1
|
Jiang J, Xu L, Zhuang Y, Wei X, Zhang Z, Zhao W, Wang Q, Ye X, Gu J, Cao C, Sun J, He K, Zhang Z, Wang Q, Pan Y, Wang Z. MeHA: A Computational Framework in Revealing the Genetic Basis of Animal Mental Health Traits Under an Intensive Farming System-A Case Study in Pigs. BIOLOGY 2024; 13:843. [PMID: 39452151 PMCID: PMC11504952 DOI: 10.3390/biology13100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Intensively farmed animals such as pigs inevitably experience a certain degree of psychological stress, which leads to a reduction in production performance. Mental health traits are currently difficult to measure, resulting in a gap in understanding their genetic basis. To address this challenge, we propose a computational framework called mental health of animals (MeHA), capable of revealing genes related to animal mental health traits. Using MeHA, we identified 109 candidate genes associated with pig mental health and discovered their intricate connections with critical functions, such as memory, cognition, and neural development, which are essential components of mental health and cognitive performance. Importantly, our findings provide evidence of the potential impact of these genes on economically important traits, including meat quality and piglet survival. This research underscores the importance of genetic studies in enhancing our understanding of animal behavior and cognition, as well as promoting agricultural practices. By applying our approach to study the genetic basis of mental health in pigs as a case, we confirmed that our framework is an effective way to reveal genetic factors affecting animal mental health traits, which contributes to animal welfare and has potential implications for understanding human mental disorders.
Collapse
Affiliation(s)
- Jinyun Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Yizheng Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Xingyu Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd., Hefei 230031, China;
| | - Qingyu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Jiamin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Caiyun Cao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China;
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| |
Collapse
|
2
|
Temple SD, Waples RK, Browning SR. Modeling recent positive selection using identity-by-descent segments. Am J Hum Genet 2024:S0002-9297(24)00333-1. [PMID: 39362217 DOI: 10.1016/j.ajhg.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Recent positive selection can result in an excess of long identity-by-descent (IBD) haplotype segments overlapping a locus. The statistical methods that we propose here address three major objectives in studying selective sweeps: scanning for regions of interest, identifying possible sweeping alleles, and estimating a selection coefficient s. First, we implement a selection scan to locate regions with excess IBD rates. Second, we estimate the allele frequency and location of an unknown sweeping allele by aggregating over variants that are more abundant in an inferred outgroup with excess IBD rate versus the rest of the sample. Third, we propose an estimator for the selection coefficient and quantify uncertainty using the parametric bootstrap. Comparing against state-of-the-art methods in extensive simulations, we show that our methods are more precise at estimating s when s≥0.015. We also show that our 95% confidence intervals contain s in nearly 95% of our simulations. We apply these methods to study positive selection in European ancestry samples from the Trans-Omics for Precision Medicine project. We analyze eight loci where IBD rates are more than four standard deviations above the genome-wide median, including LCT where the maximum IBD rate is 35 standard deviations above the genome-wide median. Overall, we present robust and accurate approaches to study recent adaptive evolution without knowing the identity of the causal allele or using time series data.
Collapse
Affiliation(s)
- Seth D Temple
- Department of Statistics, University of Washington, Seattle, WA, USA.
| | - Ryan K Waples
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
4
|
Layne TM, Rothstein JH, Song X, Andersen SW, Benn EKT, Sieh W, Klein RJ. Variants in Vitamin D-related Genes and Prostate Cancer Risk in Black Men. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.29.24309698. [PMID: 38978663 PMCID: PMC11230321 DOI: 10.1101/2024.06.29.24309698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
BACKGROUND The relationship between vitamin D and prostate cancer has primarily been characterized among White men. However, Black men have higher prostate cancer incidence and mortality rates, chronically low circulating vitamin D levels, and ancestry-specific genetic variants in vitamin D-related genes. Here, we examine six critical genes in the vitamin D pathway and prostate cancer risk in Black men. METHODS We assessed a total of 69 candidate variants in six genes ( GC, CYP27A1, CYP27B1, CYP24A1, VDR , and RXRA ) including functional variants previously associated with prostate cancer and circulating 25(OHD) in White men. Associations with prostate cancer risk were examined using genome-wide association study data for approximately 10,000 prostate cancer cases and 10,000 controls among Black men and over 85,000 cases and 91,000 controls among White men. A statistical significance threshold of 0.000724 was used to account for the 69 variants tested. RESULTS None of the variants examined were significantly associated with prostate cancer risk among Black men after multiple comparison adjustment. Four variants tested P<0.05 in Black men, including two in RXRA (rs41400444 OR=1.09, 95% CI: 1.01-1.17, P = 0.024 and rs10881574 OR = 0.93, 0.87-1.00, P = 0.046) and two in VDR (rs2853563 OR = 1.07, 1.01-1.13, P = 0.017 and rs1156882 OR = 1.06, 1.00-1.12, P = 0.045). Two variants in VDR were also positively associated with risk in White men (rs11568820 OR = 1.04, 1.02-1.06, P = 0.00024 and rs4516035 OR = 1.03, 1.01-1.04, P = 0.00055). CONCLUSION We observed suggestive non-significant associations between genetic variants in RXRA and VDR and prostate cancer risk in Black men. Future research exploring the relationship of vitamin D with cancer risk in Black men will need larger sample sizes to identify ancestry-specific variants relevant to risk in this population.
Collapse
|
5
|
Kim B, Kim DS, Shin JG, Leem S, Cho M, Kim H, Gu KN, Seo JY, You SW, Martin AR, Park SG, Kim Y, Jeong C, Kang NG, Won HH. Mapping and annotating genomic loci to prioritize genes and implicate distinct polygenic adaptations for skin color. Nat Commun 2024; 15:4874. [PMID: 38849341 PMCID: PMC11161515 DOI: 10.1038/s41467-024-49031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Evidence for adaptation of human skin color to regional ultraviolet radiation suggests shared and distinct genetic variants across populations. However, skin color evolution and genetics in East Asians are understudied. We quantified skin color in 48,433 East Asians using image analysis and identified associated genetic variants and potential causal genes for skin color as well as their polygenic interplay with sun exposure. This genome-wide association study (GWAS) identified 12 known and 11 previously unreported loci and SNP-based heritability was 23-24%. Potential causal genes were determined through the identification of nonsynonymous variants, colocalization with gene expression in skin tissues, and expression levels in melanocytes. Genomic loci associated with pigmentation in East Asians substantially diverged from European populations, and we detected signatures of polygenic adaptation. This large GWAS for objectively quantified skin color in an East Asian population improves understanding of the genetic architecture and polygenic adaptation of skin color and prioritizes potential causal genes.
Collapse
Affiliation(s)
- Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Dan Say Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Joong-Gon Shin
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Sangseob Leem
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Minyoung Cho
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hanji Kim
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Ki-Nam Gu
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Jung Yeon Seo
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Seung Won You
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02141, USA
| | - Sun Gyoo Park
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Yunkwan Kim
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nae Gyu Kang
- Research and Innovation Center, CTO, LG Household & Healthcare (LG H&H), Seoul, 07795, Republic of Korea.
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
6
|
Zhang MY, Cao RD, Chen Y, Ma JC, Shi CM, Zhang YF, Zhang JX, Zhang YH. Genomic and Phenotypic Adaptations of Rattus tanezumi to Cold Limit Its Further Northward Expansion and Range Overlap with R. norvegicus. Mol Biol Evol 2024; 41:msae106. [PMID: 38829799 PMCID: PMC11184353 DOI: 10.1093/molbev/msae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Cang Ma
- Zhangye Maize Stock Production Base, Zhangye 734024, Gansu, China
| | - Cheng-Min Shi
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
7
|
Lukaszewicz M, Salia OI, Hohenlohe PA, Buzbas EO. Approximate Bayesian computational methods to estimate the strength of divergent selection in population genomics models. JOURNAL OF COMPUTATIONAL MATHEMATICS AND DATA SCIENCE 2024; 10:100091. [PMID: 38616846 PMCID: PMC11014422 DOI: 10.1016/j.jcmds.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Statistical estimation of parameters in large models of evolutionary processes is often too computationally inefficient to pursue using exact model likelihoods, even with single-nucleotide polymorphism (SNP) data, which offers a way to reduce the size of genetic data while retaining relevant information. Approximate Bayesian Computation (ABC) to perform statistical inference about parameters of large models takes the advantage of simulations to bypass direct evaluation of model likelihoods. We develop a mechanistic model to simulate forward-in-time divergent selection with variable migration rates, modes of reproduction (sexual, asexual), length and number of migration-selection cycles. We investigate the computational feasibility of ABC to perform statistical inference and study the quality of estimates on the position of loci under selection and the strength of selection. To expand the parameter space of positions under selection, we enhance the model by implementing an outlier scan on summarized observed data. We evaluate the usefulness of summary statistics well-known to capture the strength of selection, and assess their informativeness under divergent selection. We also evaluate the effect of genetic drift with respect to an idealized deterministic model with single-locus selection. We discuss the role of the recombination rate as a confounding factor in estimating the strength of divergent selection, and emphasize its importance in break down of linkage disequilibrium (LD). We answer the question for which part of the parameter space of the model we recover strong signal for estimating the selection, and determine whether population differentiation-based summary statistics or LD-based summary statistics perform well in estimating selection.
Collapse
Affiliation(s)
- Martyna Lukaszewicz
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, United States of America
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Ousseini Issaka Salia
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, United States of America
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Paul A. Hohenlohe
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, United States of America
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Erkan O. Buzbas
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, ID, United States of America
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
8
|
Buffalo V, Kern AD. A quantitative genetic model of background selection in humans. PLoS Genet 2024; 20:e1011144. [PMID: 38507461 PMCID: PMC10984650 DOI: 10.1371/journal.pgen.1011144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/01/2024] [Accepted: 01/19/2024] [Indexed: 03/22/2024] Open
Abstract
Across the human genome, there are large-scale fluctuations in genetic diversity caused by the indirect effects of selection. This "linked selection signal" reflects the impact of selection according to the physical placement of functional regions and recombination rates along chromosomes. Previous work has shown that purifying selection acting against the steady influx of new deleterious mutations at functional portions of the genome shapes patterns of genomic variation. To date, statistical efforts to estimate purifying selection parameters from linked selection models have relied on classic Background Selection theory, which is only applicable when new mutations are so deleterious that they cannot fix in the population. Here, we develop a statistical method based on a quantitative genetics view of linked selection, that models how polygenic additive fitness variance distributed along the genome increases the rate of stochastic allele frequency change. By jointly predicting the equilibrium fitness variance and substitution rate due to both strong and weakly deleterious mutations, we estimate the distribution of fitness effects (DFE) and mutation rate across three geographically distinct human samples. While our model can accommodate weaker selection, we find evidence of strong selection operating similarly across all human samples. Although our quantitative genetic model of linked selection fits better than previous models, substitution rates of the most constrained sites disagree with observed divergence levels. We find that a model incorporating selective interference better predicts observed divergence in conserved regions, but overall our results suggest uncertainty remains about the processes generating fitness variation in humans.
Collapse
Affiliation(s)
- Vince Buffalo
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Institute of Ecology and Evolution and Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Andrew D. Kern
- Institute of Ecology and Evolution and Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
9
|
Lee S, Clémentine C, Kim H. Exploring the genetic factors behind the discrepancy in resistance to bovine tuberculosis between African zebu cattle and European taurine cattle. Sci Rep 2024; 14:2370. [PMID: 38287127 PMCID: PMC10824790 DOI: 10.1038/s41598-024-52606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
Caused by the pathogenic agent Mycobacterium bovis, bovine tuberculosis (bTB) is a major concern in cattle breeding due to both its zoonotic potential and economic impact. Greater resistance to this disease has been reported in certain African zebu breeds compared to European taurine breeds. However the genetic basis for the lower susceptibility to bTB infection observed in zebu cattle remains poorly explored. This study was conducted on whole genome sequencing data of three bTB infection-resistant African zebu breeds and two bTB infection-susceptible taurine breeds to decipher the genetic background. A set of four selection signature statistics based on linkage disequilibrium, site frequency spectrum, and population differentiation were used on SNPs whereas between population variance based VST and t-test were used on CNVs. As a complement, genes from previous literature reported as candidate genes for bTB resistance were also inspected to identify genetic variations. Interestingly, the resulting nine candidate genes had deleterious missense variants (SHC3, IFNGR1, TLR2, TLR6, IL1A, LRRK2, EP300 and IRAK4) or a CNV difference (CD48) segregating between the groups. The genes found in the study play a role in immune pathways activated during Mycobacterium infection, contributing to the proliferation of immune cells and the granuloma formation, ultimately modulating the outcome of the infectious event. In particular, a deleterious variant in the LRRK2 gene, whose deficiency has been linked to improved prognosis upon tuberculosis infection, was found in the bTB infection-resistant zebu breeds. Therefore, these genes constitute credible candidates in explaining the discrepancy in Mycobacterium bovis infection susceptibility among different breed.
Collapse
Affiliation(s)
- SangJung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Charton Clémentine
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Feng X, Diao S, Liu Y, Xu Z, Li G, Ma Y, Su Z, Liu X, Li J, Zhang Z. Exploring the mechanism of artificial selection signature in Chinese indigenous pigs by leveraging multiple bioinformatics database tools. BMC Genomics 2023; 24:743. [PMID: 38053015 PMCID: PMC10699062 DOI: 10.1186/s12864-023-09848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs in Yunnan exhibit considerable phenotypic diversity, but their population structure and the biological interpretation of signatures of artificial selection require further investigation. To uncover population genetic diversity, migration events, and artificial selection signatures in Chinese domestic pigs, we sampled 111 Yunnan pigs from four breeds in Yunnan which is considered to be one of the centres of livestock domestication in China, and genotyped them using Illumina Porcine SNP60K BeadChip. We then leveraged multiple bioinformatics database tools to further investigate the signatures and associated complex traits. RESULTS Population structure and migration analyses showed that Diannanxiaoer pigs had different genetic backgrounds from other Yunnan pigs, and Gaoligongshan may undergone the migration events from Baoshan and Saba pigs. Intriguingly, we identified a possible common target of sharing artificial selection on a 265.09 kb region on chromosome 5 in Yunnan indigenous pigs, and the genes on this region were associated with cardiovascular and immune systems. We also detected several candidate genes correlated with dietary adaptation, body size (e.g., PASCIN1, GRM4, ITPR2), and reproductive performance. In addition, the breed-sharing gene MMP16 was identified to be a human-mediated gene. Multiple lines of evidence at the mammalian genome, transcriptome, and phenome levels further supported the evidence for the causality between MMP16 variants and the metabolic diseases, brain development, and cartilage tissues in Chinese pigs. Our results suggested that the suppression of MMP16 would directly lead to inactivity and insensitivity of neuronal activity and skeletal development in Chinese indigenous pigs. CONCLUSION In this study, the population genetic analyses and identification of artificial selection signatures of Yunnan indigenous pigs help to build an understanding of the effect of human-mediated selection mechanisms on phenotypic traits in Chinese indigenous pigs. Further studies are needed to fully characterize the process of human-mediated genes and biological mechanisms.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangzhen Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Su
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Schrider DR. Allelic gene conversion softens selective sweeps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570141. [PMID: 38106127 PMCID: PMC10723294 DOI: 10.1101/2023.12.05.570141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The prominence of positive selection, in which beneficial mutations are favored by natural selection and rapidly increase in frequency, is a subject of intense debate. Positive selection can result in selective sweeps, in which the haplotype(s) bearing the adaptive allele "sweep" through the population, thereby removing much of the genetic diversity from the region surrounding the target of selection. Two models of selective sweeps have been proposed: classical sweeps, or "hard sweeps", in which a single copy of the adaptive allele sweeps to fixation, and "soft sweeps", in which multiple distinct copies of the adaptive allele leave descendants after the sweep. Soft sweeps can be the outcome of recurrent mutation to the adaptive allele, or the presence of standing genetic variation consisting of multiple copies of the adaptive allele prior to the onset of selection. Importantly, soft sweeps will be common when populations can rapidly adapt to novel selective pressures, either because of a high mutation rate or because adaptive alleles are already present. The prevalence of soft sweeps is especially controversial, and it has been noted that selection on standing variation or recurrent mutations may not always produce soft sweeps. Here, we show that the inverse is true: selection on single-origin de novo mutations may often result in an outcome that is indistinguishable from a soft sweep. This is made possible by allelic gene conversion, which "softens" hard sweeps by copying the adaptive allele onto multiple genetic backgrounds, a process we refer to as a "pseudo-soft" sweep. We carried out a simulation study examining the impact of gene conversion on sweeps from a single de novo variant in models of human, Drosophila, and Arabidopsis populations. The fraction of simulations in which gene conversion had produced multiple haplotypes with the adaptive allele upon fixation was appreciable. Indeed, under realistic demographic histories and gene conversion rates, even if selection always acts on a single-origin mutation, sweeps involving multiple haplotypes are more likely than hard sweeps in large populations, especially when selection is not extremely strong. Thus, even when the mutation rate is low or there is no standing variation, hard sweeps are expected to be the exception rather than the rule in large populations. These results also imply that the presence of signatures of soft sweeps does not necessarily mean that adaptation has been especially rapid or is not mutation limited.
Collapse
Affiliation(s)
- Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Gioia AD, Rajagopal V, Lopez A, Varela JR, Alegre J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton J, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalog of protein-coding variation in 985,830 individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539329. [PMID: 37214792 PMCID: PMC10197621 DOI: 10.1101/2023.05.09.539329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Locke
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | - Jesus Alegre
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jaime Berumen
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Roberto Tapia-Conyer
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Pablo Kuri-Morales
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jason Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
13
|
Roca-Umbert A, Garcia-Calleja J, Vogel-González M, Fierro-Villegas A, Ill-Raga G, Herrera-Fernández V, Bosnjak A, Muntané G, Gutiérrez E, Campelo F, Vicente R, Bosch E. Human genetic adaptation related to cellular zinc homeostasis. PLoS Genet 2023; 19:e1010950. [PMID: 37747921 PMCID: PMC10553801 DOI: 10.1371/journal.pgen.1010950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
SLC30A9 encodes a ubiquitously zinc transporter (ZnT9) and has been consistently suggested as a candidate for positive selection in humans. However, no direct adaptive molecular phenotype has been demonstrated. Our results provide evidence for directional selection operating in two major complementary haplotypes in Africa and East Asia. These haplotypes are associated with differential gene expression but also differ in the Met50Val substitution (rs1047626) in ZnT9, which we show is found in homozygosis in the Denisovan genome and displays accompanying signatures suggestive of archaic introgression. Although we found no significant differences in systemic zinc content between individuals with different rs1047626 genotypes, we demonstrate that the expression of the derived isoform (ZnT9 50Val) in HEK293 cells shows a gain of function when compared with the ancestral (ZnT9 50Met) variant. Notably, the ZnT9 50Val variant was found associated with differences in zinc handling by the mitochondria and endoplasmic reticulum, with an impact on mitochondrial metabolism. Given the essential role of the mitochondria in skeletal muscle and since the derived allele at rs1047626 is known to be associated with greater susceptibility to several neuropsychiatric traits, we propose that adaptation to cold may have driven this selection event, while also impacting predisposition to neuropsychiatric disorders in modern humans.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Jorge Garcia-Calleja
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Marina Vogel-González
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Alejandro Fierro-Villegas
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Ill-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Anja Bosnjak
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gerard Muntané
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Esteban Gutiérrez
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Iwasaki RL, Satta Y. Spatial and temporal diversity of positive selection on shared haplotypes at the PSCA locus among worldwide human populations. Heredity (Edinb) 2023; 131:156-169. [PMID: 37353592 PMCID: PMC10382566 DOI: 10.1038/s41437-023-00631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023] Open
Abstract
Selection on standing genetic variation is important for rapid local genetic adaptation when the environment changes. We report that, for the prostate stem cell antigen (PSCA) gene, different populations have different target haplotypes, even though haplotypes are shared among populations. The C-C-A haplotype, whereby the first C is located at rs2294008 of PSCA and is a low risk allele for gastric cancer, has become a target of positive selection in Asia. Conversely, the C-A-G haplotype carrying the same C allele has become a selection target mainly in Africa. However, Asian and African share both haplotypes, consistent with the haplotype divergence time (170 kya) prior to the out-of-Africa dispersal. The frequency of C-C-A/C-A-G is 0.344/0.278 in Asia and 0.209/0.416 in Africa. Two-dimensional site frequency spectrum analysis revealed that the extent of intra-allelic variability of the target haplotype is extremely small in each local population, suggesting that C-C-A or C-A-G is under ongoing hard sweeps in local populations. From the time to the most recent common ancestor (TMRCA) of selected haplotypes, the onset times of positive selection were recent (3-55 kya), concurrently with population subdivision from a common ancestor. Additionally, estimated selection coefficients from ABC analysis were up to ~3%, similar to those at other loci under recent positive selection. Phylogeny of local populations and TMRCA of selected haplotypes revealed that spatial and temporal switching of positive selection targets is a unique and novel feature of ongoing selection at PSCA. This switching may reflect the potential of rapid adaptability to distinct environments.
Collapse
Affiliation(s)
- Risa L Iwasaki
- Department of Evolutionary Studies of Biosystems, School of Advanced Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan.
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
15
|
Pryor Y, Lindo J. Deconstructing Eurocentrism in skin pigmentation research via the incorporation of diverse populations and theoretical perspectives. Evol Anthropol 2023; 32:195-205. [PMID: 37450551 DOI: 10.1002/evan.21993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/29/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
The evolution of skin pigmentation has been shaped by numerous biological and cultural shifts throughout human history. Vitamin D is considered a driver of depigmentation evolution in humans, given the deleterious health effects associated with vitamin D deficiency, which is often shaped by cultural factors. New advancements in genomics and epigenomics have opened the door to a deeper exploration of skin pigmentation evolution in both contemporary and ancient populations. Data from ancient Europeans has offered great context to the spread of depigmentation alleles via the evaluation of migration events and cultural shifts that occurred during the Neolithic. However, novel insights can further be gained via the inclusion of diverse ancient and contemporary populations. Here we present on how potential biases and limitations in skin pigmentation research can be overcome with the integration of interdisciplinary data that includes both cultural and biological elements, which have shaped the evolutionary history of skin pigmentation in humans.
Collapse
Affiliation(s)
- Yemko Pryor
- Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Veilleux CC, Garrett EC, Pajic P, Saitou M, Ochieng J, Dagsaan LD, Dominy NJ, Perry GH, Gokcumen O, Melin AD. Human subsistence and signatures of selection on chemosensory genes. Commun Biol 2023; 6:683. [PMID: 37400713 DOI: 10.1038/s42003-023-05047-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Chemosensation (olfaction, taste) is essential for detecting and assessing foods, such that dietary shifts elicit evolutionary changes in vertebrate chemosensory genes. The transition from hunting and gathering to agriculture dramatically altered how humans acquire food. Recent genetic and linguistic studies suggest agriculture may have precipitated olfactory degeneration. Here, we explore the effects of subsistence behaviors on olfactory (OR) and taste (TASR) receptor genes among rainforest foragers and neighboring agriculturalists in Africa and Southeast Asia. We analyze 378 functional OR and 26 functional TASR genes in 133 individuals across populations in Uganda (Twa, Sua, BaKiga) and the Philippines (Agta, Mamanwa, Manobo) with differing subsistence histories. We find no evidence of relaxed selection on chemosensory genes in agricultural populations. However, we identify subsistence-related signatures of local adaptation on chemosensory genes within each geographic region. Our results highlight the importance of culture, subsistence economy, and drift in human chemosensory perception.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, 19555 N 59th Ave, Glendale, AZ, 85308, USA.
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Eva C Garrett
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA, 02215, USA
| | - Petar Pajic
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Marie Saitou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Joseph Ochieng
- Department of Anatomy, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lilia D Dagsaan
- National Commission for Indigenous Peoples, Botolan, Philippines
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, 03755, USA
| | - George H Perry
- Departments of Anthropology and Biology, The Pennsylvania State University, 410 Carpenter Building, University Park, PA, 16802, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Amanda D Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
17
|
Cotter DJ, Hofgard EF, Novembre J, Szpiech ZA, Rosenberg NA. A rarefaction approach for measuring population differences in rare and common variation. Genetics 2023; 224:iyad070. [PMID: 37075098 PMCID: PMC10213490 DOI: 10.1093/genetics/iyad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/20/2022] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
In studying allele-frequency variation across populations, it is often convenient to classify an allelic type as "rare," with nonzero frequency less than or equal to a specified threshold, "common," with a frequency above the threshold, or entirely unobserved in a population. When sample sizes differ across populations, however, especially if the threshold separating "rare" and "common" corresponds to a small number of observed copies of an allelic type, discreteness effects can lead a sample from one population to possess substantially more rare allelic types than a sample from another population, even if the two populations have extremely similar underlying allele-frequency distributions across loci. We introduce a rarefaction-based sample-size correction for use in comparing rare and common variation across multiple populations whose sample sizes potentially differ. We use our approach to examine rare and common variation in worldwide human populations, finding that the sample-size correction introduces subtle differences relative to analyses that use the full available sample sizes. We introduce several ways in which the rarefaction approach can be applied: we explore the dependence of allele classifications on subsample sizes, we permit more than two classes of allelic types of nonzero frequency, and we analyze rare and common variation in sliding windows along the genome. The results can assist in clarifying similarities and differences in allele-frequency patterns across populations.
Collapse
Affiliation(s)
- Daniel J Cotter
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Elyssa F Hofgard
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Noah A Rosenberg
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Caro-Consuegra R, Lucas-Sánchez M, Comas D, Bosch E. Identifying signatures of positive selection in human populations from North Africa. Sci Rep 2023; 13:8166. [PMID: 37210386 DOI: 10.1038/s41598-023-35312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Because of its location, North Africa (NA) has witnessed continuous demographic movements with an impact on the genomes of present-day human populations. Genomic data describe a complex scenario with varying proportions of at least four main ancestry components: Maghrebi, Middle Eastern-, European-, and West-and-East-African-like. However, the footprint of positive selection in NA has not been studied. Here, we compile genome-wide genotyping data from 190 North Africans and individuals from surrounding populations, investigate for signatures of positive selection using allele frequencies and linkage disequilibrium-based methods and infer ancestry proportions to discern adaptive admixture from post-admixture selection events. Our results show private candidate genes for selection in NA involved in insulin processing (KIF5A), immune function (KIF5A, IL1RN, TLR3), and haemoglobin phenotypes (BCL11A). We also detect signatures of positive selection related to skin pigmentation (SLC24A5, KITLG), and immunity function (IL1R1, CD44, JAK1) shared with European populations and candidate genes associated with haemoglobin phenotypes (HPSE2, HBE1, HBG2), other immune-related (DOCK2) traits, and insulin processing (GLIS3) traits shared with West and East African populations. Finally, the SLC8A1 gene, which codifies for a sodium-calcium exchanger, was the only candidate identified under post-admixture selection in Western NA.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Marcel Lucas-Sánchez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - David Comas
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Youm DJ, Ko BJ, Kim D, Park M, Won S, Lee YH, Kim B, Seol D, Chai HH, Lim D, Jeong C, Kim H. The idiosyncratic genome of Korean long-tailed chicken as a valuable genetic resource. iScience 2023; 26:106236. [PMID: 36915682 PMCID: PMC10006692 DOI: 10.1016/j.isci.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Today, breeds with ornamental traits such as exceptionally long tail feathers are economically valuable. However, the genetic basis of long-tail feathers is yet to be understood. To provide better understanding of long tail feathers, we sequenced Korean long-tailed chicken (KLC) genomes and compared them with genomes of other chicken breeds. We first analyzed the genome structure of KLC and its genomic relationship with other chickens and observed unique characteristics. Subsequently, we searched for genomic regions under selection. Feather keratin 1-like enriched region and several genes were found to have novel putative functions and effects on the long tail trait in KLC. Our findings support the value of KLC as a unique genetic resource and cast light on the genetic basis of long tail traits in avian species. We expect this novel knowledge to provide new genomic evidence and options for designing and implementing genetic improvements of ornamental chicken productivity through precision crossbreeding aids.
Collapse
Affiliation(s)
- Dong-Jae Youm
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghee Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeongkyu Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- eGnome, Inc, Seoul 05836, Republic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongsang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- eGnome, Inc, Seoul 05836, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA 1500, Wanju 55365, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA 1500, Wanju 55365, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- eGnome, Inc, Seoul 05836, Republic of Korea
- Corresponding author
| |
Collapse
|
20
|
Garcia OA, Arslanian K, Whorf D, Thariath S, Shriver M, Li JZ, Bigham AW. The Legacy of Infectious Disease Exposure on the Genomic Diversity of Indigenous Southern Mexicans. Genome Biol Evol 2023; 15:7023365. [PMID: 36726304 PMCID: PMC10016042 DOI: 10.1093/gbe/evad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican populations' immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in immune response. Our results shed light on past selective events influencing the host response to modern diseases, both pathogenic infection as well as autoimmune disorders.
Collapse
Affiliation(s)
- Obed A Garcia
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Data Science, Stanford University, Stanford, California
| | | | - Daniel Whorf
- College of Medicine, University of Illinois, Peoria, Illinois
| | - Serena Thariath
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Mark Shriver
- Department of Anthropology, Penn State University, State College, Pennsylvania
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California
| |
Collapse
|
21
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
22
|
Muktupavela RA, Petr M, Ségurel L, Korneliussen T, Novembre J, Racimo F. Modeling the spatiotemporal spread of beneficial alleles using ancient genomes. eLife 2022; 11:e73767. [PMID: 36537881 PMCID: PMC9767474 DOI: 10.7554/elife.73767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Ancient genome sequencing technologies now provide the opportunity to study natural selection in unprecedented detail. Rather than making inferences from indirect footprints left by selection in present-day genomes, we can directly observe whether a given allele was present or absent in a particular region of the world at almost any period of human history within the last 10,000 years. Methods for studying selection using ancient genomes often rely on partitioning individuals into discrete time periods or regions of the world. However, a complete understanding of natural selection requires more nuanced statistical methods which can explicitly model allele frequency changes in a continuum across space and time. Here we introduce a method for inferring the spread of a beneficial allele across a landscape using two-dimensional partial differential equations. Unlike previous approaches, our framework can handle time-stamped ancient samples, as well as genotype likelihoods and pseudohaploid sequences from low-coverage genomes. We apply the method to a panel of published ancient West Eurasian genomes to produce dynamic maps showcasing the inferred spread of candidate beneficial alleles over time and space. We also provide estimates for the strength of selection and diffusion rate for each of these alleles. Finally, we highlight possible avenues of improvement for accurately tracing the spread of beneficial alleles in more complex scenarios.
Collapse
Affiliation(s)
- Rasa A Muktupavela
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| | - Martin Petr
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| | - Laure Ségurel
- UMR5558 Biométrie et Biologie Evolutive, CNRS - Université Lyon 1VilleurbanneFrance
| | | | - John Novembre
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, GLOBE Institute, Faculty of HealthCopenhagenDenmark
| |
Collapse
|
23
|
Souilmi Y, Tobler R, Johar A, Williams M, Grey ST, Schmidt J, Teixeira JC, Rohrlach A, Tuke J, Johnson O, Gower G, Turney C, Cox M, Cooper A, Huber CD. Admixture has obscured signals of historical hard sweeps in humans. Nat Ecol Evol 2022; 6:2003-2015. [PMID: 36316412 PMCID: PMC9715430 DOI: 10.1038/s41559-022-01914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species. Through analyses of ancient and modern human genomes, we show that previously reported Holocene-era admixture has masked more than 50 historic hard sweeps in modern European genomes. Our results imply that this canonical mode of selection has probably been underappreciated in the evolutionary history of humans and suggest that our current understanding of the tempo and mode of selection in natural populations may be inaccurate.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Angad Johar
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Matthew Williams
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia
| | - Joshua Schmidt
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - João C Teixeira
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Rohrlach
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Jonathan Tuke
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, South Australia, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivia Johnson
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris Turney
- Chronos 14Carbon-Cycle Facility and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alan Cooper
- South Australian Museum, Adelaide, South Australia, Australia.
- BlueSky Genetics, Ashton, South Australia, Australia.
| | - Christian D Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Biology, Penn State University, University Park, PA, USA.
| |
Collapse
|
24
|
Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection. Nat Commun 2022; 13:7069. [PMID: 36400766 PMCID: PMC9674589 DOI: 10.1038/s41467-022-34461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Pathogen-driven selection shaped adaptive mutations in immunity genes, including those contributing to inflammatory disorders. Functional characterization of such adaptive variants can shed light on disease biology and past adaptations. This popular idea, however, was difficult to test due to challenges in pinpointing adaptive mutations in selection footprints. In this study, using a local-tree-based approach, we show that 28% of risk loci (153/535) in 21 inflammatory disorders bear footprints of moderate and weak selection, and part of them are population specific. Weak selection footprints allow partial fine-mapping, and we show that in 19% (29/153) of the risk loci under selection, candidate disease variants are hitchhikers, and only in 39% of cases they are likely selection targets. We predict function for a subset of these selected SNPs and highlight examples of antagonistic pleiotropy. We conclude by offering disease variants under selection that can be tested functionally using infectious agents and other stressors to decipher the poorly understood link between environmental stressors and genetic risk in inflammatory conditions.
Collapse
|
25
|
Masin PS, Visentin HA, Elpidio LNS, Sell AM, Visentainer L, Lima Neto QAD, Zacarias JMV, Couceiro P, Higa Shinzato A, Santos Rosa M, Rodrigues-Santos P, Visentainer JEL. Genetic polymorphisms of toll-like receptors in leprosy patients from southern Brazil. Front Genet 2022; 13:952219. [PMID: 36313452 PMCID: PMC9596761 DOI: 10.3389/fgene.2022.952219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Leprosy is a chronic disease and also a global health issue, with a high number of new cases per year. Toll-like receptors can respond to mycobacterial molecules in the early stage of infection. As important components of the innate immune response, alterations in genes coding for these receptors may contribute to susceptibility/protection against diseases. In this context, we used a case-control study model (183 leprosy cases vs. 185 controls) to investigate whether leprosy patients and the control group, in southern Brazil, have different frequencies in TLR1 (TLR1 G>T; rs5743618), TLR2 (TLR2 T>C, rs1816702 and rs4696483), and TLR4 (TLR4 A>G, rs1927911) polymorphisms. Analysis of the TLR1 1805G>T polymorphism presented the G/G genotype more frequently in the control group. TLR2 T>C rs1816702 and TLR2 T>C rs4696483, the T/T and C/T genotype, respectively, were more frequent in the control group than in leprosy patients, suggesting protection from leprosy when the T allele is present (rs4696483). Haplotype analyses between TLR1 (rs5743618) and TLR2 (rs1816702 and rs4696483) polymorphisms suggest risk for the presence of the TCC haplotype and protection in the presence of the TCT haplotype. This study suggests that polymorphisms in TLR1 and TLR2 are factors that may contribute to development/resistance of leprosy.
Collapse
Affiliation(s)
- Priscila Saamara Masin
- Immunology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
| | - Hugo Alves Visentin
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
| | - Laíse Nayana Sala Elpidio
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
| | - Ana Maria Sell
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
| | - Lorena Visentainer
- Department of Medicine, Faculty of Medicine Science, Campinas State University, Campinas, SP, Brazil
| | - Quirino Alves De Lima Neto
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
| | - Joana Maira Valentini Zacarias
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Andressa Higa Shinzato
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
- *Correspondence: Jeane Eliete Laguila Visentainer, ; Jeane E. L. Visentainer, ; Andressa Higa Shinzato,
| | - Manuel Santos Rosa
- Immunology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Jeane Eliete Laguila Visentainer
- Immunogenetics Laboratory, Department of Basic Health Sciences, Post-Graduation Program in Biosciences and Phisiophatology, Maringá State University, Maringá, PR, Brazil
- *Correspondence: Jeane Eliete Laguila Visentainer, ; Jeane E. L. Visentainer, ; Andressa Higa Shinzato,
| |
Collapse
|
26
|
Hendricks SA, King JL, Duncan CL, Vickers W, Hohenlohe PA, Davis BW. Genomic Assessment of Cancer Susceptibility in the Threatened Catalina Island Fox ( Urocyon littoralis catalinae). Genes (Basel) 2022; 13:1496. [PMID: 36011407 PMCID: PMC9408614 DOI: 10.3390/genes13081496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island foxes (Urocyon littoralis catalinae) sampled in 2007-2008 have a high prevalence of ceruminous gland tumors, which was not detected in the population prior to a recent bottleneck caused by a canine distemper epidemic. The disease appears to be associated with inflammation from chronic ear mite (Otodectes) infections and secondary elevated levels of Staphyloccus pseudointermedius bacterial infections. However, no other environmental factors to date have been found to be associated with elevated cancer risk in this population. Here, we used whole genome sequencing of the case and control individuals from two islands to identify candidate loci associated with cancer based on genetic divergence, nucleotide diversity, allele frequency spectrum, and runs of homozygosity. We identified several candidate loci based on genomic signatures and putative gene functions, suggesting that cancer susceptibility in this population may be polygenic. Due to the efforts of a recovery program and weak fitness effects of late-onset disease, the population size has increased, which may allow selection to be more effective in removing these presumably slightly deleterious alleles. Long-term monitoring of the disease alleles, as well as overall genetic diversity, will provide crucial information for the long-term persistence of this threatened population.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Julie L. King
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Calvin L. Duncan
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Winston Vickers
- Institute for Wildlife Studies, Arcata, CA 95521, USA
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Paul A. Hohenlohe
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
27
|
Ma L, Wang R, Feng S, Yang X, Li J, Zhang Z, Zhan H, Wang Y, Xia Z, Wang CC, Kang L. Genomic insight into the population history and biological adaptations of high-altitude Tibetan highlanders in Nagqu. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibetan, one of the largest indigenous populations living in the high-altitude region of the Tibetan Plateau (TP), has developed a suite of physiological adaptation strategies to cope with the extreme highland environment in TP. Here, we reported genome-wide SNP data from 48 Kham-speaking Nagqu Tibetans and analyzed it with published data from 1,067 individuals in 167 modern and ancient populations to characterize the detailed Tibetan subgroup history and population substructure. Overall, the patterns of allele sharing and haplotype sharing suggested (1) the relatively genetic homogeny between the studied Nagqu Tibetans and ancient Nepalese as well as present-day core Tibetans from Lhasa, Nagqu, and Shigatse; and (2) the close relationship between our studied Kham-speaking Nagqu Tibetans and Kham-speaking Chamdo Tibetans. The fitted qpAdm models showed that the studied Nagqu Tibetans could be fitted as having the main ancestry from late Neolithic upper Yellow River millet farmers and deeply diverged lineages from Southern East Asians (represented by Upper Paleolithic Guangxi_Longlin and Laos_Hoabinhian), and a non-neglectable western Steppe herder-related ancestry (∼3%). We further scanned the candidate genomic regions of natural selection for our newly generated Nagqu Tibetans and the published core Tibetans via FST, iHS, and XP-EHH tests. The genes overlapping with these regions were associated with essential human biological functions such as immune response, enzyme activity, signal transduction, skin development, and energy metabolism. Together, our results shed light on the admixture and evolutionary history of Nagqu Tibetan populations.
Collapse
|
28
|
Novembre J. The background and legacy of Lewontin's apportionment of human genetic diversity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200406. [PMID: 35430890 PMCID: PMC9014184 DOI: 10.1098/rstb.2020.0406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
Lewontin's 1972 article 'The apportionment of human diversity' described a key feature of human genetic diversity that would have profound impacts on conversations regarding genetics and race: the typical genetic locus varies much less between classical human race groupings than one might infer from inspecting the features historically used to define those races, like skin pigmentation. From this, Lewontin concluded: 'Human racial classification … is now seen to be of virtually no genetic or taxonomic significance' (p. 397). Here, 50 years after the paper's publication, the goal is to understand the origins and legacy of the paper. Aided by insights from published papers and interviews with several of Lewontin's contemporaries, I review the 1972 paper, asking about the intellectual background that led to the publication of the paper, the development of its impact, the critiques of the work and the work's application and limitations today. The hope is that by gaining a clearer understanding of the origin and reasoning of the paper, we might dispel various confusions about the result and sharpen an understanding of the enduring value and insight the result provides. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- John Novembre
- Department of Human Genetics, University of Chicago, Chicago, 60637, IL
- Department of Ecology and Evolution, University of Chicago, Chicago, 60637, IL
| |
Collapse
|
29
|
Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection. Animals (Basel) 2022; 12:ani12111423. [PMID: 35681887 PMCID: PMC9179914 DOI: 10.3390/ani12111423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Fatness-related traits are economically very important in sheep production and are associated with serious diseases in humans. Using a denser set of SNP markers and a variety of statistical approaches, our results were able to refine the regions associated with fat deposition and to suggest new insights into molecular aspects of fat tail selection. These results may provide a strong foundation for studying the regulation of fat deposition in sheep and do offer hope that the causal mutations and the mode of inheritance of this trait will soon be discovered by further investigation. Abstract The fat tail is a phenotype that divides indigenous Iranian sheep genetic resources into two major groups. The objective of the present study is to refine the map location of candidate regions associated with fat deposition, obtained via two separate whole genome scans contrasting thin and fat tail breeds, and to determine the nature of the selection occurring in these regions using a hitchhiking approach. Zel (thin tail) and Lori-Bakhtiari (fat tail) breed samples that had previously been run on the Illumina Ovine 50 k BeadChip, were genotyped with a denser set of SNPs in the three candidate regions using a Sequenom Mass ARRAY platform. Statistical tests were then performed using different and complementary methods based on either site frequency (FST and Median homozygosity) or haplotype (iHS and XP-EHH). The results from candidate regions on chromosome 5 and X revealed clear evidence of selection with the derived haplotypes that was consistent with selection to near fixation for the haplotypes affecting fat tail size in the fat tail breed. An analysis of the candidate region on chromosome 7 indicated that selection differentiated the beneficial alleles between breeds and homozygosity has increased in the thin tail breed which also had the ancestral haplotype. These results enabled us to confirm the signature of selection in these regions and refine the critical intervals from 113 kb, 201 kb, and 2831 kb to 28 kb, 142 kb, and 1006 kb on chromosome 5, 7, and X respectively. These regions contain several genes associated with fat metabolism or developmental processes consisting of TCF7 and PPP2CA (OAR5), PTGDR and NID2 (OAR7), AR, EBP, CACNA1F, HSD17B10,SLC35A2, BMP15, WDR13, and RBM3 (OAR X), and each of which could potentially be the actual target of selection. The study of core haplotypes alleles in our regions of interest also supported the hypothesis that the first domesticated sheep were thin tailed, and that fat tail animals were developed later. Overall, our results provide a comprehensive assessment of how and where selection has affected the patterns of variation in candidate regions associated with fat deposition in thin and fat tail sheep breeds.
Collapse
|
30
|
Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, Li N, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Zhu XW, Zhao PP, Xia JW, Guan PL, Qian Y, Tao JG, Xu L, Tian G, Wang PY, Xie SY, Qiu MC, Liu KQ, Tang BS, Zheng HF. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat Commun 2022; 13:2939. [PMID: 35618720 PMCID: PMC9135724 DOI: 10.1038/s41467-022-30526-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.
Collapse
Affiliation(s)
- Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng-Yuan Yang
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Ping-Yu Wang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Ke-Qi Liu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Mörseburg A, Pagani L, Malyarchuk B, Derenko M, Kivisild T. Response to Wyckelsma et al.: Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet 2022; 109:967-972. [PMID: 35523147 PMCID: PMC9118108 DOI: 10.1016/j.ajhg.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
The common loss-of-function mutation R577X in the structural muscle protein ACTN3 emerged as a potential target of positive selection from early studies and has been the focus of insightful physiological work suggesting a significant impact on muscle metabolism. Adaptation to cold climates has been proposed as a key adaptive mechanism explaining its global allele frequency patterns. Here, we re-examine this hypothesis analyzing modern (n = 3,626) and ancient (n = 1,651) genomic data by using allele-frequency as well as haplotype homozygosity-based methods. The presented results are more consistent with genetic drift rather than selection in cold climates as the main driver of the ACTN3 R577X frequency distribution in human populations across the world. This Matters Arising paper is in response to Wyckelsma et al. (2021),1 published in The American Journal of Human Genetics. See also the response by Wyckelsma et al. (2022),2 published in this issue.
Collapse
Affiliation(s)
- Alexander Mörseburg
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Biology, University of Padova, 35131 Padova, Italy
| | - Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya str. 18, Magadan 685000, Russia
| | - Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya str. 18, Magadan 685000, Russia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, Leuven, Herestraat 3000, Belgium.
| |
Collapse
|
32
|
Roca-Umbert A, Caro-Consuegra R, Londono-Correa D, Rodriguez-Lozano GF, Vicente R, Bosch E. Understanding signatures of positive natural selection in human zinc transporter genes. Sci Rep 2022; 12:4320. [PMID: 35279701 PMCID: PMC8918337 DOI: 10.1038/s41598-022-08439-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential micronutrient with a tightly regulated systemic and cellular homeostasis. In humans, some zinc transporter genes (ZTGs) have been previously reported as candidates for strong geographically restricted selective sweeps. However, since zinc homeostasis is maintained by the joint action of 24 ZTGs, other more subtle modes of selection could have also facilitated human adaptation to zinc availability. Here, we studied whether the complete set of ZTGs are enriched for signals of positive selection in worldwide populations and population groups from South Asia. ZTGs showed higher levels of genetic differentiation between African and non-African populations than would be randomly expected, as well as other signals of polygenic selection outside Africa. Moreover, in several South Asian population groups, ZTGs were significantly enriched for SNPs with unusually extended haplotypes and displayed SNP genotype-environmental correlations when considering zinc deficiency levels in soil in that geographical area. Our study replicated some well-characterized targets for positive selection in East Asia and sub-Saharan Africa, and proposes new candidates for follow-up in South Asia (SLC39A5) and Africa (SLC39A7). Finally, we identified candidate variants for adaptation in ZTGs that could contribute to different disease susceptibilities and zinc-related human health traits.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Diego Londono-Correa
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Gabriel Felipe Rodriguez-Lozano
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Ruben Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain.
| |
Collapse
|
33
|
Boahen CK, Temba GS, Kullaya VI, Matzaraki V, Joosten LAB, Kibiki G, Mmbaga BT, van der Ven A, de Mast Q, Netea MG, Kumar V. A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population. Am J Hum Genet 2022; 109:471-485. [PMID: 35167808 DOI: 10.1016/j.ajhg.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.
Collapse
Affiliation(s)
- Collins K Boahen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania; Department of Paediatrics, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9700, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Medical Sciences Complex, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
34
|
Genome variation in tick infestation and cryptic divergence in Tunisian indigenous sheep. BMC Genomics 2022; 23:167. [PMID: 35227193 PMCID: PMC8883713 DOI: 10.1186/s12864-022-08321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ticks are obligate haematophagous ectoparasites considered second to mosquitos as vectors and reservoirs of multiple pathogens of global concern. Individual variation in tick infestation has been reported in indigenous sheep, but its genetic control remains unknown. Results Here, we report 397 genome-wide signatures of selection overlapping 991 genes from the analysis, using ROH, LR-GWAS, XP-EHH, and FST, of 600 K SNP genotype data from 165 Tunisian sheep showing high and low levels of tick infestations and piroplasm infections. We consider 45 signatures that are detected by consensus results of at least two methods as high-confidence selection regions. These spanned 104 genes which included immune system function genes, solute carriers and chemokine receptor. One region spanned STX5, that has been associated with tick resistance in cattle, implicating it as a prime candidate in sheep. We also observed RAB6B and TF in a high confidence candidate region that has been associated with growth traits suggesting natural selection is enhancing growth and developmental stability under tick challenge. The analysis also revealed fine-scale genome structure indicative of cryptic divergence in Tunisian sheep. Conclusions Our findings provide a genomic reference that can enhance the understanding of the genetic architecture of tick resistance and cryptic divergence in indigenous African sheep. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08321-1.
Collapse
|
35
|
Xu G, Zhang X, Chen W, Zhang R, Li Z, Wen W, Warburton ML, Li J, Li H, Yang X. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC PLANT BIOLOGY 2022; 22:72. [PMID: 35180846 PMCID: PMC8855575 DOI: 10.1186/s12870-022-03427-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maize (Zea mays L. ssp. mays) was domesticated from teosinte (Zea mays ssp. parviglumis) about 9000 years ago in southwestern Mexico and adapted to a range of environments worldwide. Researchers have depicted the maize domestication and adaptation processes over the past two decades, but efforts have been limited either in sample size or genetic diversity. To better understand these processes, we conducted a genome-wide survey of 982 maize inbred lines and 190 teosinte accessions using over 40,000 single-nucleotide polymorphism markers. RESULTS Population structure, principal component analysis, and phylogenetic trees all confirmed the evolutionary relationship between maize and teosinte, and determined the evolutionary lineage of all species within teosinte. Shared haplotype analysis showed similar levels of ancestral alleles from Zea mays ssp. parviglumis and Zea mays ssp. mexicana in maize. Scans for selection signatures identified 394 domestication sweeps by comparing wild and cultivated maize and 360 adaptation sweeps by comparing tropical and temperate maize. Permutation tests revealed that the public association signals for flowering time were highly enriched in the domestication and adaptation sweeps. Genome-wide association study identified 125 loci significantly associated with flowering-time traits, ten of which identified candidate genes that have undergone selection during maize adaptation. CONCLUSIONS In this study, we characterized the history of maize domestication and adaptation at the population genomic level and identified hundreds of domestication and adaptation sweeps. This study extends the molecular mechanism of maize domestication and adaptation, and provides resources for basic research and genetic improvement in maize.
Collapse
Affiliation(s)
- Gen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhi Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Marilyn L Warburton
- United States of Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, Mississippi, MS, 39762, USA
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China.
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Marnetto D, Pankratov V, Mondal M, Montinaro F, Pärna K, Vallini L, Molinaro L, Saag L, Loog L, Montagnese S, Costa R, Metspalu M, Eriksson A, Pagani L. Ancestral genomic contributions to complex traits in contemporary Europeans. Curr Biol 2022; 32:1412-1419.e3. [DOI: 10.1016/j.cub.2022.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
37
|
Cho Y, Kim JY, Kim N. Comparative genomics and selection analysis of Yeonsan Ogye black chicken with whole-genome sequencing. Genomics 2022; 114:110298. [PMID: 35134497 DOI: 10.1016/j.ygeno.2022.110298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
Yeonsan Ogye (OGYE; Gallus gallus domesticus) is a rare indigenous chicken breed that inhabits the Korean Peninsula. This breed has completely black coloring, including plumage, skin, eyes, beak, and internal organs. Despite these unique morphological characteristics, the population of OGYE has declined without in-depth research into their genome research. Therefore, this study aimed to compare the whole genome of OGYE to 12 other chicken populations, including ancestral breed, commercial breeds, Chinese indigenous breeds, and Korean native chickens. We focused on revealing the selection signature of OGYE, which has occurred through environmental pressures in the Korean Peninsula. Genome-wide selection analysis has identified local adaptation traits, such as egg development, that contribute to fetal viability and innate immune response to prevent viral and microbes infection in OGYE. In particular, SPP1 (Secreted Phosphoprotein 1), HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1), and P2RX4 (Purinergic Receptor P2X 4) could have considerable involvement in egg development and RNASEL (Ribonuclease L), BRIP1 (BRCA1 Interacting Protein C-terminal Helicase 1), and TLR4 (Toll-Like Receptor 4) are crucial for the determination of the innate immune response. This study revealed the unique genetic diversity of OGYE at the genome-wide level. Furthermore, we emphasized the sustainable management of genetic resources and formulated breeding strategies for livestock on the Korean Peninsula.
Collapse
Affiliation(s)
- Youngbeom Cho
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
38
|
Colomer-Vilaplana A, Murga-Moreno J, Canalda-Baltrons A, Inserte C, Soto D, Coronado-Zamora M, Barbadilla A, Casillas S. PopHumanVar: an interactive application for the functional characterization and prioritization of adaptive genomic variants in humans. Nucleic Acids Res 2022; 50:D1069-D1076. [PMID: 34664660 PMCID: PMC8728255 DOI: 10.1093/nar/gkab925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Adaptive challenges that humans faced as they expanded across the globe left specific molecular footprints that can be decoded in our today's genomes. Different sets of metrics are used to identify genomic regions that have undergone selection. However, there are fewer methods capable of pinpointing the allele ultimately responsible for this selection. Here, we present PopHumanVar, an interactive online application that is designed to facilitate the exploration and thorough analysis of candidate genomic regions by integrating both functional and population genomics data currently available. PopHumanVar generates useful summary reports of prioritized variants that are putatively causal of recent selective sweeps. It compiles data and graphically represents different layers of information, including natural selection statistics, as well as functional annotations and genealogical estimations of variant age, for biallelic single nucleotide variants (SNVs) of the 1000 Genomes Project phase 3. Specifically, PopHumanVar amasses SNV-based information from GEVA, SnpEFF, GWAS Catalog, ClinVar, RegulomeDB and DisGeNET databases, as well as accurate estimations of iHS, nSL and iSAFE statistics. Notably, PopHumanVar can successfully identify known causal variants of frequently reported candidate selection regions, including EDAR in East-Asians, ACKR1 (DARC) in Africans and LCT/MCM6 in Europeans. PopHumanVar is open and freely available at https://pophumanvar.uab.cat.
Collapse
Affiliation(s)
- Aina Colomer-Vilaplana
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jesús Murga-Moreno
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Aleix Canalda-Baltrons
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Clara Inserte
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Daniel Soto
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Coronado-Zamora
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
39
|
Laval G, Patin E, Boutillier P, Quintana-Murci L. Sporadic occurrence of recent selective sweeps from standing variation in humans as revealed by an approximate Bayesian computation approach. Genetics 2021; 219:6377789. [PMID: 34849862 DOI: 10.1093/genetics/iyab161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
During their dispersals over the last 100,000 years, modern humans have been exposed to a large variety of environments, resulting in genetic adaptation. While genome-wide scans for the footprints of positive Darwinian selection have increased knowledge of genes and functions potentially involved in human local adaptation, they have globally produced evidence of a limited contribution of selective sweeps in humans. Conversely, studies based on machine learning algorithms suggest that recent sweeps from standing variation are widespread in humans, an observation that has been recently questioned. Here, we sought to formally quantify the number of recent selective sweeps in humans, by leveraging approximate Bayesian computation and whole-genome sequence data. Our computer simulations revealed suitable ABC estimations, regardless of the frequency of the selected alleles at the onset of selection and the completion of sweeps. Under a model of recent selection from standing variation, we inferred that an average of 68 (from 56 to 79) and 140 (from 94 to 198) sweeps occurred over the last 100,000 years of human history, in African and Eurasian populations, respectively. The former estimation is compatible with human adaptation rates estimated since divergence with chimps, and reveals numbers of sweeps per generation per site in the range of values estimated in Drosophila. Our results confirm the rarity of selective sweeps in humans and show a low contribution of sweeps from standing variation to recent human adaptation.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Pierre Boutillier
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France.,Human Genomics and Evolution, Collège de France, 75005 Paris, France
| |
Collapse
|
40
|
Ma J, Gao X, Li J, Gao H, Wang Z, Zhang L, Xu L, Gao H, Li H, Wang Y, Zhu B, Cai W, Wang C, Chen Y. Assessing the Genetic Background and Selection Signatures of Huaxi Cattle Using High-Density SNP Array. Animals (Basel) 2021; 11:ani11123469. [PMID: 34944246 PMCID: PMC8698132 DOI: 10.3390/ani11123469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Huaxi cattle, a specialized beef cattle breed in China, has the characteristics of fast growth, high slaughter rate, and net meat rate, good reproductive performance, strong stress resistance, and wide adaptability. In this study, we evaluated the genetic diversity, population structure, and genetic relationships of Huaxi cattle and its ancestor populations at the genome-wide level, as well as detecting the selection signatures of Huaxi cattle. Principal component analysis (PCA) and phylogenetic analysis revealed that Huaxi cattle were obviously separated from other cattle populations. The admixture analysis showed that Huaxi cattle has distinct genetic structures among all populations at K = 4. It can be concluded that Huaxi cattle has formed its own unique genetic features. Using integrated haplotype score (iHS) and composite likelihood ratio (CLR) methods, we identified 143 and 199 potentially selected genes in Huaxi cattle, respectively, among which nine selected genes (KCNK1, PDLIM5, CPXM2, CAPN14, MIR2285D, MYOF, PKDCC, FOXN3, and EHD3) related to ion binding, muscle growth and differentiation, and immunity were detected by both methods. Our study sheds light on the unique genetic feature and phylogenetic relationship of Huaxi cattle, provides a basis for the genetic mechanism analysis of important economic traits, and guides further intensive breeding improvement of Huaxi cattle.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Han Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Hongwei Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Congyong Wang
- Beijing Lianyu Beef Cattle Breeding Technology Limited Company, Beijing 100193, China;
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
- Correspondence:
| |
Collapse
|
41
|
Gusareva ES, Lorenzini PA, Ramli NAB, Ghosh AG, Kim HL. Population-specific adaptation in malaria-endemic regions of asia. J Bioinform Comput Biol 2021; 19:2140006. [PMID: 34753405 DOI: 10.1142/s0219720021400060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evolutionary mechanisms of adaptation to malaria are understudied in Asian endemic regions despite a high prevalence of malaria in the region. In our research, we performed a genome-wide screening for footprints of natural selection against malaria by comparing eight Asian population groups from malaria-endemic regions with two non-endemic population groups from Europe and Mongolia. We identified 285 adaptive genes showing robust selection signals across three statistical methods, iHS, XP-EHH, and PBS. Interestingly, most of the identified genes (82%) were found to be under selection in a single population group, while adaptive genes shared across populations were rare. This is likely due to the independent adaptation history in different endemic populations. The gene ontology (GO) analysis for the 285 adaptive genes highlighted their functional processes linked to neuronal organizations or nervous system development. These genes could be related to cerebral malaria and may reduce the inflammatory response and the severity of malaria symptoms. Remarkably, our novel population genomic approach identified population-specific adaptive genes potentially against malaria infection without the need for patient samples or individual medical records.
Collapse
Affiliation(s)
- Elena S Gusareva
- Asian School of the Environment, Nanyang Technological University, Nanyang Dr, 637459 Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Paolo Alberto Lorenzini
- Asian School of the Environment, Nanyang Technological University, Nanyang Dr, 637459 Singapore
| | - Nurul Adilah Binte Ramli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Amit Gourav Ghosh
- Asian School of the Environment, Nanyang Technological University, Nanyang Dr, 637459 Singapore
| | - Hie Lim Kim
- Asian School of the Environment, Nanyang Technological University, Nanyang Dr, 637459 Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
42
|
Villegas-Mirón P, Acosta S, Nye J, Bertranpetit J, Laayouni H. Chromosome X-wide Analysis of Positive Selection in Human Populations: Common and Private Signals of Selection and its Impact on Inactivated Genes and Enhancers. Front Genet 2021; 12:714491. [PMID: 34646300 PMCID: PMC8502928 DOI: 10.3389/fgene.2021.714491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The ability of detecting adaptive (positive) selection in the genome has opened the possibility of understanding the genetic basis of population-specific adaptations genome-wide. Here, we present the analysis of recent selective sweeps, specifically in the X chromosome, in human populations from the third phase of the 1,000 Genomes Project using three different haplotype-based statistics. We describe instances of recent positive selection that fit the criteria of hard or soft sweeps, and detect a higher number of events among sub-Saharan Africans than non-Africans (Europe and East Asia). A global enrichment of neural-related processes is observed and numerous genes related to fertility appear among the top candidates, reflecting the importance of reproduction in human evolution. Commonalities with previously reported genes under positive selection are found, while particularly strong new signals are reported in specific populations or shared across different continental groups. We report an enrichment of signals in genes that escape X chromosome inactivation, which may contribute to the differentiation between sexes. We also provide evidence of a widespread presence of soft-sweep-like signatures across the chromosome and a global enrichment of highly scoring regions that overlap potential regulatory elements. Among these, enhancers-like signatures seem to present putative signals of positive selection which might be in concordance with selection in their target genes. Also, particularly strong signals appear in regulatory regions that show differential activities, which might point to population-specific regulatory adaptations.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| |
Collapse
|
43
|
Kidner J, Theodorou P, Engler JO, Taubert M, Husemann M. A brief history and popularity of methods and tools used to estimate micro-evolutionary forces. Ecol Evol 2021; 11:13723-13743. [PMID: 34707813 PMCID: PMC8525119 DOI: 10.1002/ece3.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Population genetics is a field of research that predates the current generations of sequencing technology. Those approaches, that were established before massively parallel sequencing methods, have been adapted to these new marker systems (in some cases involving the development of new methods) that allow genome-wide estimates of the four major micro-evolutionary forces-mutation, gene flow, genetic drift, and selection. Nevertheless, classic population genetic markers are still commonly used and a plethora of analysis methods and programs is available for these and high-throughput sequencing (HTS) data. These methods employ various and diverse theoretical and statistical frameworks, to varying degrees of success, to estimate similar evolutionary parameters making it difficult to get a concise overview across the available approaches. Presently, reviews on this topic generally focus on a particular class of methods to estimate one or two evolutionary parameters. Here, we provide a brief history of methods and a comprehensive list of available programs for estimating micro-evolutionary forces. We furthermore analyzed their usage within the research community based on popularity (citation bias) and discuss the implications of this bias for the software community. We found that a few programs received the majority of citations, with program success being independent of both the parameters estimated and the computing platform. The only deviation from a model of exponential growth in the number of citations was found for the presence of a graphical user interface (GUI). Interestingly, no relationship was found for the impact factor of the journals, when the tools were published, suggesting accessibility might be more important than visibility.
Collapse
Affiliation(s)
- Jonathan Kidner
- General Zoology Institute for Biology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Panagiotis Theodorou
- General Zoology Institute for Biology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Jan O Engler
- Terrestrial Ecology Unit Department of Biology Ghent University Ghent Belgium
| | - Martin Taubert
- Aquatic Geomicrobiology Institute for Biodiversity Friedrich Schiller University Jena Jena Germany
| | - Martin Husemann
- General Zoology Institute for Biology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
- Centrum für Naturkunde University of Hamburg Hamburg Germany
| |
Collapse
|
44
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Ayatollahi Mehrgardi A, Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet Sel Evol 2021; 53:72. [PMID: 34503452 PMCID: PMC8428137 DOI: 10.1186/s12711-021-00664-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Various regions of the chicken genome have been under natural and artificial selection for thousands of years. The substantial diversity that exits among chickens from different geographic regions provides an excellent opportunity to investigate the genomic regions under selection which, in turn, will increase our knowledge about the mechanisms that underlie chicken diversity and adaptation. Several statistics have been developed to detect genomic regions that are under selection. In this study, we applied approaches based on differences in allele or haplotype frequencies (FST and hapFLK, respectively) between populations, differences in long stretches of consecutive homozygous sequences (ROH), and differences in allele frequencies within populations (composite likelihood ratio (CLR)) to identify inter- and intra-populations traces of selection in two Iranian indigenous chicken ecotypes, the Lari fighting chicken and the Khazak or creeper (short-leg) chicken. Results Using whole-genome resequencing data of 32 individuals from the two chicken ecotypes, approximately 11.9 million single nucleotide polymorphisms (SNPs) were detected and used in genomic analyses after quality processing. Examination of the distribution of ROH in the two populations indicated short to long ROH, ranging from 0.3 to 5.4 Mb. We found 90 genes that were detected by at least two of the four applied methods. Gene annotation of the detected putative regions under selection revealed candidate genes associated with growth (DCN, MEOX2 and CACNB1), reproduction (ESR1 and CALCR), disease resistance (S1PR1, ALPK1 and MHC-B), behavior pattern (AGMO, GNAO1 and PSEN1), and morphological traits (IHH and NHEJ1). Conclusions Our findings show that these two phenotypically different indigenous chicken populations have been under selection for reproduction, immune, behavioral, and morphology traits. The results illustrate that selection can play an important role in shaping signatures of differentiation across the genomic landscape of two chicken populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00664-9.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran.
| |
Collapse
|
45
|
Ethnicity-dependent effects of Zinc finger 804A variant on schizophrenia: a systematic review and meta-analysis. Psychiatr Genet 2021; 31:21-28. [PMID: 33395218 DOI: 10.1097/ypg.0000000000000275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Previous studies and meta-analysis indicated that rs1344706 was associated with schizophrenia in European population, whereas the conclusions in other populations were disputed. To further explore whether the allele A of rs1344706 would increase the risk of schizophrenia in different populations and update the original meta-analysis, we conducted a systematic review and meta-analysis worldwide. METHODS A literature search was performed in PubMed, Embase, Cochrane Library, PsycINFO and Web of Science (up to 10 July 2019) according to the inclusion criteria. RESULTS A total of 27 articles were included. Our meta-analysis showed an association between rs1344706 and schizophrenia in total populations [P = 0.000; odds ratio (OR) = 1.105; 95% confidence interval (CI), 1.048-1.165], Europe population (P = 0.025; OR = 1.108; 95% CI, 1.013-1.222) and Asian population(P = 0.005; OR = 1.094; 95% CI, 1.027-1.164). CONCLUSIONS Our findings suggested that the risk of single nucleotide polymorphism rs1344706 A-allele may increase the risk of schizophrenia worldwide. Also, this ethnicity-dependent effects of ZNF804A variant on schizophrenia may be related to the opposite allele direction. But to elucidate the underlying biological mechanism, further studies with large participant populations are needed.
Collapse
|
46
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Association of the PINX1 Variant rs6984094, Which Lengthens Telomeres, with Systemic Lupus Erythematosus Susceptibility in Chinese Populations. J Immunol Res 2021; 2021:7079359. [PMID: 34337078 PMCID: PMC8294968 DOI: 10.1155/2021/7079359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
A recent genome-wide association study (GWAS) of Asian ancestry reported that single nucleotide polymorphism (SNP) in TERT (telomerase reverse transcriptase) was associated with systemic lupus erythematosus (SLE). TERT has a critical role in maintaining the chromosomal stability and the length of telomere. Given that only a small portion of the genetic heritability of SLE has been explained so far, we aimed to identify novel loci in telomere-related genes responsible for SLE susceptibility in Chinese populations. We performed a comprehensive genetic association analysis of SLE with telomere-related genes. To identify functional significance, we analyzed the publicly available HaploReg v4.1 and RegulomeDB databases. Differential gene expression analysis was also performed using ArrayExpress. A novel signal of PINX1 rs6984094 was identified (P discovery = 4.13 × 10-2, OR = 0.58, 95% CI 0.35-0.98) and successfully replicated (P replication = 5.73 × 10-3, OR = 0.45, 95% CI 0.26-0.81). Multiple layers of functional analysis suggested that the PINX1 rs6984094 risk T allele exhibited increased nuclear protein binding. We also observed an increased expression of PINX1 mRNA in peripheral blood mononuclear cells from SLE patients compared with healthy controls. Overall, we observed a novel genetic association between PINX1 (encodes the PinX1 protein, an inhibitory telomerase enzyme that lengthens telomeres) and SLE susceptibility in Chinese populations.
Collapse
|
48
|
Tarekegn GM, Khayatzadeh N, Liu B, Osama S, Haile A, Rischkowsky B, Zhang W, Tesfaye K, Dessie T, Mwai OA, Djikeng A, Mwacharo JM. Ethiopian indigenous goats offer insights into past and recent demographic dynamics and local adaptation in sub-Saharan African goats. Evol Appl 2021; 14:1716-1731. [PMID: 34295359 PMCID: PMC8287980 DOI: 10.1111/eva.13118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge on how adaptive evolution and human socio-cultural and economic interests shaped livestock genomes particularly in sub-Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio-climatic conditions. Using 52K genome-wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome-wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi-Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub-Saharan Africa indigenous goats.
Collapse
Affiliation(s)
- Getinet M. Tarekegn
- Department of Animal Production and TechnologySchool of Animal Sciences and Veterinary MedicineBahir Dar UniversityBahir DarEthiopia
- Department of Animal Breeding and GeneticsSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural SystemsDivision of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bin Liu
- Inner Mongolia Agricultural UniversityHohhotChina
| | - Sarah Osama
- The University of QueenslandSaint LuciaQLDAustralia
| | - Aynalem Haile
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | - Barbara Rischkowsky
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
| | | | - Kassahun Tesfaye
- Department of Microbial, Cellular and Molecular BiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Tadelle Dessie
- International Livestock Research Institute (ILRI)Addis AbabaEthiopia
| | - Okeyo A. Mwai
- International Livestock Research Institute (ILRI)NairobiKenya
| | - Appolinaire Djikeng
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| | - Joram M. Mwacharo
- Small Ruminant GenomicsInternational Centre for Agricultural Research in the Dry Areas (ICARDA)Addis AbabaEthiopia
- Animal and Veterinary Sciences Group, SRUC and Centre for Tropical Livestock Genetics and Health (CTLGH)The Roslin InstituteEaster BushMidlothianUK
| |
Collapse
|
49
|
Xu H, Zhen Q, Bai M, Fang L, Zhang Y, Li B, Ge H, Moon S, Chen W, Fu W, Xu Q, Zhou Y, Yu Y, Lin L, Yong L, Zhang T, Chen S, Liu S, Zhang H, Chen R, Cao L, Zhang Y, Zhang R, Yang H, Hu X, Akey JM, Jin X, Sun L. Deep sequencing of 1320 genes reveals the landscape of protein-truncating variants and their contribution to psoriasis in 19,973 Chinese individuals. Genome Res 2021; 31:1150-1158. [PMID: 34155038 PMCID: PMC8256863 DOI: 10.1101/gr.267963.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Protein-truncating variants (PTVs) have important impacts on phenotype diversity and disease. However, their population genetics characteristics in more globally diverse populations are not well defined. Here, we describe patterns of PTVs in 1320 genes sequenced in 10,539 healthy controls and 9434 patients with psoriasis, all of Han Chinese ancestry. We identify 8720 PTVs, of which 77% are novel, and estimate 88% of all PTVs are deleterious and subject to purifying selection. Furthermore, we show that individuals with psoriasis have a significantly higher burden of PTVs compared to controls (P = 0.02). Finally, we identified 18 PTVs in 14 genes with unusually high levels of population differentiation, consistent with the action of local adaptation. Our study provides insights into patterns and consequences of PTVs.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Mingzhou Bai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Lin Fang
- Guangdong Engineering Research Center of Life Sciences Bigdata, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yong Zhang
- Guangdong Engineering Research Center of Life Sciences Bigdata, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bao Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
| | - Huiyao Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Sunjin Moon
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
| | - Weiwei Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenqing Fu
- Microsoft Corporation, Redmond, Washington 98052, USA
| | - Qiongqiong Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yuwen Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Long Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Tao Zhang
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Shirui Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, Guangdong, China
| | - Hui Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ruoyan Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Lu Cao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yuanwei Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ruixue Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanjie Yang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Xia Hu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Joshua M Akey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Liangdan Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Anhui, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
50
|
Abstract
Some of the genes responsible for the evolution of light skin pigmentation in Europeans show signals of positive selection in present-day populations. Recently, genome-wide association studies have highlighted the highly polygenic nature of skin pigmentation. It is unclear whether selection has operated on all of these genetic variants or just a subset. By studying variation in over a thousand ancient genomes from West Eurasia covering 40,000 y, we are able to study both the aggregate behavior of pigmentation-associated variants and the evolutionary history of individual variants. We find that the evolution of light skin pigmentation in Europeans was driven by frequency changes in a relatively small fraction of the genetic variants that are associated with variation in the trait today. Skin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all of the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1,158 individuals from West Eurasia covering a period of 40,000 y combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on 170 skin pigmentation-associated variants ascertained in the UK Biobank. However, we also show that this signal is driven by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Western Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.
Collapse
|