1
|
Gerritsen JKW, Mekary RA, Pisică D, Zwarthoed RH, Kilgallon JL, Nawabi NL, Jessurun CAC, Versyck G, Moussa A, Bouhaddou H, Pruijn KP, Fisher FL, Larivière E, Solie L, Kloet A, Tewarie RN, Schouten JW, Bos EM, Dirven CMF, Jacques van den Bent M, Chang SM, Smith TR, Broekman MLD, Vincent AJPE, De Vleeschouwer PS. Onco-functional outcome after resection for eloquent glioblastoma (OFO): A propensity-score matched analysis of an international, multicentre, cohort study. Eur J Cancer 2024; 212:114311. [PMID: 39305740 DOI: 10.1016/j.ejca.2024.114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND The combined impact of complete resection (oncological goal) and no functional loss (functional goal) in glioblastoma subgroups is currently unknown. This study aimed to develop a novel onco-functional outcome (OFO) to merge these two goals into one outcome, resulting in four classes: complete without deficits (OFO1), incomplete without deficits (OFO2), complete with deficits (OFO3), or incomplete with deficits (OFO4). METHODS Between 2010-2020, 858 patients with tumor resection for eloquent glioblastoma were included. We analyzed the impact of OFO class on postoperative surgical outcomes using Cox proportional-hazards models with hazard ratios (HR) or logistic regression with odds ratios (OR), followed by specific subgroup analyses. We developed a risk model to predict OFO class preoperatively using logistic regression. RESULTS The OFO classification stratified the four OFO classes for overall survival (OS:19.0 versus 14.0 versus 12.0 versus 9.0 months), progression-free survival (PFS), and adjuvant therapy. OFO1 was associated with improved OS [HR= 0.67, (0.55-0.81); p < 0.001], and PFS [HR = 0.68, (0.57-0.81); p < 0.001] in the overall cohort and all clinical and molecular subgroups, except for MGMT-unmethylated tumors; and higher rate of adjuvant therapy [OR= 2.81, (1.71-4.84);p < 0.001]. In patients≥ 70 years, only OFO1 improved their survival outcomes. Safe surgery was especially important in patients with a preoperative KPS ≤ 80 to qualify for adjuvant treatment. Awake craniotomy more often led to OFO1 compared to asleep resection [OR = 1.93, (1.19-3.14); p = 0.008]. CONCLUSIONS OFO1 was associated with improved OS, PFS, and receipt of adjuvant therapy in all glioblastoma patients with IDH-wildtype and MGMT-methylated tumors. Awake craniotomy was associated with achieving this optimal OFO status. Preventing deficits was more important than complete surgery.
Collapse
Affiliation(s)
| | - Rania Angelia Mekary
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, MCPHS University, Boston, MA, USA
| | - Dana Pisică
- Department of Public Health, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rosa Hanne Zwarthoed
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | | | - Noah Lee Nawabi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Georges Versyck
- Department of Neurosurgery, University Hospital Leuven, Belgium
| | - Ahmed Moussa
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hicham Bouhaddou
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Koen Pepijn Pruijn
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Fleur Louise Fisher
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Emma Larivière
- Department of Neurosurgery, University Hospital Leuven, Belgium
| | - Lien Solie
- Department of Neurosurgery, University Hospital Leuven, Belgium
| | - Alfred Kloet
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Rishi Nandoe Tewarie
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | | | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Susan Marina Chang
- Department of Neurosurgery, University of California, San Francisco, USA
| | | | - Marike Lianne Daphne Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands; Department of Neurosurgery, Leiden University Medical Center, the Netherlands; Department of Cell and Chemical Immunology, Leiden University Medical Center, the Netherlands
| | | | | |
Collapse
|
2
|
Yeole U, Shetty P, Singh V, Moiyadi A. Pattern of use of intraoperative ultrasound in surgery for brain tumors influences outcomes in glial tumors. Br J Neurosurg 2024; 38:1052-1061. [PMID: 34927516 DOI: 10.1080/02688697.2021.2016619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/29/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Intraoperative ultrasound (iUS) imaging has emerged as a promising adjunct in glioma surgery with both, 2-dimensional (2D) as well as navigated 3-dimensional (n3D), modes increasingly being used. METHODS We analyzed our decade-long experience of 1075 brain tumor (807, 75% gliomas) cases operated using iUS. A retrospective chart and electronic records review was performed. The primary aim was to understand the patterns of use of iUS mode and its purpose of application (as a localizing tool or as a resection control modality) as well as to evaluate its impact on the extent of resection. RESULTS The use of iUS increased over time, especially with the introduction of n3DUS though 2DUS remained the more commonly used mode (63%) overall during this period. For biopsies (156 cases), both 2D, as well as n3D iUS, were used as a localizing tool only. Lesion localization was the major purpose for use of iUS even for tumor resections (61%). Resection control was performed more often for gliomas (46.5% compared to 16.5% in non-glial tumors). n3DUS was the preferred modality as a resection control tool irrespective of histological class. GTR (gross total resection) was achieved in 53.1% cases overall, while in glial and non-glial tumors it was 44.7% and 80.7%, respectively. GTR was higher when iUS was used as a resection control modality. The US and MR defined EOR (extent of resection) showed substantial agreement (κ = 0.678) with high diagnostic accuracy of 84% for glial tumors. In glial tumors, iUS was used more often in eloquent tumors and GTR rates were slightly higher than when iUS was not used. CONCLUSION iUS is a versatile tool and is a useful surgical adjunct for glioma surgeons. Besides its proven benefit as a localizing tool, when used as a tool for resection control it improves the resection rates. n3DUS may offer benefits over 2DUS as a resection control modality, though the evidence is still evolving.
Collapse
Affiliation(s)
- Ujwal Yeole
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vikas Singh
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Dono A, Zhu P, Takayasu T, Arevalo O, Riascos R, Tandon N, Ballester LY, Esquenazi Y. Extent of Resection Thresholds in Molecular Subgroups of Newly Diagnosed Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery 2024; 95:932-940. [PMID: 38687046 DOI: 10.1227/neu.0000000000002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Maximizing the extent of resection (EOR) improves outcomes in glioblastoma (GBM). However, previous GBM studies have not addressed the EOR impact in molecular subgroups beyond IDH1/IDH2 status. In the current article, we evaluate whether EOR confers a benefit in all GBM subtypes or only in particular molecular subgroups. METHODS A retrospective cohort of newly diagnosed GBM isocitrate dehydrogenase (IDH)-wildtype undergoing resection were prospectively included in a database (n = 138). EOR and residual tumor volume (RTV) were quantified with semiautomated software. Formalin-fixed paraffin-embedded tumor tissues were analyzed by targeted next-generation sequencing. The association between recurrent genomic alterations and EOR/RTV was evaluated using a recursive partitioning analysis to identify thresholds of EOR or RTV that may predict survival. The Kaplan-Meier methods and multivariable Cox proportional hazards regression methods were applied for survival analysis. RESULTS Patients with EOR ≥88% experienced 44% prolonged overall survival (OS) in multivariable analysis (hazard ratio: 0.56, P = .030). Patients with alterations in the TP53 pathway and EOR <89% showed reduced OS compared to TP53 pathway altered patients with EOR>89% (10.5 vs 18.8 months; HR: 2.78, P = .013); however, EOR/RTV was not associated with OS in patients without alterations in the TP53 pathway. Meanwhile, in all patients with EOR <88%, PTEN -altered had significantly worse OS than PTEN -wildtype (9.5 vs 15.4 months; HR: 4.53, P < .001). CONCLUSION Our results suggest that a subset of molecularly defined GBM IDH-wildtype may benefit more from aggressive resections. Re-resections to optimize EOR might be beneficial in a subset of molecularly defined GBMs. Molecular alterations should be taken into consideration for surgical treatment decisions in GBM IDH-wildtype.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | | | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| | - Roy Riascos
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
| | - Leomar Y Ballester
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston , Texas , USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston , Texas , USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston , Texas , USA
- Memorial Hermann Hospital - TMC, Houston , Texas , USA
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston , Texas , USA
| |
Collapse
|
4
|
Succop B, Richardson DR, Rauf Y, Higgins D, Catalino M. Understanding treatment preferences and cognitive outcomes in patients with gliomas. Support Care Cancer 2024; 32:673. [PMID: 39292365 DOI: 10.1007/s00520-024-08876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Understanding how glioma patients value cognitive outcomes is essential to personalizing their treatment plans. The purpose of this study was to identify the modifiable cognitive functions most affected by treatment and most important to patient quality of life. METHODS Patients with gliomas were prospectively enrolled in focus groups and individual interviews using a standardized guide focusing on cognitive functions until saturation was achieved. Patient values and treatment preferences were elicited and compared to the frequency of reported deficits. NVivo natural language processing software was used to perform thematic qualitative analyses. Quantitative analysis with Fischer's exact test was used for each cognitive function to assess for an association between experiencing a deficit and rating that function as important to quality of life. RESULTS Twenty participants participated, of whom 60% were female. Racial identification consisted of 75% White, 15% Black/African American, and 10% Other Racial Identification. The cognitive functions most essential to the quality of life in this cohort were sense of self (80% of participants), memory (70% of participants), and communication (25% of participants). The functions that experienced the most deficits because of treatment were memory (65% of participants), concentration (65% of participants), and special senses (40% of participants). "Dealbreakers" to treatment were complete loss of independence, sense of self, and/or the ability to interact with loved ones. Fischer's exact test showed no associations between experiencing a cognitive function deficit and rating that function as important to quality of life. CONCLUSIONS Glioma patients in this study prioritized cognitive functions according to memory, personal identity, and their ability to communicate with loved ones independently of experiencing deficits in these functions. Further study should compare patient prioritization and decision-making between surgically curable and noncurable grade gliomas as well as investigate the quality of life benefits of incorporating the connectomics of highly valued cognitive functions in surgical planning.
Collapse
Affiliation(s)
- Benjamin Succop
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| | - Daniel R Richardson
- Department of Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasmeen Rauf
- Department of Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dominique Higgins
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Catalino
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Karschnia P, Gerritsen JKW, Teske N, Cahill DP, Jakola AS, van den Bent M, Weller M, Schnell O, Vik-Mo EO, Thon N, Vincent AJPE, Kim MM, Reifenberger G, Chang SM, Hervey-Jumper SL, Berger MS, Tonn JC. The oncological role of resection in newly diagnosed diffuse adult-type glioma defined by the WHO 2021 classification: a Review by the RANO resect group. Lancet Oncol 2024; 25:e404-e419. [PMID: 39214112 DOI: 10.1016/s1470-2045(24)00130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 09/04/2024]
Abstract
Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jasper K W Gerritsen
- Department of Neurosurgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Nico Teske
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Asgeir S Jakola
- Department of Neurosurgery, University of Gothenburg, Gothenburg, Sweden; Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg, Germany
| | - Einar O Vik-Mo
- Department of Neurosurgery, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
6
|
Roux A, Elia A, Hudelist B, Benzakoun J, Dezamis E, Parraga E, Moiraghi A, Simboli GA, Chretien F, Oppenheim C, Zanello M, Pallud J. Prognostic significance of MRI contrast enhancement in newly diagnosed glioblastoma, IDH-wildtype according to WHO 2021 classification. J Neurooncol 2024; 169:445-455. [PMID: 38913230 DOI: 10.1007/s11060-024-04747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Contrast enhancement in glioblastoma, IDH-wildtype is common but not systematic. In the era of the WHO 2021 Classification of CNS Tumors, the prognostic impact of a contrast enhancement and the pattern of contrast enhancement is not clearly elucidated. METHODS We performed an observational, retrospective, single-centre cohort study at a tertiary neurosurgical oncology centre (January 2006 - December 2022). We screened adult patients with a newly-diagnosed glioblastoma, IDH-wildtype in order to assess the prognosis role of the contrast enhancement and the pattern of contrast enhancement. RESULTS We included 1149 glioblastomas, IDH-wildtype: 26 (2.3%) had a no contrast enhancement, 45 (4.0%) had a faint and patchy contrast enhancement, 118 (10.5%) had a nodular contrast enhancement, and 960 (85.5%) had a ring-like contrast enhancement. Overall survival was longer in non-contrast enhanced glioblastomas (26.7 months) than in contrast enhanced glioblastomas (10.9 months) (p < 0.001). In contrast enhanced glioblastomas, a ring-like pattern was associated with shorter overall survival than in faint and patchy and nodular patterns (10.0 months versus 13.0 months, respectively) (p = 0.033). Whatever the presence of a contrast enhancement and the pattern of contrast enhancement, surgical resection was an independent predictor of longer overall survival, while age ≥ 70 years, preoperative KPS score < 70, tumour volume ≥ 30cm3, and postoperative residual contrast enhancement were independent predictors of shorter overall survival. CONCLUSION A contrast enhancement is present in the majority (97.7%) of glioblastomas, IDH-wildtype and, regardless of the pattern, is associated with a shorter overall survival. The ring-like pattern of contrast enhancement is typical in glioblastomas, IDH-wildtype (85.5%) and remains an independent predictor of shorter overall survival compared to other patterns (faint and patchy and nodular).
Collapse
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France.
| | - Angela Elia
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Benoit Hudelist
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Joseph Benzakoun
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F- 75014, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Eduardo Parraga
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Giorgia Antonia Simboli
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, F- 75014, France
| | - Fabrice Chretien
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, F- 75014, France
| | - Catherine Oppenheim
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F- 75014, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| |
Collapse
|
7
|
Vindstad BE, Skjulsvik AJ, Pedersen LK, Berntsen EM, Solheim OS, Ingebrigtsen T, Reinertsen I, Johansen H, Eikenes L, Karlberg AM. Histomolecular Validation of [ 18F]-FACBC in Gliomas Using Image-Localized Biopsies. Cancers (Basel) 2024; 16:2581. [PMID: 39061219 PMCID: PMC11275162 DOI: 10.3390/cancers16142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gliomas have a heterogeneous nature, and identifying the most aggressive parts of the tumor and defining tumor borders are important for histomolecular diagnosis, surgical resection, and radiation therapy planning. This study evaluated [18F]-FACBC PET for glioma tissue classification. METHODS Pre-surgical [18F]-FACBC PET/MR images were used during surgery and image-localized biopsy sampling in patients with high- and low-grade glioma. TBR was compared to histomolecular results to determine optimal threshold values, sensitivity, specificity, and AUC values for the classification of tumor tissue. Additionally, PET volumes were determined in patients with glioblastoma based on the optimal threshold. [18F]-FACBC PET volumes and diagnostic accuracy were compared to ce-T1 MRI. In total, 48 biopsies from 17 patients were analyzed. RESULTS [18F]-FACBC had low uptake in non-glioblastoma tumors, but overall higher sensitivity and specificity for the classification of tumor tissue (0.63 and 0.57) than ce-T1 MRI (0.24 and 0.43). Additionally, [18F]-FACBC TBR was an excellent classifier for IDH1-wildtype tumor tissue (AUC: 0.83, 95% CI: 0.71-0.96). In glioblastoma patients, PET tumor volumes were on average eight times larger than ce-T1 MRI volumes and included 87.5% of tumor-positive biopsies compared to 31.5% for ce-T1 MRI. CONCLUSION The addition of [18F]-FACBC PET to conventional MRI could improve tumor classification and volume delineation.
Collapse
Affiliation(s)
- Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Lars Kjelsberg Pedersen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Ole Skeidsvoll Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ingerid Reinertsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Health Research, SINTEF Digital, 7034 Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
8
|
Pandey A, Chandla A, Mekonnen M, Hovis GEA, Teton ZE, Patel KS, Everson RG, Wadehra M, Yang I. Safety and Efficacy of Laser Interstitial Thermal Therapy as Upfront Therapy in Primary Glioblastoma and IDH-Mutant Astrocytoma: A Meta-Analysis. Cancers (Basel) 2024; 16:2131. [PMID: 38893250 PMCID: PMC11171930 DOI: 10.3390/cancers16112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Although primary studies have reported the safety and efficacy of LITT as a primary treatment in glioma, they are limited by sample sizes and institutional variation in stereotactic parameters such as temperature and laser power. The current literature has yet to provide pooled statistics on outcomes solely for primary brain tumors according to the 2021 WHO Classification of Tumors of the Central Nervous System (WHO CNS5). In the present study, we identify recent articles on primary CNS neoplasms treated with LITT without prior intervention, focusing on relationships with molecular profile, PFS, and OS. This meta-analysis includes the extraction of data from primary sources across four databases using the Covidence systematic review manager. The pooled data suggest LITT may be a safe primary management option with tumor ablation rates of 94.8% and 84.6% in IDH-wildtype glioblastoma multiforme (GBM) and IDH-mutant astrocytoma, respectively. For IDH-wildtype GBM, the pooled PFS and OS were 5.0 and 9.0 months, respectively. Similar to rates reported in the prior literature, the neurologic and non-neurologic complication rates for IDH-wildtype GBM were 10.3% and 4.8%, respectively. The neurologic and non-neurologic complication rates were somewhat higher in the IDH-mutant astrocytoma cohort at 33% and 8.3%, likely due to a smaller cohort size.
Collapse
Affiliation(s)
- Aryan Pandey
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Anubhav Chandla
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Mahlet Mekonnen
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Gabrielle E. A. Hovis
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
| | - Zoe E. Teton
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kunal S. Patel
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Richard G. Everson
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA (M.M.)
- Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhu P, Pichardo-Rojas PS, Dono A, Tandon N, Hadjipanayis CG, Berger MS, Esquenazi Y. The detrimental effect of biopsy preceding resection in surgically accessible glioblastoma: results from the national cancer database. J Neurooncol 2024; 168:77-89. [PMID: 38492191 DOI: 10.1007/s11060-024-04644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Aggressive resection in surgically-accessible glioblastoma (GBM) correlates with improved survival over less extensive resections. However, the clinical impact of performing a biopsy before definitive resection have not been previously evaluated. METHODS We analyzed 17,334 GBM patients from the NCDB from 2010-2014. We categorized them into: "upfront resection" and "biopsy followed by resection". The outcomes of interes included OS, 30-day readmission/mortality, 90-day mortality, and length of hospital stay (LOS). The Kaplan-Meier methods and accelerated failure time (AFT) models were applied for survival analysis. Multivariable binary logistic regression were performed to compare differences among groups. Multiple imputation and propensity score matching (PSM) were conducted for validation. RESULTS "Upfront resection" had superior OS over "biopsy followed by resection" (median OS:12.4 versus 11.1 months, log-rank p = 0.001). Similarly, multivariable AFT models favored "upfront resection" (time ratio[TR]:0.83, 95%CI: 0.75-0.93, p = 0.001). Patients undergoing "upfront gross-total resection (GTR)" had higher OS over "upfront subtotal resection (STR)", "GTR following STR", and "GTR or STR following initial biopsy" (14.4 vs. 10.3, 13.5, 13.3, and 9.1 months;TR: 1.00 [Ref.], 0.75, 0.82, 0.88, and 0.67). Recent years of diagnosis, higher income, facilities located in Southern regions, and treatment at academic facilities were significantly associated with the higher likelihood of undergoing upfront resection. Multivariable regression showed a decreased 30 and 90-day mortality for patients undergoing "upfront resection", 73% and 44%, respectively (p < 0.001). CONCLUSIONS Pre-operative biopsies for surgically accessible GBM are associated with worse survival despite subsequent resection compared to patients undergoing upfront resection.
Collapse
Affiliation(s)
- Ping Zhu
- The Vivian L. Smith Department of Neurosurgery and Center for Precision Health, The University of Texas Health Science Center at Houston McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Pavel S Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery and Center for Precision Health, The University of Texas Health Science Center at Houston McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Antonio Dono
- The Vivian L. Smith Department of Neurosurgery and Center for Precision Health, The University of Texas Health Science Center at Houston McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Nitin Tandon
- The Vivian L. Smith Department of Neurosurgery and Center for Precision Health, The University of Texas Health Science Center at Houston McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Yoshua Esquenazi
- The Vivian L. Smith Department of Neurosurgery and Center for Precision Health, The University of Texas Health Science Center at Houston McGovern Medical School, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Narsinh KH, Perez E, Haddad AF, Young JS, Savastano L, Villanueva-Meyer JE, Winkler E, de Groot J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr Neurol Neurosci Rep 2024; 24:123-139. [PMID: 38578405 PMCID: PMC11016125 DOI: 10.1007/s11910-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.
Collapse
Affiliation(s)
- Kazim H Narsinh
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Edgar Perez
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Luis Savastano
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ethan Winkler
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John de Groot
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Gerritsen JKW, Young JS, Chang SM, Krieg SM, Jungk C, van den Bent MJ, Satoer DD, Ille S, Schucht P, Nahed BV, Broekman MLD, Berger M, De Vleeschouwer S, Vincent AJPE. SUPRAMAX-study: supramaximal resection versus maximal resection for glioblastoma patients: study protocol for an international multicentre prospective cohort study (ENCRAM 2201). BMJ Open 2024; 14:e082274. [PMID: 38684246 PMCID: PMC11086386 DOI: 10.1136/bmjopen-2023-082274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION A greater extent of resection of the contrast-enhancing (CE) tumour part has been associated with improved outcomes in glioblastoma. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in high-grade glioma (HGG) patients in terms of survival, functional, neurological, cognitive and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. METHODS AND ANALYSIS This study is an international, multicentre, prospective, two-arm cohort study of observational nature. Consecutive glioblastoma patients will be operated with SMR or maximal resection at a 1:1 ratio. Primary endpoints are (1) overall survival and (2) proportion of patients with National Institute of Health Stroke Scale deterioration at 6 weeks, 3 months and 6 months postoperatively. Secondary endpoints are (1) residual CE and NCE tumour volume on postoperative T1-contrast and FLAIR (Fluid-attenuated inversion recovery) MRI scans; (2) progression-free survival; (3) receipt of adjuvant therapy with chemotherapy and radiotherapy; and (4) quality of life at 6 weeks, 3 months and 6 months postoperatively. The total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. ETHICS AND DISSEMINATION The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.
Collapse
Affiliation(s)
- Jasper Kees Wim Gerritsen
- Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Sandro M Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Christine Jungk
- Neuro-oncology, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | - Martin J van den Bent
- Department of Neuro Oncology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Djaina D Satoer
- Neurosurgery, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, Munich, Bayern, Germany
| | - Philippe Schucht
- Neurosurgery, Inselspital Universitätsspital Bern, Bern, Switzerland
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Mitchel Berger
- University of California San Francisco, San Francisco, California, USA
| | | | - Arnaud J P E Vincent
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
13
|
Liu Y, Zhao S, Huang J, Zhang P, Wang Q, Chen Z, Zhu L, Ji W, Cheng C. Application value of intraoperative electrophysiological monitoring in cerebral eloquent area glioma surgery: a retrospective cohort study. Discov Oncol 2024; 15:118. [PMID: 38613736 PMCID: PMC11016029 DOI: 10.1007/s12672-024-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
INTRODUCTION Surgery for gliomas involving eloquent areas is a very challenging microsurgical procedure. Maximizing both the extent of resection (EOR) and preservation of neurological function have always been the focus of attention. Intraoperative neurophysiological monitoring (IONM) is widely used in this kind of surgery. The purpose of this study was to evaluate the efficacy of IONM in eloquent area glioma surgery. METHODS Sixty-eight glioma patients who underwent surgical treatment from 2014 to 2019 were included in this retrospective cohort study, which focused on eloquent areas. Clinical indicators and IONM data were analysed preoperatively, two weeks after surgery, and at the final follow-up. Logistic regression, Cox regression, and Kaplan‒Meier analyses were performed, and nomograms were then established for predicting prognosis. The diagnostic value of the IONM indicator was evaluated by the receiver operating characteristic (ROC) curve. RESULTS IONM had no effect on the postoperative outcomes, including EOR, intraoperative bleeding volume, duration of surgery, length of hospital stay, and neurological function status. However, at the three-month follow-up, the percentage of patients who had deteriorated function in the monitored group was significantly lower than that in the unmonitored group (23.3% vs. 52.6%; P < 0.05). Logistic regression analysis showed that IONM was a significant factor in long-term neurological function (OR = 0.23, 95% CI (0.07-0.70). In the survival analysis, long-term neurological deterioration indicated worsened overall survival (OS) and progression-free survival (PFS). A prognostic nomogram was established through Cox regression model analysis, which could predict the probability 3-year survival rate. The concordance index was 0.761 (95% CI 0.734-0.788). The sensitivity and specificity of IONM evoked potential (SSEP and TCeMEP) were 0.875 and 0.909, respectively. In the ROC curve analysis, the area under the curve (AUC) for the SSEP and TCeMEP curves was 0.892 (P < 0.05). CONCLUSIONS The application of IONM could improve long-term neurological function, which is closely related to prognosis and can be used as an independent prognostic factor. IONM is practical and widely available for predicting postoperative functional deficits in patients with eloquent area glioma.
Collapse
Affiliation(s)
- Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jin Huang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhuwen Chen
- Department of Functional Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lingjie Zhu
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
14
|
Martín-Abreu C, Fariña-Jerónimo H, Plata-Bello J. Radiological and Not Clinical Variables Guide the Surgical Plan in Patients with Glioblastoma. Curr Oncol 2024; 31:1899-1912. [PMID: 38668045 PMCID: PMC11049408 DOI: 10.3390/curroncol31040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Purpose: The extent of resection is the most important prognostic factor in patients with glioblastoma. However, the factors influencing the decision to perform a biopsy instead of maximal resection have not been clearly established. The aim of this study was to analyze the factors associated with the intention to achieve maximal resection in glioblastoma patients. Methods: A retrospective single-center case-series analysis of patients with a new diagnosis of glioblastoma was performed. Patients were distributed into two groups: the biopsy (B) and complete resection (CR) groups. To identify factors associated with the decision to perform a B or CR, uni- and multivariate binary logistic regression analyses were performed. Cox regression analysis was also performed in the B and CR groups. Results: Ninety-nine patients with a new diagnosis of glioblastoma were included. Sixty-eight patients (68.7%) were treated with CR. Ring-enhancement and edema volume on presurgical magnetic resonance imaging were both associated with CR. Corpus callosum involvement and proximity to the internal capsule were identified as factors associated with the decision to perform a biopsy. In the multivariate analysis, edema volume (OR = 1.031; p = 0.002) and proximity to the internal capsule (OR = 0.104; p = 0.001) maintained significance and were considered independent factors. In the survival analysis, only corpus callosum involvement (HR = 2.055; p = 0.035) and MGMT status (HR = 0.484; p = 0.027) presented statistical significance in the CR group. Conclusions: The volume of edema and proximity to the internal capsule were identified as independent factors associated with the surgical decision. The radiological evaluation and not the clinical situation of the patient influences the decision to perform a biopsy or CR.
Collapse
Affiliation(s)
- Carla Martín-Abreu
- Department of Medical Oncology, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Helga Fariña-Jerónimo
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| |
Collapse
|
15
|
Nakayama N, Yamada T, Yano H, Takei H, Ohe N, Miwa K, Shinoda J, Iwama T. Prediction of nuclide accumulation spread based on the volume of enhancing magnetic resonance imaging lesion in glioblastoma patients. J Neurosurg Sci 2024; 68:164-173. [PMID: 34647709 DOI: 10.23736/s0390-5616.21.05353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND 11C-methionine-PET (MET) and Thallium-201 chloride-SPECT (TL) are useful for predictive proliferation ability and tumor invasion range identification in glioma patients, however they are not always possible in any hospital or country. Our study aimed to assess whether the range of MET and Tl accumulation could be predicted from the contrast-enhanced lesions in Gadolinium (Gd)-T1 weighted magnetic resonance image in glioblastoma multiforme (GBM) patients. METHODS In 25 cases, the MET-area, TL-area, O-area where MET and TL overlap, and all accumulation area (AA-area) were measured in the same axial cross section as the Gd enhanced maximum area (Gd-area). This tracing operation was repeated with all axial fusion slices, and each volume was also measured (Gd-V, MET-V, TL-V, O-V, AA-V). RESULTS The maximum accumulation distance of MET and TL beyond the Gd-area was limited to within 30 mm, 35 mm, respectively. Significant positive correlations were showed in all combinations with Gd-area: MET-area (r=0.851, P<0.0001), TL-area (r=0.955, P<0.0001), O-area (r=0.935, P<0.0001) and AA-area (r=0.893, P<0.0001), respectively. All combinations with Gd-V showed significant positive correlation: MET-V (r=0.867, P<0.0001), TL-V (r=0.952, P<0.0001), O-V (r=0.935, P<0.0001) and AA-V (r=0.897, P<0.0001), respectively. CONCLUSIONS Approximate tumor volume Gd-V can be calculated using the formula A * B * C / 2, where A, B, and C represent the dimensions of Gd-enhanced lesion in 3 axes perpendicular to each other. The nuclide accumulation predictive table created using the obtained linear approximation functions can be used to predict the average tumor invasion range from the Gd-V without preoperative nuclear examinations.
Collapse
Affiliation(s)
- Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan -
| | - Tetsuya Yamada
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohito Yano
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Hiroaki Takei
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Miwa
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
16
|
Mallay MG, Landry TG, Brown JA. An 8 mm endoscopic histotripsy array with integrated high-resolution ultrasound imaging. ULTRASONICS 2024; 139:107275. [PMID: 38508082 DOI: 10.1016/j.ultras.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
An 8 mm diameter, image-guided, annular array histotripsy transducer was fabricated and characterized. The array was laser etched on a 5 MHz, 1-3 dice and fill, PZT-5H/epoxy composite with a 45 % volume fraction. Flexible PCBs were used to electrically connect to the array elements using wirebonds. The array was backed with a low acoustic impedance epoxy mixture. A 3.6 by 3.8 mm, 64-element, 30 MHz phased array imaging probe was positioned in the center hole, to co-align the imaging plane with the bubble cloud produced by the therapy array. A custom 16-channel high voltage pulse generator was used to test the annular array for focal lengths ranging from 3- to 8-mm. An aluminum lens-focussed transducer with a 7 mm focal length was fabricated using the same piezocomposite and backing material and tested along with the histotripsy array. Simulated results from COMSOL FEM models were compared to measured results for low voltage characterization of the array and lens-focussed transducer. The measured transmit sensitivity of the array ranged from 0.113 to 0.167 MPa/V, while the lens-focussed transducer was 0.192 MPa/V. Simulated values were 0.160 to 0.174 MPa/V and 0.169 MPa/V, respectively. The measured acoustic fields showed a significantly increased depth-of-field compared the lens-focussed transducer, while the beamwidths of the array focus were comparable to the lens. The measured cavitation voltage in water was between 254 V and 498 V depending on the focal length, and 336 V for the lens-focussed transducer. The array had a lower cavitation voltage than the lens-focussed transducer for a comparable operating depth. The histotripsy array was tested in a tissue phantom and an in vivo rat brain. It was used to produce an elongated lesion in the brain by electronically steering the focal length from 3- to 8-mm axially. Real time ultrasound imaging with a Doppler overlay was used to target the tissue and monitor ablation progress, and histology confirmed the targeted tissue was fully homogenized.
Collapse
Affiliation(s)
- Matthew G Mallay
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Thomas G Landry
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada; Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Falco J, Broggi M, Rubiu E, Schiariti M, Restelli F, Mazzapicchi E, La Corte E, Ferroli P, Acerbi F. The Application of Sodium Fluorescein in Resection of Medulloblastoma Under YELLOW 560 Filter: Feasibility and Preliminary Results of a Monocentric Cohort and Systematic Review. World Neurosurg 2024; 183:e386-e394. [PMID: 38154682 DOI: 10.1016/j.wneu.2023.12.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Maximizing surgical resection of medulloblastoma (MB) affects overall survival; nevertheless, surgical resection remains a because of the infiltrative behavior of this tumor. Several dyes have been tested for improving tumor visualization; however, few reports with different protocols of fluorophores use are available and the results are inconsistent. Hence, we report our experience with sodium fluorescein in MB surgery, aiming to assess the role of this technique on the extent of resection. Furthermore, we performed a literature review of this topic. METHODS Fluorescence characteristics, extent of resection, and clinical outcome were analyzed in 9 consecutively operated patients with MB. A comprehensive literature search and review for English-language articles concerning fluorescein application in MB was conducted. RESULTS In our cohort, no side effect related to fluorescein occurred; all tumors presented with an intense or moderate yellow-green enhancement, and fluorescein was judged fundamental in distinguishing tumors from viable tissue in 7 of 9 cases. Gross total resection or near-total resection (i.e., a residual tumor volume <1.5 cm3) was achieved in 8 patients. The review explored the different techniques and surgical interpretations as well as surgical radicality; we did not find a homogenous protocol for fluorescein injection in the published articles. Fluorescence appeared moderate or intense in almost all cases, with a high percentage of usefulness and consensual achievement of a high rate of gross total resection. CONCLUSIONS Based on these results, we can infer that fluorescein-guided surgical resection is a safe and valuable method for patients with MB.
Collapse
Affiliation(s)
- Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Emanuele Rubiu
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; Department of Neurosurgery, Experimental Microsurgical Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
18
|
Laing BR, Prah MA, Best BJ, Krucoff MO, Mueller WM, Schmainda KM. Application of Delta T1 maps for quantitative and objective assessment of extent of resection and survival prediction in glioblastoma. NEUROSURGERY PRACTICE 2024; 5:e00077. [PMID: 38919518 PMCID: PMC11198967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Background and Objectives Gross-total resection (GTR) and low residual tumor volume (RTV) have been associated with increased survival in glioblastoma. Largely due to the subjectivity involved, the determination of GTR and RTV remains difficult in the postoperative setting. In response, the objective of this study is to evaluate the clinical efficacy of an easy-to-use MRI metric, called delta T1 (dT1), to quantify extent of resection (EOR) and RTV, in comparison to radiologist impression, to predict overall survival (OS) in glioblastoma patients. Methods 59 patients who underwent resection of glioblastoma were retrospectively identified. Delta T1 (dT1) images, automatically created from the difference between calibrated post- and pre-contrast T1-weighted images, were used to quantify EOR and RTV. Kaplan-Meier survival estimates were determined for EOR categories, an RTV cutoff of 5cm3 and radiologist interpretation of EOR. Multivariate Cox proportional hazard regression analysis was used to evaluate RTV and EOR along with effects related to sex, KPS, MGMT, and age on OS. Results Kaplan-Meier analysis revealed a statistically significant difference in median OS for a dT1-determined RTV cutoff of 5 cm3 (P=.0024, HR=2.18 (1.232-3.856)), but not for radiological impression (P=0.666) or dT1-determined EOR (P=0.0803), which was limited to a comparison between partial and subtotal resections. Furthermore, when covariates were accounted for in multivariate Cox regression, significant differences in OS were retained for dT1-determined RTV. Additionally, a significantly strong yet short-term effect of MGMT methylation status on OS was revealed for each RTV and EOR model. Conclusion The utility of dT1 maps to quantify EOR and RTV in glioblastoma and predict survival, suggests an emerging role for dT1s with relevance for intraoperative MRI, neuro-navigation and postoperative disease surveillance.
Collapse
Affiliation(s)
- Brandon R. Laing
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin J. Best
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wade M. Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
19
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
20
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
21
|
Ramakrishnan PK, Saeed F, Thomson S, Corns R, Mathew RK, Sivakumar G. Awake craniotomy for high-grade gliomas - a prospective cohort study in a UK tertiary-centre. Surgeon 2024; 22:e3-e12. [PMID: 38008681 DOI: 10.1016/j.surge.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Studies from the UK reporting on awake craniotomy (AC) include a heterogenous group of patients which limit the evaluation of the true impact of AC in high-grade glioma (HGG) patients. This study aims to report solely the experience and outcomes of AC for HGG surgery from our centre. METHODS A prospective review of all patients who underwent AC for HGG from 2013 to 2019 were performed. Data on patient characteristics including but not limited to demographics, pre- and post-operative Karnofsky performance status (KPS), tumour location and volume, type of surgery, extent of resection (EOR), tumour histopathology, intra- and post-operative complications, morbidity, mortality, disease recurrence, progression-free survival (PFS) and overall survival (OS) from the time of surgery were collected. RESULTS Fifteen patients (6 males; 9 females; 17 surgeries) underwent AC for HGG (median age = 55 years). Two patients underwent repeat surgeries due to disease recurrence. Median pre- and post-operative KPS score was 90 (range:80-100) and 90 (range:60-100), respectively. The EOR ranges from 60 to 100 % with a minimum of 80 % achieved in 81.3 % cases. Post-operative complications include focal seizures (17.6 %), transient aphasia/dysphasia (17.6 %), permanent motor deficit (11.8 %), transient motor deficit (5.9 %) and transient sensory disturbance (5.9 %). There were no surgery-related mortality or post-operative infection. The median PFS and OS were 13 (95%CI 5-78) and 30 (95%CI 21-78) months, respectively. CONCLUSION This is the first study in the UK to solely report outcomes of AC for HGG surgery. Our data demonstrates that AC for HGG in eloquent region is safe, feasible and provides comparable outcomes to those reported in the literature.
Collapse
Affiliation(s)
- Piravin Kumar Ramakrishnan
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Fozia Saeed
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Simon Thomson
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Robert Corns
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Ryan K Mathew
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom; School of Medicine, University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom.
| | - Gnanamurthy Sivakumar
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom.
| |
Collapse
|
22
|
Aiudi D, Iacoangeli A, Dobran M, Polonara G, Chiapponi M, Mattioli A, Gladi M, Iacoangeli M. The Prognostic Role of Volumetric MRI Evaluation in the Surgical Treatment of Glioblastoma. J Clin Med 2024; 13:849. [PMID: 38337543 PMCID: PMC10856584 DOI: 10.3390/jcm13030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Glioblastoma is the most common primary brain neoplasm in adults, with a poor prognosis despite a constant effort to improve patient survival. Some neuroradiological volumetric parameters seem to play a predictive role in overall survival (OS) and progression-free survival (PFS). The aim of this study was to analyze the impact of the volumetric areas of contrast-enhancing tumors and perineoplastic edema on the survival of patients treated for glioblastoma. Methods: A series of 87 patients who underwent surgery was retrospectively analyzed; OS and PFS were considered the end points of the study. For each patient, a multidisciplinary revision was conducted in collaboration with the Neuroradiology and Neuro-Oncology Board. Manual and semiautomatic measurements were adopted to perform the radiological evaluation, and the following quantitative parameters were retrospectively analyzed: contrast enhancement preoperative tumor volume (CE-PTV), contrast enhancement postoperative tumor volume (CE-RTV), edema/infiltration preoperative volume (T2/FLAIR-PV), edema/infiltration postoperative volume (T2/FLAIR-RV), necrosis volume inside the tumor (NV), and total tumor volume including necrosis (TV). Results: The median OS value was 9 months, and the median PFS value was 4 months; the mean values were 12.3 and 6.9 months, respectively. Multivariate analysis showed that the OS-related factors were adjuvant chemoradiotherapy (p < 0.0001), CE-PTV < 15 cm3 (p = 0.03), surgical resection > 95% (p = 0.004), and the presence of a "pseudocapsulated" radiological morphology (p = 0.04). Conclusions: Maximal safe resection is one of the most relevant predictive factors for patient survival. Semiautomatic preoperative MRI evaluation could play a key role in prognostically categorizing these tumors.
Collapse
Affiliation(s)
- Denis Aiudi
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| | - Alessio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| | - Mauro Dobran
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| | - Gabriele Polonara
- Department of Neuroradiology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy;
| | - Mario Chiapponi
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| | - Andrea Mattioli
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| | - Maurizio Gladi
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, 60121 Ancona, Italy; (A.I.); (M.D.); (M.C.); (A.M.); (M.G.); (M.I.)
| |
Collapse
|
23
|
Quiñones-Hinojosa A, Basil A, Moniz-Garcia D, Suarez-Meade P, Ramos A, Jentoft M, Middlebrooks E, Grewal S, Abode-Iyamah K, Bydon M, Sarkaria J, Dickson D, Swanson K, Rosenfeld S, Schiapparelli P, Guerrero-Cazares H, Chaichana K, Meyer F. From the Operating Room to the Laboratory: Role of the Neuroscience Tissue Biorepository in the Clinical, Translational, and Basic Science Research Pipeline. Mayo Clin Proc 2024; 99:229-240. [PMID: 38309935 PMCID: PMC10842257 DOI: 10.1016/j.mayocp.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVE To establish a neurologic disorder-driven biospecimen repository to bridge the operating room with the basic science laboratory and to generate a feedback cycle of increased institutional and national collaborations, federal funding, and human clinical trials. METHODS Patients were prospectively enrolled from April 2017 to July 2022. Tissue, blood, cerebrospinal fluid, bone marrow aspirate, and adipose tissue were collected whenever surgically safe. Detailed clinical, imaging, and surgical information was collected. Neoplastic and nonneoplastic samples were categorized and diagnosed in accordance with current World Health Organization classifications and current standard practices for surgical pathology at the time of surgery. RESULTS A total of 11,700 different specimens from 813 unique patients have been collected, with 14.2% and 8.5% of patients representing ethnic and racial minorities, respectively. These include samples from a total of 463 unique patients with a primary central nervous system tumor, 88 with metastasis to the central nervous system, and 262 with nonneoplastic diagnoses. Cerebrospinal fluid and adipose tissue dedicated banks with samples from 130 and 16 unique patients, respectively, have also been established. Translational efforts have led to 42 new active basic research projects; 4 completed and 6 active National Institutes of Health-funded projects; and 2 investigational new drug and 5 potential Food and Drug Administration-approved phase 0/1 human clinical trials, including 2 investigator initiated and 3 industry sponsored. CONCLUSION We established a comprehensive biobank with detailed notation with broad potential that has helped us to transform our practice of research and patient care and allowed us to grow in research and clinical trials in addition to providing a source of tissue for new discoveries.
Collapse
Affiliation(s)
| | - Aleeshba Basil
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL
| | | | | | - Andres Ramos
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL
| | - Mark Jentoft
- Department of Pathology, Mayo Clinic, Jacksonville, FL
| | | | - Sanjeet Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL
| | | | - Mohamad Bydon
- Department of Neurosurgery, Mayo Clinic, Rochester, MN
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | - Fredric Meyer
- Department of Neurosurgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
24
|
Hoopes PJ, Tavakkoli AD, Moodie KA, Maurer KJ, Meehan KR, Wallin DJ, Aulwes E, Duval KEA, Chen KL, -Burney MAC, Li C, Fan X, Evans LT, Paulsen KD. Porcine-human glioma xenograft model. Immunosuppression and model reproducibility. Cancer Treat Res Commun 2024; 38:100789. [PMID: 38262125 PMCID: PMC11026118 DOI: 10.1016/j.ctarc.2024.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Glioblastoma is the most common primary malignant and treatment-resistant human brain tumor. Rodent models have played an important role in understanding brain cancer biology and treatment. However, due to their small cranium and tumor volume mismatch, relative to human disease, they have been less useful for translational studies. Therefore, development of a consistent and simple large animal glioma xenograft model would have significant translational benefits. METHODS Immunosuppression was induced in twelve standard Yucatan minipigs. 3 pigs received cyclosporine only, while 9 pigs received a combined regimen including cyclosporine (55 mg/kg q12 h), prednisone (25 mg, q24 h) and mycophenolate (500 mg q24 h). U87 cells (2 × 106) were stereotactically implanted into the left frontal cortex. The implanted brains were imaged by MRI for monitoring. In a separate study, tumors were grown in 5 additional pigs using the combined regimen, and pigs underwent tumor resection with intra-operative image updating to determine if the xenograft model could accurately capture the spatial tumor resection challenges seen in humans. RESULTS Tumors were successfully implanted and grown in 11 pigs. One animal in cyclosporine only group failed to show clinical tumor growth. Clinical tumor growth, assessed by MRI, progressed slowly over the first 10 days, then rapidly over the next 10 days. The average tumor growth latency period was 20 days. Animals were monitored twice daily and detailed records were kept throughout the experimental period. Pigs were sacrificed humanely when the tumor reached 1 - 2 cm. Some pigs experienced decreased appetite and activity, however none required premature euthanasia. In the image updating study, all five pigs demonstrated brain shift after craniotomy, consistent with what is observed in humans. Intraoperative image updating was able to accurately capture and correct for this shift in all five pigs. CONCLUSION This report demonstrates the development and use of a human intracranial glioma model in an immunosuppressed, but nongenetically modified pig. While the immunosuppression of the model may limit its utility in certain studies, the model does overcome several limitations of small animal or genetically modified models. For instance, we demonstrate use of this model for guiding surgical resection with intraoperative image-updating technologies. We further report use of a surrogate extracranial tumor that indicates growth of the intracranial tumor, allowing for relative growth assessment without radiological imaging.
Collapse
Affiliation(s)
- P Jack Hoopes
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA.
| | | | - Karen A Moodie
- Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | - Kenneth R Meehan
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | | | - Ethan Aulwes
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kayla E A Duval
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristen L Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret A Crary -Burney
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Center for Comparative Medicine and Research, Dartmouth College, Lebanon, NH, USA
| | - Chen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Xiaoyao Fan
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Linton T Evans
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| | - Keith D Paulsen
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
25
|
Que T, Yuan X, Tan JE, Zheng H, Yi G, Li Z, Wang X, Liu J, Xu H, Wang Y, Zhang XA, Huang G, Qi S. Applying the en-bloc technique in corpus callosum glioblastoma surgery contributes to maximal resection and better prognosis: a retrospective study. BMC Surg 2024; 24:4. [PMID: 38166900 PMCID: PMC10763443 DOI: 10.1186/s12893-023-02264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Corpus callosum glioblastoma (ccGBM) is a specific type of GBM and has worse outcomes than other non-ccGBMs. We sought to identify whether en-bloc resection of ccGBMs based on T2-FLAIR imaging contributes to clinical outcomes and can achieve a satisfactory balance between maximal resection and preservation of neurological function. METHODS A total of 106 adult ccGBM patients (including astrocytoma, WHO grade 4, IDH mutation, and glioblastoma) were obtained from the Department of Neurosurgery in Nanfang Hospital between January 2008 and December 2018. The clinical data, including gender, age, symptoms, location of tumor, involvement of eloquent areas, extent of resection (EOR), pre- and postoperative Karnofsky Performance Status (KPS) scales, and National Institute of Health stroke scale (NIHSS) scores were collected. Propensity score matching (PSM) analysis was applied to control the confounders for analyzing the relationship between the en-bloc technique and EOR, and the change in the postoperative KPS scales and NIHSS scores. RESULTS Applying the en-bloc technique did not negatively affect the postoperative KPS scales compared to no-en-bloc resection (P = 0.851 for PSM analysis) but had a positive effect on preserving or improving the postoperative NIHSS scores (P = 0.004 for PSM analysis). A positive correlation between EOR and the en-bloc technique was identified (r = 0.483, P < 0.001; r = 0.720, P < 0.001 for PSM analysis), indicating that applying the en-bloc technique could contribute to enlarged maximal resection. Further survival analysis confirmed that applying the en-bloc technique and achieving supramaximal resection could significantly prolong OS and PFS, and multivariate analysis suggested that tumor location, pathology, EOR and the en-bloc technique could be regarded as independent prognostic indicators for OS in patients with ccGBMs, and pathology, EOR and the en-bloc technique were independently correlated with patient's PFS. Interestingly, the en-bloc technique also provided a marked reduction in the risk of tumor recurrence compared with the no-en-bloc technique in tumors undergoing TR, indicating that the essential role of the en-bloc technique in ccGBM surgery (HR: 0.712; 95% CI: 0.535-0.947; P = 0.02). CONCLUSIONS The en-bloc technique could contribute to achieving an enlarged maximal resection and could significantly prolong overall survival and progression-free survival in patients with ccGBMs.
Collapse
Affiliation(s)
- Tianshi Que
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xi Yuan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jian-Er Tan
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haojie Zheng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaoyan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Junlu Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haiyan Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yajuan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xi-An Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Garcia CA, Suárez-Meade P, Brooks M, Bhargav AG, Freeman ML, Harvey LM, Quinn J, Quiñones-Hinojosa A. Behavior of glioblastoma brain tumor stem cells following a suborbital rocket flight: reaching the "edge" of outer space. NPJ Microgravity 2023; 9:92. [PMID: 38110398 PMCID: PMC10728190 DOI: 10.1038/s41526-023-00341-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The emerging arena of space exploration has created opportunities to study cancer cell biology in the environments of microgravity and hypergravity. Studying cellular behavior in altered gravity conditions has allowed researchers to make observations of cell function that would otherwise remain unnoticed. The patient-derived QNS108 brain tumor initiating cell line (BTIC), isolated from glioblastoma (GBM) tissue, was launched on a suborbital, parabolic rocket flight conducted by EXOS Aerospace Systems & Technologies. All biologicals and appropriate ground controls were secured post-launch and transported back to our research facility. Cells from the rocket-flight and ground-based controls were isolated from the culture containers and expanded on adherent flasks for two weeks. In vitro migration, proliferation, and stemness assays were performed. Following cell expansion, male nude mice were intracranially injected with either ground-control (GC) or rocket-flight (RF) exposed cells to assess tumorigenic capacity (n = 5 per group). Patient-derived QNS108 BTICs exposed to RF displayed more aggressive tumor growth than the GC cells in vitro and in vivo. RF cells showed significantly higher migration (p < 0.0000) and stemness profiles (p < 0.01) when compared to GC cells. Further, RF cells, when implanted in vivo in the brain of rodents had larger tumor-associated cystic growth areas (p = 0.00029) and decreased survival (p = 0.0172) as compared to those animals that had GC cells implanted.
Collapse
Affiliation(s)
- Cesar A Garcia
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Mieu Brooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | - Adip G Bhargav
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michelle L Freeman
- Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - John Quinn
- EXOS Aerospace Systems and Technologies, Greenville, TX, USA
| | | |
Collapse
|
27
|
Bao H, Wang H, Sun Q, Wang Y, Liu H, Liang P, Lv Z. The involvement of brain regions associated with lower KPS and shorter survival time predicts a poor prognosis in glioma. Front Neurol 2023; 14:1264322. [PMID: 38111796 PMCID: PMC10725945 DOI: 10.3389/fneur.2023.1264322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Background Isocitrate dehydrogenase-wildtype glioblastoma (IDH-wildtype GBM) and IDH-mutant astrocytoma have distinct biological behaviors and clinical outcomes. The location of brain tumors is closely associated not only with clinical symptoms and prognosis but also with key molecular alterations such as IDH. Therefore, we hypothesize that the key brain regions influencing the prognosis of glioblastoma and astrocytoma are likely to differ. This study aims to (1) identify specific regions that are associated with the Karnofsky Performance Scale (KPS) or overall survival (OS) in IDH-wildtype GBM and IDH-mutant astrocytoma and (2) test whether the involvement of these regions could act as a prognostic indicator. Methods A total of 111 patients with IDH-wildtype GBM and 78 patients with IDH-mutant astrocytoma from the Cancer Imaging Archive database were included in the study. Voxel-based lesion-symptom mapping (VLSM) was used to identify key brain areas for lower KPS and shorter OS. Next, we analyzed the structural and cognitive dysfunction associated with these regions. The survival analysis was carried out using Kaplan-Meier survival curves. Another 72 GBM patients and 48 astrocytoma patients from Harbin Medical University Cancer Hospital were used as a validation cohort. Results Tumors located in the insular cortex, parahippocampal gyrus, and middle and superior temporal gyrus of the left hemisphere tended to lead to lower KPS and shorter OS in IDH-wildtype GBM. The regions that were significantly correlated with lower KPS in IDH-mutant astrocytoma included the subcallosal cortex and cingulate gyrus. These regions were associated with diverse structural and cognitive impairments. The involvement of these regions was an independent predictor for shorter survival in both GBM and astrocytoma. Conclusion This study identified the specific regions that were significantly associated with OS or KPS in glioma. The results may help neurosurgeons evaluate patient survival before surgery and understand the pathogenic mechanisms of glioma in depth.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qian Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hui Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Ohmura K, Daimon T, Ikegame Y, Yano H, Yokoyama K, Kumagai M, Shinoda J, Iwama T. Resection of positive tissue on methionine-PET is associated with improved survival in glioblastomas. Brain Behav 2023; 13:e3291. [PMID: 37846176 PMCID: PMC10726771 DOI: 10.1002/brb3.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND AND PURPOSE The volume of excised tumor in contrast-enhanced areas evaluated via magnetic resonance imaging is known to have a strong influence on the survival of patients with glioblastoma (GBM). In this study, we investigated the effect of tumor resection on the survival of patients with GBM in the 11 C-methionine (MET) accumulation area using MET-positron emission tomography (MET-PET). METHODS A total of 26 patients (median age, 69 years; 15 males) who had undergone tumor resection and MET-PET before and after surgery, after being newly diagnosed with GBM, were included in the study. MET-PET before and after tumor resection were compared. The association between the decrease in the maximum standardized uptake value (SUV) of the tumor divided by the normal cortical mean SUV (%; ΔT/N), the MET extent of resection (MET-EOR) from the % reduction in the MET accumulation area (%), and residual MET accumulation area (in cm3 ; MET-residual tumor volume [RTV]), as well as the survival time of patients with GBM, were evaluated via univariate analysis. RESULTS ΔT/N were positively associated with survival (hazard ratio [HR], 0.98 [95% confidence interval (CI), 0.97-0.99], p = .02). MET-RTV revealed a negative association with survival (HR, 1.02 [95% CI, 1.01-1.04], p = .04). Additionally, MET-EOR showed a strong trend with survival (HR, 0.99 [95% CI, 0.97-1.01], p = .06). CONCLUSIONS Surgical resection of MET-accumulated areas in GBM significantly prolongs the survival of patients with GBM. However, a prospective large-scale multicenter study is needed to confirm our findings.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Chubu Medical Center for Prolonged Traumatic Brain DysfunctionMinokamoGifuJapan
- Department of NeurosurgeryGifu University Graduate School of MedicineGifuJapan
| | - Takashi Daimon
- Department of BiostatisticsHyogo College of MedicineNishinomiyaHyogoJapan
| | - Yuka Ikegame
- Chubu Medical Center for Prolonged Traumatic Brain DysfunctionMinokamoGifuJapan
- Chubu Neurorehabilitation HospitalMinokamoGifuJapan
- Department of Clinical Brain SciencesGifu University Graduate School of MedicineMinokamoGifuJapan
| | - Hirohito Yano
- Chubu Medical Center for Prolonged Traumatic Brain DysfunctionMinokamoGifuJapan
- Chubu Neurorehabilitation HospitalMinokamoGifuJapan
- Department of Clinical Brain SciencesGifu University Graduate School of MedicineMinokamoGifuJapan
| | - Kazutoshi Yokoyama
- Department of NeurosurgeryChubu International Medical CenterMinokamoGifuJapan
| | | | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain DysfunctionMinokamoGifuJapan
- Chubu Neurorehabilitation HospitalMinokamoGifuJapan
- Department of Clinical Brain SciencesGifu University Graduate School of MedicineMinokamoGifuJapan
| | - Toru Iwama
- Department of NeurosurgeryGifu University Graduate School of MedicineGifuJapan
| |
Collapse
|
29
|
Feyissa AM, Sanchez-Boluarte SS, Moniz-Garcia D, Chaichana KL, Sherman WJ, Freund BE, Tatum WO, Middlebrooks EH, Sirven JI, Quinones-Hinojosa A. Risk factors for preoperative and postoperative seizures in patients with glioblastoma according to the 2021 World Health Organization classification. Seizure 2023; 112:26-31. [PMID: 37729723 DOI: 10.1016/j.seizure.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE To identify risk factors for developing glioblastoma (GBM) related preoperative (PRS) and postoperative seizures (POS). Also, we aimed to analyze the impact of PRS and POS on survival in a GBM cohort according to the revised 2021 WHO glioma classification. METHODS We performed a single-center retrospective cohort study of patients with GBM (according to the 2021 World Health Organization Classification) treated at Mayo Clinic Florida between January 2018 and July 2022. Seizures were stratified into preoperative seizures (PRS) and postoperative seizures (POS, >7 days after surgery). Associations between patients' characteristics and overall survival with PRS and POS were assessed. RESULTS One hundred nineteen adults (mean =60.9 years), 49 (41.2 %) females, were identified. The rates of PRS and POS in the cohort were 35.3 % (n = 42) and 37.8 % (n = 45), respectively. Patients with PRS were younger (p = 0.035) and were likely to undergo intraoperative electrocorticography. The incidence of PRS (p = 0.049) and POS (p<0.001) was lower among patients with tumors located in the occipital location. PRS increased the risk of POS after adjusting for age and sex (RR: 2.59, CI = 1.44-4.65, p = 0.001). There was no association between PRS or POS and other patient-related factors, including several tumor molecular markers (TMMs) examined. PRS (p = 0.036), POS (p<0.001), and O6-Methylguanine-DNA Methyltransferase (MGMT) promotor methylation status (p = 0.032) were associated with longer survival time. CONCLUSIONS PRS and POS are associated with non-occipital tumor location and longer survival time in patients with GBM. While younger ages predicted PRS, PRS predicted POS. Well-designed prospective studies with larger sample sizes are needed to clarify the influence of TMMs in the genesis of epileptic seizures in patients with GBM.
Collapse
Affiliation(s)
| | | | | | | | - Wendy J Sherman
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | - Brin E Freund
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | - William O Tatum
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | | | - Joseph I Sirven
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | | |
Collapse
|
30
|
Freund BE, Sherman WJ, Sabsevitz DS, Middlebrooks EH, Feyissa AM, Garcia DM, Grewal SS, Chaichana KL, Quinones-Hinojosa A, Tatum WO. Can we improve electrocorticography using a circular grid array in brain tumor surgery? Biomed Phys Eng Express 2023; 9:065027. [PMID: 37871586 DOI: 10.1088/2057-1976/ad05dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Intraoperative electrocorticography (iECoG) is used as an adjunct to localize the epileptogenic zone during surgical resection of brain tumors in patients with focal epilepsies. It also enables monitoring of after-discharges and seizures with EEG during functional brain mapping with electrical stimulation. When seizures or after-discharges are present, they complicate accurate interpretation of the mapping strategy to outline the brain's eloquent function and can affect the surgical procedure. Recurrent seizures during surgery requires urgent treatment and, when occurring during awake craniotomy, often leads to premature termination of brain mapping due to post-ictal confusion or sedation from acute rescue therapy. There are mixed results in studies on efficacy with iECoG in patients with epilepsy and brain tumors influencing survival and functional outcomes following surgery. Commercially available electrode arrays have inherent limitations. These could be improved with customization potentially leading to greater precision in safe and maximal resection of brain tumors. Few studies have assessed customized electrode grid designs as an alternative to commercially available products. Higher density electrode grids with intercontact distances less than 1 cm improve spatial delineation of electrophysiologic sources, including epileptiform activity, electrographic seizures, and afterdischarges on iECoG during functional brain mapping. In response to the shortcomings of current iECoG grid technologies, we designed and developed a novel higher-density hollow circular electrode grid array. The 360-degree iECoG monitoring capability allows continuous EEG recording during surgical intervention through the aperture with and without electrical stimulation mapping. Compared with linear strip electrodes that are commonly used for iECoG during surgery, the circular grid demonstrates significant benefits in brain tumor surgery. This includes quicker recovery of post-operative motor deficits (2.4 days versus 9 days, p = 0.05), more extensive tumor resection (92.0% versus 77.6%, p = 0.003), lesser reduction in Karnofsky Performance scale postoperatively (-2 versus -11.6, p = 0.007), and more sensitivity to recording afterdischarges. In this narrative review, we discuss the advantages and disadvantages of commercially available recording devices in the operating room and focus on the usefulness of the higher-density circular grid.
Collapse
Affiliation(s)
- Brin E Freund
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Wendy J Sherman
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - David S Sabsevitz
- Department of Psychiatry, Division of Neuropsychology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Erik H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Anteneh M Feyissa
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Diogo Moniz Garcia
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| | - William O Tatum
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, FL, United States of America
| |
Collapse
|
31
|
van Dijken BRJ, Doff AR, Enting RH, van Laar PJ, Jeltema HR, Dierckx RAJO, van der Hoorn A. Influence of MRI Follow-Up on Treatment Decisions during Standard Concomitant and Adjuvant Chemotherapy in Patients with Glioblastoma: Is Less More? Cancers (Basel) 2023; 15:4973. [PMID: 37894340 PMCID: PMC10605145 DOI: 10.3390/cancers15204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
MRI is the gold standard for treatment response assessments for glioblastoma. However, there is no consensus regarding the optimal interval for MRI follow-up during standard treatment. Moreover, a reliable assessment of treatment response is hindered by the occurrence of pseudoprogression. It is unknown if a radiological follow-up strategy at 2-3 month intervals actually benefits patients and how it influences clinical decision making about the continuation or discontinuation of treatment. This study assessed the consequences of scheduled follow-up scans post-chemoradiotherapy (post-CCRT), after three cycles of adjuvant chemotherapy [TMZ3/6], and after the completion of treatment [TMZ6/6]), and of unscheduled scans on treatment decisions during standard concomitant and adjuvant treatment in glioblastoma patients. Additionally, we evaluated how often follow-up scans resulted in diagnostic uncertainty (tumor progression versus pseudoprogression), and whether perfusion MRI improved clinical decision making. Scheduled follow-up scans during standard treatment in glioblastoma patients rarely resulted in an early termination of treatment (2.3% post-CCRT, 3.2% TMZ3/6, and 7.8% TMZ6/6), but introduced diagnostic uncertainty in 27.7% of cases. Unscheduled scans resulted in more major treatment consequences (30%; p < 0.001). Perfusion MRI caused less diagnostic uncertainty (p = 0.021) but did not influence treatment consequences (p = 0.871). This study does not support the current pragmatic follow-up strategy and suggests a more tailored follow-up approach.
Collapse
Affiliation(s)
- Bart R. J. van Dijken
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annerieke R. Doff
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Roelien H. Enting
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Peter Jan van Laar
- Department of Radiology, Hospital Group Twente, 7600 SZ Almelo, The Netherlands
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Rudi A. J. O. Dierckx
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
32
|
Staub-Bartelt F, Rapp M, Sabel M. Resection of Eloquent Located Brain Tumors by Mapping Only-A Feasibility Study. Brain Sci 2023; 13:1366. [PMID: 37891736 PMCID: PMC10605432 DOI: 10.3390/brainsci13101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Patients with eloquently located cerebral lesions require surgery that usually employs mapping and monitoring techniques for the preservation of motor and language function. However, in many cases, mapping only might be sufficient, reducing the need for technical and personnel logistics. Here, we report our experiences using a device that can be operated by the surgeon independently, providing mapping techniques but omitting monitoring techniques. METHODS For monopolar and bipolar cortical/subcortical stimulation, pre-set programs were available and intraoperatively used-two enabling EMG real-time tracking of eight muscles for monopolar (cortical/subcortical) mapping, and two programs for 60 Hz stimulation, one with EMG and one without. Motor mapping was performed under continuous observation of the screened EMG signal and acoustic feedback by the surgeon. For the 60 Hz stimulation, a standard bipolar stimulation probe was connected through a second port. The preoperative application of the subdermal EMG needles, as well as the intraoperative handling of the device, were performed by the surgeons independently. Postoperatively, an evaluation of the autonomous handling and feasibility of the device for the chosen test parameters was conducted. RESULTS From 04/19-09/21, 136 procedures in patients with eloquently located cerebral lesions were performed by using the "mapping-only" device. Mapping was performed in 82% of the monopolar cases and in 42% of the bipolar cases. Regarding the setup and sufficiency for the cortical/subcortical mapping, the device was evaluated as independently usable for motor and language mapping in 129 procedures (95%). Gross total resection was achieved, or functional limit throughout resection was reached, in 79% of the patients. 13 patients postoperatively suffered from a new neurological deficit. At the 3-6-month follow-up, three patients showed persistent deficit (2%). All of them had language disturbances. The setup time for the device was less than 7 min. CONCLUSIONS The device was evaluated as sufficient in over 90% of cases concerning monopolar and bipolar mapping, and the setup and handling was sufficient in all patients. With the present data we show that in well-selected cases, a very simple system providing mapping only is sufficient to achieve gross total resection with the preservation of functionality.
Collapse
|
33
|
MacCormac O, Noonan P, Janatka M, Horgan CC, Bahl A, Qiu J, Elliot M, Trotouin T, Jacobs J, Patel S, Bergholt MS, Ashkan K, Ourselin S, Ebner M, Vercauteren T, Shapey J. Lightfield hyperspectral imaging in neuro-oncology surgery: an IDEAL 0 and 1 study. Front Neurosci 2023; 17:1239764. [PMID: 37790587 PMCID: PMC10544348 DOI: 10.3389/fnins.2023.1239764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Hyperspectral imaging (HSI) has shown promise in the field of intra-operative imaging and tissue differentiation as it carries the capability to provide real-time information invisible to the naked eye whilst remaining label free. Previous iterations of intra-operative HSI systems have shown limitations, either due to carrying a large footprint limiting ease of use within the confines of a neurosurgical theater environment, having a slow image acquisition time, or by compromising spatial/spectral resolution in favor of improvements to the surgical workflow. Lightfield hyperspectral imaging is a novel technique that has the potential to facilitate video rate image acquisition whilst maintaining a high spectral resolution. Our pre-clinical and first-in-human studies (IDEAL 0 and 1, respectively) demonstrate the necessary steps leading to the first in-vivo use of a real-time lightfield hyperspectral system in neuro-oncology surgery. Methods A lightfield hyperspectral camera (Cubert Ultris ×50) was integrated in a bespoke imaging system setup so that it could be safely adopted into the open neurosurgical workflow whilst maintaining sterility. Our system allowed the surgeon to capture in-vivo hyperspectral data (155 bands, 350-1,000 nm) at 1.5 Hz. Following successful implementation in a pre-clinical setup (IDEAL 0), our system was evaluated during brain tumor surgery in a single patient to remove a posterior fossa meningioma (IDEAL 1). Feedback from the theater team was analyzed and incorporated in a follow-up design aimed at implementing an IDEAL 2a study. Results Focusing on our IDEAL 1 study results, hyperspectral information was acquired from the cerebellum and associated meningioma with minimal disruption to the neurosurgical workflow. To the best of our knowledge, this is the first demonstration of HSI acquisition with 100+ spectral bands at a frame rate over 1Hz in surgery. Discussion This work demonstrated that a lightfield hyperspectral imaging system not only meets the design criteria and specifications outlined in an IDEAL-0 (pre-clinical) study, but also that it can translate into clinical practice as illustrated by a successful first in human study (IDEAL 1). This opens doors for further development and optimisation, given the increasing evidence that hyperspectral imaging can provide live, wide-field, and label-free intra-operative imaging and tissue differentiation.
Collapse
Affiliation(s)
- Oscar MacCormac
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Philip Noonan
- Hypervision Surgical Limited, London, United Kingdom
| | - Mirek Janatka
- Hypervision Surgical Limited, London, United Kingdom
| | | | - Anisha Bahl
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Jianrong Qiu
- School of Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Matthew Elliot
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Théo Trotouin
- Hypervision Surgical Limited, London, United Kingdom
| | - Jaco Jacobs
- Hypervision Surgical Limited, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Mads S. Bergholt
- School of Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Keyoumars Ashkan
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Hypervision Surgical Limited, London, United Kingdom
| | - Michael Ebner
- Hypervision Surgical Limited, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Hypervision Surgical Limited, London, United Kingdom
| | - Jonathan Shapey
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
- Hypervision Surgical Limited, London, United Kingdom
| |
Collapse
|
34
|
Dimov D, Brainman D, Berger B, Coras R, Grote A, Simon M. The role of cytoreductive surgery in multifocal/multicentric glioblastomas. J Neurooncol 2023; 164:447-459. [PMID: 37697210 PMCID: PMC10522503 DOI: 10.1007/s11060-023-04410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Multifocal/multicentric glioblastomas (mGBM) account for up to 20% of all newly diagnosed glioblastomas. The present study investigates the impact of cytoreductive surgery on survival and functional outcomes in patients with mGBM. METHODS We retrospectively reviewed clinical and imaging data of 71 patients with newly diagnosed primary (IDH1 wildtype) mGBM who underwent operative treatment in 2015-2020 at the authors' institution. Multicentric/multifocal growth was defined by the presence of ≥ 2 contrast enhancing lesions ≥ 1 cm apart from each other. RESULTS 36 (50.7%) patients had a resection and 35 (49.3%) a biopsy procedure. MGMT status, age, preoperative KPI and NANO scores as well as the postoperative KPI and NANO scores did not differ significantly between resected and biopsied cases. Median overall survival was 6.4 months and varied significantly with the extent of resection (complete resection of contrast enhancing tumor: 13.6, STR: 6.4, biopsy: 3.4 months; P = 0.043). 21 (58.3%) of resected vs. only 12 (34.3%) of biopsied cases had radiochemotherapy (p = 0.022). Multivariate analysis revealed chemo- and radiotherapy and also (albeit with smaller hazard ratios) extent of resection (resection vs. biopsy) and multicentric growth as independent predictors of patient survival. Involvement of eleoquent brain regions, as well as neurodeficit rates and functional outcomes did not vary significantly between the biopsy and the resection cohorts. CONCLUSION Resective surgery in mGBM is associated with better survival. This benefit seems to relate prominently to an increased number of patients being able to tolerate effective adjuvant therapies after tumor resections. In addition, cytoreductive surgery may have a survival impact per se.
Collapse
Affiliation(s)
- Diyan Dimov
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
| | - Daniel Brainman
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
| | - Björn Berger
- Department of Neuroradiology, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
| | - Roland Coras
- Department of Neuropathology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Grote
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany
- Department of Neurosurgery, Universitätsklinikum Giessen und Marburg, Marburg, Germany
| | - Matthias Simon
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany.
| |
Collapse
|
35
|
Otsuji R, Hata N, Funakoshi Y, Kuga D, Togao O, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Sako A, Kikuchi K, Yoshitake T, Yamamoto H, Mizoguchi M, Yoshimoto K. Supramaximal Resection Can Prolong the Survival of Patients with Cortical Glioblastoma: A Volumetric Study. Neurol Med Chir (Tokyo) 2023; 63:364-374. [PMID: 37423755 PMCID: PMC10482486 DOI: 10.2176/jns-nmc.2022-0351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 07/11/2023] Open
Abstract
We aimed to retrospectively determine the resection rate of fluid-attenuated inversion recovery (FLAIR) lesions to evaluate the clinical effects of supramaximal resection (SMR) on the survival of patients with glioblastoma (GBM). Thirty-three adults with newly diagnosed GBM who underwent gross total tumor resection were enrolled. The tumors were classified into cortical and deep-seated groups according to their contact with the cortical gray matter. Pre- and postoperative FLAIR and gadolinium-enhanced T1-weighted imaging tumor volumes were measured using a three-dimensional imaging volume analyzer, and the resection rate was calculated. To evaluate the association between SMR rate and outcome, we subdivided patients whose tumors were totally resected into the SMR and non-SMR groups by moving the threshold value of SMR in 10% increments from 0% and compared their overall survival (OS) change. An improvement in OS was observed when the threshold value of SMR was 30% or more. In the cortical group (n = 23), SMR (n = 8) tended to prolong OS compared with gross total resection (GTR) (n = 15), with the median OS of 69.6 and 22.1 months, respectively (p = 0.0945). Contrastingly, in the deep-seated group (n = 10), SMR (n = 4) significantly shortened OS compared with GTR (n = 6), with median OS of 10.2 and 27.9 months, respectively (p = 0.0221). SMR could help prolong OS in patients with cortical GBM when 30% or more volume reduction is achieved in FLAIR lesions, although the impact of SMR for deep-seated GBM must be validated in larger cohorts.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
- Department of Neurosurgery, Oita University Faculty of Medicine
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Hidetaka Yamamoto
- Department of Pathology, Graduate School of Medical Sciences, Kyushu University
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
36
|
Ravin R, Suarez-Meade P, Busse B, Blank PS, Vivas-Buitrago T, Norton ES, Graepel S, Chaichana KL, Bezrukov L, Guerrero-Cazares H, Zimmerberg J, Quiñones-Hinojosa A. Perivascular invasion of primary human glioblastoma cells in organotypic human brain slices: human cells migrating in human brain. J Neurooncol 2023; 164:43-54. [PMID: 37490233 DOI: 10.1007/s11060-023-04349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is an aggressive primary brain cancer. Lack of effective therapy is related to its highly invasive nature. GBM invasion has been studied with reductionist systems that do not fully recapitulate the cytoarchitecture of the brain. We describe a human-derived brain organotypic model to study the migratory properties of GBM IDH-wild type ex vivo. METHODS Non-tumor brain samples were obtained from patients undergoing surgery (n = 7). Organotypic brain slices were prepared, and green fluorescent protein (GFP)-labeled primary human GBM IDH-wild type cells (GBM276, GBM612, GBM965) were placed on the organotypic slice. Migration was evaluated via microscopy and immunohistochemistry. RESULTS After placement, cells migrated towards blood vessels; initially migrating with limited directionality, sending processes in different directions, and increasing their speed upon contact with the vessel. Once merged, migration speed decreased and continued to decrease with time (p < 0.001). After perivascular localization, migration is limited along the blood vessels in both directions. The percentage of cells that contact blood vessels and then continue to migrate along the vessel was 92.5% (- 3.9/ + 2.9)% while the percentage of cells that migrate along the blood vessel and leave was 7.5% (- 2.9/ + 3.9) (95% CI, Clopper-Pearson (exact); n = 256 cells from six organotypic cultures); these percentages are significantly different from the random (50%) null hypothesis (z = 13.6; p < 10-7). Further, cells increase their speed in response to a decrease in oxygen tension from atmospheric normoxia (20% O2) to anoxia (1% O2) (p = 0.033). CONCLUSION Human organotypic models can accurately study cell migration ex vivo. GBM IDH-wild type cells migrate toward the perivascular space in blood vessels and their migratory parameters change once they contact vascular structures and under hypoxic conditions. This model allows the evaluation of GBM invasion, considering the human brain microenvironment when cells are removed from their native niche after surgery.
Collapse
Affiliation(s)
| | | | - Brad Busse
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Paul S Blank
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | | | - Emily S Norton
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, USA
- Regenerative Sciences Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, USA
| | - Steve Graepel
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ludmila Bezrukov
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | | | - Joshua Zimmerberg
- Section On Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| | - Alfredo Quiñones-Hinojosa
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA.
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
37
|
Zhang W, Ille S, Schwendner M, Wiestler B, Meyer B, Krieg SM. The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup. Cancers (Basel) 2023; 15:3563. [PMID: 37509226 PMCID: PMC10377519 DOI: 10.3390/cancers15143563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Intraoperative magnetic resonance imaging (ioMRI) aims to improve gross total resection (GTR) in glioblastoma (GBM) patients. Despite some older randomized data on safety and feasibility, ioMRI's actual impact in a modern neurosurgical setting utilizing a larger armamentarium of techniques has not been sufficiently investigated to date. We therefore aimed to analyze its effects on residual tumor, patient outcome, and progression-free survival (PFS) in GBM patients in a modern high-volume center. Patients undergoing ioMRI for resection of supratentorial GBM were enrolled between March 2018 and June 2020. ioMRI was performed in all cases at the end of resection when surgeons expected complete macroscopic tumor removal. Extent of resection (EOR) was performed by volumetric analysis, with GTR defined as an EOR ≥ 95%, respectively. Progression-free survival (PFS) was analyzed through univariate and multivariate Cox proportional regression analyses. In total, we enrolled 172 patients. Mean EOR increased from 93.9% to 98.3% (p < 0.0001) due to ioMRI, equaling an increase in GTR rates from 78.5% to 93.0% (p = 0.0002). Residual tumor volume decreased from 1.3 ± 4.2 cm3 to 0.6 ± 2.5 cm3 (p = 0.0037). Logistic regression revealed recurrent GBM as a risk factor leading to subtotal resection (STR) (odds ratio (OR) = 3.047, 95% confidence interval (CI) 1.165-7.974, p = 0.023). Additional resection after ioMRI led to equally long PFS compared to patients with complete tumor removal before ioMRI (hazard ratio (HR) = 0.898, 95%-CI 0.543-1.483, p = 0.67). ioMRI considerably reduces residual tumor volume and helps to achieve comparable PFS, even in patients with unexpected residual tumor after initial resection before ioMRI.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
38
|
Alafandi A, van Garderen KA, Klein S, van der Voort SR, Rizopoulos D, Nabors L, Stupp R, Weller M, Gorlia T, Tonn JC, Smits M. Association of pre-radiotherapy tumour burden and overall survival in newly diagnosed glioblastoma adjusted for MGMT promoter methylation status. Eur J Cancer 2023; 188:122-130. [PMID: 37235895 DOI: 10.1016/j.ejca.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE We retrospectively evaluated the association between postoperative pre-radiotherapy tumour burden and overall survival (OS) adjusted for the prognostic value of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation in patients with newly diagnosed glioblastoma treated with radio-/chemotherapy with temozolomide. MATERIALS AND METHODS Patients were included from the CENTRIC (EORTC 26071-22072) and CORE trials if postoperative magnetic resonance imaging scans were available within a timeframe of up to 4weeks before radiotherapy, including both pre- and post-contrast T1w images and at least one T2w sequence (T2w or T2w-FLAIR). Postoperative (residual) pre-radiotherapy contrast-enhanced tumour (CET) volumes and non-enhanced T2w abnormalities (NT2A) tissue volumes were obtained by three-dimensional segmentation. Cox proportional hazard models and Kaplan Meier estimates were used to assess the association of pre-radiotherapy CET/NT2A volume with OS adjusted for known prognostic factors (age, performance status, MGMT status). RESULTS 408 tumour (of which 270 MGMT methylated) segmentations were included. Median OS in patients with MGMT methylated tumours was 117 weeks versus 61weeks in MGMT unmethylated tumours (p < 0.001). When stratified for MGMT methylation status, higher CET volume (HR 1.020; 95% confidence interval CI [1.013-1.027]; p < 0.001) and older age (HR 1.664; 95% CI [1.214-2.281]; p = 0.002) were significantly associated with shorter OS while NT2A volume and performance status were not. CONCLUSION Pre-radiotherapy CET volume was strongly associated with OS in patients receiving radio-/chemotherapy for newly diagnosed glioblastoma stratified by MGMT promoter methylation status.
Collapse
Affiliation(s)
- A Alafandi
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - K A van Garderen
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Medical Delta, Delft, the Netherlands
| | - S Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - S R van der Voort
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - D Rizopoulos
- Department of Biostatistics and Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - L Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Stupp
- Malnati Brain Tumor Institute, Departments of Neurological Surgery and Neurology, Northwestern University, Chicago, IL, USA
| | - M Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - T Gorlia
- European Organisation for Research and Treatmeant of Cancer Headquarters, Brussels, Belgium
| | - J-C Tonn
- Department of Neurosurgery, LMU University Munich, Munich, Germany
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Medical Delta, Delft, the Netherlands.
| |
Collapse
|
39
|
da Costa MDS, Sarti THM, Vaz H, Dastoli PA, Nicácio JM, Silva FAB, Cappellano AM, Silva NS, Cavalheiro S. Risk for hydrocephalus, hygroma, and tumor dissemination after ventricular opening during resection of supratentorial neoplasms in children. Childs Nerv Syst 2023; 39:1881-1887. [PMID: 36715744 DOI: 10.1007/s00381-023-05861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
PURPOSE The possibility that ventricular opening generates postoperative complications after surgical tumor treatment often restricts the degree of tumor resection. This study aims to determine whether the ventricular opening is associated with more complications in surgeries for resectioning supratentorial intra-axial brain tumors in the pediatric population. METHODS A retrospective review analysis was performed of patients treated at IOP/GRAACC between 2002 and 2020 under 19 years of age and underwent surgery for supratentorial intra-axial primary brain tumor resection. Data were collected from 43 patients. RESULTS Glial tumor was more common than non-glial (65% vs. 35%, p = 0.09). The ventricular opening was not related to neoplastic spreads to the neuroaxis (6% vs. 0, p > 0.9) or leptomeningeal (3% vs. 0, p > 0.9). Of the patients whose ventricle was opened, 10% developed hydrocephalus requiring treatment, while none of the patients in the group without ventricular opening developed hydrocephalus (p = 0.5). There was also no statistical difference regarding ventriculitis. Postoperative subdural hygroma formation correlated with the ventricular opening (43% vs. 0, p = 0.003). The survival at 1, 5, and 10 years of cases with the ventricular opening was 93.2%, 89.7%, and 75.7%, respectively, while in cases without ventricular opening, it was 100%, 83%, and 83%, respectively, respectively, with no statistical difference between the mortality curves. CONCLUSION Our study demonstrated that ventricular violation was not associated with the occurrence of significant complications. It was related to the formation of subdural hygroma, which did not require additional treatment.
Collapse
Affiliation(s)
- Marcos Devanir Silva da Costa
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Division of Neurosurgery, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| | | | - Herison Vaz
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Division of Neurosurgery, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| | - Patricia Alessandra Dastoli
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Division of Neurosurgery, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| | - Jardel Mendonça Nicácio
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Division of Neurosurgery, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| | | | - Andrea Maria Cappellano
- Division of Neuro-Oncology, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| | - Nasjla Saba Silva
- Division of Neuro-Oncology, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| | - Sergio Cavalheiro
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- Division of Neurosurgery, Instituto de Oncologia Pediatrica (IOP/GRAACC), Sao Paulo, Brazil
| |
Collapse
|
40
|
Chalif EJ, Foster C, Sack K, Patrick H, Mozaffari K, Rosner M. Impact of extent of resection and adjuvant therapy in diffuse gliomas of the spine. Spine J 2023; 23:1015-1027. [PMID: 36804437 DOI: 10.1016/j.spinee.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND CONTENT Diffuse gliomas of the spine (DGS)-consisting of intradural intramedullary glioblastoma, astrocytoma, and oligodendroglioma-are exceedingly rare tumors that account for about 2% of primary spinal cord tumors. Much is unknown about their optimal treatment regimen due to a relative lack of clinical outcome data. PURPOSE To provide an updated analysis on treatment and outcomes in DGS. STUDY DESIGN/SETTING Observational cohort study using The National Cancer Database (NCDB), a multicenter prospectively collected oncology outcomes database. A systematic literature review was also performed to compare the resulting data to previous series. PATIENT SAMPLE Patients with histologically confirmed DGS from 2004 to 2018. OUTCOME MEASURES Long-term overall survival and short-term 30/90-day postsurgical mortality, 30-day readmission, and prolonged hospital length of stay. METHODS Impact of extent of resection and adjuvant therapy on overall survival was evaluated using Kaplan-Meier estimates and multivariable Cox proportional hazards regression. Univariate and multivariate logistic regression was used to analyze covariables and their prognostic impact on short-term surgical outcomes. RESULTS Of the 747 cases that met inclusion criteria, there were 439 astrocytomas, 14 oligodendrogliomas, and 208 glioblastomas. Sixty percent (n=442) of patients received radiation, and 45% (n=324) received chemotherapy. Tumor histology significantly impacted survival; glioblastoma had the poorest survival (median survival time [MS]: 12.3 months), followed by astrocytoma (MS: 70.8 months) and oligodendroglioma (MS: 71.6 months) (p<.001). Gross total resection (GTR) independently conferred a survival benefit in patients with glioblastoma (hazard ratio [HR]: 0.194, p<0.001) and other WHO grade four tumors (HR: 0.223, p=.003). Adjuvant chemotherapy also improved survival in patients with glioblastoma (HR: 0.244, p=.007) and WHO grade four tumors (HR: 0.252, p<.001). Systematic literature review identified 14 prior studies with a combined DGS mortality rate of 1.3%, which is lower than the 4% real-world outcomes calculated from the NCDB. This difference may be explained by selection biases in previously published literature in which only centers with favorable outcomes publish their results. CONCLUSIONS There remains a paucity of data regarding treatment paradigms and outcomes for DGS. Our analysis, the largest to date, demonstrates that GTR and adjuvant therapy independently improve survival for certain high-grade subgroups of DGS. This best-available data informs optimal management for such patients.
Collapse
Affiliation(s)
- Eric J Chalif
- Department of Neurological Surgery, The GW School of Medicine & Health Sciences, 2150 Pennsylvania Ave, NW, Suite 7-420, Washington, DC 20037, USA.
| | - Chase Foster
- Department of Neurological Surgery, The GW School of Medicine & Health Sciences, 2150 Pennsylvania Ave, NW, Suite 7-420, Washington, DC 20037, USA
| | - Kenneth Sack
- Department of Neurological Surgery, The GW School of Medicine & Health Sciences, 2150 Pennsylvania Ave, NW, Suite 7-420, Washington, DC 20037, USA
| | - Hayes Patrick
- Department of Neurological Surgery, The GW School of Medicine & Health Sciences, 2150 Pennsylvania Ave, NW, Suite 7-420, Washington, DC 20037, USA
| | - Khashayar Mozaffari
- Department of Neurological Surgery, The GW School of Medicine & Health Sciences, 2150 Pennsylvania Ave, NW, Suite 7-420, Washington, DC 20037, USA
| | - Michael Rosner
- Department of Neurological Surgery, The GW School of Medicine & Health Sciences, 2150 Pennsylvania Ave, NW, Suite 7-420, Washington, DC 20037, USA
| |
Collapse
|
41
|
Ragucci F, Sireci F, Cavallieri F, Rossi J, Biagini G, Tosi G, Lucchi C, Molina-Pena R, Ferreira NH, Zarur M, Ferreiros A, Bourgeois W, Berger F, Abal M, Rousseau A, Boury F, Alvarez-Lorenzo C, Garcion E, Pisanello A, Pavesi G, Iaccarino C, Ghirotto L, Bassi MC, Valzania F. Insights into Healthcare Professionals' Perceptions and Attitudes toward Nanotechnological Device Application: What Is the Current Situation in Glioblastoma Research? Biomedicines 2023; 11:1854. [PMID: 37509494 PMCID: PMC10376482 DOI: 10.3390/biomedicines11071854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nanotechnology application in cancer treatment is promising and is likely to quickly spread worldwide in the near future. To date, most scientific studies on nanomaterial development have focused on deepening the attitudes of end users and experts, leaving clinical practice implications unexplored. Neuro-oncology might be a promising field for the application of nanotechnologies, especially for malignant brain tumors with a low-survival rate such as glioblastoma (GBM). As to improving patients' quality of life and life expectancy, innovative treatments are worth being explored. Indeed, it is important to explore clinicians' intention to use experimental technologies in clinical practice. In the present study, we conducted an exploratory review of the literature about healthcare workers' knowledge and personal opinions toward nanomedicine. Our search (i) gives evidence for disagreement between self-reported and factual knowledge about nanomedicine and (ii) suggests the internet and television as main sources of information about current trends in nanomedicine applications, over scientific journals and formal education. Current models of risk assessment suggest time-saving cognitive and affective shortcuts, i.e., heuristics support both laypeople and experts in the decision-making process under uncertainty, whereas they might be a source of error. Whether the knowledge is poor, heuristics are more likely to occur and thus clinicians' opinions and perspectives toward new technologies might be biased.
Collapse
Affiliation(s)
- Federica Ragucci
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesca Sireci
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Jessica Rossi
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Biagini
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rodolfo Molina-Pena
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Natalia Helen Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alba Ferreiros
- Nasasbiotech, S.L., Canton Grande 9, 15003 A Coruña, Spain
| | - William Bourgeois
- Braintech Lab, INSERM Unit 1205, Grenoble Alpes University, 38000 Grenoble, France
| | - François Berger
- Braintech Lab, INSERM Unit 1205, Grenoble Alpes University, 38000 Grenoble, France
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Audrey Rousseau
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
- Département de Pathologie, CHU d'Angers, CRCINA Université de Nantes, 49933 Angers, France
- Département de Pathologie, CHU d'Angers, Université d'Angers, 49933 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Anna Pisanello
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Ghirotto
- Qualitative Research Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Chiara Bassi
- Medical Library, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
42
|
Rončević A, Koruga N, Soldo Koruga A, Rončević R, Rotim T, Šimundić T, Kretić D, Perić M, Turk T, Štimac D. Personalized Treatment of Glioblastoma: Current State and Future Perspective. Biomedicines 2023; 11:1579. [PMID: 37371674 DOI: 10.3390/biomedicines11061579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive glial tumor of the central nervous system. Despite intense scientific efforts, patients diagnosed with GBM and treated with the current standard of care have a median survival of only 15 months. Patients are initially treated by a neurosurgeon with the goal of maximal safe resection of the tumor. Obtaining tissue samples during surgery is indispensable for the diagnosis of GBM. Technological improvements, such as navigation systems and intraoperative monitoring, significantly advanced the possibility of safe gross tumor resection. Usually within six weeks after the surgery, concomitant radiotherapy and chemotherapy with temozolomide are initiated. However, current radiotherapy regimens are based on population-level studies and could also be improved. Implementing artificial intelligence in radiotherapy planning might be used to individualize treatment plans. Furthermore, detailed genetic and molecular markers of the tumor could provide patient-tailored immunochemotherapy. In this article, we review current standard of care and possibilities of personalizing these treatments. Additionally, we discuss novel individualized therapeutic options with encouraging results. Due to inherent heterogeneity of GBM, applying patient-tailored treatment could significantly prolong survival of these patients.
Collapse
Affiliation(s)
- Alen Rončević
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Nenad Koruga
- Department of Neurosurgery, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Anamarija Soldo Koruga
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Neurology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Robert Rončević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tatjana Rotim
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tihana Šimundić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nephrology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Domagoj Kretić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Marija Perić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cytology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Damir Štimac
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiology, National Memorial Hospital Vukovar, 32000 Vukovar, Croatia
| |
Collapse
|
43
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
44
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
45
|
Preoperative administration of a biomimetic platelet nanodrug enhances postoperative drug delivery by bypassing thrombus. Int J Pharm 2023; 636:122851. [PMID: 36931535 DOI: 10.1016/j.ijpharm.2023.122851] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
The postoperative thrombus attached to the damaged blood vessels severely obstructs drugs from crossing the damaged blood-brain barrier (BBB) and targeting residual glioma cells around surgical margins, leading to glioblastoma (GBM) recurrence. A thrombus-bypassing, BBB-crossing, and surgical margin-targeted nanodrug is needed to address this phenomenon. Encouraged by the intrinsic damaged vascular endothelium chemotaxis of platelets, a platelet membrane-coated nanodrug (PM-HDOX) delivering doxorubicin (DOX) for postoperative GBM treatment is proposed and systematically investigated. Because surgery damages the vascular endothelium on the BBB around the surgical margin, the platelet membrane coating endows PM-HDOX with its inherent capacity to cross the broken BBB and target the surgical margin. Moreover, preoperative administration combined with fast-targeted PM-HDOX can realize the potential of bypassing thrombus. In GBM resection models, PM-HDOX with preoperative administration demonstrated significantly enhanced BBB-crossing and surgical margin-targeted efficacy. In particular, the PM-HDOX intensities around the surgical margins of the preoperative administration group were more than twice that of the postoperative administration group due to bypassing the thrombus formed in the broken BBB. In the antitumor experiment, the preoperative administration of PM-HDOX significantly inhibited the growth of postoperative residual tumors and prolonged the median survival time of mice. In conclusion, preoperative administration of a biomimetic platelet nanodrug can be an efficient and promising drug delivery strategy for residual GBM after surgery.
Collapse
|
46
|
Polonara G, Aiudi D, Iacoangeli A, Raggi A, Ottaviani MM, Antonini R, Iacoangeli M, Dobran M. Glioblastoma: A Retrospective Analysis of the Role of the Maximal Surgical Resection on Overall Survival and Progression Free Survival. Biomedicines 2023; 11:biomedicines11030739. [PMID: 36979717 PMCID: PMC10045159 DOI: 10.3390/biomedicines11030739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults; despite advances in the understanding of GBM pathogenesis, significant achievements in treating this disease are still lacking. The aim of this study was to evaluate the prognostic significance of the extent of surgical resection (EOR), beyond the neoplastic mass, on the overall survival (OS). Methods: A retrospective review of a single-institution glioblastoma patient database (January 2012–September 2021) was undertaken. The series is composed of 64 patients who underwent surgery at the University Department of Neurosurgery of Ancona; the series was divided into four groups based on the amount of tumor mass excision with the fluid-attenuated inversion recovery (FLAIR) abnormalities (SUPr-supratotal resection, GTR-gross total resection, STR-subtotal resection, BIOPSY). The hypothesis was that the maximal resection of FLAIR abnormalities may improve the overall survival compared to the resection of the visible T1 contrast-enhanced neoplastic area only. Results: In the univariate analysis, SUPr and GTR are correlated with the overall survival (p = 0.001); the percentage of total neoplastic removal threshold conditioning outcome was 90% (p = 0.027). These results were confirmed by the multivariate analysis. Conclusions: Maximal surgical resection, when feasible, involving areas of FLAIR abnormalities represents an advantageous approach for the OS in GBM patients.
Collapse
Affiliation(s)
- Gabriele Polonara
- Department of Neuroradiology, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Denis Aiudi
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Correspondence: (D.A.); (M.D.)
| | - Alessio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Alessio Raggi
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Matteo Maria Ottaviani
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Ruggero Antonini
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Mauro Dobran
- Department of Neurosurgery, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Correspondence: (D.A.); (M.D.)
| |
Collapse
|
47
|
Surgery assistance system for continuous resection of brain tumors-proposal of continuous tumor resection forceps, tumor cell separation, dehydration, and isolation mechanism. Int J Comput Assist Radiol Surg 2023; 18:877-885. [PMID: 36809456 PMCID: PMC10113307 DOI: 10.1007/s11548-023-02845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
The tumor resection ratio must be improved due the increased possibility of recurrence or malignancy. The purpose of this study was to develop a system that includes forceps with a continuous suction function and flow cytometry to diagnose the malignancy of the tumor for safe, accurate, and effective surgery. A newly developed continuous tumor resection forceps consists of a triple pipe structure, which enables continuous suction of the tumor by integrating the reflux water and suction system. The forceps includes tip opening/closure detection switch to control the adsorption and suction strength when tip is opened and closed. To perform accurate tumor diagnosis using flow cytometry, a filtering mechanism was developed for dehydrating reflux water from continuous suction forceps. In addition, a cell isolation mechanism comprising a roller pump and shear force loading mechanism was also newly developed. By using a triple pipe structure, a significantly larger tumor collection ratio was observed compared to the previous double-pipe structure. By performing suction pressure control with the opening/closure detection switch, inaccurate suction can be prevented. By widening the filter area of dehydration mechanism, it was possible to improve the reflux water dehydration ratio. The most appropriate filter area was 85 mm2. By using a newly developed cell isolation mechanism, the processing time can be reduced to less than 1/10 of the original time, keeping the same cell isolation ratio, when compared to the existing pipetting method. Neurosurgery assistance system with continuous tumor resection forceps and a cell separation, dehydration and isolation mechanism was developed. An effective and safe tumor resection, accurate and fast diagnosis of malignancy can be achieved by using the current system.
Collapse
|
48
|
Timing of Early Postoperative MRI following Primary Glioblastoma Surgery-A Retrospective Study of Contrast Enhancements in 311 Patients. Diagnostics (Basel) 2023; 13:diagnostics13040795. [PMID: 36832282 PMCID: PMC9955136 DOI: 10.3390/diagnostics13040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
An early postoperative MRI is recommended following Glioblastoma surgery. This retrospective, observational study aimed to investigate the timing of an early postoperative MRI among 311 patients. The patterns of the contrast enhancement (thin linear, thick linear, nodular, and diffuse) and time from surgery to the early postoperative MRI were recorded. The primary endpoint was the frequencies of the different contrast enhancements within and beyond the 48-h from surgery. The time dependence of the resection status and the clinical parameters were analysed as well. The frequency of the thin linear contrast enhancements significantly increased from 99/183 (50.8%) within 48-h post-surgery to 56/81 (69.1%) beyond 48-h post-surgery. Similarly, MRI scans with no contrast enhancements significantly declined from 41/183 (22.4%) within 48-h post-surgery to 7/81 (8.6%) beyond 48-h post-surgery. No significant differences were found for the other types of contrast enhancements and the results were robust in relation to the choice of categorisation of the postoperative periods. Both the resection status and the clinical parameters were not statistically different in patients with an MRI performed before and after 48 h. The findings suggest that surgically induced contrast enhancements are less frequent when an early postoperative MRI is performed earlier than 48-h, supporting the recommendation of a 48-h window for an early postoperative MRI.
Collapse
|
49
|
Insights into the Peritumoural Brain Zone of Glioblastoma: CDK4 and EXT2 May Be Potential Drivers of Malignancy. Int J Mol Sci 2023; 24:ijms24032835. [PMID: 36769158 PMCID: PMC9917451 DOI: 10.3390/ijms24032835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Despite the efforts made in recent decades, glioblastoma is still the deadliest primary brain cancer without cure. The potential role in tumour maintenance and progression of the peritumoural brain zone (PBZ), the apparently normal area surrounding the tumour, has emerged. Little is known about this area due to a lack of common definition and due to difficult sampling related to the functional role of peritumoural healthy brain. The aim of this work was to better characterize the PBZ and to identify genes that may have role in its malignant transformation. Starting from our previous study on the comparison of the genomic profiles of matched tumour core and PBZ biopsies, we selected CDK4 and EXT2 as putative malignant drivers of PBZ. The gene expression analysis confirmed their over-expression in PBZ, similarly to what happens in low-grade glioma and glioblastoma, and CDK4 high levels seem to negatively influence patient overall survival. The prognostic role of CDK4 and EXT2 was further confirmed by analysing the TCGA cohort and bioinformatics prediction on their gene networks and protein-protein interactions. These preliminary data constitute a good premise for future investigations on the possible role of CDK4 and EXT2 in the malignant transformation of PBZ.
Collapse
|
50
|
Lin YP, Hseu YC, Thiyagarajan V, Vadivalagan C, Pandey S, Lin KY, Hsu YT, Liao JW, Lee CC, Yang HL. The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells. Biomed Pharmacother 2023; 158:114178. [PMID: 36916401 DOI: 10.1016/j.biopha.2022.114178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antrodia salmonea (AS) exhibits anticancer activities against various cancers. OBJECTIVE This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. METHODS MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. RESULTS AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/β-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan, ROC; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan, ROC.
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan, ROC; Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC.
| |
Collapse
|