMP1 and LAMP2, from Pompe iPSC-CMs demonstrated higher electrophoretic mobility compared with control iPSC-CMs. Brefeldin A induced disruption of the Golgi in control iPSC-CMs reproduced the higher mobility forms of the LAMPs, suggesting that Pompe iPSC-CMs produce LAMPs lacking appropriate glycosylation. Isoelectric focusing studies revealed that LAMP2 has a more alkaline pI in Pompe compared with control iPSC-CMs due largely to hyposialylation. MALDI-TOF-MS analysis of N-linked glycans demonstrated reduced diversity of multiantennary structures and the major presence of a trimannose complex glycan precursor in Pompe iPSC-CMs. These data suggest that Pompe cardiomyopathy has a glycan processing abnormality and thus shares features with hypertrophic cardiomyopathies observed in the congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Kunil K Raval
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the WiCell Institute, Madison, Wisconsin 53719
| | - Ran Tao
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Brent E White
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Willem J De Lange
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Chad H Koonce
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Junying Yu
- Cellular Dynamics International, Madison, Wisconsin 53711
| | - Priya S Kishnani
- the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - James A Thomson
- the Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, the Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, the Morgridge Institute for Research, Madison, Wisconsin 53715
| | - Deane F Mosher
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - John C Ralphe
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Timothy J Kamp
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, the WiCell Institute, Madison, Wisconsin 53719,
| |
Collapse
|
47
|
JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nat Genet 2014; 46:1021-7. [PMID: 25129144 DOI: 10.1038/ng.3069] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
The analysis of individuals with severe congenital neutropenia (SCN) may shed light on the delicate balance of factors controlling the differentiation, maintenance and decay of neutrophils. We identify 9 distinct homozygous mutations in the JAGN1 gene encoding Jagunal homolog 1 in 14 individuals with SCN. JAGN1-mutant granulocytes are characterized by ultrastructural defects, a paucity of granules, aberrant N-glycosylation of multiple proteins and increased incidence of apoptosis. JAGN1 participates in the secretory pathway and is required for granulocyte colony-stimulating factor receptor-mediated signaling. JAGN1 emerges as a factor that is necessary in the differentiation and survival of neutrophils.
Collapse
|
48
|
Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. Inborn errors of metabolism underlying primary immunodeficiencies. J Clin Immunol 2014; 34:753-71. [PMID: 25081841 DOI: 10.1007/s10875-014-0076-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
Abstract
A number of inborn errors of metabolism (IEM) have been shown to result in predominantly immunologic phenotypes, manifesting in part as inborn errors of immunity. These phenotypes are mostly caused by defects that affect the (i) quality or quantity of essential structural building blocks (e.g., nucleic acids, and amino acids), (ii) cellular energy economy (e.g., glucose metabolism), (iii) post-translational protein modification (e.g., glycosylation) or (iv) mitochondrial function. Presenting as multisystemic defects, they also affect innate or adaptive immunity, or both, and display various types of immune dysregulation. Specific and potentially curative therapies are available for some of these diseases, whereas targeted treatments capable of inducing clinical remission are available for others. We will herein review the pathogenesis, diagnosis, and treatment of primary immunodeficiencies (PIDs) due to underlying metabolic disorders.
Collapse
Affiliation(s)
- Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran,
| | | | | | | | | |
Collapse
|
49
|
Abstract
SIGNIFICANCE Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. RECENT ADVANCES Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. CRITICAL ISSUES Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. FUTURE DIRECTIONS We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine , São Paulo, Brazil
| | | | | |
Collapse
|
50
|
Arikoglu T, Kuyucu N, Germeshausen M, Kuyucu S. A novel G6PC3 gene mutation in severe congenital neutropenia: pancytopenia and variable bone marrow phenotype can also be part of this syndrome. Eur J Haematol 2014; 94:79-82. [DOI: 10.1111/ejh.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Tugba Arikoglu
- Department of Pediatric Allergy and Immunology; Faculty of Medicine; Mersin University; Mersin Turkey
| | - Necdet Kuyucu
- Department of Pediatric Infectious Diseases; Faculty of Medicine; Mersin University; Mersin Turkey
| | - Manuela Germeshausen
- Department of Pediatric Hematology and Oncology; Hannover Medical University; Hannover Germany
| | - Semanur Kuyucu
- Department of Pediatric Allergy and Immunology; Faculty of Medicine; Mersin University; Mersin Turkey
| |
Collapse
|