1
|
Murphy M, Greenhouse B. MOIRE: a software package for the estimation of allele frequencies and effective multiplicity of infection from polyallelic data. Bioinformatics 2024; 40:btae619. [PMID: 39423091 PMCID: PMC11524891 DOI: 10.1093/bioinformatics/btae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
MOTIVATION Malaria parasite genetic data can provide insight into parasite phenotypes, evolution, and transmission. However, estimating key parameters such as allele frequencies, multiplicity of infection (MOI), and within-host relatedness from genetic data is challenging, particularly in the presence of multiple related coinfecting strains. Existing methods often rely on single nucleotide polymorphism (SNP) data and do not account for within-host relatedness. RESULTS We present Multiplicity Of Infection and allele frequency REcovery (MOIRE), a Bayesian approach to estimate allele frequencies, MOI, and within-host relatedness from genetic data subject to experimental error. MOIRE accommodates both polyallelic and SNP data, making it applicable to diverse genotyping panels. We also introduce a novel metric, the effective MOI (eMOI), which integrates MOI and within-host relatedness, providing a robust and interpretable measure of genetic diversity. Extensive simulations and real-world data from a malaria study in Namibia demonstrate the superior performance of MOIRE over naive estimation methods, accurately estimating MOI up to seven with moderate-sized panels of diverse loci (e.g. microhaplotypes). MOIRE also revealed substantial heterogeneity in population mean MOI and mean relatedness across health districts in Namibia, suggesting detectable differences in transmission dynamics. Notably, eMOI emerges as a portable metric of within-host diversity, facilitating meaningful comparisons across settings when allele frequencies or genotyping panels differ. Compared to existing software, MOIRE enables more comprehensive insights into within-host diversity and population structure. AVAILABILITY AND IMPLEMENTATION MOIRE is available as an R package at https://eppicenter.github.io/moire/.
Collapse
Affiliation(s)
- Maxwell Murphy
- Department of Biostatistics, School of Public Health, University of California, Berkeley, CA 94704, United States
- EPPIcenter Program, Division of HIV, ID and Global Medicine, University of California, San Francisco, CA 94110, United States
| | - Bryan Greenhouse
- EPPIcenter Program, Division of HIV, ID and Global Medicine, University of California, San Francisco, CA 94110, United States
| |
Collapse
|
2
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz J, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611954. [PMID: 39314390 PMCID: PMC11418992 DOI: 10.1101/2024.09.09.611954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control/elimination programs. Considering the genetic differences among parasites from different areas in the Peruvian Amazon, we previously designed SNP barcode panels for Plasmodium vivax (Pv) and P. falciparum (Pf), integrated into AmpliSeq assays, to provide population genetics estimates of malaria parasites. These AmpliSeq assays are ideal for MMS: multiplexing different traits of interest, applicable to many use cases, and high throughput for large numbers of samples. The present study compares the genetic resolution of the SNP barcode panels in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate Amazonian malaria parasites. Malaria samples collected in remote areas of the Peruvian Amazon (51 Pv & 80 Pf samples) were characterized using the Ampliseq assays and MS. Population genetics estimates (complexity of infection, genetic diversity and differentiation, and population structure) were compared using the SNP barcodes (Pv: 40 SNPs & Pf: 28 SNPs) and MS panels (Pv: 16 MS & Pf: 7 MS). The genetic diversity of Pv (expected heterozygosity, He ) was similar across the subpopulations for both makers: He MS = 0.68 - 0.78 (p = 0.23) and He SNP = 0.36 - 0.38 (p = 0.80). Pairwise genetic differentiation (fixation index, F ST ) was also comparable: F ST-MS = 0.04 - 0.14 and F ST-SNP = 0.03 - 0.12 (p = 0.34 - 0.85). No geographic clustering was observed with any panel. In addition, Pf genetic diversity trends ( He MS = 0 - 0.48 p = 0.03 - 1; He SNP = 0 - 0.09, p = 0.03 - 1) and pairwise F ST comparisons (F ST-MS = 0.14 - 0.65, F ST-SNP = 0.19 - 0.61, p = 0.24 - 0.83) were concordant between the panels. Similar population structure clustering was observed with both SNP and MS, highlighting one Pf subpopulation in an indigenous community. The SNP barcodes in the Pv AmpliSeq v2 Peru and Pf AmpliSeq v1 Peru assays offer comparable results to MS panels when investigating population genetics in Pv and Pv populations. Therefore, the AmpliSeq assays can efficiently characterize malaria transmission dynamics and population structure and support malaria elimination efforts in Peru.
Collapse
|
3
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. Nat Commun 2024; 15:7343. [PMID: 39187488 PMCID: PMC11347654 DOI: 10.1038/s41467-024-51468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Intervention efforts against falciparum malaria in high-transmission regions remain challenging, with rapid resurgence typically following their relaxation. Such resilience co-occurs with incomplete immunity and a large transmission reservoir from high asymptomatic prevalence. Incomplete immunity relates to the large antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene and recombinant family known as var. With a stochastic agent-based model, we investigate the existence of a sharp transition in resurgence ability with intervention intensity and identify molecular indicators informative of its proximity. Their application to survey data with deep sampling of var sequences from individual isolates in northern Ghana suggests that the transmission system was brought close to transition by intervention with indoor residual spraying. These results indicate that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Environmental Studies, New York University, New York, NY, 10003, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
4
|
Aranda-Díaz A, Vickers EN, Murie K, Palmer B, Hathaway N, Gerlovina I, Boene S, Garcia-Ulloa M, Cisteró P, Katairo T, Semakuba FD, Nsengimaana B, Gwarinda H, García-Fernández C, Da Silva C, Datta D, Kiyaga S, Wiringilimaana I, Fekele SM, Parr JB, Conrad M, Raman J, Tukwasibwe S, Ssewanyana I, Rovira-Vallbona E, Tato CM, Briggs J, Mayor A, Greenhouse B. Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and resistance for research and public health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609145. [PMID: 39229023 PMCID: PMC11370457 DOI: 10.1101/2024.08.22.609145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Targeted amplicon sequencing is a powerful and efficient tool to interrogate the P. falciparum genome and generate actionable data from infections to complement traditional malaria epidemiology. For maximum impact, genomic tools should be multi-purpose, robust, sensitive and reproducible. We developed, characterized, and implemented MAD4HatTeR, an amplicon sequencing panel based on Multiplex Amplicons for Drug, Diagnostic, Diversity, and Differentiation Haplotypes using Targeted Resequencing, along with a bioinformatic pipeline for data analysis. MAD4HatTeR targets 165 highly diverse loci, focusing on multiallelic microhaplotypes; key markers for drug and diagnostic resistance, including duplications and deletions; and csp and potential vaccine targets. In addition, it can detect non-falciparum Plasmodium species. We used laboratory control and field sample data to demonstrate the high sensitivity and robustness of the panel. The successful implementation of this method in five laboratories, including three in malaria-endemic African countries, showcases its feasibility in generating reproducible data across laboratories. Finally, we introduce an analytical approach to detect gene duplications and deletions from amplicon sequencing data. MAD4HatTeR is thus a powerful research tool and a robust resource for malaria public health surveillance and control.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Eric Neubauer Vickers
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Kathryn Murie
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Brian Palmer
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Nicholas Hathaway
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Hazel Gwarinda
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | | | | | - Shahiid Kiyaga
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Sindew Mekasha Fekele
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | - Jonathan B Parr
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Melissa Conrad
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Jaishree Raman
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre of Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
- University of Pretoria Institute for Sustainable Malaria Control (UPISMC), University of Pretoria, Pretoria, South Africa
| | | | | | | | | | - Jessica Briggs
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Bryan Greenhouse
- EPPIcenter Research Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Murphy M, Greenhouse B. MOIRE: A software package for the estimation of allele frequencies and effective multiplicity of infection from polyallelic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560769. [PMID: 37873322 PMCID: PMC10592951 DOI: 10.1101/2023.10.03.560769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Malaria parasite genetic data can provide insight into parasite phenotypes, evolution, and transmission. However, estimating key parameters such as allele frequencies, multiplicity of infection (MOI), and within-host relatedness from genetic data has been challenging, particularly in the presence of multiple related coinfecting strains. Existing methods often rely on single nucleotide polymorphism (SNP) data and do not account for within-host relatedness. In this study, we introduce a Bayesian approach called MOIRE (Multiplicity Of Infection and allele frequency REcovery), designed to estimate allele frequencies, MOI, and within-host relatedness from genetic data subject to experimental error. Importantly, MOIRE is flexible in accommodating both polyallelic and SNP data, making it adaptable to diverse genotyping panels. We also introduce a novel metric, the effective MOI (eMOI), which integrates MOI and within-host relatedness, providing a robust and interpretable measure of genetic diversity. Using extensive simulations and real-world data from a malaria study in Namibia, we demonstrate the superior performance of MOIRE over naive estimation methods, accurately estimating MOI up to 7 with moderate sized panels of diverse loci (e.g. microhaplotypes). MOIRE also revealed substantial heterogeneity in population mean MOI and mean relatedness across health districts in Namibia, suggesting detectable differences in transmission dynamics. Notably, eMOI emerges as a portable metric of within-host diversity, facilitating meaningful comparisons across settings, even when allele frequencies or genotyping panels are different. MOIRE represents an important addition to the analysis toolkit for malaria population dynamics. Compared to existing software, MOIRE enhances the accuracy of parameter estimation and enables more comprehensive insights into within-host diversity and population structure. Additionally, MOIRE's adaptability to diverse data sources and potential for future improvements make it a valuable asset for research on malaria and other organisms, such as other eukaryotic pathogens. MOIRE is available as an R package at https://eppicenter.github.io/moire/.
Collapse
|
6
|
Oyewole TA, Mohammed NO, Osarenren BO, Tijani MK, Persson KE, Falade MO. Plasmodium falciparum transmission based on merozoite surface protein 1 ( msp1) and 2 ( msp2) gene diversity and antibody responses in Ibadan, Nigeria. Parasite Epidemiol Control 2024; 26:e00366. [PMID: 39101106 PMCID: PMC11294720 DOI: 10.1016/j.parepi.2024.e00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Background Nigeria is a major contributor to the global malaria burden. The genetic diversity of malaria parasite populations as well as antibody responses of individuals in affected areas against antigens of the parasite can reveal the transmission intensity, a key information required to control the disease. This work was carried out to determine the allelic frequency of highly polymorphic Plasmodium falciparum genes and antibody responses against schizont crude antigens in an area of Ibadan, Nigeria. Materials and methods Blood was collected from 147 individuals with symptoms suspected to be malaria. Malaria infection was determined using a rapid diagnostic test (RDT), and msp1 and msp2 were genotyped by a nested PCR method. In addition, levels of IgG directed against P. falciparum FCR3S1.2 schizont extract was measured in ELISA. Results Approximately 25% (36/147) were positive for a P. falciparum infection in RDT, but only 32 of the positive samples were successfully genotyped. MAD20 was the most prevalent and K1 the least prevalent of the msp1 alleles. For msp2, FC27 was more prevalent than 3D7. The mean multiplicities of infection (MOI) were 1.9 and 1.7 for msp1 and msp2, respectively. IgG levels correlated positively with age, however there was no difference in median antibody levels between RDT-positive and RDT-negative individuals. Conclusion Low MOI has before been correlated with low/intermediate transmission intensity, however, in this study, similar levels of P. falciparum-specific antibodies between infected and non-infected individuals point more towards a high level of exposure and a need for further measures to control the spread of malaria in this area.
Collapse
Affiliation(s)
- Tolulope A. Oyewole
- Cellular Parasitology Programme, Cell Biology and Genetics units, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Nurat O. Mohammed
- Cellular Parasitology Programme, Cell Biology and Genetics units, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Bright O. Osarenren
- Cellular Parasitology Programme, Cell Biology and Genetics units, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Muyideen K. Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics units, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, 22185 Lund, Sweden
| | - Kristina E.M. Persson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, 22185 Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, 22185 Lund, Sweden
| | - Mofolusho O. Falade
- Cellular Parasitology Programme, Cell Biology and Genetics units, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Department of Biology, Transylvania University, KY, USA
| |
Collapse
|
7
|
Tiedje KE, Zhan Q, Ruybal-Pesantez S, Tonkin-Hill G, He Q, Tan MH, Argyropoulos DC, Deed SL, Ghansah A, Bangre O, Oduro AR, Koram KA, Pascual M, Day KP. Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.18.23290210. [PMID: 37292908 PMCID: PMC10246142 DOI: 10.1101/2023.05.18.23290210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we introduce a new endpoint ″census population size″ to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOI var ), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOI var from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOI var in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOI var , and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.
Collapse
|
8
|
Molina-de la Fuente I, Pacheco MA, García L, González V, Riloha M, Oki C, Benito A, Escalante AA, Berzosa P. Evolution of pfhrp2 and pfhrp3 deletions in Equatorial Guinea between the pre- and post-RDT introduction. Malar J 2024; 23:215. [PMID: 39026276 PMCID: PMC11264669 DOI: 10.1186/s12936-024-05036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Pfhrp2 and pfhrp3 deletions are threatening Plasmodium falciparum malaria diagnosis by rapid diagnostic tests (RDT) due to false negatives. This study assesses the changes in the frequencies of pfhrp2 and pfhrp3 deletions (pfhrp2Del and pfhrp3Del, respectively) and the genes in their flaking regions, before and after RDT introduction in Equatorial Guinea. METHODS A total of 566 P. falciparum samples were genotyped to assess the presence of pfhrp2 and pfhrp3 deletions and their flanking genes. The specimens were collected 18 years apart from two provinces of Equatorial Guinea, North Bioko (Insular Region) and Litoral Province (Continental Region). Orthologs of pfhrp2 and pfhrp3 genes from other closely related species were used to compare sequencing data to assess pfhrp2 and pfhrp3 evolution. Additionally, population structure was studied using seven neutral microsatellites. RESULTS This study found that pfhrp2Del and pfhrp3Del were present before the introduction of RDT; however, they increased in frequency after their use, reaching more than 15%. Haplotype networks suggested that pfhrp2Del and pfhrp3Del emerged multiple times. Exon 2 of pfhrp2 and pfhrp3 genes had high variability, but there were no significant changes in amino acid sequences. CONCLUSIONS Baseline sampling before deploying interventions provides a valuable context to interpret changes in genetic markers linked to their efficacy, such as the dynamic of deletions affecting RDT efficacy.
Collapse
Affiliation(s)
- Irene Molina-de la Fuente
- Biomedicine and biotechnology Department, University of Alcalá, Ctra.Madrid-Barcelona Km.33,600, 28871, Alcalá de Henares, Spain.
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain.
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, (SERC - 645), 1925 N. 12 St, Philadelphia, PA, 19122-1801, USA
| | - Luz García
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| | - Vicenta González
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| | - Matilde Riloha
- Ministry of Health and Social Welfare (MINSABS), National Programne for Malaria Control, Malabo, Equatorial Guinea
| | - Consuelo Oki
- Ministry of Health and Social Welfare (MINSABS), National Programne for Malaria Control, Malabo, Equatorial Guinea
| | - Agustín Benito
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, (SERC - 645), 1925 N. 12 St, Philadelphia, PA, 19122-1801, USA
| | - Pedro Berzosa
- National Centre of Tropical Medicine, Carlos III Institute of Health, C/ Sinesio Delgado 10, 28029, Madrid, Spain
- Consorcio Centro de Investigación Biomédica en Red - CIBERINFEC ISCIII, C/ Sinesio Delgado 10, 28029, Madrid, Spain
| |
Collapse
|
9
|
Hu Y, Li Y, Brashear AM, Zeng W, Wu Z, Wang L, Wei H, Soe MT, Aung PL, Sattabongkot J, Kyaw MP, Yang Z, Zhao Y, Cui L, Cao Y. Plasmodium vivax populations in the western Greater Mekong Subregion evaluated using a genetic barcode. PLoS Negl Trop Dis 2024; 18:e0012299. [PMID: 38959285 PMCID: PMC11251639 DOI: 10.1371/journal.pntd.0012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Awtum M. Brashear
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zifang Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Zhan Q, Tiedje KE, Day KP, Pascual M. From multiplicity of infection to force of infection for sparsely sampled Plasmodium falciparum populations at high transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.12.24302148. [PMID: 38853963 PMCID: PMC11160831 DOI: 10.1101/2024.02.12.24302148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
High multiplicity of infection or MOI, the number of genetically distinct parasite strains co-infecting a single human host, characterizes infectious diseases including falciparum malaria at high transmission. It accompanies high asymptomatic Plasmodium falciparum prevalence despite high exposure, creating a large transmission reservoir challenging intervention. High MOI and asymptomatic prevalence are enabled by immune evasion of the parasite achieved via vast antigenic diversity. Force of infection or FOI, the number of new infections acquired by an individual host over a given time interval, is the dynamic sister quantity of MOI, and a key epidemiological parameter for monitoring the impact of antimalarial interventions and assessing vaccine or drug efficacy in clinical trials. FOI remains difficult, expensive, and labor-intensive to accurately measure, especially in high-transmission regions, whether directly via cohort studies or indirectly via the fitting of epidemiological models to repeated cross-sectional surveys. We propose here the application of queuing theory to obtain FOI on the basis of MOI, in the form of either a two-moment approximation method or Little's law. We illustrate these methods with MOI estimates obtained under sparse sampling schemes with the recently proposed " v a r coding" method, based on sequences of the v a r multigene family encoding for the major variant surface antigen of the blood stage of malaria infection. The methods are evaluated with simulation output from a stochastic agent-based model, and are applied to an interrupted time-series study from Bongo District in northern Ghana before and immediately after a three-round transient indoor residual spraying (IRS) intervention. We incorporate into the sampling of the simulation output, limitations representative of those encountered in the collection of field data, including under-sampling of v a r genes, missing data, and usage of antimalarial drug treatment. We address these limitations in MOI estimates with a Bayesian framework and an imputation bootstrap approach. We demonstrate that both proposed methods give good and consistent FOI estimates across various simulated scenarios. Their application to the field surveys shows a pronounced reduction in annual FOI during intervention, of more than 70%. The proposed approach should be applicable to the many geographical locations where cohort or cross-sectional studies with regular and frequent sampling are lacking but single-time-point surveys under sparse sampling schemes are available, and for MOI estimates obtained in different ways. They should also be relevant to other pathogens of humans, wildlife and livestock whose immune evasion strategies are based on large antigenic variation resulting in high multiplicity of infection.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, USA
- Department of Environmental Studies, New York University, New York, NY, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
11
|
Ajibaye O, Olukosi YA, Oriero EC, Oboh MA, Iwalokun B, Nwankwo IC, Nnam CF, Adaramoye OV, Chukwemeka S, Okanazu J, Gabriel E, Balogun EO, Amambua-Ngwa A. Detection of novel Plasmodium falciparum coronin gene mutations in a recrudescent ACT-treated patient in South-Western Nigeria. Front Cell Infect Microbiol 2024; 14:1366563. [PMID: 38716192 PMCID: PMC11074373 DOI: 10.3389/fcimb.2024.1366563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Background Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.
Collapse
Affiliation(s)
- Olusola Ajibaye
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| | - Yetunde Adeola Olukosi
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Eniyou C. Oriero
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| | - Bamidele Iwalokun
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Ikechukwu Chidiebere Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Chinaza Favour Nnam
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Olawunmi Victoria Adaramoye
- Department of Obstetrics and Gynaecology, Lagos University Teaching Hospital, Idi-araba, Surulere, Lagos, Nigeria
| | - Somadina Chukwemeka
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Judith Okanazu
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Eniafe Gabriel
- Malaria Genomics Research and Training Centre, Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, Gilman Drive, La Jolla, CA, United States
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, the Gambia – The London School of Hygiene and Tropical Medicine, Fajara, Banjul, Gambia
| |
Collapse
|
12
|
Fontoura PS, Macedo EG, Calil PR, Corder RM, Rodrigues PT, Tonini J, Esquivel FD, Ladeia WA, Fernandes ARJ, Johansen IC, Silva MF, Fernandes AOS, Ladeia-Andrade S, Castro MC, Ferreira MU. Changing Clinical Epidemiology of Plasmodium vivax Malaria as Transmission Decreases: Population-Based Prospective Panel Survey in the Brazilian Amazon. J Infect Dis 2024; 229:947-958. [PMID: 38324758 PMCID: PMC11011196 DOI: 10.1093/infdis/jiad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/16/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Malarial infections are often missed by microscopy, and most parasite carriers are asymptomatic in low-endemicity settings. Whether parasite detectability and its ability to elicit symptoms change as transmission declines remains unclear. METHODS We performed a prospective panel survey with repeated measurements on the same participants over 12 months to investigate whether Plasmodium vivax detectability by microscopy and risk of symptoms upon infection varied during a community-wide larviciding intervention in the Amazon basin of Brazil that markedly reduced vector density. We screened 1096 to 1400 residents in the intervention site for malaria by microscopy and quantitative TaqMan assays at baseline and twice during intervention. RESULTS We found that more P vivax infections than expected from their parasite densities measured by TaqMan assays were missed by microscopy as transmission decreased. At lower transmission, study participants appeared to tolerate higher P vivax loads without developing symptoms. We hypothesize that changes in the ratio between circulating parasites and those that accumulate in the bone marrow and spleen, by avoiding peripheral blood microscopy detection, account for decreased parasite detectability and lower risk of symptoms under low transmission. CONCLUSIONS P vivax infections are more likely to be subpatent and remain asymptomatic as malaria transmission decreases.
Collapse
Affiliation(s)
- Pablo S Fontoura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
- Secretary of Health Surveillance, Ministry of Health, Brasília, Brazil
| | - Evelyn G Macedo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Priscila R Calil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
- Divisions of Epidemiology and Biostatistics, Berkeley School of Public Health, University of California
| | - Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Juliana Tonini
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Fabiana D Esquivel
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Winni A Ladeia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | | | - Igor C Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Marcos F Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | - Amanda O S Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
| | | | - Marcia C Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
13
|
Ishengoma DS, Mandara CI, Madebe RA, Warsame M, Ngasala B, Kabanywanyi AM, Mahende MK, Kamugisha E, Kavishe RA, Muro F, Mandike R, Mkude S, Chacky F, Njau R, Martin T, Mohamed A, Bailey JA, Fola AA. Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania. Malar J 2024; 23:79. [PMID: 38491359 PMCID: PMC10943981 DOI: 10.1186/s12936-024-04901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Billy Ngasala
- Department of Parasitology, School of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | | | | | - Erasmus Kamugisha
- Bugando Medical Centre, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Florida Muro
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Ritha Njau
- Malariologist and Public Health Specialist, Dar es Salaam, Tanzania
| | - Troy Martin
- HIV Vaccine Trials Network, Fred Hutch Cancer Research Centre, Seattle, WA, USA
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Akoniyon OP, Akiibinu M, Adeleke MA, Maharaj R, Okpeku M. A Comparative Study of Genetic Diversity and Multiplicity of Infection in Uncomplicated Plasmodium falciparum Infections in Selected Regions of Pre-Elimination and High Transmission Settings Using MSP1 and MSP2 Genes. Pathogens 2024; 13:172. [PMID: 38392910 PMCID: PMC10891941 DOI: 10.3390/pathogens13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Understanding the genetic structure of P. falciparum population in different regions is pivotal to malaria elimination. Genetic diversity and the multiplicity of infection are indicators used for measuring malaria endemicity across different transmission settings. Therefore, this study characterized P. falciparum infections from selected areas constituting pre-elimination and high transmission settings in South Africa and Nigeria, respectively. METHODS Parasite genomic DNA was extracted from 129 participants with uncomplicated P. falciparum infections. Isolates were collected from 78 participants in South Africa (southern Africa) and 51 in Nigeria (western Africa). Allelic typing of the msp1 and msp2 genes was carried out using nested PCR. RESULTS In msp1, the K1 allele (39.7%) was the most common allele among the South African isolates, while the RO33 allele (90.2%) was the most common allele among the Nigerian isolates. In the msp2 gene, FC27 and IC3D7 showed almost the same percentage distribution (44.9% and 43.6%) in the South African isolates, whereas FC27 had the highest percentage distribution (60.8%) in the Nigerian isolates. The msp2 gene showed highly distinctive genotypes, indicating high genetic diversity in the South African isolates, whereas msp1 showed high genetic diversity in the Nigerian isolates. The RO33 allelic family displayed an inverse relationship with participants' age in the Nigerian isolates. The overall multiplicity of infection (MOI) was significantly higher in Nigeria (2.87) than in South Africa (2.44) (p < 0.000 *). In addition, heterozygosity was moderately higher in South Africa (1.46) than in Nigeria (1.13). CONCLUSIONS The high genetic diversity and MOI in P. falciparum that were observed in this study could provide surveillance data, on the basis of which appropriate control strategies should be adopted.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| | - Moses Akiibinu
- Department of Biochemistry and Chemistry, Caleb University, Lagos 11379, Nigeria;
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (M.A.A.)
| |
Collapse
|
15
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24301818. [PMID: 38370729 PMCID: PMC10871444 DOI: 10.1101/2024.02.01.24301818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago; Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University; West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University; New York, NY, 10012, USA
- Department of Environmental Studies, New York University; New York, NY, 10012, USA
- Santa Fe Institute; Santa Fe, NM, 87501, USA
| |
Collapse
|
16
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
17
|
Fola AA, Feleke SM, Mohammed H, Brhane BG, Hennelly CM, Assefa A, Crudal RM, Reichert E, Juliano JJ, Cunningham J, Mamo H, Solomon H, Tasew G, Petros B, Parr JB, Bailey JA. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat Microbiol 2023; 8:1911-1919. [PMID: 37640962 PMCID: PMC10522486 DOI: 10.1038/s41564-023-01461-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Diagnosis and treatment of Plasmodium falciparum infections are required for effective malaria control and are pre-requisites for malaria elimination efforts; hence we need to monitor emergence, evolution and spread of drug- and diagnostics-resistant parasites. We deep sequenced key drug-resistance mutations and 1,832 SNPs in the parasite genomes of 609 malaria cases collected during a diagnostic-resistance surveillance study in Ethiopia. We found that 8.0% (95% CI 7.0-9.0) of malaria cases were caused by P. falciparum carrying the candidate artemisinin partial-resistance kelch13 (K13) 622I mutation, which was less common in diagnostic-resistant parasites mediated by histidine-rich proteins 2 and 3 (pfhrp2/3) deletions than in wild-type parasites (P = 0.03). Identity-by-descent analyses showed that K13 622I parasites were significantly more related to each other than to wild type (P < 0.001), consistent with recent expansion and spread of this mutation. Pfhrp2/3-deleted parasites were also highly related, with evidence of clonal transmissions at the district level. Of concern, 8.2% of K13 622I parasites also carried the pfhrp2/3 deletions. Close monitoring of the spread of combined drug- and diagnostic-resistant parasites is needed.
Collapse
Affiliation(s)
- Abebe A Fola
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | | | | | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca M Crudal
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Emily Reichert
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jonathan B Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
18
|
Andika B, Mobegi V, Gathii K, Nyataya J, Maina N, Awinda G, Mutai B, Waitumbi J. Plasmodium falciparum population structure inferred by msp1 amplicon sequencing of parasites collected from febrile patients in Kenya. Malar J 2023; 22:263. [PMID: 37689681 PMCID: PMC10492417 DOI: 10.1186/s12936-023-04700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Multiplicity of infection (MOI) is an important measure of Plasmodium falciparum diversity, usually derived from the highly polymorphic genes, such as msp1, msp2 and glurp as well as microsatellites. Conventional methods of deriving MOI lack fine resolution needed to discriminate minor clones. This study used amplicon sequencing (AmpliSeq) of P. falciparum msp1 (Pfmsp1) to measure spatial and temporal genetic diversity of P. falciparum. METHODS 264 P. falciparum positive blood samples collected from areas of differing malaria endemicities between 2010 and 2019 were used. Pfmsp1 gene was amplified and amplicon libraries sequenced on Illumina MiSeq. Sequences were aligned against a reference sequence (NC_004330.2) and clustered to detect fragment length polymorphism and amino acid variations. RESULTS Children < 5 years had higher parasitaemia (median = 23.5 ± 5 SD, p = 0.03) than the > 5-14 (= 25.3 ± 5 SD), and those > 15 (= 25.1 ± 6 SD). Of the alleles detected, 553 (54.5%) were K1, 250 (24.7%) MAD20 and 211 (20.8%) RO33 that grouped into 19 K1 allelic families (108-270 bp), 14 MAD20 (108-216 bp) and one RO33 (153 bp). AmpliSeq revealed nucleotide polymorphisms in alleles that had similar sizes, thus increasing the K1 to 104, 58 for MAD20 and 14 for RO33. By AmpliSeq, the mean MOI was 4.8 (± 0.78, 95% CI) for the malaria endemic Lake Victoria region, 4.4 (± 1.03, 95% CI) for the epidemic prone Kisii Highland and 3.4 (± 0.62, 95% CI) for the seasonal malaria Semi-Arid region. MOI decreased with age: 4.5 (± 0.76, 95% CI) for children < 5 years, compared to 3.9 (± 0.70, 95% CI) for ages 5 to 14 and 2.7 (± 0.90, 95% CI) for those > 15. Females' MOI (4.2 ± 0.66, 95% CI) was not different from males 4.0 (± 0.61, 95% CI). In all regions, the number of alleles were high in the 2014-2015 period, more so in the Lake Victoria and the seasonal transmission arid regions. CONCLUSION These findings highlight the added advantages of AmpliSeq in haplotype discrimination and the associated improvement in unravelling complexity of P. falciparum population structure.
Collapse
Affiliation(s)
- Brian Andika
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Kimita Gathii
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Josphat Nyataya
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Naomi Maina
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - George Awinda
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - Beth Mutai
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya
| | - John Waitumbi
- Basic Science Laboratory, United States Army Medical Research Directorate, Kisumu, Kenya.
| |
Collapse
|
19
|
Gwarinda HB, Tessema SK, Raman J, Greenhouse B, Birkholtz LM. Population structure and genetic connectivity of Plasmodium falciparum in pre-elimination settings of Southern Africa. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1227071. [PMID: 38455947 PMCID: PMC10910941 DOI: 10.3389/fepid.2023.1227071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 03/09/2024]
Abstract
To accelerate malaria elimination in the Southern African region by 2030, it is essential to prevent cross-border malaria transmission. However, countries within the region are highly interconnected due to human migration that aids in the movement of the parasite across geographical borders. It is therefore important to better understand Plasmodium falciparum transmission dynamics in the region, and identify major parasite source and sink populations, as well as cross-border blocks of high parasite connectivity. We performed a meta-analysis using collated parasite allelic data generated by microsatellite genotyping of malaria parasites from Namibia, Eswatini, South Africa, and Mozambique (N = 5,314). The overall number of unique alleles was significantly higher (P ≤ 0.01) in Namibia (mean A = 17.3 ± 1.46) compared to South Africa (mean A = 12.2 ± 1.22) and Eswatini (mean A = 13.3 ± 1.27, P ≤ 0.05), whilst the level of heterozygosity was not significantly different between countries. The proportion of polyclonal infections was highest for Namibia (77%), and lowest for Mozambique (64%). A was significant population structure was detected between parasites from the four countries, and patterns of gene flow showed that Mozambique was the major source area and Eswatini the major sink area of parasites between the countries. This study showed strong signals of parasite population structure and genetic connectivity between malaria parasite populations across national borders. This calls for strengthening the harmonization of malaria control and elimination efforts between countries in the southern African region. This data also proves its potential utility as an additional surveillance tool for malaria surveillance on both a national and regional level for the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance as countries work towards malaria elimination.
Collapse
Affiliation(s)
- Hazel B. Gwarinda
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Sofonias K. Tessema
- EppiCenter, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Jaishree Raman
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research (ARMMOR), Centre for Emerging Zoonotic and Parasitic Diseases, A Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, Wits Research Institute for Malaria, University of Witwatersrand, Johannesburg, South Africa
| | - Bryan Greenhouse
- EppiCenter, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Amambua-Ngwa A, Button-Simons KA, Li X, Kumar S, Brenneman KV, Ferrari M, Checkley LA, Haile MT, Shoue DA, McDew-White M, Tindall SM, Reyes A, Delgado E, Dalhoff H, Larbalestier JK, Amato R, Pearson RD, Taylor AB, Nosten FH, D'Alessandro U, Kwiatkowski D, Cheeseman IH, Kappe SHI, Avery SV, Conway DJ, Vaughan AM, Ferdig MT, Anderson TJC. Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nat Microbiol 2023; 8:1213-1226. [PMID: 37169919 PMCID: PMC10322710 DOI: 10.1038/s41564-023-01377-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.
Collapse
Affiliation(s)
- Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sarah M Tindall
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elizabeth Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Haley Dalhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - James K Larbalestier
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Alexander B Taylor
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Umberto D'Alessandro
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David J Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
21
|
Nkhoma SC, Ahmed AOA, Porier D, Rashid S, Bradford R, Molestina RE, Stedman TT. Dynamics of parasite growth in genetically diverse Plasmodium falciparum isolates. Mol Biochem Parasitol 2023; 254:111552. [PMID: 36731750 PMCID: PMC10149587 DOI: 10.1016/j.molbiopara.2023.111552] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Multiple parasite lineages with different proliferation rates or fitness may coexist within a clinical malaria isolate, resulting in complex growth interactions and variations in phenotype. To elucidate the dynamics of parasite growth in multiclonal isolates, we measured growth rates (GRs) of three Plasmodium falciparum Cambodian isolates, including IPC_3445 (MRA-1236), IPC_5202 (MRA-1240), IPC_6403 (MRA-1285), and parasite lineages previously cloned from each of these isolates by limiting dilution. Following synchronization, in vitro cultures of each parasite line were maintained over four consecutive asexual cycles (192 h), with thin smears prepared at each 48-h cycle to estimate GR and fold change in parasitemia (FCP). Cell cycle time (CCT), the duration it takes for ring-stage parasites to develop into mature schizonts, was measured by monitoring the development of 0-3-h post-invasion rings for up to 52 h post-incubation. Laboratory lines 3D7 (MRA-102) and Dd2 (MRA-150) were used as controls. Significant differences in GR, FCP, and CCT were observed between parasite isolates and clonal lineages from each isolate. The parasite lines studied here have well-defined growth phenotypes and will facilitate basic malaria research and development of novel malaria interventions. These lines are available to malaria researchers through the MR4 collection of NIAID's BEI Resources Program.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA.
| | - Amel O A Ahmed
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Danielle Porier
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Sujatha Rashid
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Rebecca Bradford
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Robert E Molestina
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| | - Timothy T Stedman
- BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA
| |
Collapse
|
22
|
Argyropoulos DC, Tan MH, Adobor C, Mensah B, Labbé F, Tiedje KE, Koram KA, Ghansah A, Day KP. Performance of SNP barcodes to determine genetic diversity and population structure of Plasmodium falciparum in Africa. Front Genet 2023; 14:1071896. [PMID: 37323661 PMCID: PMC10267394 DOI: 10.3389/fgene.2023.1071896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.
Collapse
Affiliation(s)
- Dionne C. Argyropoulos
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Courage Adobor
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benedicta Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Ngou CM, Bayibéki AN, Abate L, Makinde OS, Feufack-Donfack LB, Sarah-Matio EM, Bouopda-Tuedom AG, Taconet P, Moiroux N, Awono-Ambéné PH, Talman A, Ayong LS, Berry A, Nsango SE, Morlais I. Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers. BMC Infect Dis 2023; 23:317. [PMID: 37165325 PMCID: PMC10173526 DOI: 10.1186/s12879-023-08134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Sickle cell trait (SCT) refers to the carriage of one abnormal copy of the β-globin gene, the HbS allele. SCT offers protection against malaria, controlling parasite density and preventing progression to symptomatic malaria. However, it remains unclear whether SCT also affects transmission stages and mosquito infection parameters. Deciphering the impact of the SCT on human to mosquito malaria transmission is key to understanding mechanisms that maintain the trait in malaria endemic areas. METHODS The study was conducted from June to July 2017 among asymptomatic children living in the locality of Mfou, Cameroon. Blood samples were collected from asymptomatic children to perform malaria diagnosis by microscopy, Plasmodium species by PCR and hemoglobin typing by RFLP. Infectiousness of gametocytes to mosquitoes was assessed by membrane feeding assays using blood from gametocyte carriers of HbAA and HbAS genotypes. A zero-inflated model was fitted to predict distribution of oocysts in mosquitoes according to hemoglobin genotype of the gametocyte source. RESULTS Among the 1557 children enrolled in the study, 314 (20.16%) were of the HbAS genotype. The prevalence of children with P. falciparum gametocytes was 18.47% in HbAS individuals and 13.57% in HbAA, and the difference is significant (χ2 = 4.61, P = 0.032). Multiplicity of infection was lower in HbAS gametocyte carriers (median = 2 genotypes/carrier in HbAS versus 3.5 genotypes/carrier in HbAA, Wilcoxon sum rank test = 188, P = 0.032). Gametocyte densities in the blood donor significantly influenced mosquito infection prevalence in both HbAS and HbAA individuals. The HbAS genotype had no significant effect on mosquito infection outcomes when using immune or naïve serum in feeding assays. In AB replacement feeding experiments, the odds ratio of mosquito infection for HbAA blood as compared to HbAS was 0.56 (95% CI 0.29-1.10), indicating a twice higher risk of infection in mosquitoes fed on gametocyte-containing blood of HbAS genotype. CONCLUSION Plasmodium transmission stages were more prevalent in SCT individuals. This may reflect the parasite's enhanced investment in the sexual stage to increase their survival rate when asexual replication is impeded. The public health impact of our results points the need for intensive malaria control interventions in areas with high prevalence of HbAS. The similar infection parameters in feeding experiments where mosquitoes received the original serum from the blood donor indicated that immune responses to gametocyte surface proteins occur in both HbAS and HbAA individuals. The higher risk of infection in mosquitoes fed on HbAS blood depleted of immune factors suggests that changes in the membrane properties in HbAS erythrocytes may impact on the maturation process of gametocytes within circulating red blood cells.
Collapse
Affiliation(s)
- Christelle M Ngou
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | | | - Luc Abate
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Olesula S Makinde
- Department of Statistics, Federal University of Technology, P.M.B 704, Akure, Nigeria
| | | | - Elangwe M Sarah-Matio
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Aline G Bouopda-Tuedom
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Paul Taconet
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Nicolas Moiroux
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | | | - Arthur Talman
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Lawrence S Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Antoine Berry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France
- Service de Parasitologie_Mycologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sandrine E Nsango
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Isabelle Morlais
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
24
|
Ghansah A, Tiedje KE, Argyropoulos DC, Onwona CO, Deed SL, Labbé F, Oduro AR, Koram KA, Pascual M, Day KP. Comparison of molecular surveillance methods to assess changes in the population genetics of Plasmodium falciparum in high transmission. FRONTIERS IN PARASITOLOGY 2023; 2:1067966. [PMID: 38031549 PMCID: PMC10686283 DOI: 10.3389/fpara.2023.1067966] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Dionne C. Argyropoulos
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Christiana O. Onwona
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Frédéric Labbé
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercedes Pascual
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Tibayrenc M. Towards a general, worldwide, Plasmodium population genomics framework. Trends Parasitol 2023; 39:229-230. [PMID: 36707341 DOI: 10.1016/j.pt.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de recherche pour le développement, BP 6450134394 Montpellier Cedex 5, France.
| |
Collapse
|
26
|
Simpson SV, Nundu SS, Arima H, Kaneko O, Mita T, Culleton R, Yamamoto T. The diversity of Plasmodium falciparum isolates from asymptomatic and symptomatic school-age children in Kinshasa Province, Democratic Republic of Congo. Malar J 2023; 22:102. [PMID: 36941587 PMCID: PMC10025789 DOI: 10.1186/s12936-023-04528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND Understanding Plasmodium falciparum population diversity and transmission dynamics provides information on the intensity of malaria transmission, which is needed for assessing malaria control interventions. This study aimed to determine P. falciparum allelic diversity and multiplicity of infection (MOI) among asymptomatic and symptomatic school-age children in Kinshasa Province, Democratic Republic of Congo (DRC). METHODS A total of 438 DNA samples (248 asymptomatic and 190 symptomatic) were characterized by nested PCR and genotyping the polymorphic regions of pfmsp1 block 2 and pfmsp2 block 3. RESULTS Nine allele types were observed in pfmsp1 block2. The K1-type allele was predominant with 78% (229/293) prevalence, followed by the MAD20-type allele (52%, 152/293) and RO33-type allele (44%, 129/293). Twelve alleles were detected in pfmsp2, and the 3D7-type allele was the most frequent with 84% (256/304) prevalence, followed by the FC27-type allele (66%, 201/304). Polyclonal infections were detected in 63% (95% CI 56, 69) of the samples, and the MOI (SD) was 1.99 (0.97) in P. falciparum single-species infections. MOIs significantly increased in P. falciparum isolates from symptomatic parasite carriers compared with asymptomatic carriers (2.24 versus 1.69, adjusted b: 0.36, (95% CI 0.01, 0.72), p = 0.046) and parasitaemia > 10,000 parasites/µL compared to parasitaemia < 5000 parasites/µL (2.68 versus 1.63, adjusted b: 0.89, (95% CI 0.46, 1.25), p < 0.001). CONCLUSION This survey showed low allelic diversity and MOI of P. falciparum, which reflects a moderate intensity of malaria transmission in the study areas. MOIs were more likely to be common in symptomatic infections and increased with the parasitaemia level. Further studies in different transmission zones are needed to understand the epidemiology and parasite complexity in the DRC.
Collapse
Affiliation(s)
- Shirley V Simpson
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Sabin S Nundu
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
- Institut National de Recherche Biomédicale (INRB), Kinshasa-Gombe, Democratic Republic of Congo.
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Osamu Kaneko
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Richard Culleton
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Ehime, 790-8577, Japan
| | - Taro Yamamoto
- Programme for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| |
Collapse
|
27
|
Xu SJ, Shen HM, Cui YB, Chen SB, Xu B, Chen JH. Genetic diversity and natural selection of rif gene (PF3D7_1254800) in the Plasmodium falciparum global populations. Mol Biochem Parasitol 2023; 254:111558. [PMID: 36918126 DOI: 10.1016/j.molbiopara.2023.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
To reveal the genetic characteristics of one member of the Plasmodium falciparum repetitive interspersed family (rif), we sequenced the rif gene (PF3D7_1254800) in 53 field isolates collected from Ghana-imported cases into China and compared them with 350 publicly available P. falciparum rif sequences from global populations. In the Ghana-imported population, the nucleotide diversities were 0.05714 and 0.06616 for the full length and variable region of rif gene, respectively. Meanwhile, 22 and 20 haplotypes were identified for the full length and variable region of rif gene (Hd = 0.843 and 0.838, respectively). Diversity of rif gene in Ghana-imported population was higher than that observed in Cambodia, Thailand, Vietnam, Myanmar, Mali, Ghana, and Senegal populations. In this analysis, we found high genetic diversity of rif gene in global P. falciparum populations and identified 158 haplotypes. Tajima's D-test shows that there are large differences in the direction of selection between the conserved and variable region of rif gene. Tajima's D value for the variable region was 0.20074, indicating that balancing selection existed in this region. We found that the variable region was the main target of selection for positive diversification, and most mutation sites were located in this region. The population structure suggested optimized cluster values of K = 6. The five groups in Ghana-imported population included a unique subpopulation. Our results reveal the dynamics of the rif gene (PF3D7_1254800) in P. falciparum populations, which can aid in the rational design of P. falciparum rif-based vaccines.
Collapse
Affiliation(s)
- Shao-Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, PR China.
| |
Collapse
|
28
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|
29
|
Labbé F, He Q, Zhan Q, Tiedje KE, Argyropoulos DC, Tan MH, Ghansah A, Day KP, Pascual M. Neutral vs. non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 2023; 19:e1010816. [PMID: 36595546 PMCID: PMC9838855 DOI: 10.1371/journal.pcbi.1010816] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
At a time when effective tools for monitoring malaria control and eradication efforts are crucial, the increasing availability of molecular data motivates their application to epidemiology. The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions. Estimating MOI remains a challenge for high-transmission settings where individuals typically carry multiple co-occurring infections. Several quantitative approaches have been developed to estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics under three transmission conditions using an extension of a previously developed stochastic agent-based model. We demonstrate that these approaches are complementary and best considered across distinct transmission intensities. While varcoding can underestimate MOI, it allows robust estimation, especially under high transmission where repertoire overlap is extremely limited from frequency-dependent selection. In contrast, THE REAL McCOIL often considerably overestimates MOI, but still provides reasonable estimates for low and moderate transmission. Regardless of transmission intensity, results for THE REAL McCOIL indicate that an inaccurate tail at high MOI values is generated, and that at high transmission, an apparently reasonable estimated MOI distribution can arise from some degree of compensation between overestimation and underestimation. As many countries pursue malaria elimination targets, defining the most suitable approach to estimate MOI based on sample size and local transmission intensity is highly recommended for monitoring the impact of intervention programs.
Collapse
Affiliation(s)
- Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, Indianapolis, United States of America
| | - Qi Zhan
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Dionne C. Argyropoulos
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mun Hua Tan
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Science, University of Ghana, Legon, Ghana
| | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
30
|
Carrasquilla M, Early AM, Taylor AR, Knudson Ospina A, Echeverry DF, Anderson TJC, Mancilla E, Aponte S, Cárdenas P, Buckee CO, Rayner JC, Sáenz FE, Neafsey DE, Corredor V. Resolving drug selection and migration in an inbred South American Plasmodium falciparum population with identity-by-descent analysis. PLoS Pathog 2022; 18:e1010993. [PMID: 36542676 PMCID: PMC9815574 DOI: 10.1371/journal.ppat.1010993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/05/2023] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum is globally widespread, but its prevalence varies significantly between and even within countries. Most population genetic studies in P. falciparum focus on regions of high transmission where parasite populations are large and genetically diverse, such as sub-Saharan Africa. Understanding population dynamics in low transmission settings, however, is of particular importance as these are often where drug resistance first evolves. Here, we use the Pacific Coast of Colombia and Ecuador as a model for understanding the population structure and evolution of Plasmodium parasites in small populations harboring less genetic diversity. The combination of low transmission and a high proportion of monoclonal infections means there are few outcrossing events and clonal lineages persist for long periods of time. Yet despite this, the population is evolutionarily labile and has successfully adapted to changes in drug regime. Using newly sequenced whole genomes, we measure relatedness between 166 parasites, calculated as identity by descent (IBD), and find 17 distinct but highly related clonal lineages, six of which have persisted in the region for at least a decade. This inbred population structure is captured in more detail with IBD than with other common population structure analyses like PCA, ADMIXTURE, and distance-based trees. We additionally use patterns of intra-chromosomal IBD and an analysis of haplotypic variation to explore past selection events in the region. Two genes associated with chloroquine resistance, crt and aat1, show evidence of hard selective sweeps, while selection appears soft and/or incomplete at three other key resistance loci (dhps, mdr1, and dhfr). Overall, this work highlights the strength of IBD analyses for studying parasite population structure and resistance evolution in regions of low transmission, and emphasizes that drug resistance can evolve and spread in small populations, as will occur in any region nearing malaria elimination.
Collapse
Affiliation(s)
- Manuela Carrasquilla
- Department of Immunology and Infectious Diseases, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Angela M. Early
- Department of Immunology and Infectious Diseases, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Aimee R. Taylor
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Angélica Knudson Ospina
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego F. Echeverry
- Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, Colombia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Timothy J. C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institution, San Antonio, Texas, United States of America
| | - Elvira Mancilla
- Secretaría Departamental de Salud del Cauca, Popayán, Colombia
| | - Samanda Aponte
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Julian C. Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Fabián E. Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Daniel E. Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H.Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vladimir Corredor
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
31
|
Plasmodium falciparum Merozoite Surface Proteins Polymorphisms and Treatment Outcomes among Patients with Uncomplicated Malaria in Mwanza, Tanzania. J Trop Med 2022; 2022:5089143. [DOI: 10.1155/2022/5089143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background. The severity of malaria infection depends on the host, parasite and environmental factors. Merozoite surface protein (msp) diversity determines transmission dynamics, P. falciparum immunity evasion, and pathogenesis or virulence. There is limited updated information on P. falciparum msp polymorphisms and their impact on artemether-lumefantrine treatment outcomes in Tanzania. Therefore, this study is aimed at examining msp genetic diversity and multiplicity of infection (MOI) among P. falciparum malaria patients. The influence of MOI on peripheral parasite clearance and adequate clinical and parasitological response (ACPR) was also assessed. Methods. Parasite DNA was extracted from dried blood spots according to the manufacture’s protocol. Primary and nested PCR were performed. The PCR products for both the block 2 region of msp1 and the block 3 regions of msp2 genes and their specific allelic families were visualized on a 2.5% agarose gel. Results. The majority of the isolates, 58/102 (58.8%) for msp1 and 69/115 (60.1%) for msp2, harboured more than one parasite genotypes. For the msp1 gene, K1 was the predominant allele observed (75.64%), whereas RO33 occurred at the lowest frequency (43.6%). For the msp2 gene, the 3D7 allele was observed at a higher frequency (81.7%) than the FC27 allele (76.9%). The MOIs were 2.44 for msp1 and 2.27 for msp2 (
). A significant correlation between age and multiplicity of infection (MOI) for msp1 or MOI for msp2 was not established in this study (rho = 0.074,
and rho = −0.129,
, respectively). Similarly, there was no positive correlation between parasite density at day 1 and MOI for both msp1 (rho = 0.113,
) and msp2 (rho = 0.043,
). The association between MOI and ACPR was not observed for either msp1 or mps2 (
and 0.296, respectively). Conclusions. This study reports high polyclonal infections, MOI and allelic frequencies for both msp1 and msp2. There was a lack of correlation between MOI and ACPR. However, a borderline significant correlation was observed between day 2 parasitaemia and MOI.
Collapse
|
32
|
Mensah BA, Akyea-Bobi NE, Ghansah A. Genomic approaches for monitoring transmission dynamics of malaria: A case for malaria molecular surveillance in Sub-Saharan Africa. FRONTIERS IN EPIDEMIOLOGY 2022; 2:939291. [PMID: 38455324 PMCID: PMC10911004 DOI: 10.3389/fepid.2022.939291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 03/09/2024]
Abstract
Transmission dynamics is an important indicator for malaria control and elimination. As we move closer to eliminating malaria in Sub-Saharan Africa (sSA), transmission indices with higher resolution (genomic approaches) will complement our current measurements of transmission. Most of the present programmatic knowledge of malaria transmission patterns are derived from assessments of epidemiologic and clinical data, such as case counts, parasitological estimates of parasite prevalence, and Entomological Inoculation Rates (EIR). However, to eliminate malaria from endemic areas, we need to track changes in the parasite population and how they will impact transmission. This is made possible through the evolving field of genomics and genetics, as well as the development of tools for more in-depth studies on the diversity of parasites and the complexity of infections, among other topics. If malaria elimination is to be achieved globally, country-specific elimination activities should be supported by parasite genomic data from regularly collected blood samples for diagnosis, surveillance and possibly from other programmatic interventions. This presents a unique opportunity to track the spread of malaria parasites and shed additional light on intervention efficacy. In this review, various genetic techniques are highlighted along with their significance for an enhanced understanding of transmission patterns in distinct topological settings throughout Sub-Saharan Africa. The importance of these methods and their limitations in malaria surveillance to guide control and elimination strategies, are explored.
Collapse
Affiliation(s)
- Benedicta A. Mensah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nukunu E. Akyea-Bobi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
33
|
Schneider KA, Tsoungui Obama HCJ, Kamanga G, Kayanula L, Adil Mahmoud Yousif N. The many definitions of multiplicity of infection. FRONTIERS IN EPIDEMIOLOGY 2022; 2:961593. [PMID: 38455332 PMCID: PMC10910904 DOI: 10.3389/fepid.2022.961593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/06/2022] [Indexed: 03/09/2024]
Abstract
The presence of multiple genetically different pathogenic variants within the same individual host is common in infectious diseases. Although this is neglected in some diseases, it is well recognized in others like malaria, where it is typically referred to as multiplicity of infection (MOI) or complexity of infection (COI). In malaria, with the advent of molecular surveillance, data is increasingly being available with enough resolution to capture MOI and integrate it into molecular surveillance strategies. The distribution of MOI on the population level scales with transmission intensities, while MOI on the individual level is a confounding factor when monitoring haplotypes of particular interests, e.g., those associated with drug-resistance. Particularly, in high-transmission areas, MOI leads to a discrepancy between the likelihood of a haplotype being observed in an infection (prevalence) and its abundance in the pathogen population (frequency). Despite its importance, MOI is not universally defined. Competing definitions vary from verbal ones to those based on concise statistical frameworks. Heuristic approaches to MOI are popular, although they do not mine the full potential of available data and are typically biased, potentially leading to misinferences. We introduce a formal statistical framework and suggest a concise definition of MOI and its distribution on the host-population level. We show how it relates to alternative definitions such as the number of distinct haplotypes within an infection or the maximum number of alleles detectable across a set of genetic markers. It is shown how alternatives can be derived from the general framework. Different statistical methods to estimate the distribution of MOI and pathogenic variants at the population level are discussed. The estimates can be used as plug-ins to reconstruct the most probable MOI of an infection and set of infecting haplotypes in individual infections. Furthermore, the relation between prevalence of pathogenic variants and their frequency (relative abundance) in the pathogen population in the context of MOI is clarified, with particular regard to seasonality in transmission intensities. The framework introduced here helps to guide the correct interpretation of results emerging from different definitions of MOI. Especially, it excels comparisons between studies based on different analytical methods.
Collapse
|
34
|
Atuh NI, Anong DN, Jerome FC, Oriero E, Mohammed NI, D’Alessandro U, Amambua-Ngwa A. High genetic complexity but low relatedness in Plasmodium falciparum infections from Western Savannah Highlands and coastal equatorial Lowlands of Cameroon. Pathog Glob Health 2022; 116:428-437. [PMID: 34308788 PMCID: PMC9518281 DOI: 10.1080/20477724.2021.1953686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the diversity and connectivity of infections in Northwestern and Southwestern Cameroon, 232 Plasmodium falciparum infections, collected in 2018 from the Ndop Health District (NHD) in the western savannah highlands in the Northwest and the Limbe Health District (LHD) in the coastal lowland forests in the Southwest of Cameroon were genotyped for nine neutral microsatellite markers. Overall infection complexity and genetic diversity was significantly (p < 0.05) lower in NHD than LHD, (Mean MOI = 2.45 vs. 2.97; Fws = 0.42 vs. 0.47; Mean He = 0.84 vs. 0.89, respectively). Multi-locus linkage disequilibrium was generally low but significantly higher in the NHD than LHD population (mean ISA= 0.376 vs 0.093). Consequently, highly related pairs of isolates were observed in NHD (mean IBS = 0.086) compared to those from the LHD (mean IBS = 0.059). Infections from the two regions were mostly unrelated (mean IBS = 0.059), though the overall genetic differentiation across the geographical range was low. Indices of differentiation between the populations were however significant (overall pairwise Fst = 0.048, Jost's D = 0.133, p < 0.01). Despite the high human migration across the 270km separating the study sites, these results suggest significant restrictions to gene flow against contiguous geospatial transmission of malaria in west Cameroon. Clonal infections in the highland sites could be driven by lower levels of malaria prevalence and seasonal transmission. How these differences in genetic diversity and complexity affect responses to interventions such as drugs will require further investigations from broader community sampling.
Collapse
Affiliation(s)
- Ngoh Ines Atuh
- Department of Biomedical Science, Faculty of Health Science, University of Buea, Buea, Cameroon
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Damian Nota Anong
- Department of Microbiology & Parasitology, Faculty of Science, University of Buea, Molyko Buea, Cameroon
| | - Fru-Cho Jerome
- Department of Biomedical Science, Faculty of Health Science, University of Buea, Buea, Cameroon
| | - Eniyou Oriero
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Nuredin Ibrahim Mohammed
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| | - Umberto D’Alessandro
- Department of Microbiology & Parasitology, Faculty of Science, University of Buea, Molyko Buea, Cameroon
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination, Medical Research Council Unit the Gambia at LSHTM. Banjul, The Gambia
| |
Collapse
|
35
|
Opute AO, Akinkunmi JA, Funsho AO, Obaniyi AK, Anifowoshe AT. Genetic diversity of Plasmodium falciparum isolates in Nigeria. A review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The complexity of infection in malaria-endemic areas is exacerbated by the presence of genetically diverse Plasmodium falciparum strains. There is a risk that more virulent or drug-resistant versions of the disease may arise. Therefore, we reviewed most reported molecular markers that have been detailed to date in Nigeria.
Main body of the abstract
In this review, we have summarized the genetic diversity of P. falciparum in Nigeria using the two well-reported genes (msp1 and msp2) as genetic diversity biomarkers. The review includes the findings obtained from research conducted in all major geopolitical regions of the country. We found that MSP-2 infection complexity is generally moderate to high in the North-central region. However, in the South-West, there were several regions where the multiplicity of infection (MOI) was either low or extremely high.
Conclusion
Understanding how Nigeria's malaria situation fits into various reports on P. falciparum genetic variation can improve treatment and immunization options. This review will be helpful for future treatment strategies that would be tailored to the specific needs of Nigeria's malaria-endemic populations.
Collapse
|
36
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
37
|
Kimenyi KM, Wamae K, Ngoi JM, de Laurent ZR, Ndwiga L, Osoti V, Obiero G, Abdi AI, Bejon P, Ochola-Oyier LI. Maintenance of high temporal Plasmodium falciparum genetic diversity and complexity of infection in asymptomatic and symptomatic infections in Kilifi, Kenya from 2007 to 2018. Malar J 2022; 21:192. [PMID: 35725456 PMCID: PMC9207840 DOI: 10.1186/s12936-022-04213-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P. falciparum genetic diversity, using msp2 as a genetic marker. Methods Blood samples were obtained from children (< 15 years) enrolled into a cohort with active weekly surveillance between 2007 and 2018 in Kilifi, Kenya. Asymptomatic infections were defined during the annual cross-sectional blood survey and the first-febrile malaria episode was detected during the weekly follow-up. Parasite DNA was extracted and successfully genotyped using allele-specific nested polymerase chain reactions for msp2 and capillary electrophoresis fragment analysis. Results Based on cross-sectional surveys conducted in 2007–2018, there was a significant reduction in malaria prevalence (16.2–5.5%: P-value < 0.001), however msp2 genetic diversity remained high. A high heterozygosity index (He) (> 0.95) was observed in both asymptomatic infections and febrile malaria over time. About 281 (68.5%) asymptomatic infections were polyclonal (> 2 variants per infection) compared to 46 (56%) polyclonal first-febrile infections. There was significant difference in complexity of infection (COI) between asymptomatic 2.3 [95% confidence interval (CI) 2.2–2.5] and febrile infections 2.0 (95% CI 1.7–2.3) (P = 0.016). Majority of asymptomatic infections (44.2%) carried mixed alleles (i.e., both FC27 and IC/3D7), while FC27 alleles were more frequent (53.3%) among the first-febrile infections. Conclusions Plasmodium falciparum infections in Kilifi are still highly diverse and polyclonal, despite the reduction in malaria transmission in the community. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04213-7.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya. .,Department of Biochemistry, University of Nairobi, Nairobi, Kenya.
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M Ngoi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,West Africa Centre for Cell Biology and Infectious Pathogen, Accra, Ghana
| | | | | | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
38
|
Paight C, Hunter ES, Lane CE. Codependence of individuals in the Nephromyces species swarm requires heterospecific bacterial endosymbionts. Curr Biol 2022; 32:2948-2955.e4. [DOI: 10.1016/j.cub.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
39
|
Platt RN, Le Clec'h W, Chevalier FD, McDew‐White M, LoVerde PT, Ramiro de Assis R, Oliveira G, Kinung'hi S, Djirmay AG, Steinauer ML, Gouvras A, Rabone M, Allan F, Webster BL, Webster JP, Emery AM, Rollinson D, Anderson TJC. Genomic analysis of a parasite invasion: Colonization of the Americas by the blood fluke Schistosoma mansoni. Mol Ecol 2022; 31:2242-2263. [PMID: 35152493 PMCID: PMC9305930 DOI: 10.1111/mec.16395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.
Collapse
Affiliation(s)
- Roy N. Platt
- Texas Biomedical Research InstituteSan AntonioTexasUSA
| | | | | | | | | | | | - Guilherme Oliveira
- Centro de Pesquisas René Rachou—Fiocruz/MGBelo HorizonteBrazil
- Instituto Tecnológico ValeBelémBrazil
| | | | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL)NiameyNiger
| | | | | | | | - Fiona Allan
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Bonnie L. Webster
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Joanne P. Webster
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Aidan M. Emery
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - David Rollinson
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | | |
Collapse
|
40
|
Chamma-Siqueira NN, Negreiros SC, Ballard SB, Farias S, Silva SP, Chenet SM, Santos EJM, Pereira de Sena LW, Póvoa da Costa F, Cardoso-Mello AGN, Marchesini PB, Peterka CRL, Viana GMR, Macedo de Oliveira A. Higher-Dose Primaquine to Prevent Relapse of Plasmodium vivax Malaria. N Engl J Med 2022; 386:1244-1253. [PMID: 35353962 PMCID: PMC9132489 DOI: 10.1056/nejmoa2104226] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In most of the Americas, the recommended treatment to prevent relapse of Plasmodium vivax malaria is primaquine at a total dose of 3.5 mg per kilogram of body weight, despite evidence of only moderate efficacy. METHODS In this trial conducted in Brazil, we evaluated three primaquine regimens to prevent relapse of P. vivax malaria in children at least 5 years of age and in adults with microscopy-confirmed P. vivax monoinfection. All the patients received directly observed chloroquine for 3 days (total dose, 25 mg per kilogram). Group 1 received a total primaquine dose of 3.5 mg per kilogram (0.5 mg per kilogram per day) over 7 days with unobserved administration; group 2 received the same regimen as group 1 but with observed administration; and group 3 received a total primaquine dose of 7.0 mg per kilogram over 14 days (also 0.5 mg per kilogram per day) with observed administration. We monitored the patients for 168 days. RESULTS We enrolled 63 patients in group 1, 96 in group 2, and 95 in group 3. The median age of the patients was 22.4 years (range, 5.4 to 79.8). By day 28, three P. vivax recurrences were observed: 2 in group 1 and 1 in group 2. By day 168, a total of 70 recurrences had occurred: 24 in group 1, 34 in group 2, and 12 in group 3. No serious adverse events were noted. On day 168, the percentage of patients without recurrence was 58% (95% confidence interval [CI], 44 to 70) in group 1, 59% (95% CI, 47 to 69) in group 2, and 86% (95% CI, 76 to 92) in group 3. Survival analysis showed a difference in the day 168 recurrence-free percentage of 27 percentage points (97.5% CI, 10 to 44; P<0.001) between group 1 and group 3 and a difference of 27 percentage points (97.5% CI, 12 to 42; P<0.001) between group 2 and group 3. CONCLUSIONS The administration of primaquine at a total dose of 7.0 mg per kilogram had higher efficacy in preventing relapse of P. vivax malaria than a total dose of 3.5 mg per kilogram through day 168. (Supported by the U.S. Agency for International Development; ClinicalTrials.gov number, NCT03610399.).
Collapse
Affiliation(s)
- Nathália N Chamma-Siqueira
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Suiane C Negreiros
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Sarah-Blythe Ballard
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Sâmela Farias
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Sandro P Silva
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Stella M Chenet
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Eduardo J M Santos
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Luann W Pereira de Sena
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Flávia Póvoa da Costa
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Amanda G N Cardoso-Mello
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Paola B Marchesini
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Cássio R L Peterka
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Giselle M R Viana
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| | - Alexandre Macedo de Oliveira
- From Instituto Evandro Chagas, Ministério da Saúde do Brasil, Ananindeua (N.N.C-.S., S.P.S., G.M.R.V.), Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários (N.N.C.-S., E.J.M.S., F.P.C., G.M.R.V.) and Laboratório de Genética de Doenças Complexas (E.J.M.S., F.P.C.), Instituto de Ciências Biológicas, and Laboratório de Farmacocinética de Drogas Antimaláricas, Instituto de Ciências da Saúde (L.W.P.S., A.G.N.C.-M.), Universidade Federal do Pará, Belém, Secretaria de Saúde do Estado do Acre, Cruzeiro do Sul (S.C.N., S.F.), and Grupo Técnico da Malária, Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde (P.B.M.), and Diretoria de Vigilância Epidemiológica, Subsecretaria de Vigilância em Saúde, Secretaria Estadual de Saúde do Distrito Federal (C.R.L.P.), Brasília - all in Brazil; Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services (S.-B.B.), and the Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (S.-B.B., A.M.O.) - both in Atlanta; and Instituto de Investigaciones en Ciencias Biomedicas, Universidad Ricardo Palma, Lima, and Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas (S.M.C.) - both in Peru
| |
Collapse
|
41
|
Al-Hamidhi S, Parveen A, Iqbal F, Asif M, Akhtar N, Elshafie EI, Beja-Pereira A, Babiker HA. Diversity and Genetic Structure of Theileria annulata in Pakistan and Other Endemic Sites. Pathogens 2022; 11:pathogens11030334. [PMID: 35335658 PMCID: PMC8950521 DOI: 10.3390/pathogens11030334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Theileria annulata is a tick-borne protozoan parasite responsible for bovine theileriosis, a disease that impacts cattle population in many developing countries. Development and deployment of effective control strategies, based on vaccine or therapy, should consider the extent of diversity of the parasite and its population structure in different endemic areas. In this study, we examined T. annulata in Pakistan and carried out a comparative analysis with similar data garneted in other areas, to provide further information on the level of parasite diversity and parasite genetic structure in different endemic areas. Methods: The present study examined a set of 10 microsatellites/minisatellites and analyzed the genetic structure of T. annulata in cattle breeds from Pakistan (Indian sub-continent) and compared these with those in Oman (Middle East), Tunisia (Africa), and Turkey (Europe). Result: A high level of genetic diversity was observed among T. annulata detected in cattle from Pakistan, comparable to that in Oman, Tunisia, and Turkey. The genotypes of T. annulata in these four countries form genetically distinct groups that are geographically sub-structured. The T. annulata population in Oman overlapped with that in the Indian Subcontinent (Pakistan) and that in Africa (Tunisia). Conclusions: The T. annulata parasite in Pakistan is highly diverse, and genetically differentiated. This pattern accords well and complements that seen among T. annulata representing the global endemic site. The parasite population in the Arabian Peninsula overlapped with that in the Indian-Subcontinent (India) and that in Africa (Tunisia), which shared some genotypes with that in the Near East and Europe (Turkey). This suggests some level of parasite gene flow, indicative of limited movement between neighboring countries.
Collapse
Affiliation(s)
- Salama Al-Hamidhi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Asia Parveen
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.P.); (F.I.); (M.A.); (N.A.)
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.P.); (F.I.); (M.A.); (N.A.)
| | - Muhammad Asif
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.P.); (F.I.); (M.A.); (N.A.)
| | - Naheed Akhtar
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.P.); (F.I.); (M.A.); (N.A.)
| | - Elshafie I. Elshafie
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Central Veterinary Research Laboratories, Al Amarat, Khartoum P.O. Box 8067, Sudan
| | - Albano Beja-Pereira
- Research Centre in Biodiversity and Genetic Resources (CIBIO), InBIO, University of Porto, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal;
- DGAOT, Faculty of Sciences, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
- Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Hamza A. Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9YL, UK
- Correspondence: ; Tel.: +968-2414-3410
| |
Collapse
|
42
|
Sy M, Deme AB, Warren JL, Early A, Schaffner S, Daniels RF, Dieye B, Ndiaye IM, Diedhiou Y, Mbaye AM, Volkman SK, Hartl DL, Wirth DF, Ndiaye D, Bei AK. Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering. Sci Rep 2022; 12:938. [PMID: 35042879 PMCID: PMC8766587 DOI: 10.1038/s41598-021-04572-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022] Open
Abstract
Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space. In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal—a region of exceptionally low malaria transmission (entomological inoculation rate less than 1). Genetic identity (identity by state, IBS) was established using a 24-single nucleotide polymorphism molecular barcode, identity by descent was calculated from whole genome sequence data, and a hierarchical Bayesian regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance. One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.
Collapse
Affiliation(s)
- Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Angela Early
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen Schaffner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,College of Natural, Behavioral and Health Sciences, Simmons University, Boston, MA, USA
| | - Daniel L Hartl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
43
|
Han J, Munro JE, Kocoski A, Barry AE, Bahlo M. Population-level genome-wide STR discovery and validation for population structure and genetic diversity assessment of Plasmodium species. PLoS Genet 2022; 18:e1009604. [PMID: 35007277 PMCID: PMC8782505 DOI: 10.1371/journal.pgen.1009604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/21/2022] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Short tandem repeats (STRs) are highly informative genetic markers that have been used extensively in population genetics analysis. They are an important source of genetic diversity and can also have functional impact. Despite the availability of bioinformatic methods that permit large-scale genome-wide genotyping of STRs from whole genome sequencing data, they have not previously been applied to sequencing data from large collections of malaria parasite field samples. Here, we have genotyped STRs using HipSTR in more than 3,000 Plasmodium falciparum and 174 Plasmodium vivax published whole-genome sequence data from samples collected across the globe. High levels of noise and variability in the resultant callset necessitated the development of a novel method for quality control of STR genotype calls. A set of high-quality STR loci (6,768 from P. falciparum and 3,496 from P. vivax) were used to study Plasmodium genetic diversity, population structures and genomic signatures of selection and these were compared to genome-wide single nucleotide polymorphism (SNP) genotyping data. In addition, the genome-wide information about genetic variation and other characteristics of STRs in P. falciparum and P. vivax have been available in an interactive web-based R Shiny application PlasmoSTR (https://github.com/bahlolab/PlasmoSTR).
Collapse
Affiliation(s)
- Jiru Han
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jacob E. Munro
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Anthony Kocoski
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Alyssa E. Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
44
|
Salih DA, Ali AM, Njahira M, Taha KM, Mohammed MS, Mwacharo JM, Mbole-Kariuki N, El Hussein AM, Bishop R, Skilton R. Population Genetic Analysis and Sub-Structuring of Theileria annulata in Sudan. Front Genet 2021; 12:742808. [PMID: 34868214 PMCID: PMC8640526 DOI: 10.3389/fgene.2021.742808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Theileria annulata, which causes tropical theileriosis, is a major impediment to improving cattle production in Sudan. Tropical theileriosis disease is prevalent in the north and central regions of Sudan. Outbreaks of the disease have been observed outside the known endemic areas, in east and west regions of the country, due to changes in tick vector distribution and animal movement. A live schizont attenuated vaccination based on tissue culture technology has been developed to control the disease. The parasite in the field as well as the vaccine strain need to be genotyped before the vaccinations are practiced, in order to be able to monitor any breakthrough or breakdown, if any, after the deployment of the vaccine in the field. Nine microsatellite markers were used to genotype 246 field samples positive for T. annulata DNA and the vaccine strain. North and central populations have a higher multiplicity of infection than east and west populations. The examination of principal components showed two sub-structures with a mix of all four populations in both clusters and the vaccine strain used being aligned with left-lower cluster. Only the north population was in linkage equilibrium, while the other populations were in linkage disequilibrium, and linkage equilibrium was found when all samples were regarded as single population. The genetic identity of the vaccine and field samples was 0.62 with the north population and 0.39 with west population. Overall, genetic investigations of four T. annulata populations in Sudan revealed substantial intermixing, with only two groups exhibiting regional origin independence. In the four geographically distant regions analyzed, there was a high level of genetic variation within each population. The findings show that the live schizont attenuated vaccine, Atbara strain may be acceptable for use in all Sudanese regions where tropical theileriosis occurs.
Collapse
Affiliation(s)
- Diaeldin A Salih
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub (BecA-ILRI Hub), Nairobi, Kenya.,Central Veterinary Research Laboratory, Khartoum, Sudan
| | - Awadia M Ali
- Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | - Moses Njahira
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub (BecA-ILRI Hub), Nairobi, Kenya
| | - Khalid M Taha
- Atbara Veterinary Research Laboratory, Atbara, Sudan
| | | | - Joram M Mwacharo
- School of Life Sciences, Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Richard Bishop
- International Livestock Research Institute, Nairobi, Kenya
| | - Robert Skilton
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub (BecA-ILRI Hub), Nairobi, Kenya
| |
Collapse
|
45
|
Brown TS, Arogbokun O, Buckee CO, Chang HH. Distinguishing gene flow between malaria parasite populations. PLoS Genet 2021; 17:e1009335. [PMID: 34928954 PMCID: PMC8726502 DOI: 10.1371/journal.pgen.1009335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/04/2022] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Measuring gene flow between malaria parasite populations in different geographic locations can provide strategic information for malaria control interventions. Multiple important questions pertaining to the design of such studies remain unanswered, limiting efforts to operationalize genomic surveillance tools for routine public health use. This report examines the use of population-level summaries of genetic divergence (FST) and relatedness (identity-by-descent) to distinguish levels of gene flow between malaria populations, focused on field-relevant questions about data size, sampling, and interpretability of observations from genomic surveillance studies. To do this, we use P. falciparum whole genome sequence data and simulated sequence data approximating malaria populations evolving under different current and historical epidemiological conditions. We employ mobile-phone associated mobility data to estimate parasite migration rates over different spatial scales and use this to inform our analysis. This analysis underscores the complementary nature of divergence- and relatedness-based metrics for distinguishing gene flow over different temporal and spatial scales and characterizes the data requirements for using these metrics in different contexts. Our results have implications for the design and implementation of malaria genomic surveillance studies.
Collapse
Affiliation(s)
- Tyler S. Brown
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Olufunmilayo Arogbokun
- Infectious Disease Epidemiology and Ecology Lab, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City, Taiwan
| |
Collapse
|
46
|
Onyango SA, Ochwedo KO, Machani MG, Omondi CJ, Debrah I, Ogolla SO, Lee MC, Zhou G, Kokwaro E, Kazura JW, Afrane YA, Githeko AK, Zhong D, Yan G. Genetic diversity and population structure of the human malaria parasite Plasmodium falciparum surface protein Pfs47 in isolates from the lowlands in Western Kenya. PLoS One 2021; 16:e0260434. [PMID: 34843560 PMCID: PMC8629314 DOI: 10.1371/journal.pone.0260434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum parasites have evolved genetic adaptations to overcome immune responses mounted by diverse Anopheles vectors hindering malaria control efforts. Plasmodium falciparum surface protein Pfs47 is critical in the parasite’s survival by manipulating the vector’s immune system hence a promising target for blocking transmission in the mosquito. This study aimed to examine the genetic diversity, haplotype distribution, and population structure of Pfs47 and its implications on malaria infections in endemic lowlands in Western Kenya. Cross-sectional mass blood screening was conducted in malaria endemic regions in the lowlands of Western Kenya: Homa Bay, Kombewa, and Chulaimbo. Dried blood spots and slide smears were simultaneously collected in 2018 and 2019. DNA was extracted using Chelex method from microscopic Plasmodium falciparum positive samples and used to genotype Pfs47 using polymerase chain reaction (PCR) and DNA sequencing. Thirteen observed haplotypes of the Pfs47 gene were circulating in Western Kenya. Population-wise, haplotype diversity ranged from 0.69 to 0.77 and the nucleotide diversity 0.10 to 0.12 across all sites. All the study sites displayed negative Tajima’s D values although not significant. However, the negative and significant Fu’s Fs statistical values were observed across all the study sites, suggesting population expansion or positive selection. Overall genetic differentiation index was not significant (FST = -0.00891, P > 0.05) among parasite populations. All Nm values revealed a considerable gene flow in these populations. These results could have important implications for the persistence of high levels of malaria transmission and should be considered when designing potential targeted control interventions.
Collapse
Affiliation(s)
- Shirley A. Onyango
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Collince J. Omondi
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Isaiah Debrah
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa Bay, Kenya
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Elizabeth Kokwaro
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
- * E-mail: (DZ); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
- * E-mail: (DZ); (GY)
| |
Collapse
|
47
|
Sookpongthai P, Utayopas K, Sitthiyotha T, Pengsakul T, Kaewthamasorn M, Wangkanont K, Harnyuttanakorn P, Chunsrivirot S, Pattaradilokrat S. Global diversity of the gene encoding the Pfs25 protein-a Plasmodium falciparum transmission-blocking vaccine candidate. Parasit Vectors 2021; 14:571. [PMID: 34749796 PMCID: PMC8574928 DOI: 10.1186/s13071-021-05078-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background Vaccines against the sexual stages of the malarial parasite Plasmodium falciparum are indispensable for controlling malaria and abrogating the spread of drug-resistant parasites. Pfs25, a surface antigen of the sexual stage of P. falciparum, is a leading candidate for transmission-blocking vaccine development. While clinical trials have reported that Pfs25-based vaccines are safe and effective in inducing transmission-blocking antibodies, the extent of the genetic diversity of Pfs25 in malaria endemic populations has rarely been studied. Thus, this study aimed to investigate the global diversity of Pfs25 in P. falciparum populations. Methods A database of 307 Pfs25 sequences of P. falciparum was established. Population genetic analyses were performed to evaluate haplotype and nucleotide diversity, analyze haplotypic distribution patterns of Pfs25 in different geographical populations, and construct a haplotype network. Neutrality tests were conducted to determine evidence of natural selection. Homology models of the Pfs25 haplotypes were constructed, subjected to molecular dynamics (MD), and analyzed in terms of flexibility and percentages of secondary structures. Results The Pfs25 gene of P. falciparum was found to have 11 unique haplotypes. Of these, haplotype 1 (H1) and H2, the major haplotypes, represented 70% and 22% of the population, respectively, and were dominant in Asia, whereas only H1 was dominant in Africa, Central America, and South America. Other haplotypes were rare and region-specific, resulting in unique distribution patterns in different geographical populations. The diversity in Pfs25 originated from ten single-nucleotide polymorphism (SNP) loci located in the epidermal growth factor (EGF)-like domains and anchor domain. Of these, an SNP at position 392 (GGA/GCA), resulting in amino acid substitution 131 (Gly/Ala), defined the two major haplotypes. The MD results showed that the structures of H1 and H2 variants were relatively similar. Limited polymorphism in Pfs25 could likely be due to negative selection. Conclusions The study successfully established a Pfs25 sequence database that can become an essential tool for monitoring vaccine efficacy, designing assays for detecting malaria carriers, and conducting epidemiological studies of P. falciparum. The discovery of the two major haplotypes, H1 and H2, and their conserved structures suggests that the current Pfs25-based vaccines could be used globally for malaria control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05078-6.
Collapse
Affiliation(s)
- Pornpawee Sookpongthai
- M.Sc. program in Zoology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Korawich Utayopas
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thassanai Sitthiyotha
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Theerakamol Pengsakul
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Surasak Chunsrivirot
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | |
Collapse
|
48
|
Pinto A, Archaga O, Mejía Á, Escober L, Henríquez J, Montoya A, Valdivia HO, Fontecha G. Evidence of a Recent Bottleneck in Plasmodium falciparum Populations on the Honduran-Nicaraguan Border. Pathogens 2021; 10:pathogens10111432. [PMID: 34832588 PMCID: PMC8617645 DOI: 10.3390/pathogens10111432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
The countries of Central America and the island of Hispaniola have set the goal of eliminating malaria in less than a decade. Although efforts to reduce the malaria burden in the region have been successful, there has been an alarming increase in cases in the Nicaraguan Moskitia since 2014. The continuous decrease in cases between 2000 and 2014, followed by a rapid expansion from 2015 to the present, has generated a potential bottleneck effect in the populations of Plasmodium spp. Consequently, this study aimed to evaluate the genetic diversity of P. falciparum and the decrease in allelic richness in this population. The polymorphic regions of the pfmsp-1 and pfmsp-2 genes of patients with falciparum malaria from Honduras and Nicaragua were analyzed using nested PCR and sequencing. Most of the samples were classified into the K1 allelic subfamily of the pfmsp-1 gene and into the 3D7 subfamily of the pfmsp-2 gene. Despite the low genetic diversity found, more than half of the samples presented a polyclonal K1/RO33 haplotype. No sequence polymorphisms were found within each allelic subfamily. This study describes a notable decrease in the genetic diversity of P. falciparum in the Moskitia region after a bottleneck phenomenon. These results will be useful for future epidemiological investigations and the monitoring of malaria transmission in Central America.
Collapse
Affiliation(s)
- Alejandra Pinto
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
| | - Osman Archaga
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
| | - Ángel Mejía
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
| | - Lenin Escober
- National Malaria Laboratory, National Department of Surveillance, Ministry of Health of Honduras, Tegucigalpa 11101, Honduras; (L.E.); (J.H.)
| | - Jessica Henríquez
- National Malaria Laboratory, National Department of Surveillance, Ministry of Health of Honduras, Tegucigalpa 11101, Honduras; (L.E.); (J.H.)
| | - Alberto Montoya
- National Center for Diagnosis and Reference, Health Ministry, Managua 11001, Nicaragua;
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No, 6 (NAMRU-6), Lima 07006, Peru;
| | - Gustavo Fontecha
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa 11101, Honduras; (A.P.); (O.A.); (Á.M.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|
49
|
Dentinger CM, Rakotomanga TA, Rakotondrandriana A, Rakotoarisoa A, Rason MA, Moriarty LF, Steinhardt LC, Kapesa L, Razafindrakoto J, Svigel SS, Lucchi NW, Udhayakumar V, Halsey ES, Ratsimbasoa CA. Efficacy of artesunate-amodiaquine and artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria in Madagascar, 2018. Malar J 2021; 20:432. [PMID: 34732201 PMCID: PMC8565026 DOI: 10.1186/s12936-021-03935-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
Background Since 2005, artemisinin-based combination therapy (ACT) has been recommended to treat uncomplicated falciparum malaria in Madagascar. Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the first- and second-line treatments, respectively. A therapeutic efficacy study was conducted to assess ACT efficacy and molecular markers of anti-malarial resistance. Methods Children aged six months to 14 years with uncomplicated falciparum malaria and a parasitaemia of 1000–100,000 parasites/µl determined by microscopy were enrolled from May–September 2018 in a 28-day in vivo trial using the 2009 World Health Organization protocol for monitoring anti-malarial efficacy. Participants from two communes, Ankazomborona (tropical, northwest) and Matanga (equatorial, southeast), were randomly assigned to ASAQ or AL arms at their respective sites. PCR correction was achieved by genotyping seven neutral microsatellites in paired pre- and post-treatment samples. Genotyping assays for molecular markers of resistance in the pfk13, pfcrt and pfmdr1 genes were conducted. Results Of 344 patients enrolled, 167/172 (97%) receiving ASAQ and 168/172 (98%) receiving AL completed the study. For ASAQ, the day-28 cumulative PCR-uncorrected efficacy was 100% (95% CI 100–100) and 95% (95% CI 91–100) for Ankazomborona and Matanga, respectively; for AL, it was 99% (95% CI 97–100) in Ankazomborona and 83% (95% CI 76–92) in Matanga. The day-28 cumulative PCR-corrected efficacy for ASAQ was 100% (95% CI 100–100) and 98% (95% CI 95–100) for Ankazomborona and Matanga, respectively; for AL, it was 100% (95% CI 99–100) in Ankazomborona and 95% (95% CI 91–100) in Matanga. Of 83 successfully sequenced samples for pfk13, no mutation associated with artemisinin resistance was observed. A majority of successfully sequenced samples for pfmdr1 carried either the NFD or NYD haplotypes corresponding to codons 86, 184 and 1246. Of 82 successfully sequenced samples for pfcrt, all were wild type at codons 72–76. Conclusion PCR-corrected analysis indicated that ASAQ and AL have therapeutic efficacies above the 90% WHO acceptable cut-off. No genetic evidence of resistance to artemisinin was observed, which is consistent with the clinical outcome data. However, the most common pfmdr1 haplotypes were NYD and NFD, previously associated with tolerance to lumefantrine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03935-4.
Collapse
Affiliation(s)
- Catherine M Dentinger
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia. .,US President's Malaria Initiative, US Centers for Disease Control and Prevention, Antananarivo, Madagascar.
| | - Tovonahary Angelo Rakotomanga
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Antananarivo, Antananarivo, Madagascar
| | | | | | - Marie Ange Rason
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar
| | - Leah F Moriarty
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia.,US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Laurent Kapesa
- US President's Malaria Initiative, USAID, Antananarivo, Madagascar
| | | | - Samaly S Svigel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric S Halsey
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, Georgia.,US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - C Arsène Ratsimbasoa
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Fianarantsoa, Fianarantsoa, Madagascar.,Centre National d' Application de Recherche Pharmaceutique, Antananarivo, Madagascar
| |
Collapse
|
50
|
The Rare, the Best: Spread of Antimalarial-Resistant Plasmodium falciparum Parasites by Anopheles Mosquito Vectors. Microbiol Spectr 2021; 9:e0085221. [PMID: 34668767 PMCID: PMC8528099 DOI: 10.1128/spectrum.00852-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The emergence of resistance to antimalarials has prompted the steady switch to novel therapies for decades. Withdrawal of antimalarials, such as chloroquine in sub-Saharan Africa in the late 1990s, led to rapid declines in the prevalence of resistance markers after a few years, raising the possibility of reintroducing them for malaria treatment. Here, we provide evidence that the mosquito vector plays a crucial role in maintaining parasite genetic diversity. We followed the transmission dynamics of Plasmodium falciparum parasites through its vector in natural infections from gametocytes contained in the blood of asymptomatic volunteers until sporozoites subsequently developed in the mosquito salivary glands. We did not find any selection of the mutant or wild-type pfcrt 76 allele during development in the Anopheles mosquito vector. However, microsatellite genotyping indicated that minority genotypes were favored during transmission through the mosquito. The analysis of changes in the proportions of mutant and wild-type pfcrt 76 alleles showed that, regardless of the genotype, the less-represented allele in the gametocyte population was more abundant in mosquito salivary glands, indicating a selective advantage of the minority allele in the vector. Selection of minority genotypes in the vector would explain the persistence of drug-resistant alleles in the absence of drug pressure in areas with high malaria endemicity and high genetic diversity. Our results may have important epidemiological implications, as they predict the rapid re-emergence and spread of resistant genotypes if antimalarials that had previously selected resistant parasites are reintroduced for malaria prevention or treatment. IMPORTANCE Drug selection pressure in malaria patients is the cause of the emergence of resistant parasites. Resistance imposes a fitness cost for parasites in untreated infections, so withdrawal of the drug leads to the return of susceptible parasites. Little is known about the role of the malaria vector in this phenomenon. In an experimental study conducted in Cameroon, an area of high malaria transmission, we showed that the vector did not favor the parasites based on sensitivity or resistance criteria, but it did favor the selection of minority clones. This finding shows that the vector increases the diversity of plasmodial populations and could play an important role in falciparum malaria epidemiology by maintaining resistant clones despite the absence of therapeutic pressure.
Collapse
|