1
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
2
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Oluwole OG. The analyses of human MCPH1 DNA repair machinery and genetic variations. Open Med (Wars) 2024; 19:20240917. [PMID: 38463519 PMCID: PMC10921449 DOI: 10.1515/med-2024-0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/29/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Causal mutations in the MCPH1 gene have been associated with disorders like microcephaly, and recently congenital hearing impairment. This study examined the MCPH1 DNA repair machinery and identified genetic variations of interest in gnomAD database to discuss the biological roles and effects of rare variants in MCPH1-related diseases. Notably, MCPH1 coordinates two of the seven known mechanisms of DNA repair which confirmed its roles in neurogenesis and chromatin condensation. A pathogenic missense variant in MCPH1 p.Gly753Arg, and two pathogenic frameshifts MCPH1 p.Asn189LysfsTer15 and p.Cys624Ter identified in this study, already had entries in ClinVar and were associated with microcephaly. A pathogenic frameshift in MCPH1 p.Val10SerfsTer5 with a loss-of-function flag and a pathogenic stop gained p.Ser571Ter variants with ultra-rare allele frequency (MAF ≤ 0.001) were identified but have not been linked to any phenotype. The predicted pathogenic ultra-rare variants identified in this study, warranty phenotypic discovery, and also positioned these variants or nearby deleterious variants candidate for screening in MCPH1-associated rare diseases.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Biomedical Research Centre, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Department, Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|
4
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
5
|
Influence of Intratumor Microbiome on Clinical Outcome and Immune Processes in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12092524. [PMID: 32899474 PMCID: PMC7564876 DOI: 10.3390/cancers12092524] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary While the intratumor microbiome has been largely unexplored in relation to prostate cancer development, our research shows that microbes may play an anti-tumor or pro-tumor role to significantly alter clinical course in prostate cancer patients. We found that the presence and absence of specific microbes are strongly correlated with known biomarkers of prostate cancer, including increased androgen receptor expression, prostate-specific antigen level, immune-associated gene dysregulation, stem-cell related gene overexpression, cancer pathways, and known chromosomal alterations. Our results provide important insight on potential mechanisms by which intratumor microbes may greatly contribute to prostate cancer progression and prognosis. We hope our results can be validated in future studies, and the key microbes that we identified can be used as effective targets for more specialized prebiotic and probiotic treatments for prostate cancer. Abstract Although 1 in 9 American men will receive a diagnosis of prostate cancer (PC), most men with this diagnosis will not die from it, as most PCs are indolent. However, there is a subset of patients in which the once-indolent PC becomes metastatic and eventually, fatal. In this study, we analyzed microbial compositions of intratumor bacteria in PC to determine the influence of the microbiome on metastatic growth. Using large-scale RNA-sequencing data and corresponding clinical data, we correlated the abundance of microbes to immune pathways and PC risk factors, identifying specific microbes that either significantly deter or contribute to cancer aggressiveness. Interestingly, most of the microbes we found appeared to play anti-tumor roles in PC. Since these anti-tumor microbes were overrepresented in tumor samples, we believe that microbes thrive in the tumor microenvironment, outcompete cancer cells, and directly mitigate tumor growth by recruiting immune cells. These include Listeria monocytogenes, Methylobacterium radiotolerans JCM 2831, Xanthomonas albilineans GPE PC73, and Bradyrhizobium japonicum, which are negatively correlated with Gleason score, Tumor-Node-Metastasis (TNM) stage, prostate-specific antigen (PSA) level, and Androgen Receptor (AR) expression, respectively. We also identified microbes that contribute to tumor growth and are positively correlated with genomic alterations, dysregulated immune-associated (IA) genes, and prostate cancer stem cells (PCSC) genes.
Collapse
|
6
|
Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Genes (Basel) 2020; 11:genes11080866. [PMID: 32751599 PMCID: PMC7465369 DOI: 10.3390/genes11080866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1–DNA product complex was disrupted by DNA polymerase β (POLβ) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLβ and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.
Collapse
|
7
|
Healing E, Charlier CF, Meira LB, Elliott RM. A panel of colorimetric assays to measure enzymatic activity in the base excision DNA repair pathway. Nucleic Acids Res 2019; 47:e61. [PMID: 30869144 PMCID: PMC6582407 DOI: 10.1093/nar/gkz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
DNA repair is essential for the maintenance of genomic integrity, and evidence suggest that inter-individual variation in DNA repair efficiency may contribute to disease risk. However, robust assays suitable for quantitative determination of DNA repair capacity in large cohort and clinical trials are needed to evaluate these apparent associations fully. We describe here a set of microplate-based oligonucleotide assays for high-throughput, non-radioactive and quantitative determination of repair enzyme activity at individual steps and over multiple steps of the DNA base excision repair pathway. The assays are highly sensitive: using HepG2 nuclear extract, enzyme activities were quantifiable at concentrations of 0.0002 to 0.181 μg per reaction, depending on the enzyme being measured. Assay coefficients of variation are comparable with other microplate-based assays. The assay format requires no specialist equipment and has the potential to be extended for analysis of a wide range of DNA repair enzyme activities. As such, these assays hold considerable promise for gaining new mechanistic insights into how DNA repair is related to individual genetics, disease status or progression and other environmental factors and investigating whether DNA repair activities can be used a biomarker of disease risk.
Collapse
Affiliation(s)
- Eleanor Healing
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Clara F Charlier
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ruan M Elliott
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
8
|
Petri net-based model of the human DNA base excision repair pathway. PLoS One 2019; 14:e0217913. [PMID: 31518347 PMCID: PMC6743755 DOI: 10.1371/journal.pone.0217913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular DNA is daily exposed to several damaging agents causing a plethora of DNA lesions. As a first aid to restore DNA integrity, several enzymes got specialized in damage recognition and lesion removal during the process called base excision repair (BER). A large number of DNA damage types and several different readers of nucleic acids lesions during BER pathway as well as two sub-pathways were considered in the definition of a model using the Petri net framework. The intuitive graphical representation in combination with precise mathematical analysis methods are the strong advantages of the Petri net-based representation of biological processes and make Petri nets a promising approach for modeling and analysis of human BER. The reported results provide new information that will aid efforts to characterize in silico knockouts as well as help to predict the sensitivity of the cell with inactivated repair proteins to different types of DNA damage. The results can also help in identifying the by-passing pathways that may lead to lack of pronounced phenotypes associated with mutations in some of the proteins. This knowledge is very useful when DNA damage-inducing drugs are introduced for cancer therapy, and lack of DNA repair is desirable for tumor cell death.
Collapse
|
9
|
Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle. J Biol Phys 2019; 45:127-146. [PMID: 30707386 DOI: 10.1007/s10867-018-9519-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023] Open
Abstract
Modeling a biological process equips us with more comprehensive insight into the process and a more advantageous experimental design. Non-homologous end joining (NHEJ) is a major double-strand break (DSB) repair pathway that occurs throughout the cell cycle. The objective of the current work is to model the fast and slow phases of NHEJ in G1 phase of the cell cycle following exposure to ionizing radiation (IR). The fast phase contains the major components of NHEJ; Ku70/80 complex, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and XLF/XRCC4/ligase IV complex (XXL). The slow phase in G1 phase of the cell cycle is associated with more complex lesions and involves ATM and Artemis proteins in addition to the major components. Parameters are mainly obtained from experimental data. The model is successful in predicting the kinetics of DSB foci in 13 normal, ATM-deficient, and Artemis-deficient mammalian fibroblast cell lines in G1 phase of the cell cycle after exposure to low doses of IR. The involvement of ATM provides the model with the potency to be connected to different signaling pathways. Ku70/80 concentration and DNA-binding rate as well as XXL concentration and enzymatic activity are introduced as the best targets for affecting NHEJ DSB repair process. On the basis of the current model, decreasing concentration and DNA binding rate of DNA-PKcs is more effective than inhibiting its activity towards the Artemis protein.
Collapse
|
10
|
Caimi PF, Cooper BW, William BM, Dowlati A, Barr PM, Fu P, Pink J, Xu Y, Lazarus HM, de Lima M, Gerson SL. Phase I clinical trial of the base excision repair inhibitor methoxyamine in combination with fludarabine for patients with advanced hematologic malignancies. Oncotarget 2017; 8:79864-79875. [PMID: 29108368 PMCID: PMC5668101 DOI: 10.18632/oncotarget.20094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics and recommended phase II dose of the base excision repair blocker methoxyamine combined with fludarabine. MATERIALS AND METHODS This was a phase I study with intravenous fludarabine (25 mg/m2, days 1-5), and methoxyamine (15 mg/m2-120 mg/m2, once). A maximum of six cycles were given. Adult patients with relapsed/refractory hematologic malignancies, excluding acute myeloid leukemia, were eligible. RESULTS Twenty patients were treated; diagnoses included CLL/SLL (n = 10), follicular lymphoma (n = 3), DLBCL (n = 3), mantle cell lymphoma (n = 1), anaplastic large cell lymphoma (n = 1) and plasma cell myeloma (n = 2). No DLTs were observed and dose escalation reached the maximum planned dose. Hematologic toxicity was frequent; most common grade 3-4 toxicities were lymphopenia (70%), neutropenia (60%), leukopenia (50%) and anemia (40%). Four patients achieved a partial remission and 8 achieved stable disease. The drug combination resulted in increased DNA damage measured with the Comet assay. CONCLUSIONS Methoxyamine combined with fludarabine was safe and well tolerated. Hematologic toxicity was comparable to single agent fludarabine. Activity appears to correlate with increased levels of DNA damage. Further studies will examine use of this combination of as part conditioning regimens of stem cell transplant and use of methoxyamine as fludarabine dose-sparing agent.
Collapse
Affiliation(s)
- Paolo F. Caimi
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Brenda W. Cooper
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Basem M. William
- Division of Hematology. The Ohio State University Medical School, Columbus, Ohio, USA
| | - Afshin Dowlati
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Paul M. Barr
- Division of Hematology and Oncology, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Pingfu Fu
- Department of Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Pink
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Yan Xu
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Hillard M. Lazarus
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Marcos de Lima
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Stanton L. Gerson
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Evans MD, Mistry V, Singh R, Gackowski D, Różalski R, Siomek-Gorecka A, Phillips DH, Zuo J, Mullenders L, Pines A, Nakabeppu Y, Sakumi K, Sekiguchi M, Tsuzuki T, Bignami M, Oliński R, Cooke MS. Nucleotide excision repair of oxidised genomic DNA is not a source of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. Free Radic Biol Med 2016; 99:385-391. [PMID: 27585947 DOI: 10.1016/j.freeradbiomed.2016.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a widely measured biomarker of oxidative stress. It has been commonly assumed to be a product of DNA repair, and therefore reflective of DNA oxidation. However, the source of urinary 8-oxodGuo is not understood, although potential confounding contributions from cell turnover and diet have been ruled out. Clearly it is critical to understand the precise biological origins of this important biomarker, so that the target molecule that is oxidised can be identified, and the significance of its excretion can be interpreted fully. In the present study we aimed to assess the contributions of nucleotide excision repair (NER), by both the global genome NER (GG-NER) and transcription-coupled NER (TC-NER) pathways, and sanitisation of the dGTP pool (e.g. via the activity of the MTH1 protein), on the production of 8-oxodGuo, using selected genetically-modified mice. In xeroderma pigmentosum A (XPA) mice, in which GG-NER and TC-NER are both defective, the urinary 8-oxodGuo data were unequivocal in ruling out a contribution from NER. In line with the XPA data, the production of urinary 8-oxodGuo was not affected in the xeroderma pigmentosum C mice, specifically excluding a role of the GG-NER pathway. The bulk of the literature supports the mechanism that the NER proteins are responsible for removing damage to the transcribed strand of DNA via TC-NER, and on this basis we also examined Cockayne Syndrome mice, which have a functional loss of TC-NER. These mice showed no difference in urinary 8-oxodGuo excretion, compared to wild type, demonstrating that TC-NER does not contribute to urinary 8-oxodGuo levels. These findings call into question whether genomic DNA is the primary source of urinary 8-oxodGuo, which would largely exclude it as a biomarker of DNA oxidation. The urinary 8-oxodGuo levels from the MTH1 mice (both knock-out and hMTH1-Tg) were not significantly different to the wild-type mice. We suggest that these findings are due to redundancy in the process, and that other enzymes substitute for the lack of MTH1, however the present study cannot determine whether or not the 2'-deoxyribonucleotide pool is the source of urinary 8-oxodGuo. On the basis of the above, urinary 8-oxodGuo is most accurately defined as a non-invasive biomarker of oxidative stress, derived from oxidatively generated damage to 2'-deoxyguanosine.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom.
| | - Vilas Mistry
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom
| | - Rajinder Singh
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - David H Phillips
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Jie Zuo
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Leon Mullenders
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Alex Pines
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, and Nicolaus Copernicus University in Toruń, Poland
| | - Marcus S Cooke
- Oxidative Stress Group, University of Leicester, Leicester, United Kingdom; Department of Genetics, University of Leicester, United Kingdom.
| |
Collapse
|
12
|
McMullen PD, Pendse S, Adeleye Y, Carmichael PL, Andersen ME, Clewell RA. Using Transcriptomics to Evaluate Thresholds in Genotoxicity Dose–Response. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several genotoxic chemicals have been reported to produce threshold-shaped dose–response curves for mutation and genotoxicity assays, both in vivo and in vitro, challenging the current default practice for risk assessment of genotoxic chemicals, which assumes a linear dose–response below the lowest tested dose. Statistical methods cannot determine whether a biological threshold exists with sufficient confidence to overturn this assumption of linearity. Indeed, to truly define the shape of the dose–response curves, we must look to the underlying biology and develop targeted experiments to identify and measure the key processes governing the response of the cell to DNA damage. This chapter describes a series of studies aimed at defining the key transcriptional responses. Two approaches were taken to evaluate transcriptional responses preventing micronucleus induction: (1) comparison of gene signatures for several prototype compounds at a single chemical dose that led to a similar activation of the p53-DNA damage pathway (i.e. 1.5-fold increase in total p53); and (2) evaluation of a subset of chemicals with in-depth dose–response studies. The goal of these efforts was to determine the transcriptional pathways responsible for maintaining homeostasis at low levels of DNA damage, i.e., the biological underpinning of threshold-shaped dose–response curves for mutagenicity.
Collapse
Affiliation(s)
| | - Salil Pendse
- The Hamner Institutes for Health Sciences Research Triangle Park NC USA
| | | | | | | | | |
Collapse
|
13
|
Schuermann D, Scheidegger SP, Weber AR, Bjørås M, Leumann CJ, Schär P. 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair. Nucleic Acids Res 2016; 44:2187-98. [PMID: 26733580 PMCID: PMC4797279 DOI: 10.1093/nar/gkv1520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Simon P Scheidegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Rikshospitalet, PO Box 4950 Nydalen, N-0424 Oslo, Norway Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PO Box 8905, N-7491 Trondheim, Norway
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
14
|
Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med 2015; 31:861-874. [PMID: 26653251 DOI: 10.1016/j.ejmp.2015.10.087] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 11/24/2022] Open
Abstract
Understanding the fundamental mechanisms involved in the induction of biological damage by ionizing radiation remains a major challenge of today's radiobiology research. The Monte Carlo simulation of physical, physicochemical and chemical processes involved may provide a powerful tool for the simulation of early damage induction. The Geant4-DNA extension of the general purpose Monte Carlo Geant4 simulation toolkit aims to provide the scientific community with an open source access platform for the mechanistic simulation of such early damage. This paper presents the most recent review of the Geant4-DNA extension, as available to Geant4 users since June 2015 (release 10.2 Beta). In particular, the review includes the description of new physical models for the description of electron elastic and inelastic interactions in liquid water, as well as new examples dedicated to the simulation of physicochemical and chemical stages of water radiolysis. Several implementations of geometrical models of biological targets are presented as well, and the list of Geant4-DNA examples is described.
Collapse
|
15
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Fomina EE, Pestryakov PE, Kretov DA, Zharkov DO, Ovchinnikov LP, Curmi PA, Lavrik OI. Inhibition of abasic site cleavage in bubble DNA by multifunctional protein YB-1. J Mol Recognit 2015; 28:117-23. [DOI: 10.1002/jmr.2435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Elizaveta E. Fomina
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
| | - Pavel E. Pestryakov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
| | - Dmitry A. Kretov
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR829; Université Evry-Val d'Essonne; Evry France
- Institute of Protein Research; Russian Academy of Sciences; Pushchino Moscow region 142290 Russia
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Lev P. Ovchinnikov
- Institute of Protein Research; Russian Academy of Sciences; Pushchino Moscow region 142290 Russia
| | - Patrick A. Curmi
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR829; Université Evry-Val d'Essonne; Evry France
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of Russian Academy of Sciences; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
- Altai State University; Barnaul 656049 Russia
| |
Collapse
|
17
|
Brenerman BM, Illuzzi JL, Wilson DM. Base excision repair capacity in informing healthspan. Carcinogenesis 2014; 35:2643-52. [PMID: 25355293 PMCID: PMC4247524 DOI: 10.1093/carcin/bgu225] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022] Open
Abstract
Base excision repair (BER) is a frontline defense mechanism for dealing with many common forms of endogenous DNA damage, several of which can drive mutagenic or cell death outcomes. The pathway engages proteins such as glycosylases, abasic endonucleases, polymerases and ligases to remove substrate modifications from DNA and restore the genome back to its original state. Inherited mutations in genes related to BER can give rise to disorders involving cancer, immunodeficiency and neurodegeneration. Studies employing genetically defined heterozygous (haploinsufficient) mouse models indicate that partial reduction in BER capacity can increase vulnerability to both spontaneous and exposure-dependent pathologies. In humans, measurement of BER variation has been imperfect to this point, yet tools to assess BER in epidemiological surveys are steadily evolving. We provide herein an overview of the BER pathway and discuss the current efforts toward defining the relationship of BER defects with disease susceptibility.
Collapse
Affiliation(s)
- Boris M Brenerman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Illuzzi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
18
|
Junk M, Salzwedel J, Sindlinger T, Bürkle A, Moreno-Villanueva M. Mathematical modelling of the automated FADU assay for the quantification of DNA strand breaks and their repair in human peripheral mononuclear blood cells. BMC BIOPHYSICS 2014; 7:9. [PMID: 26085926 PMCID: PMC4470348 DOI: 10.1186/s13628-014-0009-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/19/2014] [Indexed: 12/25/2022]
Abstract
Background Cells continuously undergo DNA damage from exogenous agents like irradiation or genotoxic chemicals or from endogenous radicals produced by normal cellular metabolic activities. DNA strand breaks are one of the most common genotoxic lesions and they can also arise as intermediates of DNA repair activity. Unrepaired DNA damage can lead to genomic instability, which can massively compromise the health status of organisms. Therefore it is important to measure and quantify DNA damage and its repair. Results We have previously published an automated method for measuring DNA strand breaks based on fluorimetric detection of alkaline DNA unwinding [1], and here we present a mathematical model of the FADU assay, which enables to an analytic expression for the relation between measured fluorescence and the number of strand breaks. Conclusions Assessment of the formation and also the repair of DNA strand breaks is a crucial functional parameter to investigate genotoxicity in living cells. A reliable and convenient method to quantify DNA strand breakage is therefore of significant importance for a wide variety of scientific fields, e.g. toxicology, pharmacology, epidemiology and medical sciences.
Collapse
Affiliation(s)
- Michael Junk
- Numerics group, Department of Mathematics and Statistics, Universität Konstanz, Konstanz, D-78457, Germany
| | - Judy Salzwedel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Thilo Sindlinger
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
19
|
Rahmanian S, Taleei R, Nikjoo H. Radiation induced base excision repair (BER): a mechanistic mathematical approach. DNA Repair (Amst) 2014; 22:89-103. [PMID: 25117268 DOI: 10.1016/j.dnarep.2014.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
Abstract
This paper presents a mechanistic model of base excision repair (BER) pathway for the repair of single-stand breaks (SSBs) and oxidized base lesions produced by ionizing radiation (IR). The model is based on law of mass action kinetics to translate the biochemical processes involved, step-by-step, in the BER pathway to translate into mathematical equations. The BER is divided into two subpathways, short-patch repair (SPR) and long-patch repair (LPR). SPR involves in replacement of single nucleotide via Pol β and ligation of the ends via XRCC1 and Ligase III, while LPR involves in replacement of multiple nucleotides via PCNA, Pol δ/ɛ and FEN 1, and ligation via Ligase I. A hallmark of IR is the production of closely spaced lesions within a turn of DNA helix (named complex lesions), which have been attributed to a slower repair process. The model presented considers fast and slow component of BER kinetics by assigning SPR for simple lesions and LPR for complex lesions. In the absence of in vivo reaction rate constants for the BER proteins, we have deduced a set of rate constants based on different published experimental measurements including accumulation kinetics obtained from UVA irradiation, overall SSB repair kinetic experiments, and overall BER kinetics from live-cell imaging experiments. The model was further used to calculate the repair kinetics of complex base lesions via the LPR subpathway and compared to foci kinetic experiments for cells irradiated with γ rays, Si, and Fe ions. The model calculation show good agreement with experimental measurements for both overall repair and repair of complex lesions. Furthermore, using the model we explored different mechanisms responsible for inhibition of repair when higher LET and HZE particles are used and concluded that increasing the damage complexity can inhibit initiation of LPR after the AP site removal step in BER.
Collapse
Affiliation(s)
- Shirin Rahmanian
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 P9-02, Stockholm 17176, Sweden
| | - Reza Taleei
- Radiation Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 94, Houston, TX 77030-4409, USA
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 P9-02, Stockholm 17176, Sweden.
| |
Collapse
|
20
|
Gurkan-Cavusoglu E, Avadhani S, Liu L, Kinsella TJ, Loparo KA. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics. IET Syst Biol 2013; 7:27-37. [PMID: 23847811 DOI: 10.1049/iet-syb.2011.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Base excision repair (BER) is a major DNA repair pathway involved in the processing of exogenous non-bulky base damages from certain classes of cancer chemotherapy drugs as well as ionising radiation (IR). Methoxyamine (MX) is a small molecule chemical inhibitor of BER that is shown to enhance chemotherapy and/or IR cytotoxicity in human cancers. In this study, the authors have analysed the inhibitory effect of MX on the BER pathway kinetics using a computational model of the repair pathway. The inhibitory effect of MX depends on the BER efficiency. The authors have generated variable efficiency groups using different sets of protein concentrations generated by Latin hypercube sampling, and they have clustered simulation results into high, medium and low efficiency repair groups. From analysis of the inhibitory effect of MX on each of the three groups, it is found that the inhibition is most effective for high efficiency BER, and least effective for low efficiency repair.
Collapse
Affiliation(s)
- Evren Gurkan-Cavusoglu
- Department of Electrical Engineering and Computer Science, School of Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-7071, USA.
| | | | | | | | | |
Collapse
|
21
|
Illuzzi JL, Harris NA, Manvilla BA, Kim D, Li M, Drohat AC, Wilson DM. Functional assessment of population and tumor-associated APE1 protein variants. PLoS One 2013; 8:e65922. [PMID: 23776569 PMCID: PMC3679070 DOI: 10.1371/journal.pone.0065922] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/29/2013] [Indexed: 01/15/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant AP site repair enzyme in mammals. APE1 also maintains 3'-5' exonuclease and 3'-repair activities, and regulates transcription factor DNA binding through its REF-1 function. Since complete or severe APE1 deficiency leads to embryonic lethality and cell death, it has been hypothesized that APE1 protein variants with slightly impaired function will contribute to disease etiology. Our data indicate that except for the endometrial cancer-associated APE1 variant R237C, the polymorphic variants Q51H, I64V and D148E, the rare population variants G241R, P311S and A317V, and the tumor-associated variant P112L exhibit normal thermodynamic stability of protein folding; abasic endonuclease, 3'-5' exonuclease and REF-1 activities; coordination during the early steps of base excision repair; and intracellular distribution when expressed exogenously in HeLa cells. The R237C mutant displayed reduced AP-DNA complex stability, 3'-5' exonuclease activity and 3'-damage processing. Re-sequencing of the exonic regions of APE1 uncovered no novel amino acid substitutions in the 60 cancer cell lines of the NCI-60 panel, or in HeLa or T98G cancer cell lines; only the common D148E and Q51H variants were observed. Our results indicate that APE1 missense mutations are seemingly rare and that the cancer-associated R237C variant may represent a reduced-function susceptibility allele.
Collapse
Affiliation(s)
- Jennifer L. Illuzzi
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nicole A. Harris
- Department of Cardiopathology, Sanford Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Brittney A. Manvilla
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Daemyung Kim
- Department of Genetic Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Mengxia Li
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Alexander C. Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. BMC SYSTEMS BIOLOGY 2013; 7:24. [PMID: 23514624 PMCID: PMC3668150 DOI: 10.1186/1752-0509-7-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The genome of living organisms is constantly exposed to several damaging agents that induce different types of DNA lesions, leading to cellular malfunctioning and onset of many diseases. To maintain genome stability, cells developed various repair and tolerance systems to counteract the effects of DNA damage. Here we focus on Post Replication Repair (PRR), the pathway involved in the bypass of DNA lesions induced by sunlight exposure and UV radiation. PRR acts through two different mechanisms, activated by mono- and poly-ubiquitylation of the DNA sliding clamp, called Proliferating Cell Nuclear Antigen (PCNA). RESULTS We developed a novel protocol to measure the time-course ratios between mono-, di- and tri-ubiquitylated PCNA isoforms on a single western blot, which were used as the wet readout for PRR events in wild type and mutant S. cerevisiae cells exposed to acute UV radiation doses. Stochastic simulations of PCNA ubiquitylation dynamics, performed by exploiting a novel mechanistic model of PRR, well fitted the experimental data at low UV doses, but evidenced divergent behaviors at high UV doses, thus driving the design of further experiments to verify new hypothesis on the functioning of PRR. The model predicted the existence of a UV dose threshold for the proper functioning of the PRR model, and highlighted an overlapping effect of Nucleotide Excision Repair (the pathway effectively responsible to clean the genome from UV lesions) on the dynamics of PCNA ubiquitylation in different phases of the cell cycle. In addition, we showed that ubiquitin concentration can affect the rate of PCNA ubiquitylation in PRR, offering a possible explanation to the DNA damage sensitivity of yeast strains lacking deubiquitylating enzymes. CONCLUSIONS We exploited an in vivo and in silico combinational approach to analyze for the first time in a Systems Biology context the events of PCNA ubiquitylation occurring in PRR in budding yeast cells. Our findings highlighted an intricate functional crosstalk between PRR and other events controlling genome stability, and evidenced that PRR is more complicated and still far less characterized than previously thought.
Collapse
Affiliation(s)
- Flavio Amara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Riccardo Colombo
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Paolo Cazzaniga
- Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo, Bergamo, Italy
| | - Dario Pescini
- Dipartimento di Statistica e Metodi Quantitativi, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Attila Csikász-Nagy
- , The Microsoft Research - Università degli Studi di Trento, Centre for Computational and Systems Biology, Rovereto (Trento), Italy
| | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Daniela Besozzi
- Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Stamatelos SK, Androulakis IP, Kong ANT, Georgopoulos PG. A semi-mechanistic integrated toxicokinetic-toxicodynamic (TK/TD) model for arsenic(III) in hepatocytes. J Theor Biol 2013; 317:244-56. [PMID: 23069314 PMCID: PMC4026948 DOI: 10.1016/j.jtbi.2012.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/26/2012] [Accepted: 09/18/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND A systems engineering approach is presented for describing the kinetics and dynamics that are elicited upon arsenic exposure of human hepatocytes. The mathematical model proposed here tracks the cellular reaction network of inorganic and organic arsenic compounds present in the hepatocyte and analyzes the production of toxicologically potent by-products and the signaling they induce in hepatocytes. METHODS AND RESULTS The present modeling effort integrates for the first time a cellular-level semi-mechanistic toxicokinetic (TK) model of arsenic in human hepatocytes with a cellular-level toxicodynamic (TD) model describing the arsenic-induced reactive oxygen species (ROS) burst, the antioxidant response, and the oxidative DNA damage repair process. The antioxidant response mechanism is described based on the Keap1-independent Nuclear Factor-erythroid 2-related factor 2 (Nrf2) signaling cascade and accounts for the upregulation of detoxifying enzymes. The ROS-induced DNA damage is simulated by coupling the TK/TD formulation with a model describing the multistep pathway of oxidative DNA repair. The predictions of the model are assessed against experimental data of arsenite-induced genotoxic damage to human hepatocytes; thereby capturing in silico the mode of the experimental dose-response curve. CONCLUSIONS The integrated cellular-level TK/TD model presented here provides significant insight into the underlying regulatory mechanism of Nrf2-regulated antioxidant response due to arsenic exposure. While computational simulations are in a fair good agreement with relevant experimental data, further analysis of the system unravels the role of a dynamic interplay among the feedback loops of the system in controlling the ROS upregulation and DNA damage response. This TK/TD framework that uses arsenic as an example can be further extended to other toxic or pharmaceutical agents.
Collapse
Affiliation(s)
- Spyros K. Stamatelos
- Environmental and Occupational Health Sciences Institute (EOHSI) A Joint Institute of UMDNJ-Robert Wood Johnson Medical School and Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Ioannis P. Androulakis
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Panos G. Georgopoulos
- Environmental and Occupational Health Sciences Institute (EOHSI) A Joint Institute of UMDNJ-Robert Wood Johnson Medical School and Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States
| |
Collapse
|
24
|
Derevyanko AG, Endutkin AV, Ishchenko AA, Saparbaev MK, Zharkov DO. Initiation of 8-oxoguanine base excision repair within trinucleotide tandem repeats. BIOCHEMISTRY (MOSCOW) 2013; 77:270-9. [PMID: 22803944 DOI: 10.1134/s0006297912030054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trinucleotide repeat expansion provides a molecular basis for several devastating neurodegenerative diseases. In particular, expansion of a CAG run in the human HTT gene causes Huntington's disease. One of the main reasons for triplet repeat expansion in somatic cells is base excision repair (BER), involving damaged base excision and repair DNA synthesis that may be accompanied by expansion of the repaired strand due to formation of noncanonical DNA structures. We have analyzed the kinetics of excision of a ubiquitously found oxidized purine base, 8-oxoguanine (oxoG), by DNA glycosylase OGG1 from the substrates containing a CAG run flanked by AT-rich sequences. The values of k(2) rate constant for the removal of oxoG from triplets in the middle of the run were higher than for oxoG at the flanks of the run. The value of k(3) rate constant dropped starting from the third CAG-triplet in the run and remained stable until the 3'-terminal triplet, where it decreased even more. In nuclear extracts, the profile of oxoG removal rate along the run resembled the profile of k(2) constant, suggesting that the reaction rate in the extracts is limited by base excision. The fully reconstituted BER was efficient with all substrates unless oxoG was near the 3'-flank of the run, interfering with the initiation of the repair. DNA polymerase β was able to perform a strand-displacement DNA synthesis, which may be important for CAG run expansion initiated by BER.
Collapse
Affiliation(s)
- A G Derevyanko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
25
|
Kleppa L, Mari PO, Larsen E, Lien GF, Godon C, Theil AF, Nesse GJ, Wiksen H, Vermeulen W, Giglia-Mari G, Klungland A. Kinetics of endogenous mouse FEN1 in base excision repair. Nucleic Acids Res 2012; 40:9044-59. [PMID: 22810208 PMCID: PMC3467068 DOI: 10.1093/nar/gks673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.
Collapse
Affiliation(s)
- Liv Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Taleei R, Nikjoo H. Repair of the double-strand breaks induced by low energy electrons: A modelling approach. Int J Radiat Biol 2012; 88:948-53. [DOI: 10.3109/09553002.2012.695098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Taleei R, Weinfeld M, Nikjoo H. Single strand annealing mathematical model for double strand break repair. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2050-1412-1-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
de la Fuente IM. Quantitative analysis of cellular metabolic dissipative, self-organized structures. Int J Mol Sci 2010; 11:3540-99. [PMID: 20957111 PMCID: PMC2956111 DOI: 10.3390/ijms11093540] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/11/2010] [Accepted: 09/12/2010] [Indexed: 11/16/2022] Open
Abstract
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life.
Collapse
Affiliation(s)
- Ildefonso Martínez de la Fuente
- Institute of Parasitology and Biomedicine "López-Neyra" (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18100 Armilla (Granada), Spain; E-Mail: ; Tel.: +34-958-18-16-21
| |
Collapse
|
29
|
Lyons DM, O'Brien PJ. Human base excision repair creates a bias toward -1 frameshift mutations. J Biol Chem 2010; 285:25203-12. [PMID: 20547483 DOI: 10.1074/jbc.m110.118596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Frameshift mutations are particularly deleterious to protein function and play a prominent role in carcinogenesis. Most commonly these mutations involve the insertion or omission of a single nucleotide by a DNA polymerase that slips on a damaged or undamaged template. The mismatch DNA repair pathway can repair these nascent polymerase errors. However, overexpression of enzymes of the base excision repair (BER) pathway is known to increase the frequency of frameshift mutations suggesting competition between these pathways. We have examined the fate of DNA containing single nucleotide bulges in human cell extracts and discovered that several deaminated or alkylated nucleotides are efficiently removed by BER. Because single nucleotide bulges are more highly exposed we anticipate that they would be highly susceptible to spontaneous DNA damage. As a model for this, we have shown that chloroacetaldehyde reacts more than 18-fold faster with an A-bulge than with a stable A.T base pair to create alkylated DNA adducts that can be removed by alkyladenine DNA glycosylase. Reconstitution of the BER pathway using purified components establishes that bulged DNA is efficiently processed. Single nucleotide deletion is predicted to repair +1 frameshift events, but to make -1 frameshift events permanent. Therefore, these findings suggest an additional factor contributing to the bias toward deletion mutations.
Collapse
Affiliation(s)
- Derek M Lyons
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-5606, USA
| | | |
Collapse
|
30
|
Evans MD, Saparbaev M, Cooke MS. DNA repair and the origins of urinary oxidized 2'-deoxyribonucleosides. Mutagenesis 2010; 25:433-42. [PMID: 20522520 DOI: 10.1093/mutage/geq031] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monitoring oxidative stress in vivo is made easier by the ability to use samples obtained non-invasively, such as urine. The analysis of DNA oxidation, by measurement of oxidized 2'-deoxyribonucleosides in urine, particularly 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), has been reported extensively in the literature in many situations relating to various pathologies, populations and environmental exposures. Understanding the origins of urinary 8-oxodG, other than it simply being a marker of DNA oxidation or its synthetic precursors, is important to being able to effectively interpret differences in baseline urinary 8-oxodG levels between subject groups and changes in excretion. Diet and cell turnover play negligible roles in contributing to urinary 8-oxodG levels, leaving DNA repair as a primary source of this lesion. However, which repair processes contribute, and to what extent, to urinary 8-oxodG is still open to question. The most rational source would be the activity of selected members of the Nudix hydrolase family of enzymes, sanitizing the deoxyribonucleotide pool via the degradation of 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-triphosphate and 8-oxo-7,8-dihydro-2'-deoxyguanosine-5'-diphosphate, yielding mononucleotide products that can then be dephosphorylated to 8-oxodG and excreted. However, nucleotide excision repair (NER), transcription-coupled repair, nucleotide incision repair (NIR), mismatch repair and various exonuclease activities, such as proofreading function associated with DNA polymerases, can all feasibly generate initial products that could yield 8-oxodG after further metabolism. A recent study implying that a significant proportion of genomic 8-oxodG exists in the context of tandem lesions, refractory to repair by glycosylases, suggests the roles of NER and/or NIR remain to be further examined and defined as a source of 8-oxodG. 8-OxodG has been the primary focus of investigation, but other oxidized 2'-deoxyribonucleosides have been detected in urine, 2'-deoxythymidine glycol and 5-hydroxymethyl-2'-deoxyuridine; the origins of these compounds in urine, however, are presently even more speculative than for 8-oxodG.
Collapse
Affiliation(s)
- Mark D Evans
- Radiation and Oxidative Stress Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK.
| | | | | |
Collapse
|
31
|
Cooke MS, Henderson PT, Evans MD. Sources of extracellular, oxidatively-modified DNA lesions: implications for their measurement in urine. J Clin Biochem Nutr 2009; 45:255-70. [PMID: 19902015 PMCID: PMC2771246 DOI: 10.3164/jcbn.sr09-41] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 12/14/2022] Open
Abstract
There is a robust mechanistic basis for the role of oxidation damage to DNA in the aetiology of various major diseases (cardiovascular, neurodegenerative, cancer). Robust, validated biomarkers are needed to measure oxidative damage in the context of molecular epidemiology, to clarify risks associated with oxidative stress, to improve our understanding of its role in health and disease and to test intervention strategies to ameliorate it. Of the urinary biomarkers for DNA oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is the most studied. However, there are a number of factors which hamper our complete understanding of what meausrement of this lesion in urine actually represents. DNA repair is thought to be a major contributor to urinary 8-oxodG levels, although the precise pathway(s) has not been proven, plus possible contribution from cell turnover and diet are possible confounders. Most recently, evidence has arisen which suggests that nucleotide salvage of 8-oxodG and 8-oxoGua can contribute substantially to 8-oxoG levels in DNA and RNA, at least in rapidly dividing cells. This new observation may add an further confounder to the conclusion that 8-oxoGua or 8-oxodG, and its nucleobase equivalent 8-oxoguanine, concentrations in urine are simply a consequence of DNA repair. Further studies are required to define the relative contributions of metabolism, disease and diet to oxidised nucleic acids and their metabolites in urine in order to develop urinalyis as a better tool for understanding human disease.
Collapse
Affiliation(s)
- Marcus S Cooke
- Radiation and Oxidative Stress Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Bilding, University of Leicester, LE2 7LX, UK
| | | | | |
Collapse
|
32
|
Baldwin MR, O'Brien PJ. Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase. Biochemistry 2009; 48:6022-33. [PMID: 19449863 DOI: 10.1021/bi900517y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of damaged purine bases from DNA, including hypoxanthine that is formed by the oxidative deamination of adenine. We used steady state, pre-steady state, and single-turnover kinetic assays to show that the multiple-turnover excision of hypoxanthine in vitro is limited by release of the abasic DNA product. This suggests the possibility that the product release step is regulated in vivo by interactions with other base excision repair (BER) proteins. Such coordination of BER activities would protect the abasic DNA repair intermediate and ensure its correct processing. AP endonuclease 1 (APE1) is the predominant enzyme for processing abasic DNA sites in human cells. Therefore, we have investigated the functional effects of added APE1 on the base excision activity of AAG. We find that APE1 stimulates the multiple-turnover excision of hypoxanthine by AAG but has no effect on single-turnover excision. Since the amino terminus of AAG has been implicated in other protein-protein interactions, we also characterize the deletion mutant lacking the first 79 amino acids. We find that APE1 fully stimulates the multiple-turnover glycosylase activity of this mutant, demonstrating that the amino terminus of AAG is not strictly required for this functional interaction. These results are consistent with a model in which APE1 displaces AAG from the abasic site, thereby coordinating the first two steps of the base excision repair pathway.
Collapse
Affiliation(s)
- Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
33
|
Simeonov A, Kulkarni A, Dorjsuren D, Jadhav A, Shen M, McNeill DR, Austin CP, Wilson DM. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1. PLoS One 2009; 4:e5740. [PMID: 19484131 PMCID: PMC2685009 DOI: 10.1371/journal.pone.0005740] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 04/29/2009] [Indexed: 11/20/2022] Open
Abstract
APE1 is the major nuclease for excising abasic (AP) sites and particular 3′-obstructive termini from DNA, and is an integral participant in the base excision repair (BER) pathway. BER capacity plays a prominent role in dictating responsiveness to agents that generate oxidative or alkylation DNA damage, as well as certain chain-terminating nucleoside analogs and 5-fluorouracil. We describe within the development of a robust, 1536-well automated screening assay that employs a deoxyoligonucleotide substrate operating in the red-shifted fluorescence spectral region to identify APE1 endonuclease inhibitors. This AP site incision assay was used in a titration-based high-throughput screen of the Library of Pharmacologically Active Compounds (LOPAC1280), a collection of well-characterized, drug-like molecules representing all major target classes. Prioritized hits were authenticated and characterized via two high-throughput screening assays – a Thiazole Orange fluorophore-DNA displacement test and an E. coli endonuclease IV counterscreen – and a conventional, gel-based radiotracer incision assay. The top, validated compounds, i.e. 6-hydroxy-DL-DOPA, Reactive Blue 2 and myricetin, were shown to inhibit AP site cleavage activity of whole cell protein extracts from HEK 293T and HeLa cell lines, and to enhance the cytotoxic and genotoxic potency of the alkylating agent methylmethane sulfonate. The studies herein report on the identification of novel, small molecule APE1-targeted bioactive inhibitor probes, which represent initial chemotypes towards the development of potential pharmaceuticals.
Collapse
Affiliation(s)
- Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avanti Kulkarni
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Min Shen
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel R. McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Christopher P. Austin
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kinsella TJ. Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clin Cancer Res 2009; 15:1853-9. [PMID: 19240165 DOI: 10.1158/1078-0432.ccr-08-1307] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA damage processing by mismatch repair (MMR) and/or base excision repair (BER) can determine the therapeutic index following treatment of human cancers using radiation therapy and several classes of chemotherapy drugs. Over the last decade, basic and translational cancer research in DNA repair has led to an increased understanding of how these two DNA repair pathways can modify cytotoxicity to chemotherapy and/or ionizing radiation treatments in both normal and malignant tissues. This Molecular Pathways article provides an overview of the current understanding of mechanisms involved in MMR and BER damage processing, including insights into possible coordination of these two DNA repair pathways after chemotherapy and/or ionizing radiation damage. It also introduces principles of systems biology that have been applied to better understand the complexities and coordination of MMR and BER in processing these DNA damages. Finally, it highlights novel therapeutic approaches to target resistant (or DNA damage tolerant) human cancers using chemical and molecular modifiers of chemotherapy and/or ionizing radiation including poly (ADP-ribose) polymerase inhibitors, methoxyamine and iododeoxyuridine (and the prodrug, 5-iodo-2-pyrimidinone-2'-deoxyribose).
Collapse
Affiliation(s)
- Timothy J Kinsella
- Case Integrative Cancer Biology Program, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
35
|
Sokhansanj BA, Datta S, Hu X. Scalable Dynamic Fuzzy Biomolecular Network Models for Large Scale Biology. FUZZY SYSTEMS IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2009. [DOI: 10.1007/978-3-540-89968-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces. PLoS Comput Biol 2008; 4:e1000066. [PMID: 18437203 PMCID: PMC2289873 DOI: 10.1371/journal.pcbi.1000066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 03/20/2008] [Indexed: 11/19/2022] Open
Abstract
Abasic (AP) sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1) cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta). While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site) and three with pol-beta located upstream of APEX1 (5' to the damaged site). Molecular dynamics (MD) simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol) to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in any DNA-metabolizing pathway where weak interactions are the principal mode of cross-talk among participants and co-crystal structures of the individual components are available.
Collapse
|
37
|
Cooke MS, Olinski R, Loft S. Measurement and Meaning of Oxidatively Modified DNA Lesions in Urine. Cancer Epidemiol Biomarkers Prev 2008; 17:3-14. [DOI: 10.1158/1055-9965.epi-07-0751] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Adhikari S, Üren A, Roy R. Dipole-dipole interaction stabilizes the transition state of apurinic/apyrimidinic endonuclease--abasic site interaction. J Biol Chem 2007; 283:1334-1339. [PMID: 18025089 DOI: 10.1074/jbc.m704594200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease (hAPE) initiates the repair of an abasic site (AP site). To gain insight into the mechanisms of damage recognition of hAPE, we conducted surface plasmon resonance spectroscopy to study the thermodynamics and kinetics of its interaction with substrate DNA containing an abasic site (AP DNA). The affinity of hAPE binding toward DNA increased as much as 6-fold after replacing a single adenine (equilibrium dissociation constant, K(D), 5.3 nm) with an AP site (K(D), 0.87 nm). The enzyme-substrate complex formation appears to be thermodynamically stabilized and favored by a large change in Gibbs free energy, DeltaG degrees (-50 kJ/mol). The latter is supported by a high negative change in enthalpy, DeltaH degrees (-43 kJ/mol) and also positive change in entropy, DeltaS degrees (24 J/(K mol)), and thus the binding process is spontaneous at all temperatures. Analysis of kinetic parameters reveals small enthalpy of activation for association, DeltaH degrees++(ass) (-17 kJ/mol), and activation energy for association (E(a), -14 kJ/mol) when compared with the enthalpy of activation for dissociation, DeltaH degrees++(diss) (26 kJ/mol), and activation energy in the reverse direction (E(d), 28 kJ/mol). Furthermore, varying concentration of KCl showed an increase in binding affinity at low concentration but complete abrogation of the binding at higher concentration, implying the importance of hydrophobic, but predominantly ionic, forces in the Michaelis-Menten complex formation. Thus, low activation energy and the enthalpy of activation, which are perhaps a result of dipole-dipole interactions, play critical roles in AP site binding of APE.
Collapse
Affiliation(s)
- Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057.
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057.
| |
Collapse
|
39
|
Muniz JF, McCauley L, Scherer J, Lasarev M, Koshy M, Kow YW, Nazar-Stewart V, Kisby GE. Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicol Appl Pharmacol 2007; 227:97-107. [PMID: 18086483 DOI: 10.1016/j.taap.2007.10.027] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/19/2007] [Accepted: 10/29/2007] [Indexed: 11/29/2022]
Abstract
Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p<0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.
Collapse
Affiliation(s)
- Juan F Muniz
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vidal AE, Harkiolaki M, Gallego C, Castillo-Acosta VM, Ruiz-Pérez LM, Wilson K, González-Pacanowska D. Crystal Structure and DNA Repair Activities of the AP Endonuclease from Leishmania major. J Mol Biol 2007; 373:827-38. [PMID: 17870086 DOI: 10.1016/j.jmb.2007.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/24/2007] [Accepted: 08/01/2007] [Indexed: 12/31/2022]
Abstract
Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.
Collapse
Affiliation(s)
- Antonio E Vidal
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Prasad R, Beard WA, Kedar PS, Hou EW, Shock DD, Wilson SH. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. J Biol Chem 2007; 282:13532-41. [PMID: 17355977 PMCID: PMC2366199 DOI: 10.1074/jbc.m611295200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The individual steps in single-nucleotide base excision repair (SN-BER) are coordinated to enable efficient repair without accumulation of cytotoxic DNA intermediates. The DNA transactions and various proteins involved in SN-BER of abasic sites are well known in mammalian systems. Yet, despite a wealth of information on SN-BER, the mechanism of step-by-step coordination is poorly understood. In this study we conducted experiments toward understanding step-by-step coordination during BER by comparing DNA binding specificities of two major human SN-BER enzymes, apurinic/aprymidinic endonuclease 1 (APE) and DNA polymerase beta (Pol beta). It is known that these enzymes do not form a stable complex in solution. For each enzyme, we found that DNA binding specificity appeared sufficient to explain the sequential processing of BER intermediates. In addition, however, we identified at higher enzyme concentrations a ternary complex of APE.Pol beta.DNA that formed specifically at BER intermediates containing a 5'-deoxyribose phosphate group. Formation of this ternary complex was associated with slightly stronger Pol beta gap-filling and much stronger 5'-deoxyribose phosphate lyase activities than was observed with the Pol beta.DNA binary complex. These results indicate that step-by-step coordination in SN-BER can rely on DNA binding specificity inherent in APE and Pol beta, although coordination also may be facilitated by APE.Pol beta.DNA ternary complex formation with appropriate enzyme expression levels or enzyme recruitment to sites of repair.
Collapse
Affiliation(s)
- Yuan Liu
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Sokhansanj BA, Wilson DM. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev 2006; 15:1000-8. [PMID: 16702383 DOI: 10.1158/1055-9965.epi-05-0817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
43
|
Cooke MS, Rozalski R, Dove R, Gackowski D, Siomek A, Evans MD, Olinski R. Evidence for attenuated cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine removal in cancer patients. Biol Chem 2006; 387:393-400. [PMID: 16606337 DOI: 10.1515/bc.2006.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Measurement of the products of oxidatively damaged DNA in urine is a frequently used means by which oxidative stress may be assessed non-invasively. We believe that urinary DNA lesions, in addition to being biomarkers of oxidative stress, can potentially provide more specific information, for example, a reflection of repair activity. We used high-performance liquid chromatography prepurification, with gas chromatography-mass spectrometry (LC-GC-MS) and ELISA to the analysis of a number of oxidative [e.g., 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-guanine, 5-(hydroxymethyl)uracil], non-oxidative (cyclobutane thymine dimers) and oligomeric DNA products in urine. We analysed spot urine samples from 20 healthy subjects, and 20 age- and sex-matched cancer patients. Mononuclear cell DNA 8-oxodG levels were assessed by LC-EC. The data support our proposal that urinary DNA lesion products are predominantly derived from DNA repair. Furthermore, analysis of DNA and urinary 8-oxodG in cancer patients and controls suggested reduced repair activity towards this lesion marker in these patients.
Collapse
Affiliation(s)
- Marcus S Cooke
- Department of Cancer Studies and Molecular Medicine, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, LE2 7LX, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Jagannathan I, Cole HA, Hayes JJ. Base excision repair in nucleosome substrates. Chromosome Res 2006; 14:27-37. [PMID: 16506094 DOI: 10.1007/s10577-005-1020-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/01/2005] [Indexed: 01/29/2023]
Abstract
Eukaryotic cells must repair DNA lesions within the context of chromatin. Much of our current understanding regarding the activity of enzymes involved in DNA repair processes comes from in-vitro studies utilizing naked DNA as a substrate. Here we review current literature investigating how enzymes involved in base excision repair (BER) contend with nucleosome substrates, and discuss the possibility that some of the activities involved in BER are compatible with the organization of DNA within nucleosomes. In addition, we examine evidence for the role of accessory factors, such as histone modification enzymes, and the role of the histone tail domains in moderating the activities of BER factors on nucleosomal substrates.
Collapse
Affiliation(s)
- Indu Jagannathan
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, NY 14642, USA
| | | | | |
Collapse
|
45
|
Politi A, Moné MJ, Houtsmuller AB, Hoogstraten D, Vermeulen W, Heinrich R, van Driel R. Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies. Mol Cell 2005; 19:679-90. [PMID: 16137623 DOI: 10.1016/j.molcel.2005.06.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 02/16/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Nucleotide excision repair (NER) requires the concerted action of many different proteins that assemble at sites of damaged DNA in a sequential fashion. We have constructed a mathematical model delineating hallmarks and general characteristics for NER. We measured the assembly kinetics of the putative damage-recognition factor XPC-HR23B at sites of DNA damage in the nuclei of living cells. These and other in vivo kinetic data allowed us to scrutinize the dynamic behavior of the nucleotide excision repair process in detail. A sequential assembly mechanism appears remarkably advantageous in terms of repair efficiency. Alternative mechanisms for repairosome formation, including random assembly and preassembly, can readily become kinetically unfavorable. Based on the model, new experiments can be defined to gain further insight into this complex process and to critically test model predictions. Our work provides a kinetic framework for NER and rationalizes why many multiprotein processes within the cell nucleus show sequential assembly strategy.
Collapse
Affiliation(s)
- Antonio Politi
- Department of Theoretical Biophysics, Institute of Biology, Humboldt University, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Semenenko VA, Stewart RD, Ackerman EJ. Monte Carlo Simulation of Base and Nucleotide Excision Repair of Clustered DNA Damage Sites. I. Model Properties and Predicted Trends. Radiat Res 2005; 164:180-93. [PMID: 16038589 DOI: 10.1667/rr3402] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA is constantly damaged through endogenous processes and by exogenous agents, such as ionizing radiation. Base excision repair (BER) and nucleotide excision repair (NER) help maintain the stability of the genome by removing many different types of DNA damage. We present a Monte Carlo excision repair (MCER) model that simulates key steps in the short-patch and long-patch BER pathways and the NER pathway. The repair of both single and clustered damages, except double-strand breaks (DSBs), is simulated in the MCER model. Output from the model includes estimates of the probability that a cluster is repaired correctly, the fraction of the clusters converted into DSBs through the action of excision repair enzymes, the fraction of the clusters repaired with mutations, and the expected number of repair cycles needed to completely remove a clustered damage site. The quantitative implications of alternative hypotheses regarding the postulated repair mechanisms are investigated through a series of parameter sensitivity studies. These sensitivity studies are also used to help define the putative repair characteristics of clustered damage sites other than DSBs.
Collapse
Affiliation(s)
- V A Semenenko
- Purdue University, School of Health Sciences, West Lafayette, Indiana 47907-2051, USA
| | | | | |
Collapse
|
47
|
Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 2005; 7:367-84. [PMID: 15706084 DOI: 10.1089/ars.2005.7.367] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/Ref-1) is a perfect paradigm of the functional complexity of a biological macromolecule. First, it plays a crucial role, by both redox-dependent and -independent mechanisms, as a transcriptional coactivator for different transcription factors, either ubiquitous (i.e., AP-1, Egr-1, NF-kappaB, p53, HIF) or tissue-specific (i.e., PEBP-2, Pax-5 and -8, TTF-1), in controlling different cellular processes such as apoptosis, proliferation, and differentiation. Second, it acts, as an apurinic/apyrimidinic endonuclease, during the second step of the DNA base excision repair pathway, which is responsible for the repair of cellular alkylation and oxidative DNA damages. Third, it controls the intracellular reactive oxygen species production by negatively regulating the activity of the Ras-related GTPase Rac1. Despite these known functions of APE1/Ref-1, information is still scanty about the molecular mechanisms responsible for the coordinated control of its several activities. Some evidence suggests that the expression and subcellular localization of APE1/Ref-1 are finely tuned. APE1/Ref-1 is a ubiquitous protein, but its expression pattern differs according to the different cell types. APE1/Ref-1 subcellular localization is mainly nuclear, but cytoplasmic staining has also been reported, the latter being associated with mitochondria and/or presence within the endoplasmic reticulum. It is not by chance that both expression and subcellular localization are altered in several metabolic and proliferative disorders, such as in tumors and aging. Moreover, a fundamental role played by different posttranslational modifications in modulating APE1/Ref-1 functional activity is becoming evident. In the present review, we tried to put together a growing body of information concerning APE1/Ref-1's different functions, shedding new light on present and future directions to understand fully this unique molecule.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy.
| | | | | | | |
Collapse
|
48
|
Xi T, Jones IM, Mohrenweiser HW. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 2005; 83:970-9. [PMID: 15177551 DOI: 10.1016/j.ygeno.2003.12.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 12/31/2003] [Indexed: 01/03/2023]
Abstract
Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant from Tolerant (SIFT) classified 226 of 508 variants (44%) as "Intolerant." Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as "Probably or possibly damaging." Another 9-15% of the variants were classed as "Potentially intolerant or damaging." The results from the two algorithms are highly associated, with concordance in predicted impact observed for approximately 62% of the variants. Twenty-one to thirty-one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as "Tolerant" or "Benign." Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.
Collapse
Affiliation(s)
- Tong Xi
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | |
Collapse
|
49
|
Ahn B, Harrigan JA, Indig FE, Wilson DM, Bohr VA. Regulation of WRN helicase activity in human base excision repair. J Biol Chem 2004; 279:53465-74. [PMID: 15385537 DOI: 10.1074/jbc.m409624200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome patients are deficient in the Werner protein (WRN), which is a multifunctional nuclear protein possessing 3'-5' exonuclease and ATP-dependent helicase activities. Studies of Werner syndrome cells and biochemical studies of WRN suggest that WRN plays a role in several DNA metabolic pathways. WRN interacts with DNA polymerase beta (pol beta) and stimulates pol beta strand displacement synthesis on a base excision repair (BER) intermediate in a helicase-dependent manner. In this report, we examined the effect of the major human apurinic/apyrimidinic endonuclease (APE1) and of pol beta on WRN helicase activity. The results show that WRN alone is able to unwind several single strand break BER intermediates. However, APE1 inhibits WRN helicase activity on these intermediates. This inhibition is likely due to the binding of APE1 to nicked apurinic/apyrimidinic sites, suggesting that APE1 prevents the promiscuous unwinding of BER intermediates. This inhibitory effect was relieved by the presence of pol beta. A model involving the pol beta-mediated hand-off of WRN protein is proposed based on these results.
Collapse
Affiliation(s)
- Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | |
Collapse
|
50
|
Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. MUTATION RESEARCH/REVIEWS IN MUTATION RESEARCH 2004; 567:1-61. [PMID: 15341901 DOI: 10.1016/j.mrrev.2003.11.001] [Citation(s) in RCA: 898] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 04/08/2023]
Abstract
The generation of reactive oxygen species may be both beneficial to cells, performing a function in inter- and intracellular signalling, and detrimental, modifying cellular biomolecules, accumulation of which has been associated with numerous diseases. Of the molecules subject to oxidative modification, DNA has received the greatest attention, with biomarkers of exposure and effect closest to validation. Despite nearly a quarter of a century of study, and a large number of base- and sugar-derived DNA lesions having been identified, the majority of studies have focussed upon the guanine modification, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OH-dG). For the most part, the biological significance of other lesions has not, as yet, been investigated. In contrast, the description and characterisation of enzyme systems responsible for repairing oxidative DNA base damage is growing rapidly, being the subject of intense study. However, there remain notable gaps in our knowledge of which repair proteins remove which lesions, plus, as more lesions identified, new processes/substrates need to be determined. There are many reports describing elevated levels of oxidatively modified DNA lesions, in various biological matrices, in a plethora of diseases; however, for the majority of these the association could merely be coincidental, and more detailed studies are required. Nevertheless, even based simply upon reports of studies investigating the potential role of 8-OH-dG in disease, the weight of evidence strongly suggests a link between such damage and the pathogenesis of disease. However, exact roles remain to be elucidated.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, Department of Clinical Biochemistry, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, LE2 7LX, UK
| | | | | |
Collapse
|