1
|
Du Y, Cao L, Wang S, Guo L, Tan L, Liu H, Feng Y, Wu W. Differences in alternative splicing and their potential underlying factors between animals and plants. J Adv Res 2024; 64:83-98. [PMID: 37981087 PMCID: PMC11464654 DOI: 10.1016/j.jare.2023.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Alternative splicing (AS), a posttranscriptional process, contributes to the complexity of transcripts from a limited number of genes in a genome, and AS is considered a great source of genetic and phenotypic diversity in eukaryotes. In animals, AS is tightly regulated during the processes of cell growth and differentiation, and its dysregulation is involved in many diseases, including cancers. Likewise, in plants, AS occurs in all stages of plant growth and development, and it seems to play important roles in the rapid reprogramming of genes in response to environmental stressors. To date, the prevalence and functional roles of AS have been extensively reviewed in animals and plants. However, AS differences between animals and plants, especially their underlying molecular mechanisms and impact factors, are anecdotal and rarely reviewed. AIM OF REVIEW This review aims to broaden our understanding of AS roles in a variety of biological processes and provide insights into the underlying mechanisms and impact factors likely leading to AS differences between animals and plants. KEY SCIENTIFIC CONCEPTS OF REVIEW We briefly summarize the roles of AS regulation in physiological and biochemical activities in animals and plants. Then, we underline the differences in the process of AS between plants and animals and especially analyze the potential impact factors, such as gene exon/intron architecture, 5'/3' untranslated regions (UTRs), spliceosome components, chromatin dynamics and transcription speeds, splicing factors [serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs)], noncoding RNAs, and environmental stimuli, which might lead to the differences. Moreover, we compare the nonsense-mediated mRNA decay (NMD)-mediated turnover of the transcripts with a premature termination codon (PTC) in animals and plants. Finally, we summarize the current AS knowledge published in animals versus plants and discuss the potential development of disease therapies and superior crops in the future.
Collapse
Affiliation(s)
- Yunfei Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lu Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| |
Collapse
|
2
|
Li P, Quan H, He W, Wu L, Chen Z, Yong B, Liu X, He C. Rice BARENTSZ genes are required to maintain floral developmental stability against temperature fluctuations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:637-657. [PMID: 39215633 DOI: 10.1111/tpj.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BARENTSZ (BTZ), a core component of the exon junction complex, regulates diverse developmental processes in animals. However, its evolutionary and developmental roles in plants remain elusive. Here, we revealed that three groups of paralogous BTZ genes existed in Poaceae, and Group 2 underwent loss-of-function mutations during evolution. They showed surprisingly low (~33%) sequence identities, implying functional divergence. Two genes retained in rice, OsBTZ1 and OsBTZ3, were edited; however, the resultant osbtz1 and osbtz3 mutants showed similar floral morphological and functional defects at a low frequency. When growing under low-temperature conditions, developmental abnormalities became pronounced, and new floral variations were induced. In particular, stamen and carpel functionality was impaired in these rice btz mutants. The double-gene mutant osbtz1/3 shared these floral defects with an increased frequency, which was further induced under low-temperature conditions. OsBTZs interacted with OsMADS7 and OsMADS8, and the floral expressions of the OsTGA10 and MADS-box genes were correlatively altered in these osbtz mutants and responded to low-temperature treatment. These novel findings demonstrate that two highly diverged OsBTZs are required to maintain floral developmental stability under low-temperature conditions, and play an integral role in male and female fertility, thus providing new insights into the indispensable roles of BTZ genes in plant development and adaptive evolution.
Collapse
Affiliation(s)
- Peigang Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Quan
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenchao He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanfeng Wu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
5
|
Rademacher DJ, Bello AI, May JP. CASC3 Biomolecular Condensates Restrict Turnip Crinkle Virus by Limiting Host Factor Availability. J Mol Biol 2023; 435:167956. [PMID: 36642157 PMCID: PMC10338645 DOI: 10.1016/j.jmb.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The exon-junction complex (EJC) plays a role in post-transcriptional gene regulation and exerts antiviral activity towards several positive-strand RNA viruses. However, the spectrum of RNA viruses that are targeted by the EJC or the underlying mechanisms are not well understood. EJC components from Arabidopsis thaliana were screened for antiviral activity towards Turnip crinkle virus (TCV, Tombusviridae). Overexpression of the accessory EJC component CASC3 inhibited TCV accumulation > 10-fold in Nicotiana benthamiana while knock-down of endogenous CASC3 resulted in a > 4-fold increase in TCV accumulation. CASC3 forms cytoplasmic condensates and deletion of the conserved SELOR domain reduced condensate size 7-fold and significantly decreased antiviral activity towards TCV. Mass spectrometry of CASC3 complexes did not identify endogenous stress granule or P-body markers and CASC3 failed to co-localize with an aggresome-specific dye suggesting that CASC3 condensates are distinct from well-established membraneless compartments. Mass spectrometry and bimolecular fluorescence complementation assays revealed that CASC3 sequesters Heat shock protein 70 (Hsp70-1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), two host factors with roles in tombusvirus replication. Overexpression of Hsp70-1 or GAPDH reduced the antiviral activity of CASC3 2.1-fold and 2.8-fold, respectively, and suggests that CASC3 inhibits TCV by limiting host factor availability. Unrelated Tobacco mosaic virus (TMV) also depends on Hsp70-1 and CASC3 overexpression restricted TMV accumulation 4-fold and demonstrates that CASC3 antiviral activity is not TCV-specific. Like CASC3, Auxin response factor 19 (ARF19) forms poorly dynamic condensates but ARF19 overexpression failed to inhibit TCV accumulation and suggests that CASC3 has antiviral activities that are not ubiquitous among cytoplasmic condensates.
Collapse
Affiliation(s)
- Dana J Rademacher
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Abudu I Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
6
|
Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in Arabidopsis. THE PLANT CELL 2023; 35:1936-1955. [PMID: 37070465 PMCID: PMC10226599 DOI: 10.1093/plcell/koad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/30/2023]
Abstract
In plants, cytoplasmic mRNA decay is critical for posttranscriptionally controlling gene expression and for maintaining cellular RNA homeostasis. Arabidopsis DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a cytoplasmic mRNA decay factor that interacts with proteins involved in mRNA decapping and nonsense-mediated mRNA decay (NMD). There is limited information on the functional role of DNE1 in RNA turnover, and the identities of its endogenous targets are unknown. In this study, we utilized RNA degradome approaches to globally investigate DNE1 substrates. Monophosphorylated 5' ends, produced by DNE1, should accumulate in mutants lacking the cytoplasmic exoribonuclease XRN4, but be absent from DNE1 and XRN4 double mutants. In seedlings, we identified over 200 such transcripts, most of which reflect cleavage within coding regions. While most DNE1 targets were NMD-insensitive, some were upstream ORF (uORF)-containing and NMD-sensitive transcripts, indicating that this endoribonuclease is required for turnover of a diverse set of mRNAs. Transgenic plants expressing DNE1 cDNA with an active-site mutation in the endoribonuclease domain abolished the in planta cleavage of transcripts, demonstrating that DNE1 endoribonuclease activity is required for cleavage. Our work provides key insights into the identity of DNE1 substrates and enhances our understanding of DNE1-mediated mRNA decay.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Catherine J Stuart
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Anna T DiBattista
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Monica Accerbi
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| | - Jeffrey L Caplan
- Bio-Imaging Center, Delaware Biotechnology Institute, University of
Delaware, Newark, DE 19713-1316, USA
| | - Pamela J Green
- Delaware Biotechnology Institute, University of Delaware,
Newark, DE 19713-1316, USA
| |
Collapse
|
7
|
Muhammad S, Xu X, Zhou W, Wu L. Alternative splicing: An efficient regulatory approach towards plant developmental plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1758. [PMID: 35983878 DOI: 10.1002/wrna.1758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Sajid Muhammad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Xu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
The biological functions of nonsense-mediated mRNA decay in plants: RNA quality control and beyond. Biochem Soc Trans 2023; 51:31-39. [PMID: 36695509 DOI: 10.1042/bst20211231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.
Collapse
|
9
|
Cymerman MA, Saul H, Farhi R, Vexler K, Gottlieb D, Berezin I, Shaul O. Plant transcripts with long or structured upstream open reading frames in the NDL2 5' UTR can escape nonsense-mediated mRNA decay in a reinitiation-independent manner. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:91-103. [PMID: 36169317 DOI: 10.1093/jxb/erac385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Many eukaryotic transcripts contain upstream open reading frames (uORFs). Translated uORFs can inhibit the translation of main ORFs by imposing the need for reinitiation of translation. Translated uORFs can also lead to transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. In mammalian cells, translated uORFs were shown to target their transcripts to NMD if the uORFs were long (>23-32 amino acids), structured, or inhibit reinitiation. Reinitiation was shown to rescue uORF-containing mammalian transcripts from NMD. Much less is known about the significance of the length, structure, and reinitiation efficiency of translated uORFs for NMD targeting in plants. Although high-throughput studies suggested that uORFs do not globally reduce plant transcript abundance, it was not clear whether this was due to NMD-escape-permitting parameters of uORF recognition, length, structure, or reinitiation efficiency. We expressed in Arabidopsis reporter genes that included NDL2 5' untranslated region and various uORFs with modulation of the above parameters. We found that transcripts can escape NMD in plants even when they include efficiently translated uORFs up to 70 amino acids long, or structured uORFs, in the absence of reinitiation. These data highlight an apparent difference between the rules that govern the exposure of uORF-containing transcripts to NMD in mammalian and plant cells.
Collapse
Affiliation(s)
- Miryam A Cymerman
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Helen Saul
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Farhi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Karina Vexler
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dror Gottlieb
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
10
|
A Comprehensive Pan-Cancer Analysis of RBM8A Based on Data Mining. JOURNAL OF ONCOLOGY 2021; 2021:9983354. [PMID: 34326876 PMCID: PMC8277506 DOI: 10.1155/2021/9983354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023]
Abstract
Background As a member of the exon junction complex (EJC), RNA-binding motif protein 8A (RBM8A) plays a crucial role in the maintenance of mRNA and multiple activities of an organism. Immunotherapy has been proven to be a staple type of cancer treatment. However, the role of RBM8A and immunity across cancer types is unclear. Objective This study aims to visualize the expression, prognosis, mutations, and coexpressed gene results of RBM8A across cancer types and to explore the link between RBM8A expression and immunity. Methods In this study, data were collected from multiple online databases. We analyzed the data using the HPA, UALCAN Database, COSMIC, cBioPortal, Cancer Regulome tools, Kaplan–Meier Plotter, and TIMER website. Results For the expression of RBM8A in normal tissues, higher expression of RBM8A was observed in immune-related cells than in nonimmune organs. The expression level of RBM8A was related to tumor type. Missense mutations in RBM8A were found in most tumors and affected the prognosis of carcinomas with coexpressed genes. RBM8A was strongly associated with immune-infiltrating cells and immune checkpoint inhibitors, especially in LIHC. Conclusions RBM8A is a gene worth exploring and may be a unique immune target in the future.
Collapse
|
11
|
Kurilla A, Szőke A, Auber A, Káldi K, Silhavy D. Expression of the translation termination factor eRF1 is autoregulated by translational readthrough and 3'UTR intron-mediated NMD in Neurospora crassa. FEBS Lett 2020; 594:3504-3517. [PMID: 32869294 DOI: 10.1002/1873-3468.13918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023]
Abstract
Eukaryotic release factor 1 (eRF1) is a translation termination factor that binds to the ribosome at stop codons. The expression of eRF1 is strictly controlled, since its concentration defines termination efficiency and frequency of translational readthrough. Here, we show that eRF1 expression in Neurospora crassa is controlled by an autoregulatory circuit that depends on the specific 3'UTR structure of erf1 mRNA. The stop codon context of erf1 promotes readthrough that protects the mRNA from its 3'UTR-induced nonsense-mediated mRNA decay (NMD). High eRF1 concentration leads to inefficient readthrough, thereby allowing NMD-mediated erf1 degradation. We propose that eRF1 expression is controlled by similar autoregulatory circuits in many fungi and seed plants and discuss the evolution of autoregulatory systems of different translation termination factors.
Collapse
Affiliation(s)
- Anita Kurilla
- Department of Genetics, NARIC, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Anita Szőke
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Andor Auber
- Department of Genetics, NARIC, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Krisztina Káldi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Silhavy
- Department of Genetics, NARIC, Agricultural Biotechnology Institute, Gödöllő, Hungary.,Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
12
|
Dirk LMA, Abdel CG, Ahmad I, Neta ICS, Pereira CC, Pereira FECB, Unêda-Trevisoli SH, Pinheiro DG, Downie AB. Late Embryogenesis Abundant Protein-Client Protein Interactions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E814. [PMID: 32610443 PMCID: PMC7412488 DOI: 10.3390/plants9070814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations. Some LEAPs bind directly to their client proteins, exerting a holdase-type chaperonin function. Finally, instances of LEAP-client protein interactions have been documented, where the LEAP modulates (interferes with) the function of the client protein, acting as a surreptitious rheostat of cellular homeostasis. From the examples identified to date, it is apparent that client protein modulation also serves to mitigate stress. While some LEAPs can physically bind and protect client proteins, some apparently bind to assist the degradation of the client proteins with which they associate. Documented instances of LEAP-client protein binding, even in the absence of stress, brings to the fore the necessity of identifying how the LEAPs are degraded post-stress to render them innocuous, a first step in understanding how the cell regulates their abundance.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, University of Kentucky Seed Biology Program, Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA;
| | - Caser Ghaafar Abdel
- Agriculture College, Al-Muthanna University, Samawah, Al-Muthanna 66001, Iraq;
| | - Imran Ahmad
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan;
| | | | - Cristiane Carvalho Pereira
- Departamento de Agricultura—Setor de Sementes, Federal University of Lavras, Lavras, Minas Gerais CEP: 37200-000, Brazil;
| | | | - Sandra Helena Unêda-Trevisoli
- Department of Vegetable Production, (UNESP) National University of São Paulo, Jaboticabal, São Paulo CEP: 14884-900, Brazil;
| | - Daniel Guariz Pinheiro
- Department of Biology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo CEP: 14040-901, Brazil;
| | - Allan Bruce Downie
- Department of Horticulture, University of Kentucky Seed Biology Program, Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA;
| |
Collapse
|
13
|
Udagawa H, Koga K, Shinjo A, Kitashiba H, Takakura Y. Reduced susceptibility to a tobacco bushy top virus Malawi isolate by loss of function in host eIF(iso)4E genes. BREEDING SCIENCE 2020; 70:313-320. [PMID: 32714053 PMCID: PMC7372031 DOI: 10.1270/jsbbs.19135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/25/2019] [Indexed: 05/23/2023]
Abstract
Tobacco bushy top disease (TBTD) is a viral disease of tobacco (Nicotiana tabacum L.) caused by mixed infection of Tobacco bushy top virus or Ethiopian tobacco bushy top virus and a helper virus. Despite its damage to tobacco, practical genetic resources for disease resistance have not been found. Here, we report that a mutation of tobacco eIF(iso)4E genes (eIF(iso)4E-S and eIF(iso)4E-T), which encode eukaryotic translation initiation factors, confers resistance (reduced susceptibility) to TBTD caused by a virus from Malawi (designated as tobacco bushy top virus Malawi isolate, TBTV-MW). RNAi lines in which eIF(iso)4E genes were silenced showed reduced susceptibility to TBTV-MW. We also tested chemically-induced single (eIF(iso)4E-S or eIF(iso)4E-T) and double (eIF(iso)4E-S and eIF(iso)4E-T) nonsense mutants for resistance to TBTV-MW. Suppression of eIF(iso)4E-S showed reduced susceptibility, and the resistance of the double mutant tended to be even stronger. eIF(iso)4E mutants also showed reduced susceptibility to TBTV-MW transmitted by aphids. To the best of our knowledge, the eIF(iso)4E-S mutant is the first genetic resource for TBTD resistance breeding in tobacco.
Collapse
Affiliation(s)
- Hisashi Udagawa
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900, Idei, Oyama, Tochigi 323-0808, Japan
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Kazuharu Koga
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900, Idei, Oyama, Tochigi 323-0808, Japan
| | - Akira Shinjo
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900, Idei, Oyama, Tochigi 323-0808, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Yoshimitsu Takakura
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900, Idei, Oyama, Tochigi 323-0808, Japan
| |
Collapse
|
14
|
Jung HW, Panigrahi GK, Jung GY, Lee YJ, Shin KH, Sahoo A, Choi ES, Lee E, Man Kim K, Yang SH, Jeon JS, Lee SC, Kim SH. Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. THE PLANT CELL 2020; 32:1081-1101. [PMID: 32086363 PMCID: PMC7145493 DOI: 10.1105/tpc.19.00631] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.
Collapse
Affiliation(s)
- Ho Won Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Gagan Kumar Panigrahi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
- School of Applied Sciences, Centurion University of Technology and Management, Odisha 752050, India
| | - Ga Young Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Yu Jeong Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ki Hun Shin
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Annapurna Sahoo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Eun Su Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Eunji Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Kyung Man Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Sung Chul Lee
- School of Biological Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Sang Hyon Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin 17058, Korea
- RNA Genomics Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
15
|
Lee WC, Hou BH, Hou CY, Tsao SM, Kao P, Chen HM. Widespread Exon Junction Complex Footprints in the RNA Degradome Mark mRNA Degradation before Steady State Translation. THE PLANT CELL 2020; 32:904-922. [PMID: 31988264 PMCID: PMC7145476 DOI: 10.1105/tpc.19.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 05/13/2023]
Abstract
Exon junction complexes (EJCs) are deposited on mRNAs during splicing and displaced by ribosomes during the pioneer round of translation. Nonsense-mediated mRNA decay (NMD) degrades EJC-bound mRNA, but the lack of suitable methodology has prevented the identification of other degradation pathways. Here, we show that the RNA degradomes of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), worm (Caenorhabditis elegans), and human (Homo sapiens) cells exhibit an enrichment of 5' monophosphate (5'P) ends of degradation intermediates that map to the canonical EJC region. Inhibition of 5' to 3' exoribonuclease activity and overexpression of an EJC disassembly factor in Arabidopsis reduced the accumulation of these 5'P ends, supporting the notion that they are in vivo EJC footprints. Hundreds of Arabidopsis NMD targets possess evident EJC footprints, validating their degradation during the pioneer round of translation. In addition to premature termination codons, plant microRNAs can also direct the degradation of EJC-bound mRNAs. However, the production of EJC footprints from NMD but not microRNA targets requires the NMD factor SUPPRESSOR WITH MORPHOLOGICAL EFFECT ON GENITALIA PROTEIN7. Together, our results demonstrating in vivo EJC footprinting in Arabidopsis unravel the composition of the RNA degradome and provide a new avenue for studying NMD and other mechanisms targeting EJC-bound mRNAs for degradation before steady state translation.
Collapse
Affiliation(s)
- Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Yu Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ming Tsao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping Kao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
16
|
May JP, Johnson PZ, Ilyas M, Gao F, Simon AE. The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay. mBio 2020; 11:e00204-20. [PMID: 32156817 PMCID: PMC7064760 DOI: 10.1128/mbio.00204-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant's vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor.IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Muhammad Ilyas
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland-College Park, College Park, Maryland, USA
| |
Collapse
|
17
|
Sulkowska A, Auber A, Sikorski PJ, Silhavy DN, Auth M, Sitkiewicz E, Jean V, Merret RM, Bousquet-Antonelli CC, Kufel J. RNA Helicases from the DEA(D/H)-Box Family Contribute to Plant NMD Efficiency. PLANT & CELL PHYSIOLOGY 2020; 61:144-157. [PMID: 31560399 DOI: 10.1093/pcp/pcz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Collapse
Affiliation(s)
- Aleksandra Sulkowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Pawel J Sikorski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dï Niel Silhavy
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Mariann Auth
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Ewa Sitkiewicz
- Proteomics Laboratory, Biophysics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Viviane Jean
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Rï My Merret
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Cï Cile Bousquet-Antonelli
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
19
|
Ingvardsen CR, Massange-Sánchez JA, Borum F, Uauy C, Gregersen PL. Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3009-3022. [PMID: 31317234 DOI: 10.1007/s00122-019-03402-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 05/12/2023]
Abstract
Powdery mildew is a severe disease in wheat. In barley, durable resistance exists, based on non-functionality of the Mlo gene. As a model to analyse the effects of mutagenesis in the homoeologous Mlo genes of wheat, we developed mlo-based powdery mildew resistance in tetraploid durum wheat. To obtain Mlo mutations, we screened a TILLING population developed in tetraploid wheat "Kronos" for which the captured exome sequence of > 1500 lines is available. This resulted in 23 mutants for Mlo-A1 and 26 non-redundant mutants for Mlo-B1. Two Mlo-A1 and four Mlo-B1 mutants were crossed to obtain eight F2 mutant lines that showed a range of phenotypes from susceptibility to full resistance. Pot experiments under semi-field conditions confirmed the resistance levels for six of the mutants without any signs of adverse pleiotropic effects. Resistance ranking was similar across six powdery mildew isolates, indicating no isolate specificity of the mlo-based resistance. The effect of mutations in the Mlo-B1 gene was stronger than in the Mlo-A1 gene, probably reflecting differences in wild-type Mlo gene expression levels. Strong partial resistance effects were observed with single mlo-B1 mutations hence, revealing a dosage effect of mlo mutant alleles. Two of the four mlo-B1 mutations (W163* and P335L) were very strong; however, the highest combined effect was observed with the MloA-P335S/MloB-P335L combination, suggesting that non-functional, but full-length Mlo proteins might have the strongest effect compared with nonsense mutations. Our results show that mlo-based resistance might offer possibilities to introduce durable protection in tetraploid wheat against powdery mildew.
Collapse
Affiliation(s)
- Christina R Ingvardsen
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
| | - Julio A Massange-Sánchez
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark
- CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Per L Gregersen
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| |
Collapse
|
20
|
Ohtani M, Wachter A. NMD-Based Gene Regulation-A Strategy for Fitness Enhancement in Plants? PLANT & CELL PHYSIOLOGY 2019; 60:1953-1960. [PMID: 31111919 DOI: 10.1093/pcp/pcz090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental responses. In this review, we will briefly summarize our current knowledge of the recognition and degradation of NMD targets, followed by an account of NMD's regulation and physiological functions. We will specifically discuss plant-specific aspects of RNA quality control and its functional contribution to the fitness and environmental responses of plants.
Collapse
Affiliation(s)
- Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
21
|
Chiam NC, Fujimura T, Sano R, Akiyoshi N, Hiroyama R, Watanabe Y, Motose H, Demura T, Ohtani M. Nonsense-Mediated mRNA Decay Deficiency Affects the Auxin Response and Shoot Regeneration in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2000-2014. [PMID: 31386149 DOI: 10.1093/pcp/pcz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited. Here, we examined the shoot regeneration phenotypes of the low-beta-amylase1 (lba1)/upstream frame shift1-1 (upf1-1) and upf3-1 mutants, in which the core NMD components UPF1 and UPF3 are defective. These mutants formed callus from hypocotyl explants normally, but this callus behaved abnormally during shoot regeneration: the mutant callus generated numerous adventitious root structures instead of adventitious shoots in an auxin-dependent manner. Quantitative RT-PCR and microarray analyses showed that the upf mutations had widespread effects during culture on shoot-induction medium. In particular, the expression patterns of early auxin response genes, including those encoding AUXIN/INDOLE ACETIC ACID (AUX/IAA) family members, were significantly affected in the upf mutants. Also, the upregulation of shoot apical meristem-related transcription factor genes, such as CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, was inhibited in the mutants. Taken together, these results indicate that NMD-mediated transcriptomic regulation modulates the auxin response in plants and thus plays crucial roles in the early stages of shoot regeneration.
Collapse
Affiliation(s)
- Nyet-Cheng Chiam
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyo Fujimura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Nobuhiro Akiyoshi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
22
|
Matsui A, Nakaminami K, Seki M. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. PLANT & CELL PHYSIOLOGY 2019; 60:1897-1905. [PMID: 31093678 DOI: 10.1093/pcp/pcz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
Plant growth and productivity are greatly impacted by environmental stresses. Therefore, plants have evolved various sophisticated mechanisms for adaptation to nonoptimal environments. Recent studies using RNA metabolism-related mutants have revealed that RNA processing, RNA decay and RNA stability play an important role in regulating gene expression at a post-transcriptional level in response to abiotic stresses. Studies indicate that RNA metabolism is a unified network, and modification of stress adaptation-related transcripts at multiple steps of RNA metabolism is necessary to control abiotic stress-related gene expression. Recent studies have also demonstrated the important role of noncoding RNAs (ncRNAs) in regulating abiotic stress-related gene expression and revealed their involvement in various biological functions through their regulation of DNA methylation, DNA structural modifications, histone modifications and RNA-RNA interactions. ncRNAs regulate mRNA transcription and their synthesis is affected by mRNA processing and degradation. In the present review, recent findings pertaining to the role of the metabolic regulation of mRNAs and ncRNAs in abiotic stress adaptation are summarized and discussed.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
23
|
Kesarwani AK, Lee HC, Ricca PG, Sullivan G, Faiss N, Wagner G, Wunderling A, Wachter A. Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1986-1999. [PMID: 31368494 DOI: 10.1093/pcp/pcz141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/06/2019] [Indexed: 05/16/2023]
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG) 7, but not UPF2, are under feedback control in both dicots. In the monocot investigated in this study, only SMG7 was slightly induced upon NMD inhibition. The detection of the endogenous NMD factor proteins in Arabidopsis thaliana substantiated a negative correlation between NMD activity and SMG7 amounts. Furthermore, evidence was provided that SMG7 is required for the dephosphorylation of UPF1. Our comprehensive and comparative study of NMD feedback control in plants reveals complex and species-specific attenuation of this RNA surveillance pathway, with critical implications for the numerous functions of NMD in physiology and stress responses.
Collapse
Affiliation(s)
- Anil K Kesarwani
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Patrizia G Ricca
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Sullivan
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Anna Wunderling
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
24
|
Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B. The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res 2019; 46:5822-5836. [PMID: 29596649 PMCID: PMC6009662 DOI: 10.1093/nar/gky225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.
Collapse
Affiliation(s)
- James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
25
|
Nakaminami K, Seki M. RNA Regulation in Plant Cold Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:23-44. [PMID: 30288702 DOI: 10.1007/978-981-13-1244-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
26
|
Chen MX, Zhu FY, Wang FZ, Ye NH, Gao B, Chen X, Zhao SS, Fan T, Cao YY, Liu TY, Su ZZ, Xie LJ, Hu QJ, Wu HJ, Xiao S, Zhang J, Liu YG. Alternative splicing and translation play important roles in hypoxic germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:817-833. [PMID: 30535157 PMCID: PMC6363088 DOI: 10.1093/jxb/ery393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/27/2018] [Indexed: 05/04/2023]
Abstract
Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Shan-Shan Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yun-Ying Cao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Tie-Yuan Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ze-Zhuo Su
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hui-Jie Wu
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: or
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Correspondence: or
| |
Collapse
|
27
|
Takakura Y, Udagawa H, Shinjo A, Koga K. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato virus Y. MOLECULAR PLANT PATHOLOGY 2018; 19:2124-2133. [PMID: 29633509 PMCID: PMC6638035 DOI: 10.1111/mpp.12686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 05/23/2023]
Abstract
Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains.
Collapse
Affiliation(s)
- Yoshimitsu Takakura
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Hisashi Udagawa
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Akira Shinjo
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Kazuharu Koga
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| |
Collapse
|
28
|
Lim CS, T. Wardell SJ, Kleffmann T, Brown CM. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res 2018; 46:4575-4591. [PMID: 29684192 PMCID: PMC5961209 DOI: 10.1093/nar/gky282] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Introns in mRNA leaders are common in complex eukaryotes, but often overlooked. These introns are spliced out before translation, leaving exon-exon junctions in the mRNA leaders (leader EEJs). Our multi-omic approach shows that the number of leader EEJs inversely correlates with the main protein translation, as does the number of upstream open reading frames (uORFs). Across the five species studied, the lowest levels of translation were observed for mRNAs with both leader EEJs and uORFs (29%). This class of mRNAs also have ribosome footprints on uORFs, with strong triplet periodicity indicating uORF translation. Furthermore, the positions of both leader EEJ and uORF are conserved between human and mouse. Thus, the uORF, in combination with leader EEJ predicts lower expression for nearly one-third of eukaryotic proteins.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J T. Wardell
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Goetz AE, Wilkinson M. Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci 2017; 74:3509-3531. [PMID: 28503708 PMCID: PMC5683946 DOI: 10.1007/s00018-017-2537-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023]
Abstract
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway-nonsense-mediated RNA decay (NMD)-serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that "NMD therapy" may provide clinical benefit by downmodulating stress responses.
Collapse
Affiliation(s)
- Alexandra E Goetz
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA.
| |
Collapse
|
30
|
Majoros WH, Campbell MS, Holt C, DeNardo EK, Ware D, Allen AS, Yandell M, Reddy TE. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE. Bioinformatics 2017; 33:1437-1446. [PMID: 28011790 DOI: 10.1093/bioinformatics/btw799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/13/2016] [Indexed: 11/12/2022] Open
Abstract
Motivation The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Availability and Implementation ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. Contact myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information Supplementary information is available at Bioinformatics online.
Collapse
Affiliation(s)
- William H Majoros
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA
| | | | - Carson Holt
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT, USA
| | - Erin K DeNardo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,USDA ARS NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, USA
| | - Andrew S Allen
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah and School of Medicine, Salt Lake City, UT, USA.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Timothy E Reddy
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
31
|
Nyikó T, Auber A, Szabadkai L, Benkovics A, Auth M, Mérai Z, Kerényi Z, Dinnyés A, Nagy F, Silhavy D. Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants. Nucleic Acids Res 2017; 45:4174-4188. [PMID: 28062855 PMCID: PMC5397192 DOI: 10.1093/nar/gkw1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022] Open
Abstract
When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood. Here we show that expression of plant eRF1 is controlled by a complex negative autoregulatory circuit, which is based on the unique features of the 3΄untranslated region (3΄UTR) of the eRF1-1 transcript. The stop codon of the eRF1-1 mRNA is in a translational readthrough promoting context, while its 3΄UTR induces nonsense-mediated decay (NMD), a translation termination coupled mRNA degradation mechanism. We demonstrate that readthrough partially protects the eRF1-1 mRNA from its 3΄UTR induced NMD, and that elevated eRF1 levels inhibit readthrough and stimulate NMD. Thus, high eRF1 level leads to reduced eRF1-1 expression, as weakened readthrough fails to protect the eRF1-1 mRNA from the more intense NMD. This eRF1 autoregulatory circuit might serve to finely balance general translation termination efficiency.
Collapse
Affiliation(s)
- Tünde Nyikó
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andor Auber
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Levente Szabadkai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Anna Benkovics
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Mariann Auth
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zsuzsanna Mérai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zoltán Kerényi
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andrea Dinnyés
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári 62, H-6726, Hungary
| | - Dániel Silhavy
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| |
Collapse
|
32
|
Nasim Z, Fahim M, Ahn JH. Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay. FRONTIERS IN PLANT SCIENCE 2017; 8:191. [PMID: 28261246 PMCID: PMC5306368 DOI: 10.3389/fpls.2017.00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/30/2017] [Indexed: 05/02/2023]
Abstract
Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering time by NMD. Here, we showed that the upf1-5 and upf3-1 mutants had a late-flowering phenotype under long-day conditions and the upf1-5 upf3-1 double mutants had an additive effect in delaying flowering time. RNA sequencing of the upf mutants revealed that UPF3 exerted a stronger effect than UPF1 in the UPF-mediated regulation of flowering time. Among genes known to regulate flowering time, FLOWERING LOCUS C (FLC) mRNA levels increased (up to 8-fold) in upf mutants, as confirmed by qPCR. The upf1-5, upf3-1, and upf1-5 upf3-1 mutants responded to vernalization, suggesting a role of FLC in delayed flowering of upf mutants. Consistent with the high FLC transcript levels and delayed flowering in upf mutants, levels of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) mRNAs were reduced in the upf mutants. However, RNA-seq did not identify an aberrant FLC transcript containing a premature termination codon (PTC), suggesting that FLC is not a direct target in the regulation of flowering time by NMD. Among flowering time regulators that act in an FLC-dependent manner, we found that MAF3, NF-YA2, NF-YA5, and TAF14 showed increased transcript levels in upf mutants. We also found that BBX19 and ATC, which act in an FLC-independent manner, showed increased transcript levels in upf mutants. An aberrant transcript containing a PTC was identified from MAF3 and BBX19 and the levels of the aberrant transcripts increased in upf mutants. Taking these results together, we propose that the late-flowering phenotype of upf mutants is mediated by at least two different pathways, namely, by MAF3 in an FLC-dependent manner and by BBX19 in an FLC-independent manner.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Creative Research Initiatives, Department of Life Sciences, Korea UniversitySeoul, South Korea
| | - Muhammad Fahim
- Genetic Resources Conservation Lab, Institute of Biotechnology and Genetic Engineering, University of AgriculturePeshawar, Pakistan
| | - Ji Hoon Ahn
- Creative Research Initiatives, Department of Life Sciences, Korea UniversitySeoul, South Korea
- *Correspondence: Ji Hoon Ahn
| |
Collapse
|
33
|
Reichel M, Liao Y, Rettel M, Ragan C, Evers M, Alleaume AM, Horos R, Hentze MW, Preiss T, Millar AA. In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. THE PLANT CELL 2016; 28:2435-2452. [PMID: 27729395 PMCID: PMC5134986 DOI: 10.1105/tpc.16.00562] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 05/17/2023]
Abstract
RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based.
Collapse
Affiliation(s)
- Marlene Reichel
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Yalin Liao
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Mandy Rettel
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Chikako Ragan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Maurits Evers
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | | | - Rastislav Horos
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
34
|
Raxwal VK, Riha K. Nonsense mediated RNA decay and evolutionary capacitance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1538-1543. [PMID: 27599370 DOI: 10.1016/j.bbagrm.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
Nonsense mediated RNA decay (NMD) is well-known as an RNA quality control mechanism that sequesters a substantial portion of RNA from expression by targeting it for degradation. However, a number of recent studies across a range of organisms indicate a broader role for NMD in gene regulation and transcriptome homeostasis. Here we propose a novel role for NMD as a buffering system with the capability of accumulating and subsequently releasing a wide spectrum of cryptic genetic variation in response to environmental stimuli, and hence facilitating adaptive evolution. We discuss this role for NMD in the context of evolution of plant pathogen defense, whereby NMD may promote rapid diversification of intracellular immune receptors by mitigating the potentially harmful impact of their newly formed variants on plant fitness.
Collapse
Affiliation(s)
- Vivek Kumar Raxwal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Riha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
35
|
Huang CK, Sie YS, Chen YF, Huang TS, Lu CA. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. BMC PLANT BIOLOGY 2016; 16:84. [PMID: 27071313 PMCID: PMC4830029 DOI: 10.1186/s12870-016-0769-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. RESULTS This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. CONCLUSIONS Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC, and participate in regulating of plant height, pollen, and seed development in rice.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Yi-Syuan Sie
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| |
Collapse
|
36
|
Palm D, Simm S, Darm K, Weis BL, Ruprecht M, Schleiff E, Scharf C. Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana. RNA Biol 2016; 13:441-54. [PMID: 26980300 DOI: 10.1080/15476286.2016.1154252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosome biogenesis is an essential process initiated in the nucleolus. In eukaryotes, multiple ribosome biogenesis factors (RBFs) can be found in the nucleolus, the nucleus and in the cytoplasm. They act in processing, folding and modification of the pre-ribosomal (r)RNAs, incorporation of ribosomal proteins (RPs), export of pre-ribosomal particles to the cytoplasm, and quality control mechanisms. Ribosome biogenesis is best established for Saccharomyces cerevisiae. Plant ortholog assignment to yeast RBFs revealed the absence of about 30% of the yeast RBFs in plants. In turn, few plant specific proteins have been identified by biochemical experiments to act in plant ribosome biogenesis. Nevertheless, a complete inventory of plant RBFs has not been established yet. We analyzed the proteome of the nucleus and nucleolus of Arabidopsis thaliana and the post-translational modifications of these proteins. We identified 1602 proteins in the nucleolar and 2544 proteins in the nuclear fraction with an overlap of 1429 proteins. For a randomly selected set of proteins identified by the proteomic approach we confirmed the localization inferred from the proteomics data by the localization of GFP fusion proteins. We assigned the identified proteins to various complexes and functions and found about 519 plant proteins that have a potential to act as a RBFs, but which have not been experimentally characterized yet. Last, we compared the distribution of RBFs and RPs in the various fractions with the distribution established for yeast.
Collapse
Affiliation(s)
| | - Stefan Simm
- a Institute for Molecular Biosciences.,b Cluster of Excellence Macromolecular Complexes
| | - Katrin Darm
- d Department of Otorhinolaryngology , Head and Neck Surgery
| | | | | | - Enrico Schleiff
- a Institute for Molecular Biosciences.,b Cluster of Excellence Macromolecular Complexes.,c Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt , Max von Laue Str. Nine, Frankfurt , Germany
| | - Christian Scharf
- d Department of Otorhinolaryngology , Head and Neck Surgery.,e Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald , Ferdinand-Sauerbruch-Straße DZ7 J.05.06, Greifswald , Germany
| |
Collapse
|
37
|
Cui P, Chen T, Qin T, Ding F, Wang Z, Chen H, Xiong L. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis. THE PLANT CELL 2016; 28:770-85. [PMID: 26887918 PMCID: PMC4826008 DOI: 10.1105/tpc.15.00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/15/2016] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 5'-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximide-treated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.
Collapse
Affiliation(s)
- Peng Cui
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tao Chen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tao Qin
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feng Ding
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhenyu Wang
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hao Chen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Liming Xiong
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
38
|
Martínez-Montiel N, Morales-Lara L, Hernández-Pérez JM, Martínez-Contreras RD. In Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis. PLoS One 2016; 11:e0148191. [PMID: 26863136 PMCID: PMC4749658 DOI: 10.1371/journal.pone.0148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/14/2016] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor mainly for Homo sapiens and Saccharomyces cerevisiae. This process is highly conserved in eukaryotes but functional diversity can be observed in various species. Ustilago maydis is a basidiomycete and the best-known smut, which has become a model to study molecular and cellular eukaryotic mechanisms. In this study, we performed in silico analysis to investigate the structural and biochemical properties of the putative UPF1 homolog in Ustilago maydis. The putative homolog for UPF1 was recognized in the annotated genome for the basidiomycete, exhibiting 66% identity with its human counterpart at the protein level. The known structural and functional domains characteristic of UPF1 homologs were also found. Based on the crystal structures available for UPF1, we constructed different three-dimensional models for umUPF1 in order to analyze the secondary and tertiary structural features of this factor. Using these models, we studied the spatial arrangement of umUPF1 and its capability to interact with UPF2. Moreover, we identified the critical amino acids that mediate the interaction of umUPF1 with UPF2, ATP, RNA and with UPF1 itself. Mutating these amino acids in silico showed an important effect over the native structure. Finally, we performed molecular dynamic simulations for UPF1 proteins from H. sapiens and U. maydis and the results obtained show a similar behavior and physicochemical properties for the protein in both organisms. Overall, our results indicate that the putative UPF1 identified in U. maydis shows a very similar sequence, structural organization, mechanical stability, physicochemical properties and spatial organization in comparison to the NMD factor depicted for Homo sapiens. These observations strongly support the notion that human and fungal UPF1 could perform equivalent biological activities.
Collapse
Affiliation(s)
- Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Laura Morales-Lara
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rebeca D. Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
39
|
Dai Y, Li W, An L. NMD mechanism and the functions of Upf proteins in plant. PLANT CELL REPORTS 2016; 35:5-15. [PMID: 26400685 DOI: 10.1007/s00299-015-1867-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated decay (NMD) mechanism, also called mRNA surveillance, is a universal mRNA degradation pathway in eukaryotes. Hundreds of genes can be regulated by NMD whether in single-celled or higher organisms. There have been many studies on NMD and NMD factors (Upf proteins) with regard to their crucial roles in mRNA decay, especially in mammals and yeast. However, research focusing on NMD in plant is still lacking compared to the research that has been dedicated to NMD in mammals and yeast. Even so, recent study has shown that NMD factors in Arabidopsis can provide resistance against biotic and abiotic stresses. This discovery and its associated developments have given plant NMD mechanism a new outlook and since then, more and more research has focused on this area. In this review, we focused mainly on the distinctive NMD micromechanism and functions of Upf proteins in plant with references to the role of mRNA surveillance in mammals and yeast. We also highlighted recent insights into the roles of premature termination codon location, trans-elements and functions of other NMD factors to emphasize the particularity of plant NMD. Furthermore, we also discussed conventional approaches and neoteric methods used in plant NMD researches.
Collapse
Affiliation(s)
- Yiming Dai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Wenli Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
40
|
Vexler K, Cymerman MA, Berezin I, Fridman A, Golani L, Lasnoy M, Saul H, Shaul O. The Arabidopsis NMD Factor UPF3 Is Feedback-Regulated at Multiple Levels and Plays a Role in Plant Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1376. [PMID: 27746786 PMCID: PMC5040709 DOI: 10.3389/fpls.2016.01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/29/2016] [Indexed: 05/22/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA surveillance mechanism that degrades aberrant transcripts and controls the levels of many normal mRNAs. It was shown that balanced expression of the NMD factor UPF3 is essential for the maintenance of proper NMD homeostasis in Arabidopsis. UPF3 expression is controlled by a negative feedback loop that exposes UPF3 transcript to NMD. It was shown that the long 3' untranslated region (3' UTR) of UPF3 exposes its transcript to NMD. Long 3' UTRs that subject their transcripts to NMD were identified in several eukaryotic NMD factors. Interestingly, we show here that a construct that contains all the regulatory regions of the UPF3 gene except this long 3' UTR is also feedback-regulated by NMD. This indicates that UPF3 expression is feedback-regulated at multiple levels. UPF3 is constitutively expressed in different plant tissues, and its expression is equal in leaves of plants of different ages. This finding is in agreement with the possibility that UPF3 is ubiquitously operative in the Arabidopsis NMD pathway. Expression mediated by the regulatory regions of UPF3 is significantly induced by salt stress. We found that both a deficiency and a strong excess of UPF3 expression are detrimental to plant resistance to salt stress. This indicates that UPF3 plays a role in plant response to salt stress, and that balanced expression of the UPF3 gene is essential for coping with this stress.
Collapse
|
41
|
Baksa I, Nagy T, Barta E, Havelda Z, Várallyay É, Silhavy D, Burgyán J, Szittya G. Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis. BMC Genomics 2015; 16:1025. [PMID: 26626050 PMCID: PMC4667520 DOI: 10.1186/s12864-015-2209-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nicotiana benthamiana is a widely used model plant species for research on plant-pathogen interactions as well as other areas of plant science. It can be easily transformed or agroinfiltrated, therefore it is commonly used in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. To discover and characterize the miRNAs and their cleaved target mRNAs in N. benthamiana, we sequenced small RNA transcriptomes and degradomes of two N. benthamiana accessions and validated them by Northern blots. RESULTS We used a comprehensive molecular approach to detect and to experimentally validate N. benthamiana miRNAs and their target mRNAs from various tissues. We identified 40 conserved miRNA families and 18 novel microRNA candidates and validated their target mRNAs with a genomic scale approach. The accumulation of thirteen novel miRNAs was confirmed by Northern blot analysis. The conserved and novel miRNA targets were found to be involved in various biological processes including transcription, RNA binding, DNA modification, signal transduction, stress response and metabolic process. Among the novel miRNA targets we found the mRNA of REPRESSOR OF SILENCING (ROS1). Regulation of ROS1 by a miRNA provides a new regulatory layer to reinforce transcriptional gene silencing by a post-transcriptional repression of ROS1 activity. CONCLUSIONS The identified conserved and novel miRNAs along with their target mRNAs also provides a tissue specific atlas of known and new miRNA expression and their cleaved target mRNAs of N. benthamiana. Thus this study will serve as a valuable resource to the plant research community that will be beneficial well into the future.
Collapse
Affiliation(s)
- Ivett Baksa
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - Tibor Nagy
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - Endre Barta
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - Zoltán Havelda
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - Éva Várallyay
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - Dániel Silhavy
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - József Burgyán
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| | - György Szittya
- Institute of Plant Biotechnology, National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Szent-Györgyi Albert ut 4, H-2100, Gödöllő, Hungary.
| |
Collapse
|
42
|
Shaul O. Unique Aspects of Plant Nonsense-Mediated mRNA Decay. TRENDS IN PLANT SCIENCE 2015; 20:767-779. [PMID: 26442679 DOI: 10.1016/j.tplants.2015.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Nonsense-mediated mRNA Decay (NMD) is a eukaryotic quality-control mechanism that governs the stability of both aberrant and normal transcripts. Although plant and mammalian NMD share great similarity, they differ in certain mechanistic and regulatory aspects. Whereas SMG6 (from Caenorhabditis elegans 'suppressor with morphogenetic effect on genitalia')-catalyzed endonucleolytic cleavage is a prominent step in mammalian NMD, plant NMD targets are degraded by an SMG7-induced exonucleolytic pathway. Both mammalian and plant NMD are downregulated by stress, thereby enhancing the expression of defense response genes. However, the target genes and processes affected differ. Several plant and mammalian NMD factors are regulated by negative feedback-loops. However, while the loop regulating UPF3 (up-frameshift 3) expression in not vital for mammalian NMD, the sensitivity of UPF3 to NMD is crucial for the overall regulation of plant NMD.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
43
|
Zhang Y, Sachs MS. Control of mRNA Stability in Fungi by NMD, EJC and CBC Factors Through 3'UTR Introns. Genetics 2015; 200:1133-48. [PMID: 26048019 PMCID: PMC4574236 DOI: 10.1534/genetics.115.176743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 02/01/2023] Open
Abstract
In higher eukaryotes the accelerated degradation of mRNAs harboring premature termination codons is controlled by nonsense-mediated mRNA decay (NMD), exon junction complex (EJC), and nuclear cap-binding complex (CBC) factors, but the mechanistic basis for this quality-control system and the specific roles of the individual factors remain unclear. Using Neurospora crassa as a model system, we analyzed the mechanisms by which NMD is induced by spliced 3'-UTR introns or upstream open reading frames and observed that the former requires NMD, EJC, and CBC factors whereas the latter requires only the NMD factors. The transcripts for EJC components eIF4A3 and Y14, and translation termination factor eRF1, contain spliced 3'-UTR introns and each was stabilized in NMD, EJC, and CBC mutants. Reporter mRNAs containing spliced 3'-UTR introns, but not matched intronless controls, were stabilized in these mutants and were enriched in mRNPs immunopurified from wild-type cells with antibody directed against human Y14, demonstrating a direct role for spliced 3'-UTR introns in triggering EJC-mediated NMD. These results demonstrate conclusively that NMD, EJC, and CBC factors have essential roles in controlling mRNA stability and that, based on differential requirements for these factors, there are branched mechanisms for NMD. They demonstrate for the first time autoregulatory control of expression at the level of mRNA stability through the EJC/CBC branch of NMD for EJC core components, eIF4A3 and Y14, and for eRF1, which recognizes termination codons. Finally, these results show that EJC-mediated NMD occurs in fungi and thus is an evolutionarily conserved quality-control mechanism.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
44
|
Gloggnitzer J, Akimcheva S, Srinivasan A, Kusenda B, Riehs N, Stampfl H, Bautor J, Dekrout B, Jonak C, Jiménez-Gómez JM, Parker JE, Riha K. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense. Cell Host Microbe 2015; 16:376-90. [PMID: 25211079 DOI: 10.1016/j.chom.2014.08.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/29/2014] [Accepted: 08/24/2014] [Indexed: 12/15/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.
Collapse
Affiliation(s)
- Jiradet Gloggnitzer
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Svetlana Akimcheva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Arunkumar Srinivasan
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Branislav Kusenda
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Nina Riehs
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hansjörg Stampfl
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bettina Dekrout
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Institut Jean-Pierre Bourgin, UMR1318, INRA-AgroParisTech, 78000 Versailles, France
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria; CEITEC, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
45
|
Degtiar E, Fridman A, Gottlieb D, Vexler K, Berezin I, Farhi R, Golani L, Shaul O. The feedback control of UPF3 is crucial for RNA surveillance in plants. Nucleic Acids Res 2015; 43:4219-35. [PMID: 25820429 PMCID: PMC4417159 DOI: 10.1093/nar/gkv237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/24/2022] Open
Abstract
Nonsense-mediated-decay (NMD) is a eukaryotic RNA surveillance mechanism that controls the levels of both aberrant and normal transcripts. The regulation of this process is not well understood. The Arabidopsis NMD factor UPF3 is regulated by a negative feedback-loop that targets its own transcript for NMD. We investigated the functional significance of this control for the overall regulation of NMD in Arabidopsis. For this, we tested the ability of NMD-sensitive and -insensitive forms of UPF3, expressed under the control of UPF3 promoter, to complement NMD functionality in NMD-mutant plants and investigated their impact in wild-type (WT) plants. The sensitivity of UPF3 transcript to NMD was essential for efficient complementation of NMD in upf3 mutants. Upregulated UPF3 expression in WT plants resulted in over-degradation of certain transcripts and inhibited degradation of other transcripts. Our results demonstrate that, in contrast to mammalian cells, a delicate balance of UPF3 transcript levels by its feedback loop and by restriction of its transcription, are crucial for proper NMD regulation in Arabidopsis. Interestingly, the levels of many small-nucleolar-RNAs (snoRNAs) were decreased in upf1 and upf3 mutants and increased upon enhanced UPF3 expression. This suggests that proper snoRNA homeostasis in Arabidopsis depends on the integrity of the NMD pathway.
Collapse
Affiliation(s)
- Evgeniya Degtiar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Fridman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dror Gottlieb
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Karina Vexler
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Farhi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Linoy Golani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
46
|
Galland M, Rajjou L. Regulation of mRNA translation controls seed germination and is critical for seedling vigor. FRONTIERS IN PLANT SCIENCE 2015; 6:284. [PMID: 25972883 PMCID: PMC4411979 DOI: 10.3389/fpls.2015.00284] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/09/2015] [Indexed: 05/10/2023]
Affiliation(s)
- Marc Galland
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA/AgroParisTech, ERL Centre National de la Recherche Scientifique 3559, Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS)Versailles, France
- Chair of Plant Physiology, AgroParisTechParis, France
| | - Loïc Rajjou
- INRA, Institut Jean-Pierre Bourgin, UMR 1318 INRA/AgroParisTech, ERL Centre National de la Recherche Scientifique 3559, Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS)Versailles, France
- Chair of Plant Physiology, AgroParisTechParis, France
- *Correspondence: Loïc Rajjou,
| |
Collapse
|
47
|
Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep 2014; 3:152-158. [PMID: 25798239 DOI: 10.3892/br.2014.407] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of precursor mRNA is an essential mechanism to increase the complexity of gene expression, and it plays an important role in cellular differentiation and organism development. Regulation of alternative splicing is a complicated process in which numerous interacting components are at work, including cis-acting elements and trans-acting factors, and is further guided by the functional coupling between transcription and splicing. Additional molecular features, such as chromatin structure, RNA structure and alternative transcription initiation or alternative transcription termination, collaborate with these basic components to generate the protein diversity due to alternative splicing. All these factors contributing to this one fundamental biological process add up to a mechanism that is critical to the proper functioning of cells. Any corruption of the process may lead to disruption of normal cellular function and the eventuality of disease. Cancer is one of those diseases, where alternative splicing may be the basis for the identification of novel diagnostic and prognostic biomarkers, as well as new strategies for therapy. Thus, an in-depth understanding of alternative splicing regulation has the potential not only to elucidate fundamental biological principles, but to provide solutions for various diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Liu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - B O Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yan-Mei Xu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jin Lin
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Jing Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Qing-Hua Min
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Wei-Ming Yang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|
48
|
Regulation of CTR2 mRNA by the nonsense-mediated mRNA decay pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1283-94. [DOI: 10.1016/j.bbagrm.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/20/2022]
|
49
|
Zhao J, Favero DS, Qiu J, Roalson EH, Neff MM. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants. BMC PLANT BIOLOGY 2014; 14:266. [PMID: 25311531 PMCID: PMC4209074 DOI: 10.1186/s12870-014-0266-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/25/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Members of the ancient land-plant-specific transcription factor AT-Hook Motif Nuclear Localized (AHL) gene family regulate various biological processes. However, the relationships among the AHL genes, as well as their evolutionary history, still remain unexplored. RESULTS We analyzed over 500 AHL genes from 19 land plant species, ranging from the early diverging Physcomitrella patens and Selaginella to a variety of monocot and dicot flowering plants. We classified the AHL proteins into three types (Type-I/-II/-III) based on the number and composition of their functional domains, the AT-hook motif(s) and PPC domain. We further inferred their phylogenies via Bayesian inference analysis and predicted gene gain/loss events throughout their diversification. Our analyses suggested that the AHL gene family emerged in embryophytes and further evolved into two distinct clades, with Type-I AHLs forming one clade (Clade-A), and the other two types together diversifying in another (Clade-B). The two AHL clades likely diverged before the separation of Physcomitrella patens from the vascular plant lineage. In angiosperms, Clade-A AHLs expanded into 5 subfamilies; while, the ones in Clade-B expanded into 4 subfamilies. Examination of their expression patterns suggests that the AHLs within each clade share similar expression patterns with each other; however, AHLs in one monophyletic clade exhibit distinct expression patterns from the ones in the other clade. Over-expression of a Glycine max AHL PPC domain in Arabidopsis thaliana recapitulates the phenotype observed when over-expressing its Arabidopsis thaliana counterpart. This result suggests that the AHL genes from different land plant species may share conserved functions in regulating plant growth and development. Our study further suggests that such functional conservation may be due to conserved physical interactions among the PPC domains of AHL proteins. CONCLUSIONS Our analyses reveal a possible evolutionary scenario for the AHL gene family in land plants, which will facilitate the design of new studies probing their biological functions. Manipulating the AHL genes has been suggested to have tremendous effects in agriculture through increased seedling establishment, enhanced plant biomass and improved plant immunity. The information gleaned from this study, in turn, has the potential to be utilized to further improve crop production.
Collapse
Affiliation(s)
- Jianfei Zhao
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
- />Present Address: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - David S Favero
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
| | - Jiwen Qiu
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
| | - Eric H Roalson
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - Michael M Neff
- />Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164 USA
- />Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
50
|
Singer SD, Weselake RJ, Rahman H. Development and characterization of low α-linolenic acid Brassica oleracea lines bearing a novel mutation in a 'class a' FATTY ACID DESATURASE 3 gene. BMC Genet 2014; 15:94. [PMID: 25167929 PMCID: PMC4236532 DOI: 10.1186/s12863-014-0094-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023] Open
Abstract
Background Traditional canola (Brassica napus L.; AACC, 2n = 38) cultivars yield seed oil with a relatively high proportion of α-linolenic acid (ALA; C18:3cis∆9,12,15), which is desirable from a health perspective. Unfortunately, due to the instability of this fatty acid, elevated levels also result in oils that exhibit a short shelf life and problems associated with use at high temperatures. As a result, the development of cultivars bearing reduced amounts of ALA in their seeds is becoming a priority. To date, several low ALA B. napus cultivars (~2-3% ALA of total fatty acids) have been developed and molecular analyses have revealed that the low ALA phenotype of lines tested thus far is a result of mutations within two ‘class b’ FATTY ACID DESATURASE 3 (FAD3) genes. Since B. napus possesses six FAD3 genes (two ‘class a’, two ‘class b’ and two ‘class c’) and ALA levels of approximately 2-3% remain in these low ALA lines, it is likely that the mutation of additional FAD3 genes could further decrease the content of this fatty acid. Results In this study, we generated low ALA (≤2%) lines of B. oleracea, which is the C genome progenitor species of B. napus, via ethyl methanesulphonate (EMS) mutagenesis. We identified a novel nonsense mutation within the ‘class a’ FAD3 gene (BoFAD3-2) in these lines, which would result in the production of an encoded protein lacking 110 amino acids at its C terminus. When expressed in Saccharomyces cerevisiae, this mutant protein exhibited a drastic decline in its Δ-15 desaturase activity compared to the wild-type (wt) protein. Furthermore, we demonstrated that the expression of the mutant BoFAD3-2 gene was significantly reduced in developing seeds of low ALA lines when compared to expression in wt plants. Conclusions Given the additive nature of FAD3 mutations on ALA content and the ease with which B. napus can be re-synthesized from its progenitor species, the mutant isolated here has the potential to be used for the future development of B. napus cultivars exhibiting further reductions in ALA content.
Collapse
Affiliation(s)
| | | | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada.
| |
Collapse
|