1
|
Ekimova IA, Schepetov DM, Green B, Stanovova MV, Antokhina TI, Gosliner T, Malaquias MAE, Valdés Á. Scaling the high latitudes: evolution, diversification, and dispersal of Coryphella nudibranchs across the Northern Hemisphere. Mol Phylogenet Evol 2024; 201:108214. [PMID: 39369862 DOI: 10.1016/j.ympev.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Nudibranch molluscs Coryphella are widely distributed and species-rich gastropod group lacking fossil record and displaying a complex distribution across both Southern and Northern hemispheres. In this paper we provide a detailed review of the morphology, ecology, and distribution of Coryphella, estimation of divergence times between species, an ancestral area reconstruction, and a population analysis of widely distributed trans-Arctic species Coryphella verrucosa to investigate the evolution, phylogeographic patterns and reconstruct possible historical routes of oceanic dispersal. The inclusion of a larger sample size and five molecular markers has revealed a complex evolutionary history of Coryphella, shaped by transgression, vicariance, and dietary shifts, and overall driven by the pervasive effect of glacial cycles. We also revealed the presence of additional cryptic diversity, which suggests that further sampling may produce additional species in this group of nudibranchs. Tree calibration indicates the genus Coryphella originates in the middle Miocene in the Pacific Ocean and the early divergence within this group also occurred in the Pacific, specifically in different regions of the North Pacific. The ancestral area reconstruction inferred five independent instances of transgression from the Pacific Ocean to the Atlantic via different migration routes, including the Panamanian seaway and the Bering Strait. Among them, we identified three cases of successful transition to the Arctic waters from the North Pacific via the Bering Strait, associated with interglacial conditions of middle Pleistocene. Consequently, Pleistocene glacial cycles likely prompted pulses of boreal faunal elements to disperse southwards followed by range disjunction and temporary isolation of distant populations and resulting in allopatric speciation. Evidence from the population structure of contemporary trans-Arctic species suggests an occurrence of independent recolonization pathways of Arctic waters from both southernly and northernly refugia after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Irina A Ekimova
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia.
| | | | - Brenna Green
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | - Maria V Stanovova
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Terrence Gosliner
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | | | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
2
|
Azevedo GHF, Hedin M, Maddison WP. Phylogeny and biogeography of harmochirine jumping spiders (Araneae: Salticidae). Mol Phylogenet Evol 2024; 197:108109. [PMID: 38768874 DOI: 10.1016/j.ympev.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
We use ultraconserved elements (UCE) and Sanger data to study the phylogeny, age, and biogeographical history of harmochirine jumping spiders, a group that includes the species-rich genus Habronattus, whose remarkable courtship has made it the focus of studies of behaviour, sexual selection, and diversification. We recovered 1947 UCE loci from 43 harmochirine taxa and 4 outgroups, yielding a core dataset of 193 UCEs with at least 50 % occupancy. Concatenated likelihood and ASTRAL analyses confirmed the separation of harmochirines into two major clades, here designated the infratribes Harmochirita and Pellenita. Most are African or Eurasian with the notable exception of a clade of pellenites containing Habronattus and Pellenattus of the Americas and Havaika and Hivanua of the Pacific Islands. Biogeographical analysis using the DEC model favours a dispersal of the clade's ancestor from Eurasia to the Americas, from which Havaika's ancestor dispersed to Hawaii and Hivanua's ancestor to the Marquesas Islands. Divergence time analysis on 32 loci with 85 % occupancy, calibrated by fossils and island age, dates the dispersal to the Americas at approximately 4 to 6 million years ago. The explosive radiation of Habronattus perhaps began only about 4 mya. The phylogeny clarifies both the evolution of sexual traits (e.g., the terminal apophyses was enlarged in Pellenes and not subsequently lost) and the taxonomy. Habronattus is confirmed as monophyletic. Pellenattus is raised to the status of genus, and 13 species moved into it as new combinations. Bianor stepposus Logunov, 1991 is transferred to Sibianor, and Pellenes bulawayoensis Wesołowska, 1999 is transferred to Neaetha. A molecular clock rate estimate for spider UCEs is presented and its utility to inform prior distributions is discussed.
Collapse
Affiliation(s)
| | - Marshal Hedin
- Dept of Biology, San Diego State University, San Diego, CA 92182, United States
| | - Wayne P Maddison
- Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
3
|
Willink B, Ware JL, Svensson EI. Tropical Origin, Global Diversification, and Dispersal in the Pond Damselflies (Coenagrionoidea) Revealed by a New Molecular Phylogeny. Syst Biol 2024; 73:290-307. [PMID: 38262741 PMCID: PMC11282367 DOI: 10.1093/sysbio/syae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024] Open
Abstract
The processes responsible for the formation of Earth's most conspicuous diversity pattern, the latitudinal diversity gradient (LDG), remain unexplored for many clades in the Tree of Life. Here, we present a densely sampled and dated molecular phylogeny for the most speciose clade of damselflies worldwide (Odonata: Coenagrionoidea) and investigate the role of time, macroevolutionary processes, and biome-shift dynamics in shaping the LDG in this ancient insect superfamily. We used process-based biogeographic models to jointly infer ancestral ranges and speciation times and to characterize within-biome dispersal and biome-shift dynamics across the cosmopolitan distribution of Coenagrionoidea. We also investigated temporal and biome-dependent variation in diversification rates. Our results uncover a tropical origin of pond damselflies and featherlegs ~105 Ma, while highlighting the uncertainty of ancestral ranges within the tropics in deep time. Even though diversification rates have declined since the origin of this clade, global climate change and biome-shifts have slowly increased diversity in warm- and cold-temperate areas, where lineage turnover rates have been relatively higher. This study underscores the importance of biogeographic origin and time to diversify as important drivers of the LDG in pond damselflies and their relatives, while diversification dynamics have instead resulted in the formation of ephemeral species in temperate regions. Biome-shifts, although limited by tropical niche conservatism, have been the main factor reducing the steepness of the LDG in the last 30 Myr. With ongoing climate change and increasing northward range expansions of many damselfly taxa, the LDG may become less pronounced. Our results support recent calls to unify biogeographic and macroevolutionary approaches to improve our understanding of how latitudinal diversity gradients are formed and why they vary across time and among taxa.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm 106-91, Sweden
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117558, Singapore
| | - Jessica L Ware
- Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Erik I Svensson
- Department of Biology, Evolutionary Ecology Unit, Lund University, Sölvegatan 37, Lund 223-62, Sweden
| |
Collapse
|
4
|
Lindsey CR, Knoll AH, Herron MD, Rosenzweig F. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae. BMC Biol 2024; 22:79. [PMID: 38600528 PMCID: PMC11007952 DOI: 10.1186/s12915-024-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.
Collapse
Affiliation(s)
- Charles Ross Lindsey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Layton KKS, Wilson NG. Validating a molecular clock for nudibranchs-No fossils to the rescue. Ecol Evol 2024; 14:e11014. [PMID: 38362166 PMCID: PMC10867498 DOI: 10.1002/ece3.11014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Time calibrated phylogenies are typically reconstructed with fossil information but for soft-bodied marine invertebrates that lack hard parts, a fossil record is lacking. In these cases, biogeographic calibrations or the rates of divergence for related taxa are often used. Although nudibranch phylogenies have advanced with the input of molecular data, no study has derived a divergence rate for this diverse group of invertebrates. Here, we use an updated closure date for the Isthmus of Panama (2.8 Ma) to derive the first divergence rates for chromodorid nudibranchs using multigene data from a geminate pair with broad phylogeographic sampling. Examining the species Chromolaichma sedna (Marcus & Marcus, 1967), we uncover deep divergences among eastern Pacific and western Atlantic clades and we erect a new species designation for the latter (Chromolaichma hemera sp. nov.). Next, we discover extensive phylogeographic structure within C. hemera sp. nov. sensu lato, thereby refuting the hypothesis of a recent introduction. Lastly, we derive divergence rates for mitochondrial and nuclear loci that exceed known rates for other gastropods and we highlight significant rate heterogeneity both among markers and taxa. Together, these findings improve understanding of nudibranch systematics and provide rates useful to apply to divergence scenarios in this diverse group.
Collapse
Affiliation(s)
- Kara K. S. Layton
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Nerida G. Wilson
- Scripps Institution of OceanographyUC San DiegoLa JollaCaliforniaUSA
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
6
|
Silcocks M, Dunstan SJ. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun Biol 2023; 6:1037. [PMID: 37833496 PMCID: PMC10575886 DOI: 10.1038/s42003-023-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Two Layer hypothesis is fast becoming the favoured narrative describing East Asian population history. Under this model, hunter-gatherer groups who initially peopled East Asia via a route south of the Himalayas were assimilated by agriculturalist migrants who arrived via a northern route across Eurasia. A lack of ancient samples from tropical East Asia limits the resolution of this model. We consider insight afforded by patterns of variation within the human pathogen Mycobacterium tuberculosis (Mtb) by analysing its phylogeographic signatures jointly with the human Y-chromosome. We demonstrate the Y-chromosome lineages enriched in the traditionally hunter-gatherer groups associated with East Asia's first layer of peopling to display deep roots, low long-term effective population size, and diversity patterns consistent with a southern entry route. These characteristics mirror those of the evolutionarily ancient Mtb lineage 1. The remaining East Asian Y-chromosome lineage is almost entirely absent from traditionally hunter-gatherer groups and displays spatial and temporal characteristics which are incompatible with a southern entry route, and which link it to the development of agriculture in modern-day China. These characteristics mirror those of the evolutionarily modern Mtb lineage 2. This model paves the way for novel host-pathogen coevolutionary research hypotheses in East Asia.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Sarah J Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
7
|
Hazzi NA, Hormiga G. Molecular phylogeny of the tropical wandering spiders (Araneae, Ctenidae) and the evolution of eye conformation in the RTA clade. Cladistics 2023; 39:18-42. [PMID: 36200603 DOI: 10.1111/cla.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Tropical wandering spiders (Ctenidae) are a diverse group of cursorial predators with its greatest species richness in the tropics. Traditionally, Ctenidae are diagnosed based on the presence of eight eyes arranged in three rows (a 2-4-2 pattern). We present a molecular phylogeny of Ctenidae, including for the first time representatives of all of its subfamilies. The molecular phylogeny was inferred using five nuclear (histone H3, 28S, 18S, Actin and ITS-2) and four mitochondrial (NADH, COI, 12S and 16S) markers. The final matrix includes 259 terminals, 103 of which belong to Ctenidae and represent 28 of the current 49 described genera. We estimated divergence times by including fossils as calibration points and biogeographic events, and used the phylogenetic hypothesis obtained to reconstruct the evolution of the eye conformation in the retrolateral tibial apophysis (RTA) clade. Ctenidae and its main lineages originated during the Paleocene-Eocene and have diversified in the tropics since then. However, in some analyses Ctenidae was recovered as polyphyletic as the genus Ancylometes Bertkau, 1880 was placed as sister to Oxyopidae. Except for Acantheinae, in which the type genus Acantheis Thorell, 1891 is placed inside Cteninae, the four recognized subfamilies of Ctenidae are monophyletic in most analyses. The ancestral reconstruction of the ocular conformation in the retrolateral tibial apophysis clade suggests that the ocular pattern of Ctenidae has evolved convergently seven times and that it has originated from ocular conformations of two rows of four eyes (4-4) and the ocular pattern of lycosids (4-2-2). We also synonymize the monotypic genus Parabatinga Polotov & Brescovit, 2009 with Centroctenus Mello-Leitão, 1929. We discuss some of the putative morphological synapomorphies of the main ctenid lineages within the phylogenetic framework offered by the molecular phylogenetic results of the study.
Collapse
Affiliation(s)
- Nicolas A Hazzi
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.,Fundación Ecotonos, Cra 72 No. 13ª-56, Cali, Colombia
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA
| |
Collapse
|
8
|
Saitoh T, Murakami S, de Guia APO, Ohnishi N, Kawai K. Estimation of Evolutionary Rates for Mitochondrial Control Region in Sibling Species of Myodes (Rodentia) by Calibrations Based on Island Formation. MAMMAL STUDY 2022. [DOI: 10.3106/ms2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Saitoh
- Field Science Center, Hokkaido University, Kita 11, Nishi 10, Sapporo 060-0811, Japan
| | - Shota Murakami
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Anna Pauline O. de Guia
- Animal Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Naoki Ohnishi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Nabeyashiki, Morioka 020-0123, Japan
| | - Kuniko Kawai
- School of Biological Sciences, Tokai University, Minamisawa, Sapporo 005-0825, Japan
| |
Collapse
|
9
|
Kolbasova G, Schmidt-Rhaesa A, Syomin V, Bredikhin D, Morozov T, Neretina T. Cryptic species complex or an incomplete speciation? Phylogeographic analysis reveals an intricate Pleistocene history of Priapulus caudatus Lamarck, 1816. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Vainutis KS, Voronova AN, Duscher GG, Shchelkanov EM, Shchelkanov MY. Origins, phylogenetic relationships and host-parasite interactions of Troglotrematoidea since the cretaceous. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105274. [PMID: 35337967 DOI: 10.1016/j.meegid.2022.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In the current study, we raise the issue concerning origins and historical relationships of the trematodes from the families Troglotrematidae and Paragonimidae using phylogenetic analysis and molecular-clock method for estimating evolutionary rates. For the first time we provided 28S rRNA gene fragment (1764 bp) for the type species Troglotrema acutum - zoonotic trematodes that cause cranial lesions (troglotremiasis) in mustelid and canid mammals of the Central Europe, Iberian Peninsula, and North-West Caucasus. Molecular genetic analysis revealed that T. acutum belongs to the monophyletic family Troglotrematidae sister with the family Paragonimidae. The family Troglotrematidae includes five genera: Nanophyetus, Troglotrema, Skrjabinophyetus, Nephrotrema, and Macroorchis; and the family Paragonimidae is monotypic including the only genus Paragonimus. We recover the superfamily Troglotrematoidea for these two families. Divergence of the common ancestor of the superfamily Troglotrematoidea (common troglotrematoid ancestor) likely occurred during the Cretaceous period of the Mesozoic Era and potentially originated in the Asiatic region. The lineage of the family Troglotrematidae is much closer to the common troglotrematoid ancestor than the species of the family Paragonimidae. The radiation time of the common troglotrematoid ancestor (126 Ma, the Early Cretaceous), and formation of the families Troglotrematidae and Paragonimidae (96 Ma and 73 Ma respectively, the Late Cretaceous) corresponds to the time of settling in East Asia by many species of mammaliaforms (about 130-70 Ma).
Collapse
Affiliation(s)
- Konstantin S Vainutis
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1 Selskaya Street, 690087 Vladivostok, Russian Federation; Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasia N Voronova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1 Selskaya Street, 690087 Vladivostok, Russian Federation; Far Eastern Federal University, Vladivostok, Russia.
| | - Georg G Duscher
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria; AGES-Austrian Agency for Health & Food Safety, Robert-Koch-Gasse 17, A-2340 Moedling, Austria.
| | - Egor M Shchelkanov
- Moscow Region State University, Moscow Region, Radio street, 10/1, Moscow 105005, Russia
| | - Mikhail Yu Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 1 Selskaya Street, 690087 Vladivostok, Russian Federation; Far Eastern Federal University, Vladivostok, Russia; Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the RAS, pr. 100-letija, 159, Vladivostok 690022, Russia.
| |
Collapse
|
11
|
Översti S, Palo JU. Variation in the substitution rates among the human mitochondrial haplogroup U sublineages. Genome Biol Evol 2022; 14:6613373. [PMID: 35731946 PMCID: PMC9250076 DOI: 10.1093/gbe/evac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Resolving the absolute timescale of phylogenetic trees stipulates reliable estimates for the rate of DNA sequence evolution. For this end, various calibration methods have been developed and studied intensively. Intraspecific rate variation among distinct genetic lineages, however, has gained less attention. Here, we have assessed lineage-specific molecular rates of human mitochondrial DNA (mtDNA) by performing tip-calibrated Bayesian phylogenetic analyses. Tip-calibration, as opposed to traditional nodal time stamps from dated fossil evidence or geological events, is based on sample ages and becoming ever more feasible as ancient DNA data from radiocarbon-dated samples accumulate. We focus on subhaplogroups U2, U4, U5a, and U5b, the data including ancient mtDNA genomes from 14C-dated samples (n = 234), contemporary genomes (n = 301), and two outgroup sequences from haplogroup R. The obtained molecular rates depended on the data sets (with or without contemporary sequences), suggesting time-dependency. More notable was the rate variation between haplogroups: U4 and U5a stand out having a substantially higher rate than U5b. This is also reflected in the divergence times obtained (U5a: 17,700 years and U5b: 29,700 years), a disparity not reported previously. After ruling out various alternative causes (e.g., selection, sampling, and sequence quality), we propose that the substitution rates have been influenced by demographic histories, widely different among populations where U4/U5a or U5b are frequent. As with the Y-chromosomal subhaplogroup R1b, the mitochondrial U4 and U5a have been associated with remarkable range extensions of the Yamnaya culture in the Bronze Age.
Collapse
Affiliation(s)
- Sanni Översti
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute for the Science of Human History, Jena, Germany Kahlaische Straße 10, 07745, Jena, Germany.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological Sciences, University of Helsinki, Helsinki, Finland P.O. Box 56, FI-00014, Helsinki, Finland
| | - Jukka U Palo
- Department of Forensic Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland P.O. Box 40, FI-00014, Helsinki, Finland.,Forensic Chemistry Unit, Forensic Genetics Team, Finnish Institute for Health and Welfare, Helsinki, Finland P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
12
|
Babkin IV, Babkina IN, Tikunova NV. An Update of Orthopoxvirus Molecular Evolution. Viruses 2022; 14:v14020388. [PMID: 35215981 PMCID: PMC8875945 DOI: 10.3390/v14020388] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Although variola virus (VARV) has been eradicated through widespread vaccination, other orthopoxviruses pathogenic for humans circulate in nature. Recently, new orthopoxviruses, including some able to infect humans, have been found and their complete genomes have been sequenced. Questions about the orthopoxvirus mutation rate and the emergence of new threats to humankind as a result of the evolution of circulating orthopoxviruses remain open. Based on contemporary data on ancient VARV DNA and DNA of new orthopoxvirus species, an analysis of the molecular evolution of orthopoxviruses was carried out and the timescale of their emergence was estimated. It was calculated that the orthopoxviruses of the Old and New Worlds separated approximately 40,000 years ago; the recently discovered Akhmeta virus and Alaskapox virus separated from other orthopoxviruses approximately 10,000–20,000 years ago; the rest of modern orthopoxvirus species originated from 1700 to 6000 years ago, with the exception of VARV, which emerged in approximately 300 AD. Later, there was a separation of genetic variants of some orthopoxvirus species, so the monkeypox virus West African subtype originated approximately 600 years ago, and the VARV minor alastrim subtype emerged approximately 300 years ago.
Collapse
Affiliation(s)
- Igor V. Babkin
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Correspondence: (I.V.B.); (N.V.T.)
| | | | - Nina V. Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Correspondence: (I.V.B.); (N.V.T.)
| |
Collapse
|
13
|
Liu J, Lindstrom AJ, Marler TE, Gong X. Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae. ANNALS OF BOTANY 2022; 129:217-230. [PMID: 34520529 PMCID: PMC8796677 DOI: 10.1093/aob/mcab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Previous molecular dating studies revealed historical mass extinctions and recent radiations of extant cycads, but debates still exist between palaeobotanists and evolutionary biologists regarding the origin and evolution of Cycadaceae. METHODS Using whole plastomic data, we revisited the phylogeny of this family and found the Palawan endemic Cycas clade was strongly related to all lineages from Southeast Eurasia, coinciding with a plate drift event occurring in the Early Oligocene. By integrating fossil and biogeographical calibrations as well as molecular data from protein-coding genes, we established different calibration schemes and tested competing evolutionary timelines of Cycadaceae. KEY RESULTS We found recent dispersal cannot explain the distribution of Palawan Cycas, yet the scenario including the tectonic calibration yielded a mean crown age of extant Cycadaceae of ~69-43 million years ago by different tree priors, consistent with multiple Palaeogene fossils assigned to this family. Biogeographical analyses incorporating fossil distributions revealed East Asia as the ancestral area of Cycadaceae. CONCLUSIONS Our findings challenge the previously proposed Middle-Late Miocene diversification of cycads and an Indochina origin for Cycadaceae and highlight the importance of combining phylogenetic clades, tectonic events and fossils for rebuilding the evolutionary history of lineages that have undergone massive extinctions.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- For correspondence. Email , or
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi 20250, Thailand
- For correspondence. Email , or
| | - Thomas E Marler
- Western Pacific Tropical Research Center, University of Guam, UOG Station, Mangilao, GU 96923, USA
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- For correspondence. Email , or
| |
Collapse
|
14
|
Taxonomic, ecological and morphological diversity of Ponto-Caspian gammaroidean amphipods: a review. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-021-00536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Karabanov DP, Bekker EI, Kotov AA. Underestimation of the Effect of Biologiocal Invasions in Phylogeographic Reconstructions as Seen in Daphnia magna (Crustacea, Cladocera). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021080136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Mmonwa KL, Barker NP, McQuaid CD, Teske PR. Coastal dunefields maintain pre-Holocene genetic structure in a rocky shore red alga. JOURNAL OF PHYCOLOGY 2021; 57:1542-1553. [PMID: 33982309 DOI: 10.1111/jpy.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Most intertidal algae have limited dispersal potential, and areas that lack hard substratum suitable for attachment are thus expected to isolate regional populations from each other. Here, we used nuclear and mitochondrial genetic data to compare genetic structure in two co-distributed intertidal red algae with different dispersal potential along the South African coastline. Gelidium pristoides is divided into a south-eastern and a south-western evolutionary lineage separated by extensive, continuous sandy shoreline habitat adjacent to coastal dunefields. In contrast, Hypnea spicifera is genetically homogeneous throughout its range. In G. pristoides, the genetic breaks are associated with contemporary coastal dunefields. The age of the divergence event suggests that this may reflect the effect of older dispersal barriers, and that genetic structure was subsequently maintained by the formation of contemporary coastal dunefields.
Collapse
Affiliation(s)
- Kolobe Lucas Mmonwa
- Research and Monitoring, KwaZulu-Natal Sharks Board, Umhlanga Rocks, South Africa
| | - Nigel Paul Barker
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - Christopher David McQuaid
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Peter Rodja Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| |
Collapse
|
17
|
Silliman K, Indorf JL, Knowlton N, Browne WE, Hurt C. Base-substitution mutation rate across the nuclear genome of Alpheus snapping shrimp and the timing of isolation by the Isthmus of Panama. BMC Ecol Evol 2021; 21:104. [PMID: 34049492 PMCID: PMC8164322 DOI: 10.1186/s12862-021-01836-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background The formation of the Isthmus of Panama and final closure of the Central American Seaway (CAS) provides an independent calibration point for examining the rate of DNA substitutions. This vicariant event has been widely used to estimate the substitution rate across mitochondrial genomes and to date evolutionary events in other taxonomic groups. Nuclear sequence data is increasingly being used to complement mitochondrial datasets for phylogenetic and evolutionary investigations; these studies would benefit from information regarding the rate and pattern of DNA substitutions derived from the nuclear genome. Results To estimate the genome-wide neutral mutation rate (µ), genotype-by-sequencing (GBS) datasets were generated for three transisthmian species pairs in Alpheus snapping shrimp. A range of bioinformatic filtering parameters were evaluated in order to minimize potential bias in mutation rate estimates that may result from SNP filtering. Using a Bayesian coalescent approach (G-PhoCS) applied to 44,960 GBS loci, we estimated µ to be 2.64E−9 substitutions/site/year, when calibrated with the closure of the CAS at 3 Ma. Post-divergence gene flow was detected in one species pair. Failure to account for this post-split migration inflates our substitution rate estimates, emphasizing the importance of demographic methods that can accommodate gene flow. Conclusions Results from our study, both parameter estimates and bioinformatic explorations, have broad-ranging implications for phylogeographic studies in other non-model taxa using reduced representation datasets. Our best estimate of µ that accounts for coalescent and demographic processes is remarkably similar to experimentally derived mutation rates in model arthropod systems. These results contradicted recent suggestions that the closure of the Isthmus was completed much earlier (around 10 Ma), as mutation rates based on an early calibration resulted in uncharacteristically low genomic mutation rates. Also, stricter filtering parameters resulted in biased datasets that generated lower mutation rate estimates and influenced demographic parameters, serving as a cautionary tale for the adherence to conservative bioinformatic strategies when generating reduced-representation datasets at the species level. To our knowledge this is the first use of transisthmian species pairs to calibrate the rate of molecular evolution from GBS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01836-3.
Collapse
Affiliation(s)
- Katherine Silliman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA. .,Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Jane L Indorf
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Carla Hurt
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.,Department of Biology, Tennessee Tech University, Cookeville, TN, 38505, USA
| |
Collapse
|
18
|
Karabanov DP, Kodukhova YV, Pashkov AN, Reshetnikov AN, Makhrov AA. “Journey to the West”: Three Phylogenetic Lineages Contributed to the Invasion of Stone Moroko, Pseudorasbora parva (Actinopterygii: Cyprinidae). RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2021. [DOI: 10.1134/s2075111721010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Salvi D, Pinho C, Mendes J, Harris DJ. Fossil-calibrated time tree of Podarcis wall lizards provides limited support for biogeographic calibration models. Mol Phylogenet Evol 2021; 161:107169. [PMID: 33798673 DOI: 10.1016/j.ympev.2021.107169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022]
Abstract
Podarcis wall lizards are endemic to the Mediterranean Basin where they represent the predominant reptile group. Despite being extensively used as model organisms in evolutionary and ecological studies their phylogeny and historical biogeography are still incompletely resolved. Moreover, molecular clock calibrations used in wall lizard phylogeography are based on the assumption of vicariant speciation triggered by the abrupt Mediterranean Sea level rise at the end of the Messinian salinity crisis (MSC). However, the validity of this biogeographic calibration remains untested. In this study we inferred a robust time tree based on multilocus data and fossil calibrations using both gene concatenation and species-tree approaches and including models with gene-flow. We found five deeply divergent, geographically coherent, and well-supported clades comprising species from i) Iberian Peninsula and North Africa; ii) Western Mediterranean islands, iii) Sicilian and Maltese islands; and iv-v) Balkan region and Aegean islands. The mitochondrial tree shows some inconsistencies with the species tree that warrant future investigation. Diversification of main clades is estimated in a short time frame during the Middle Miocene and might have been associated with a period of global climate cooling with the establishment of a marked climatic zonation in Europe. Cladogenetic events within the main clades are scattered throughout the time tree, from the Late Miocene to the Early Pleistocene, suggesting that speciation events in wall lizards reflect a complex interplay between regional topography, climate and geological history rather than a shared major climatic or paleogeographic event. Our absolute time estimates, as well as a relative dating approach, demonstrate that the assumption of a causal link between sea-level rise at the end of the MSC and the diversification of many island endemics is not justified. This study reinforces the notion that multiple dispersal and vicariant events, at different time frames, are required to explain current allopatric distributions and to account for the historical assembly of Mediterranean biota, and cautions against the use of biogeographic calibrations based on the assumption of vicariance.
Collapse
Affiliation(s)
- Daniele Salvi
- University of L'Aquila, Department of Health, Life and Environmental Sciences, 67100 Coppito, L'Aquila, Italy; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Catarina Pinho
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Joana Mendes
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - D James Harris
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
20
|
Heads M, Grehan JR. The Galápagos Islands: biogeographic patterns and geology. Biol Rev Camb Philos Soc 2021; 96:1160-1185. [PMID: 33749122 DOI: 10.1111/brv.12696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.
Collapse
Affiliation(s)
- Michael Heads
- Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY, 14211-1293, U.S.A
| | - John R Grehan
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, 3215 Hull Rd, Gainesville, FL, 32611, U.S.A
| |
Collapse
|
21
|
Sainz-Escudero L, López-Estrada EK, Rodríguez-Flores PC, García-París M. Settling taxonomic and nomenclatural problems in brine shrimps, Artemia (Crustacea: Branchiopoda: Anostraca), by integrating mitogenomics, marker discordances and nomenclature rules. PeerJ 2021; 9:e10865. [PMID: 33854829 PMCID: PMC7955675 DOI: 10.7717/peerj.10865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/10/2021] [Indexed: 11/26/2022] Open
Abstract
High morphological plasticity in populations of brine shrimp subjected to different environmental conditions, mainly salinity, hindered for centuries the identification of the taxonomic entities encompassed within Artemia. In addition, the mismatch between molecular and morphological evolution rates complicates the characterization of evolutionary lineages, generating taxonomic problems. Here, we propose a phylogenetic hypothesis for Artemia based on two new complete mitogenomes, and determine levels of congruence in the definition of evolutionary units using nuclear and mtDNA data. We used a fossil of Artemia to calibrate the molecular clock and discuss divergence times within the genus. The hypothesis proposed herein suggests a more recent time frame for lineage splitting than previously considered. Phylogeographic analyses were performed using GenBank available mitochondrial and nuclear markers. Evidence of gen e flow, identified through discordances between nuclear and mtDNA markers, was used to reconsider the specific status of some taxa. As a result, we consider Artemia to be represented by five evolutionary units: Southern Cone, Mediterranean-South African, New World, Western Asian, and Eastern Asian Lineages. After an exhaustive bibliographical revision, unavailable names for nomenclatural purposes were discarded. The remaining available names have been assigned to their respective evolutionary lineage. The proper names for the evolutionary units in which brine shrimps are structured remain as follows: Artemia persimilis Piccinelli & Prosdocimi, 1968 for the Southern Cone Lineage, Artemia salina (Linnaeus, 1758) for the Mediterranean-SouthAfrican Lineage, Artemia urmiana Günther, 1899 for the Western Asian Lineage, and Artemia sinica Cai, 1989 for the Eastern Asian Lineage. The name Artemia monica Verrill, 1869 has nomenclatural priority over A. franciscana Kellogg, 1906 for naming the New World Lineage. New synonymies are proposed for A. salina (= C. dybowskii Grochowski, 1896 n. syn., and A. tunisiana Bowen & Sterling, 1978 n. syn.), A. monica (= A. franciscana Kellogg, 1906 n. syn., and A. salina var. pacifica Sars, 1904 n. syn.); A. urmiana (= B. milhausenii Fischer de Waldheim, 1834 n. syn., A. koeppeniana Fischer, 1851 n. syn., A. proxima King, 1855 n. syn., A. s. var. biloba Entz, 1886 n. syn., A. s. var. furcata Entz, 1886 n. syn., A. asiatica Walter, 1887 n. syn., A. parthenogenetica Bowen & Sterling, 1978 n. syn., A. ebinurica Qian & Wang, 1992 n. syn., A. murae Naganawa, 2017 n. syn., and A. frameshifta Naganawa & Mura, 2017 n. syn.). Internal deep nuclear structuring within the A. monica and A. salina clades, might suggest the existence of additional evolutionary units within these taxa.
Collapse
Affiliation(s)
- Lucía Sainz-Escudero
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Fundación Global Nature, Las Rozas, Madrid, Spain
| | | | - Paula Carolina Rodríguez-Flores
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | | |
Collapse
|
22
|
Harigai W, Saito A, Suzuki H, Yamamoto M. Genetic Diversity of Ligidium Isopods in Hokkaido and Niigata, Northern Japan, Based on Mitochondrial DNA Analysis. Zoolog Sci 2021; 37:417-428. [PMID: 32972082 DOI: 10.2108/zs200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
The genetic diversity of the genus Ligidium in Hokkaido and Niigata, northern Japan, was investigated by analyzing the cytochrome c oxidase subunit 1 (CO1) region in the mitochondrial DNA (mtDNA). The genetic diversity in Hokkaido was much lower than that in Niigata. Nine different operational taxonomic units (OTUs) were identified. Only a single OTU, most likely Ligidium japonicum, was found in Hokkaido, whereas all nine OTUs were found in Niigata. Using the mtDNA evolutionary rate determined for the marine invertebrate Haptosquilla pulchella (Miers, 1880), population expansion for OTU1 in Hokkaido was estimated to have occurred at 12,600 years BP, suggesting that Ligidium underwent a bottleneck due to glacial cooling, and the population then expanded after postglacial warming. Assuming that the expansion of the OTU1 population occurred at 9600 years BP, when the sea surface temperature rose offshore of Tokachi in the Northwestern Pacific, the evolutionary rate (µ) of the mtDNA CO1 region in Ligidium is calculated as: 0.087 (95% confidence intervals: min: 0.042-max: 0.12) (substitutions/site/million years). The presence of a haplotype common to Hokkaido and Niigata implies that the haplotype migrated across the Tsugaru Strait. Considering that geological evidence indicates that the Tsugaru Strait was continuously present even during the last glacial maximum when the sea level was at its lowest, accidental transport by human beings or animals might have been critical to the migration of Ligidium.
Collapse
Affiliation(s)
- Wakana Harigai
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan,
| | - Aya Saito
- Department of Earth and Planetary Sciences, School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masanobu Yamamoto
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
23
|
Korábek O, Kosová T, Dolejš P, Petrusek A, Neubert E, Juřičková L. Geographic isolation and human-assisted dispersal in land snails: a Mediterranean story of Helix borealis and its relatives (Gastropoda: Stylommatophora: Helicidae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The Mediterranean basin is a major centre for land-snail diversity, with many localized endemics, but there are also species widely spread by humans. Both endemics and introductions can be found in the snail genus Helix, which comprises many large-bodied species used for human consumption in the past and present. The Mediterranean clade of Helix is currently distributed throughout this region, but the phylogenetic and biogeographic relationships among its forms from different parts of the basin remain enigmatic. The reasons include insufficient sampling, taxa with unclear taxonomy and a significant impact of human-assisted transport obscuring the natural distribution of phylogenetic lineages. We provide evidence that European and Anatolian populations of H. cincta and its relatives are not native to those regions, but originate from the northern Levant. These results have implications for taxonomy of the genus, but also for the understanding of its evolutionary history. We posit that the Mediterranean clade consists of four geographically separated groups, which diversified in Northern Africa, the Apennine Peninsula and Corsica, the Aegean and Greece, and the northern Levant. This geographic pattern has been subsequently blurred by multiple instances of human-assisted dispersal. However, revealing the founding populations with certainty requires thorough sampling in currently inaccessible countries.
Collapse
Affiliation(s)
- Ondřej Korábek
- Department of Ecology, Faculty of Science, Charles University, Viničná, Praha, CZ, Czechia
| | - Tereza Kosová
- Department of Zoology, Faculty of Science, Charles University, Viničná, Praha, CZ, Czechia
| | - Petr Dolejš
- Department of Zoology, Natural History Museum, National Museum, Cirkusová, Praha 9-Horní Počernice, CZ, Czechia
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Viničná, Praha, CZ, Czechia
| | - Eike Neubert
- Natural History Museum of the Burgergemeinde Bern, Bernastrasse, Bern, CH, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse, Bern, CH, Switzerland
| | - Lucie Juřičková
- Department of Zoology, Faculty of Science, Charles University, Viničná, Praha, CZ, Czechia
| |
Collapse
|
24
|
Stelbrink B, Richter R, Köhler F, Riedel F, Strong EE, Van Bocxlaer B, Albrecht C, Hauffe T, Page TJ, Aldridge DC, Bogan AE, Du LN, Manuel-Santos MR, Marwoto RM, Shirokaya AA, Von Rintelen T. Global Diversification Dynamics Since the Jurassic: Low Dispersal and Habitat-Dependent Evolution Explain Hotspots of Diversity and Shell Disparity in River Snails (Viviparidae). Syst Biol 2021; 69:944-961. [PMID: 32061133 DOI: 10.1093/sysbio/syaa011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/03/2023] Open
Abstract
The Viviparidae, commonly known as River Snails, is a dominant group of freshwater snails with a nearly worldwide distribution that reaches its highest taxonomic and morphological diversity in Southeast Asia. The rich fossil record is indicative of a probable Middle Jurassic origin on the Laurasian supercontinent where the group started to diversify during the Cretaceous. However, it remains uncertain when and how the biodiversity hotspot in Southeast Asia was formed. Here, we used a comprehensive genetic data set containing both mitochondrial and nuclear markers and comprising species representing 24 out of 28 genera from throughout the range of the family. To reconstruct the spatiotemporal evolution of viviparids on a global scale, we reconstructed a fossil-calibrated phylogeny. We further assessed the roles of cladogenetic and anagenetic events in range evolution. Finally, we reconstructed the evolution of shell features by estimating ancestral character states to assess whether the appearance of sculptured shell morphologies was driven by major habitat shifts. The molecular phylogeny supports the monophyly of the three subfamilies, the Bellamyinae, Lioplacinae, and Viviparinae, but challenges the currently accepted genus-level classification in several cases. The almost global distribution of River Snails has been influenced both by comparatively ancient vicariance and more recent founder events. In Southeast Asia, Miocene dispersal was a main factor in shaping the modern species distributions. A recurrent theme across different viviparid taxa is that many species living in lentic waters exhibit sculptured shells, whereas only one strongly sculptured species is known from lotic environments. We show that such shell sculpture is habitat-dependent and indeed evolved several times independently in lentic River Snails. Considerably high transition rates between shell types in lentic habitats probably caused the co-occurrence of morphologically distinct shell types in several lakes. In contrast, directional evolution toward smooth shells in lotic habitats, as identified in the present analyses, explains why sculptured shells are rarely found in these habitats. However, the specific factors that promoted changes in shell morphology require further work. [biogeographical analyses; fossil-calibrated phylogeny; fossil-constrained analyses; Southeast Asia; stochastic character mapping.].
Collapse
Affiliation(s)
- Björn Stelbrink
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.,Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Romy Richter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Frank Köhler
- Australian Museum, Australian Museum Research Institute, 1 William Street, Sydney, NSW 2010, Australia
| | - Frank Riedel
- Department of Earth Sciences, Institute of Geological Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany.,Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Chenggong 650504, China
| | - Ellen E Strong
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington DC 20560, USA
| | - Bert Van Bocxlaer
- CNRS, Univ. Lille, UMR 8198 Evo-Eco-Paleo, 59655 Lille, France.,Limnology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Torsten Hauffe
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany
| | - Timothy J Page
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan QLD 4111, Australia
| | - David C Aldridge
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Arthur E Bogan
- Research Laboratory, North Carolina State Museum of Natural Sciences, 11 West Jones St, Raleigh, NC 27601, USA
| | - Li-Na Du
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541004, China
| | | | - Ristiyanti M Marwoto
- Zoology Division (Museum Zoologicum Bogoriense), Research Center for Biology, LIPI, Km. 46 Jl. Raya Bogor, Cibinong, Bogor, West Java 16911, Indonesia
| | - Alena A Shirokaya
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, Ulan-Batorskaya St 3, 664033 Irkutsk, Russia
| | - Thomas Von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| |
Collapse
|
25
|
Richmond JQ, Ota H, Grismer LL, Fisher RN. Influence of niche breadth and position on the historical biogeography of seafaring scincid lizards. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Niche breadth and position can influence diversification among closely related species or populations, yet limited empirical data exist concerning the predictability of the outcomes. We explored the effects of these factors on the evolution of the Emoia atrocostata species group, an insular radiation of lizards in the western Pacific Ocean and Indo-Australasia composed of both endemic and widespread species that differ in niche occupancy. We used molecular data and phylogeographical diffusion models to estimate the timing and patterns of range expansion, and ancestral reconstruction methods to infer shifts in ecology. We show evidence of multidirectional spread from a centre of origin in western Micronesia, and that the phyletic diversity of the group is derived from a putative habitat specialist that survives in the littoral zone. This species is composed of paraphyletic lineages that represent stages or possible endpoints in the continuum toward speciation. Several descendant species have transitioned to either strand or interior forest habitat, but only on remote islands with depauperate terrestrial faunas. Our results suggest that the atrocostata group might be in the early phases of a Wilsonian taxon cycle and that the capacity to tolerate salt stress has promoted dispersal and colonization of remote oceanic islands. Divergence itself, however, is largely driven by geographical isolation rather than shifts in ecology.
Collapse
Affiliation(s)
| | - Hidetoshi Ota
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - L Lee Grismer
- Department of Biology, La Sierra University, Riverside, CA, USA
| | | |
Collapse
|
26
|
Katz AD. Inferring Evolutionary Timescales without Independent Timing Information: An Assessment of "Universal" Insect Rates to Calibrate a Collembola (Hexapoda) Molecular Clock. Genes (Basel) 2020; 11:genes11101172. [PMID: 33036318 PMCID: PMC7600954 DOI: 10.3390/genes11101172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/04/2023] Open
Abstract
Previous estimates of nucleotide substitution rates are routinely applied as secondary or “universal” molecular clock calibrations for estimating evolutionary timescales in groups that lack independent timing information. A major limitation of this approach is that rates can vary considerably among taxonomic groups, but the assumption of rate constancy is rarely evaluated prior to using secondary rate calibrations. Here I evaluate whether an insect mitochondrial DNA clock is appropriate for estimating timescales in Collembola—a group of insect-like arthropods characterized by high levels of cryptic diversity. Relative rates of substitution in cytochrome oxidase subunit 1 (COI) were inferred via Bayesian analysis across a topologically constrained Hexapod phylogeny using a relaxed molecular clock model. Rates for Collembola did not differ significantly from the average rate or from the rates estimated for most other groups (25 of 30), suggesting that (1) their apparent cryptic diversity cannot be explained by accelerated rates of molecular evolution and (2) clocks calibrated using “universal” insect rates may be appropriate for estimating evolutionary timescales in this group. However, of the 31 groups investigated, 10 had rates that deviated significantly from the average (6 higher, 4 lower), underscoring the need for caution and careful consideration when applying secondary insect rate calibrations. Lastly, this study exemplifies a relatively simple approach for evaluating rate constancy within a taxonomic group to determine whether the use of secondary rates are appropriate for molecular clock calibrations.
Collapse
Affiliation(s)
- Aron D. Katz
- Engineer Research Development Center, 2902 Newmark Dr., Champaign, IL 61826, USA;
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 South Goodwin Ave., Urbana, IL 61801, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 South Oak Street, Champaign, IL 61820, USA
| |
Collapse
|
27
|
Guindon S. Rates and Rocks: Strengths and Weaknesses of Molecular Dating Methods. Front Genet 2020; 11:526. [PMID: 32536940 PMCID: PMC7267027 DOI: 10.3389/fgene.2020.00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
I present here an in-depth, although non-exhaustive, review of two topics in molecular dating. Clock models, which describe the evolution of the rate of evolution, are considered first. Some of the shortcomings of popular approaches-uncorrelated clock models in particular-are presented and discussed. Autocorrelated models are shown to be more reasonable from a biological perspective. Some of the most recent autocorrelated models also rely on a coherent treatment of instantaneous and average substitution rates while previous models are based on implicit approximations. Second, I provide a brief overview of the processes involved in collecting and preparing fossil data. I then review the main techniques that use this data for calibrating the molecular clock. I argue that, in its current form, the fossilized birth-death process relies on assumptions about the mechanisms underlying fossilization and the data collection process that may negatively impact the date estimates. Node-dating approaches make better use of the data available, even though they rest on paleontologists' intervention to prepare raw fossil data. Altogether, this study provides indications that may help practitioners in selecting appropriate methods for molecular dating. It will also hopefully participate in defining the contour of future methodological developments in the field.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CNRS and Université Montpellier (UMR 5506), Montpellier, France
| |
Collapse
|
28
|
Čkrkić J, Petrović A, Kocić K, Mitrović M, Kavallieratos NG, van Achterberg C, Hebert PDN, Tomanović Ž. Phylogeny of the Subtribe Monoctonina (Hymenoptera, Braconidae, Aphidiinae). INSECTS 2020; 11:insects11030160. [PMID: 32121620 PMCID: PMC7143268 DOI: 10.3390/insects11030160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/23/2022]
Abstract
Members of the Monoctonina subtribe have long been neglected in applied studies of the subfamily Aphidiinae, due to their low economic importance, as they do not parasitize pests of cultivated plants. Consequently, data about this group are scarce, including its taxonomy and phylogeny. In the present study, we explore inter- and intraspecific genetic variation of Monoctonina species, including genera Monoctonus Haliday 1833, Monoctonia Starý 1962, Falciconus Mackauer 1959 and Harkeria Cameron 1900. We employ two molecular markers, the barcode region of the mitochondrial cytochrome c oxidase subunit I (COI) and the D2 region of the 28S nuclear gene (28S rDNA), to analyze genetic structuring and phylogeny of all available Monoctonina species, and combine them with morphological data for an integrative approach. We report one new species, and three potentially new species which can be formally described when further specimens are available. Analysis of phylogenetic relationships within the subtribe shows a basal position for the genera Falciconus and Monoctonia, and the close relatedness of Harkeria and Monoctonus.
Collapse
Affiliation(s)
- Jelisaveta Čkrkić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.P.); (K.K.); (Ž.T.)
- Correspondence:
| | - Andjeljko Petrović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.P.); (K.K.); (Ž.T.)
| | - Korana Kocić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.P.); (K.K.); (Ž.T.)
| | - Milana Mitrović
- Institute for Plant Protection and Environment, Department of Plant Pests, Banatska 33, 11000 Belgrade, Serbia;
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str., 11885 Athens, Attica, Greece;
| | | | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Željko Tomanović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.P.); (K.K.); (Ž.T.)
| |
Collapse
|
29
|
Luo A, Duchêne DA, Zhang C, Zhu CD, Ho SYW. A Simulation-Based Evaluation of Tip-Dating Under the Fossilized Birth-Death Process. Syst Biol 2020; 69:325-344. [PMID: 31132125 PMCID: PMC7175741 DOI: 10.1093/sysbio/syz038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/25/2022] Open
Abstract
Bayesian molecular dating is widely used to study evolutionary timescales. This procedure usually involves phylogenetic analysis of nucleotide sequence data, with fossil-based calibrations applied as age constraints on internal nodes of the tree. An alternative approach is tip-dating, which explicitly includes fossil data in the analysis. This can be done, for example, through the joint analysis of molecular data from present-day taxa and morphological data from both extant and fossil taxa. In the context of tip-dating, an important development has been the fossilized birth-death process, which allows non-contemporaneous tips and sampled ancestors while providing a model of lineage diversification for the prior on the tree topology and internal node times. However, tip-dating with fossils faces a number of considerable challenges, especially, those associated with fossil sampling and evolutionary models for morphological characters. We conducted a simulation study to evaluate the performance of tip-dating using the fossilized birth-death model. We simulated fossil occurrences and the evolution of nucleotide sequences and morphological characters under a wide range of conditions. Our analyses of these data show that the number and the maximum age of fossil occurrences have a greater influence than the degree of among-lineage rate variation or the number of morphological characters on estimates of node times and the tree topology. Tip-dating with the fossilized birth-death model generally performs well in recovering the relationships among extant taxa but has difficulties in correctly placing fossil taxa in the tree and identifying the number of sampled ancestors. The method yields accurate estimates of the ages of the root and crown group, although the precision of these estimates varies with the probability of fossil occurrence. The exclusion of morphological characters results in a slight overestimation of node times, whereas the exclusion of nucleotide sequences has a negative impact on inference of the tree topology. Our results provide an overview of the performance of tip-dating using the fossilized birth-death model, which will inform further development of the method and its application to key questions in evolutionary biology.
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Marshall CR. Using the Fossil Record to Evaluate Timetree Timescales. Front Genet 2019; 10:1049. [PMID: 31803226 PMCID: PMC6871265 DOI: 10.3389/fgene.2019.01049] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
The fossil and geologic records provide the primary data used to established absolute timescales for timetrees. For the paleontological evaluation of proposed timetree timescales, and for node-based methods for constructing timetrees, the fossil record is used to bracket divergence times. Minimum brackets (minimum ages) can be established robustly using well-dated fossils that can be reliably assigned to lineages based on positive morphological evidence. Maximum brackets are much harder to establish, largely because it is difficult to establish definitive evidence that the absence of a taxon in the fossil record is real and not just due to the incompleteness of the fossil and rock records. Five primary methods have been developed to estimate maximum age brackets, each of which is discussed. The fact that the fossilization potential of a group typically decreases the closer one approaches its time of origin increases the challenge of estimating maximum age brackets. Additional complications arise: 1) because fossil data actually bracket the time of origin of the first relevant fossilizable morphology (apomorphy), not the divergence time itself; 2) due to the phylogenetic uncertainty in the placement of fossils; 3) because of idiosyncratic temporal and geographic gaps in the rock and fossil records; and 4) if the preservation potential of a group changed significantly during its history. In contrast, uncertainties in the absolute ages of fossils are typically relatively unimportant, even though the vast majority of fossil cannot be dated directly. These issues and relevant quantitative methods are reviewed, and their relative magnitudes assessed, which typically correlate with the age of the group, its geographic range, and species richness.
Collapse
Affiliation(s)
- Charles R. Marshall
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
31
|
Swenson U, Havran JC, Munzinger J, Mcloughlin S, Nylinder S. Metapopulation Vicariance, Age of Island Taxa and Dispersal: A Case Study Using the Pacific Plant Genus Planchonella (Sapotaceae). Syst Biol 2019; 68:1020-1033. [PMID: 31157892 PMCID: PMC6802573 DOI: 10.1093/sysbio/syz025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Oceanic islands originate from volcanism or tectonic activity without connections to continental landmasses, are colonized by organisms, and eventually vanish due to erosion and subsidence. Colonization of oceanic islands occurs through long-distance dispersals (LDDs) or metapopulation vicariance, the latter resulting in lineages being older than the islands they inhabit. If metapopulation vicariance is valid, island ages cannot be reliably used to provide maximum age constraints for molecular dating. We explore the relationships between the ages of members of a widespread plant genus (Planchonella, Sapotaceae) and their host islands across the Pacific to test various assumptions of dispersal and metapopulation vicariance. We sampled three nuclear DNA markers from 156 accessions representing some 100 Sapotaceae taxa, and analyzed these in BEAST with a relaxed clock to estimate divergence times and with a phylogeographic diffusion model to estimate range expansions over time. The phylogeny was calibrated with a secondary point (the root) and fossils from New Zealand. The dated phylogeny reveals that the ages of Planchonella species are, in most cases, consistent with the ages of the islands they inhabit. Planchonella is inferred to have originated in the Sahul Shelf region, to which it back-dispersed multiple times. Fiji has been an important source for range expansion in the Pacific for the past 23 myr. Our analyses reject metapopulation vicariance in all cases tested, including between oceanic islands, evolution of an endemic Fiji-Vanuatu flora, and westward rollback vicariance between Vanuatu and the Loyalty Islands. Repeated dispersal is the only mechanism able to explain the empirical data. The longest (8900 km) identified dispersal is between Palau in the Pacific and the Seychelles in the Indian Ocean, estimated at 2.2 Ma (0.4-4.8 Ma). The first split in a Hawaiian lineage (P. sandwicensis) matches the age of Necker Island (11.0 Ma), when its ancestor diverged into two species that are distinguished by purple and yellow fruits. Subsequent establishment across the Hawaiian archipelago supports, in part, progression rule colonization. In summary, we found no explanatory power in metapopulation vicariance and conclude that Planchonella has expanded its range across the Pacific by LDD. We contend that this will be seen in many other groups when analyzed in detail.
Collapse
Affiliation(s)
- Ulf Swenson
- Department of Botany, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - J Christopher Havran
- Department of Biological Sciences, Campbell University, 205 Day Dorm Road, Buies Creek, NC 27506, USA
| | - Jérôme Munzinger
- AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, 34000 Montpellier, France
| | - Stephen Mcloughlin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Stephan Nylinder
- Department of Psychology, Gothenburg University, Box 500, SE-405 30 Göteborg, Sweden
| |
Collapse
|
32
|
Ekimova I, Valdés Á, Chichvarkhin A, Antokhina T, Lindsay T, Schepetov D. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol Phylogenet Evol 2019; 141:106609. [PMID: 31494182 DOI: 10.1016/j.ympev.2019.106609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
While the majority nudibranch clades are more species rich in the tropics, the genus Dendronotus is mainly represented in Arctic and boreal regions. This distribution pattern remains poorly understood. An integrative approach and novel data provided valuable insights into processes driving Dendronotus radiation and speciation. We propose an evolutionary scenario based on molecular phylogenetics and morphological, ecological, ontogenetic data, combined with data on complex geology and paleoclimatology of this region. Estimated phylogenetic relationships based on four molecular markers (COI, 16S, H3 and 28S) shows strong correlation with radular morphology, diet and biogeographical pattern. Ancestral area reconstruction (AAR) provides evidence for a tropical Pacific origin of the genus. Based on AAR and divergence time estimates we conclude that the evolution of Dendronotus has been shaped by different processes: initial migration out of the tropics, diet-driven adaptive radiation in the North Pacific influenced by Miocene climate change, and subsequent allopatric speciation resulting from successive closings of the Bering strait and cooling of the Arctic Ocean during the Pliocene-Pleistocene. At the same time, contemporary amphiboreal species appear to have dispersed into the Atlantic fairly recently.
Collapse
Affiliation(s)
- Irina Ekimova
- Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; Far Eastern Federal University, Sukhanova str., 8, 690950 Vladivostok, Russia.
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Anton Chichvarkhin
- Far Eastern Federal University, Sukhanova str., 8, 690950 Vladivostok, Russia; A.V. Zhirmunsky Institute of Marine Biology, Russian Academy of Sciences, Palchevskogo 17, 690041 Vladivostok, Russia
| | - Tatiana Antokhina
- A.N. Severstov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, Russia
| | - Tabitha Lindsay
- Department of Biology, South Seattle Community College, 6000 16th Ave SW, Seattle, WA 98106, USA
| | - Dimitry Schepetov
- Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; N.K. Koltzov Institute of Developmental Biology RAS, Vavilov Str. 26, 119334 Moscow, Russia; National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| |
Collapse
|
33
|
Allegrucci G, Sbordoni V. Insights into the molecular phylogeny of Rhaphidophoridae, an ancient, worldwide lineage of Orthoptera. Mol Phylogenet Evol 2019; 138:126-138. [PMID: 31132518 DOI: 10.1016/j.ympev.2019.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
We investigated the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the family Rhaphidophoridae (Orthoptera, Ensifera). We used taxa representative of most of the regions embraced by the family, considering samples of Macropathinae from Gondwana land (i.e., Tasmania, Australia, New Zealand, South Africa, and South America); Aemodogryllinae and Rhaphidophorinae from Southern-eastern Asia (i.e., India, Bhutan, China, Philippines and the Sulawesi islands); Dolichopodainae and Troglophilinae from the Mediterranean region and Ceuthophilinae from North America. Based on previous papers, we carried out an analysis of both mitochondrial and nuclear DNA sequences considering the ribosomal RNA units 12S, 16S, 18S, and 28S. To reconstruct phylogeny, we use cladistics, Maximum Likelihood (ML), and Bayesian analyses. All phylogenetic analyses showed the same highly supported topology generally congruent with the classical systematic arrangement at the level of each sub-family but strongly disagree with previous affinity hypotheses between sub-families based on morphological characters. Our results reveal a close affinity between Asiatic and Gondwanian taxa from one hand and between North American and Mediterranean ones from the other hand. Dating estimates indicated that Rhaphidophoridae originated in the Cretaceous period during the Mesozoic era with the ancestral area located both in the northern and southern hemisphere. A possible biogeographic scenario, reconstructed using S-DEC with RASP software, suggested that the current distribution of Rhaphidophoridae might be explained by a combination of both dispersal and vicariance events occurred especially in the ancestral populations. The radiation of Rhaphidophoridae started within the Pangaea, where the ancestor of Rhaphidophoridae occurred throughout an ancestral area including Australia, North America, and the Mediterranean region. The opening of the Atlantic Ocean promoted the divergence of North American and Mediterranean lineages while the differentiation of the southern lineages, spread from Australia, appears to be related to the fragmentation of Gondwana land.
Collapse
|
34
|
The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity (Edinb) 2019; 123:634-646. [PMID: 31073237 DOI: 10.1038/s41437-019-0229-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 12/27/2022] Open
Abstract
Inferring the phylogeography of species with large distributions helps deciphering major diversification patterns that may occur in parallel across taxa. Here, we infer the evolutionary history of the Cape hare, Lepus capensis sensu lato, a species distributed from southern Africa to Asia, by analyzing variation at 18 microsatellites and 9 DNA (1 mitochondrial and 8 nuclear) sequenced loci, from field and museum-collected samples. Using a combination of assignment and coalescent-based methods, we show that the Cape hare is composed of five evolutionary lineages, distributed in distinct biogeographic regions-north-western Africa, eastern Africa, southern Africa, the Near East and the Arabian Peninsula. A deep phylogenetic break possibly dating to the Early Pleistocene was inferred between the African and Asian L. capensis groups, and the latter appear more closely related to other Eurasian hare species than to African Cape hares. The inferred phylogeographic structure is shared by numerous taxa distributed across the studied range, suggesting that environmental changes, such as the progressive aridification of the Saharo-Arabian desert and the fluctuations of savannah habitats in Sub-Saharan Africa, had comparable impacts across species. Fine-scale analyses of the western Sahara-Sahel populations showed rich fragmentation patterns for mitochondrial DNA but not for microsatellites, compatible with the environmental heterogeneity of the region and female philopatry. The complex evolutionary history of L. capensis sensu lato, which possibly includes interspecific gene flow, is not reflected by taxonomy. Integrating evolutionary inference contributes to an improved characterization of biodiversity, which is fundamental to foster the conservation of relevant evolutionary units.
Collapse
|
35
|
Hanazaki K, Tomozawa M, Suzuki Y, Kinoshita G, Yamamoto M, Irino T, Suzuki H. Estimation of Evolutionary Rates of Mitochondrial DNA in Two Japanese Wood Mouse Species Based on Calibrations with Quaternary Environmental Changes. Zoolog Sci 2019; 34:201-210. [PMID: 28589839 DOI: 10.2108/zs160169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reliable estimates of evolutionary rates of mitochondrial DNA might allow us to build realistic evolutionary scenarios covering broad time scales based on phylogenetic inferences. In the present study, we sought to obtain estimates of evolutionary rates in murine rodents using calibrations against historical biogeographic events. We first assumed that land-bridge-like structures that appeared intermittently at glacial maxima with 100,000-year intervals shaped the divergence patterns of cytochrome b (Cytb) sequences (1140 bp) of the larger Japanese wood mouse Apodemus speciosus. The comparison of sequences from peripheral remote islands that are separated from one another by deep straits allowed us to estimate mitochondrial DNA evolutionary rates (substitutions/site/million years) to be 0.027 to 0.036, with presumed calibrations from 140,000, 250,000, 350,000, and 440,000 years ago. Second, we addressed rapid expansion events inferred from analyses of the Cytb sequences of the lesser Japanese wood mouse A. argenteus. We detected five expansion signals in the dataset and established three categories based on the expansion parameter tau values: 3.9, 5.6-5.7, and 7.8-8.1. Considering that the climate became warmer 15,000, 53,000, and 115,000 years ago after preceding periods of rapid cooling, we calculated evolutionary rates to be 0.114, 0.047, and 0.031, respectively. This preliminary concept of the evolutionary rates on a time scale from 15,000 to 440,000 years ago for the wood mouse should be refined and tested in other species of murine rodents, including mice and rats.
Collapse
Affiliation(s)
- Kaori Hanazaki
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | | | - Yutaro Suzuki
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Gohta Kinoshita
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masanobu Yamamoto
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Tomohisa Irino
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Hitoshi Suzuki
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
36
|
Thode VA, Sanmartín I, Lohmann LG. Contrasting patterns of diversification between Amazonian and Atlantic forest clades of Neotropical lianas (Amphilophium, Bignonieae) inferred from plastid genomic data. Mol Phylogenet Evol 2019; 133:92-106. [DOI: 10.1016/j.ympev.2018.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/20/2018] [Accepted: 12/16/2018] [Indexed: 01/23/2023]
|
37
|
Iwanycki Ahlstrand N, Verstraete B, Hassemer G, Dunbar‐Co S, Hoggard R, Meudt HM, Rønsted N. Ancestral range reconstruction of remote oceanic island species of Plantago (Plantaginaceae) reveals differing scales and modes of dispersal. JOURNAL OF BIOGEOGRAPHY 2019; 46:706-722. [PMID: 31217659 PMCID: PMC6559316 DOI: 10.1111/jbi.13525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 05/26/2023]
Abstract
AIM The aim of this study was to resolve the phylogenetic placement of island taxa, reconstruct ancestral origins and resolve competing hypotheses of dispersal patterns and biogeographical histories for oceanic island endemic taxa within subgenus Plantago (Plantaginaceae). LOCATION Juan Fernández Islands, the Auckland Islands, Lord Howe Island, New Amsterdam Island, New Zealand, Tasmania, Falkland Islands, Rapa Iti and the Hawaiian Islands. TAXON Island endemics within Plantago (Plantaginaceae), a globally distributed taxonomic group comprising approximately 250 species. METHODS We use Bayesian phylogenetic and divergence time analyses and historical biogeographical analysis of molecular sequence data to infer the ancestral origins of the oceanic island species in Plantago. RESULTS Taxa within subgenus Plantago form clades based on geographic proximities and challenge previous phylogenetic relationships and classification based on morphology. We infer that biogeographic histories of oceanic island taxa from multiple islands were shaped by dispersal at different scales and possibly by different types of birds. The highly remote Hawaiian Islands and Rapa Iti were colonized from North American taxa in a pattern corresponding to known migration routes of large marine birds, rather than from New Zealand as previously hypothesized. The island endemics of Juan Fernández, the Falkland Islands, Lord Howe, Auckland Islands and New Zealand are found to have sources in the nearest continental areas. The analyses confirm recent speciation within subgenus Plantago - which is particularly heightened in island lineages in Hawaii and Rapa Iti - but show slightly older divergence times than previous molecular dating studies. MAIN CONCLUSIONS Using molecular data to infer ancestral ranges for plants with uncertain taxonomic relationships can greatly improve our understanding of biogeographical histories and help elucidate origins, dispersal modes and routes in widespread lineages with complex distribution patterns such as Plantago. We improve understanding of important floristic exchange areas between continents and islands as a result of long-distance dispersal. We infer that a combination of both stepping stone dispersal and extreme long-distance dispersal can shape insular floras, and that multiple floristic areas can be the sources of closely related island taxa. However, despite the successful dispersal of Plantago, radiation in island archipelagos is generally limited suggesting specific traits may limit diversification.
Collapse
Affiliation(s)
| | | | - G. Hassemer
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | | | - R. Hoggard
- Department of Microbiology and Plant BiologyUniversity of OklahomaTulsaOklahomaUSA
| | - H. M. Meudt
- Museum of New Zealand Te Papa TongarewaWellingtonNew Zealand
| | - N. Rønsted
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
38
|
Abstract
In this chapter, we give a not-so-long and self-contained introduction to computational molecular evolution. In particular, we present the emergence of the use of likelihood-based methods, review the standard DNA substitution models, and introduce how model choice operates. We also present recent developments in inferring absolute divergence times and rates on a phylogeny, before showing how state-of-the-art models take inspiration from diffusion theory to link population genetics, which traditionally focuses at a taxonomic level below that of the species, and molecular evolution. Although this is not a cookbook chapter, we try and point to popular programs and implementations along the way.
Collapse
|
39
|
Heads M. Recent advances in New Caledonian biogeography. Biol Rev Camb Philos Soc 2018; 94:957-980. [PMID: 30523662 DOI: 10.1111/brv.12485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
The biota of New Caledonia is one of the most unusual in the world. It displays high diversity and endemism, many peculiar absences, and far-flung biogeographic affinities. For example, New Caledonia is the only place on Earth with both main clades of flowering plants - the endemic Amborella and 'all the rest', and it also has the highest concentration of diversity in conifers. The discovery of Amborella's phylogenetic position led to a surge of interest in New Caledonian biogeography, and new studies are appearing at a rapid rate. This paper reviews work on the topic (mainly molecular studies) published since 2013. One current debate is focused on whether any biota survived the marine transgressions of the Paleocene and Eocene. Total submersion would imply that the entire fauna was derived by long-distance dispersal from continental areas since the Eocene, but only if no other islands (now submerged) were emergent. A review of the literature suggests there is little actual evidence in geology for complete submersion. An alternative explanation for New Caledonia's diversity is that the archipelago acted as a refugium, and that the biota avoided the extinctions that occurred in Australia. However, this is contradicted by the many groups that are anomalously absent or depauperate in New Caledonia, although represented there by a sister group. The anomalous absences, together with the unusual levels of endemism, can both be explained by vicariance at breaks in and around New Caledonia. New Caledonia has always been situated at or near a plate boundary, and its complex geological history includes the addition of new terranes (by accretion), orogeny, and rifting. New Caledonia comprises 'basement' terranes that were part of Gondwana, as well as island arc and forearc terranes that accreted to the basement after it separated from Gondwana. The regional tectonic history helps explain the regional biogeography, as well as distribution patterns within New Caledonia. These include endemics on the basement terranes (for example, the basal angiosperm, Amborella), disjunctions at the West Caledonian fault zone, and great biotic differences between Grande Terre and the Loyalty Islands.
Collapse
Affiliation(s)
- Michael Heads
- Buffalo Museum of Science, Buffalo, NY 14211-1293, U.S.A
| |
Collapse
|
40
|
Wallis GP, Jorge F. Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia. Mol Ecol 2018; 27:4368-4396. [DOI: 10.1111/mec.14875] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Affiliation(s)
| | - Fátima Jorge
- Department of Zoology; University of Otago; Dunedin New Zealand
| |
Collapse
|
41
|
Johns CA, Toussaint EFA, Breinholt JW, Kawahara AY. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc Biol Sci 2018; 285:rspb.2018.1047. [PMID: 30158307 DOI: 10.1098/rspb.2018.1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
The origins and evolution of Hawaiian biodiversity are a matter of controversy, and the mechanisms of lineage diversification for many organisms on this remote archipelago remain unclear. Here we focus on the poorly known endemic leaf-mining moth genus Philodoria (Lepidoptera, Gracillariidae), whose species feed on a diversity of Hawaiian plant lineages, many of which are critically endangered. We use anchored hybrid enrichment to assemble the first phylogenomic dataset (507 loci) for any Hawaiian animal taxon. To uncover the timing and pattern of diversification of these moths, we apply two frequently used dating calibration strategies, biogeographic calibrations and secondary calibrations. Island calibrations on their own resulted in much younger and unrealistic dates compared to strategies that relied on secondary calibrations. Philodoria probably originated on the now partially sunken islands of Laysan or Lisianski, approximately 21 Ma, and were associated with host plants in the families Ebenaceae, Malvaceae or Primulaceae. Major feeding groups associated with specific host-plant families originated soon after the plants colonized the islands. Allopatric isolation and host shifts, in concert and independently, probably play major roles in the diversification of Philodoria Our dating results indicate that Philodoria is among the oldest known Hawaiian arthropod lineages, and that island calibrations alone can lead to unrealistically young dates.
Collapse
Affiliation(s)
- Chris A Johns
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Jesse W Breinholt
- RAPiD Genomics, 747 SW 2nd Avenue IMB#14, Gainesville, FL 32601, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
42
|
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
43
|
Bowman LL, Kondrateva ES, Timofeyev MA, Yampolsky LY. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species. Mol Ecol 2018; 27:2544-2559. [PMID: 29691934 DOI: 10.1111/mec.14704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022]
Abstract
Local adaptation and phenotypic plasticity are main mechanisms of organisms' resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimated SNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in both SNP and transcript abundance differentiation is the SW-NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance. SNP differentiation is stronger for nonsynonymous than synonymous SNPs and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with the SNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat-shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature-mediated selection and possesses both genetic variation and plasticity to respond to novel temperature-related environmental pressures.
Collapse
Affiliation(s)
- Larry L Bowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Elizaveta S Kondrateva
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Maxim A Timofeyev
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
44
|
Beasley-Hall PG, Tierney SM, Weinstein P, Austin AD. A revised phylogeny of macropathine cave crickets (Orthoptera: Rhaphidophoridae) uncovers a paraphyletic Australian fauna. Mol Phylogenet Evol 2018; 126:153-161. [PMID: 29678644 DOI: 10.1016/j.ympev.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Australian cave crickets are members of the subfamily Macropathinae (Orthoptera: Rhaphidophoridae). The subfamily is thought to have originated prior to the tectonic separation of the supercontinent Gondwana based on distributions of extant lineages and molecular phylogenetic evidence, although the Australian fauna have been underrepresented in previous studies. The current study augments existing multigene data (using 12S, 16S, and 28S rRNA genes) to investigate the placement of the Australian representatives within the Macropathinae and to assess divergence dates of select clades. Results suggest that the endemic Tasmanian genus Parvotettix is the sister lineage to the remaining members of the subfamily, an outcome that presents a paraphyletic Australian fauna in contrast to previous studies. All other Australian taxa represented in this study (Micropathus and Novotettix) emerged as a sister group to the New Zealand and South American macropathine lineages. Estimation of phylogenetic divergence ages among the aforementioned clades were calibrated using two methods, in absence of suitable fossil records: (i) tectonic events depicting the fragmentation of Gondwanan landmasses that invoke vicariant scenarios of present day geographic distributions; and (ii) molecular evolutionary rates. Geological calibrations place the median age of the most recent common ancestor of extant macropathines at ∼125 to ∼165 Ma, whereas analyses derived from molecular substitution rates suggest a considerably younger origin of ∼32 Ma. This phylogenetic study represents the most rigorous taxonomic sampling of the Australian cave cricket fauna to date and stresses the influence of lineage representation on biogeographic inference.
Collapse
Affiliation(s)
- Perry G Beasley-Hall
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia(1).
| | - Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 27531, Australia
| | - Phillip Weinstein
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
45
|
Ye Z, Damgaard J, Burckhardt D, Gibbs G, Yuan J, Yang H, Bu W. Phylogeny and historical biogeography of Gondwanan moss-bugs (Insecta: Hemiptera: Coleorrhyncha: Peloridiidae). Cladistics 2018; 35:135-149. [DOI: 10.1111/cla.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zhen Ye
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road Tianjin 300071 China
| | - Jakob Damgaard
- Natural History Museum of Denmark, Zoological Museum; Universitetsparken 15 2100 Copenhagen Ø Denmark
| | - Daniel Burckhardt
- Naturhistorisches Museum; Augustinergasse 2 CH-4052 Basel Switzerland
| | - George Gibbs
- School of Biological Sciences; Victoria University of Wellington; Wellington New Zealand
| | - Juanjuan Yuan
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road Tianjin 300071 China
| | - Huanhuan Yang
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road Tianjin 300071 China
| | - Wenjun Bu
- Institute of Entomology; College of Life Sciences; Nankai University; 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
46
|
Bekker EI, Karabanov DP, Galimov YR, Haag CR, Neretina TV, Kotov AA. Phylogeography of Daphnia magna Straus (Crustacea: Cladocera) in Northern Eurasia: Evidence for a deep longitudinal split between mitochondrial lineages. PLoS One 2018; 13:e0194045. [PMID: 29543844 PMCID: PMC5854346 DOI: 10.1371/journal.pone.0194045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/25/2018] [Indexed: 11/30/2022] Open
Abstract
Species with a large geographic distributions present a challenge for phylogeographic studies due to logistic difficulties of obtaining adequate sampling. For instance, in most species with a Holarctic distribution, the majority of studies has concentrated on the European or North American part of the distribution, with the Eastern Palearctic region being notably understudied. Here, we study the phylogeography of the freshwater cladoceran Daphnia magna Straus, 1820 (Crustacea: Cladocera), based on partial mitochondrial COI sequences and using specimens from populations spread longitudinally from westernmost Europe to easternmost Asia, with many samples from previously strongly understudied regions in Siberia and Eastern Asia. The results confirm the previously suspected deep split between Eastern and Western mitochondrial haplotype super-clades. We find a narrow contact zone between these two super-clades in the eastern part of Western Siberia, with proven co-occurrence in a single lake in the Novosibirsk region. However, at present there is no evidence suggesting that the two mitochondrial super-clades represent cryptic species. Rather, they may be explained by secondary contact after expansion from different refugia. Interestingly, Central Siberia has previously been found to be an important contact zone also in other cladoceran species, and may thus be a crucial area for understanding the Eurasian phylogeography of freshwater invertebrates. Together, our study provides an unprecedented complete, while still not global, picture of the phylogeography of this important model species.
Collapse
Affiliation(s)
- Eugeniya I. Bekker
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Dmitry P. Karabanov
- Laboratory of Fish Ecology, I. D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Yaroslavl Area, Russia
| | - Yan R. Galimov
- Laboratory of Experimental Embryology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Christoph R. Haag
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Tatiana V. Neretina
- N.A.Pertsov White Sea Biological Station, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey A. Kotov
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- Kazan Federal University, Kazan, Russia
- * E-mail:
| |
Collapse
|
47
|
Leonardi M, Librado P, Der Sarkissian C, Schubert M, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Gamba C, Willerslev E, Orlando L. Evolutionary Patterns and Processes: Lessons from Ancient DNA. Syst Biol 2018; 66:e1-e29. [PMID: 28173586 PMCID: PMC5410953 DOI: 10.1093/sysbio/syw059] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/02/2022] Open
Abstract
Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution—time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.
Collapse
Affiliation(s)
- Michela Leonardi
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Ahmed H Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade, Copenhagen, Denmark.,Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, Toulouse, France
| |
Collapse
|
48
|
Coppard SE, Lessios HA. Phylogeography of the sand dollar genus Encope: implications regarding the Central American Isthmus and rates of molecular evolution. Sci Rep 2017; 7:11520. [PMID: 28912431 PMCID: PMC5599539 DOI: 10.1038/s41598-017-11875-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022] Open
Abstract
Vicariant events have been widely used to calibrate rates of molecular evolution, the completion of the Central American Isthmus more extensively than any other. Recent studies have claimed that rather than the generally accepted date of ~3 million years ago (Ma), the Isthmus was effectively complete by the middle Miocene, 13 Ma. We present a fossil calibrated phylogeny of the new world sand dollar genus Encope, based on one nuclear and four mitochondrial genes, calibrated with fossils at multiple nodes. Present day distributions of Encope are likely the result of multiple range contractions and extinction events. Most species are now endemic to a single region, but one widely distributed species in each ocean is composed of morphotypes previously described as separate species. The most recent separation between eastern Pacific and Caribbean extant clades occurred at 4.90 Ma, indicating that the Isthmus of Panama allowed genetic exchange until the Pliocene. The rate of evolution of mitochondrial genes in Encope has been ten times slower than in the closely related genera Mellita and Lanthonia. This large difference in rates suggests that splits between eastern Pacific and Caribbean biota, dated on the assumption of a "universal" mitochondrial DNA clock are not valid.
Collapse
Affiliation(s)
- Simon E Coppard
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama.
- Hamilton College, Department of Biology, 198 College Hill Road, Clinton, New York, 13323, USA.
| | - H A Lessios
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama
| |
Collapse
|
49
|
Molecular phylogenetics and dating of the problematic New Guinea microhylid frogs (Amphibia: Anura) reveals elevated speciation rates and need for taxonomic reclassification. Mol Phylogenet Evol 2017; 112:1-11. [DOI: 10.1016/j.ympev.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/09/2017] [Accepted: 04/08/2017] [Indexed: 11/23/2022]
|
50
|
Toussaint EFA, Tänzler R, Balke M, Riedel A. Transoceanic origin of microendemic and flightless New Caledonian weevils. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160546. [PMID: 28680653 PMCID: PMC5493895 DOI: 10.1098/rsos.160546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/10/2017] [Indexed: 05/26/2023]
Abstract
The origin of the astonishing New Caledonian biota continues to fuel a heated debate among advocates of a Gondwanan relict scenario and defenders of late oceanic dispersal. Here, we study the origin of New Caledonian Trigonopterus flightless weevils using a multimarker molecular phylogeny. We infer two independent clades of species found in the archipelago. Our dating estimates suggest a Late Miocene origin of both clades long after the re-emergence of New Caledonia about 37 Ma. The estimation of ancestral ranges supports an ancestral origin of the genus in a combined region encompassing Australia and New Guinea with subsequent colonizations of New Caledonia out of New Guinea in the mid-Miocene. The two New Caledonian lineages have had very different evolutionary trajectories. Colonizers belonging to a clade of foliage dwellers greatly diversified, whereas species inhabiting leaf-litter have been less successful.
Collapse
Affiliation(s)
| | - Rene Tänzler
- SNSB-Zoological State Collection (ZSM), Münchhausenstrasse 21, 81247 Munich, Germany
| | - Michael Balke
- SNSB-Zoological State Collection (ZSM), Münchhausenstrasse 21, 81247 Munich, Germany
- GeoBioCenter, Ludwig-Maximilians-University, Munich, Germany
| | - Alexander Riedel
- Museum of Natural History Karlsruhe (SMNK), Erbprinzenstrasse 13, 76133 Karlsruhe, Germany
| |
Collapse
|