1
|
da Silva R, Viana VE, Avila LA, Zotti MJ, Smagghe G, Junior AM, Camargo ER, Fajardo AR. Advances on polymeric nanocarriers for sustainable agriculture: Enhancing dsRNA/siRNA delivery to combat agricultural pests. Int J Biol Macromol 2024; 282:137000. [PMID: 39476891 DOI: 10.1016/j.ijbiomac.2024.137000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
The application of exogenous RNA for gene-silencing strategies has gained significant traction in agriculture, offering a highly efficient and eco-friendly alternative to conventional plant protection methods. This success has been driven by advances in biotechnology, from the design of long double-stranded RNA (dsRNA) and small interfering RNA (siRNA) molecules to the development of nanocarrier systems that address the challenge of RNA delivery into plant cells. In particular, polymer-based nanocarriers have emerged as a promising solution for enhancing the stability and delivery efficiency of RNA molecules. This review provides a comprehensive overview of the current state of research on the use of polymeric nanocarriers in RNA interference (RNAi) systems for crop protection. It examines key technological developments that have enabled the effective delivery of dsRNA/siRNA to target organisms, with a focus on the unique advantages polymers offer as carriers. Recent studies highlight significant progress in the preparation, characterization, and application of polymeric nanocarriers for RNA encapsulation and delivery. The review also explores the environmental and health challenges posed by these technologies, emphasizing the need for sustainable approaches in their development. Specifically, the production of nanocarriers must adhere to the principles of green chemistry, prioritizing chemical modification routes that reduce harmful residues, such as toxic solvents. Finally, this paper discusses both the current challenges and future prospects of using polymer-based nanocarriers in sustainable agriculture, offering critical insights into their potential to transform crop protection through RNAi technologies.
Collapse
Affiliation(s)
- Renata da Silva
- Laboratory of Technology and Development of Composites and Polymer Materials (LaCoPol), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Vívian E Viana
- Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Luis A Avila
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Moisés J Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium; Institute of Entomology, Guizhou University, Guiyang, China; Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Aldo Merotto Junior
- Graduate Group in Plant Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Edinalvo R Camargo
- Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymer Materials (LaCoPol), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Cui X, Fan X, Xu S, Wang S, Niu F, Zhao P, Yang B, Liu W, Guo X, Jiang YQ. WRKY47 transcription factor modulates leaf senescence through regulating PCD-associated genes in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108805. [PMID: 38861819 DOI: 10.1016/j.plaphy.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Transcription factors play crucial roles in almost all physiological processes including leaf senescence. Cell death is a typical symptom appearing in senescing leaves, which is also classified as developmental programmed cell death (PCD). However, the link between PCD and leaf senescence still remains unclear. Here, we found a WRKY transcription factor WRKY47 positively modulates age-dependent leaf senescence in Arabidopsis (Arabidopsis thaliana). WRKY47 was expressed preferentially in senescing leaves. A subcellular localization assay indicated that WRKY47 was exclusively localized in nuclei. Overexpression of WRKY47 showed precocious leaf senescence, with less chlorophyll content and higher electrolyte leakage, but loss-of-function mutants of WRKY47 delayed this biological process. Through qRT-PCR and dual luciferase reporter assays, we found that WRKY47 could activate the expression of senescence-associated genes (SAGs) and PCD-associated genes to regulate leaf senescence. Furthermore, through electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-qPCR, WRKY47 was found to bind to W-box fragments in promoter regions of BFN1 (Bifunctional Nuclease 1) and MC6 (Metacaspase 6) directly. In general, our research revealed that WRKY47 regulates age-dependent leaf senescence by activating the transcription of two PCD-associated genes.
Collapse
Affiliation(s)
- Xing Cui
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojiang Fan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shutao Xu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangfang Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wuzhen Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaohua Guo
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhang JF, Wang YY, He L, Yan JY, Liu YY, Ruan ZY, Liu WC, Yi L, Ren F. PHR1 involved in the regulation of low phosphate-induced leaf senescence by modulating phosphorus homeostasis in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:799-816. [PMID: 38111215 DOI: 10.1111/pce.14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Phosphorus (P) is a crucial macronutrient for plant growth, development, and reproduction. The effects of low P (LP) stress on leaf senescence and the role of PHR1 in LP-induced leaf senescence are still unknown. Here, we report that PHR1 plays a crucial role in LP-induced leaf senescence, showing delayed leaf senescence in phr1 mutant and accelerated leaf senescence in 35S:PHR1 transgenic Arabidopsis under LP stress. The transcriptional profiles indicate that 763 differentially expressed SAGs (DE-SAGs) were upregulated and 134 DE-SAGs were downregulated by LP stress. Of the 405 DE-SAGs regulated by PHR1, 27 DE-SAGs were involved in P metabolism and transport. PHR1 could bind to the promoters of six DE-SAGs (RNS1, PAP17, SAG113, NPC5, PLDζ2, and Pht1;5), and modulate them in LP-induced senescing leaves. The analysis of RNA content, phospholipase activity, acid phosphatase activity, total P and phosphate content also revealed that PHR1 promotes P liberation from senescing leaves and transport to young tissues under LP stress. Our results indicated that PHR1 is one of the crucial modulators for P recycling and redistribution under LP stress, and the drastic decline of P level is at least one of the causes of early senescence in P-deficient leaves.
Collapse
Affiliation(s)
- Jian-Feng Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - You-Yi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Le He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jing-Yi Yan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ying-Ying Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhao-Yang Ruan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Long Yi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- School of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
Furuta Y, Yamamoto H, Hirakawa T, Uemura A, Pelayo MA, Iimura H, Katagiri N, Takeda-Kamiya N, Kumaishi K, Shirakawa M, Ishiguro S, Ichihashi Y, Suzuki T, Goh T, Toyooka K, Ito T, Yamaguchi N. Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases. Nat Commun 2024; 15:1098. [PMID: 38321030 PMCID: PMC10847506 DOI: 10.1038/s41467-024-45371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.
Collapse
Affiliation(s)
- Yuki Furuta
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Haruka Yamamoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takeshi Hirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Akira Uemura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Smurfit Institute of Genetics, Trinity College Dublin, D02 PN40, Dublin, Ireland
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
5
|
Liang M, Huai B, Lin J, Liang X, He H, Bai M, Wu H. Ca2+- and Zn2+-dependent nucleases co-participate in nuclear DNA degradation during programmed cell death in secretory cavity development in Citrus fruits. TREE PHYSIOLOGY 2024; 44:tpad122. [PMID: 37738622 DOI: 10.1093/treephys/tpad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Calcium (Ca2+)- and zinc Zn2+-dependent nucleases play pivotal roles in plant nuclear DNA degradation in programmed cell death (PCD). However, the mechanisms by which these two nucleases co-participate in PCD-associated nuclear DNA degradation remain unclear. Here, the spatiotemporal expression patterns of two nucleases (CrCAN and CrENDO1) were analyzed qualitatively and quantitatively during PCD in secretory cavity formation in Citrus reticulata 'Chachi' fruits. Results show that the middle and late initial cell stages and lumen-forming stages are key stages for nuclear degradation during the secretory cavity development. CAN and ENDO1 exhibited potent in vitro DNA degradation activity at pH 8.0 and pH 5.5, respectively. Quantitative real-time reverse-transcription polymerase chain reaction, in situ hybridization assays, the subcellular localization of Ca2+ and Zn2+, and immunocytochemical localization showed that CrCAN was activated at the middle and late initial cell stages, while CrENDO1 was activated at the late initial cell and lumen-forming stages. Furthermore, we used immunocytochemical double-labelling to simultaneously locate CrCAN and CrENDO1. The DNA degradation activity of the two nucleases was verified by simulating the change of intracellular pH in vitro. Our results also showed that CrCAN and CrENDO1 worked respectively and co-participated in nuclear DNA degradation during PCD of secretory cavity cells. In conclusion, we propose the model for the synergistic effect of Ca2+- and Zn2+-dependent nucleases (CrCAN and CrENDO1) in co-participating in nuclear DNA degradation during secretory cavity cell PCD in Citrus fruits. Our findings provide direct experimental evidence for exploring different ion-dependent nucleases involved in nuclear degradation during plant PCD.
Collapse
Affiliation(s)
- Minjian Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Bin Huai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Junjun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Xiangxiu Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Hanjun He
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| |
Collapse
|
6
|
Krela R, Poreba E, Lesniewicz K. Variations in the enzymatic activity of S1-type nucleases results from differences in their active site structures. Biochim Biophys Acta Gen Subj 2023; 1867:130424. [PMID: 37463618 DOI: 10.1016/j.bbagen.2023.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND S1-like nucleases are widespread enzymes commonly used in biotechnology and molecular biology. Although it is commonly believed that they are mainly Zn2+-dependent acidic enzymes, we have found that numerous members of this family deviate from this rule. Therefore, in this work, we decided to check how broad is the range of non‑zinc-dependent S1-like nucleases and what is the molecular basis of their activities. METHODS S1-like nucleases chosen for analysis were achieved through heterologous expression in appropriate eukaryotic hosts. To characterize nucleases' active-site properties, point mutations were introduced in selected positions. The enzymatic activities of wild-type and mutant nucleases were tested by in-gel nuclease activity assay. RESULTS We discovered that S1-like nucleases encoded by non-vascular plants and single-celled protozoa, like their higher plant homologues, exhibit a large variety of catalytic properties. We have shown that these individual properties are determined by specific non-conserved active site residues. CONCLUSIONS Our findings demonstrate that mutations that occur during evolution can significantly alter the catalytic properties of S1-like nucleases. As a result, different ions can compete for particular S1-type nucleases' active sites. This phenomenon undermines the existing classification of S1-like nucleases. GENERAL SIGNIFICANCE Our findings have numerous implications for applications and understanding the S1-like nucleases' biological functions. For example, new biotechnological applications should take into account their unexpected catalytic properties. Moreover, these results demonstrate that the trinuclear zinc-based model commonly used to characterize the catalytic activities of S1-like nucleases is insufficient to explain the actions of non‑zinc-dependent members of this family.
Collapse
Affiliation(s)
- Rafal Krela
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 370 05, Czech Republic.
| | - Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland.
| |
Collapse
|
7
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Nair A, Harshith CY, Narjala A, Shivaprasad PV. Begomoviral βC1 orchestrates organellar genomic instability to augment viral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:934-950. [PMID: 36919198 DOI: 10.1111/tpj.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defense against pathogens, including viruses. Previous studies indicated disruption of chloroplast homeostasis as a basic strategy of Begomovirus for its successful infection leading to the production of vein-clearing, mosaic, and chlorotic symptoms in infected plants. Although begomoviral pathogenicity determinant protein Beta C1 (βC1) was implicated for pathogenicity, the underlying mechanism was unclear. Here we show that, begomoviral βC1 directly interferes with the host plastid homeostasis. βC1 induced DPD1, an organelle-specific nuclease, implicated in nutrient salvage and senescence, as well as modulated the function of a major plastid genome maintainer protein RecA1, to subvert plastid genome. We show that βC1 was able to physically interact with bacterial RecA and its plant homolog RecA1, resulting in its altered activity. We observed that knocking-down DPD1 during virus infection significantly reduced virus-induced necrosis. These results indicate the presence of a strategy in which a viral protein alters host defense by targeting modulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.
Collapse
Affiliation(s)
- Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
9
|
Matoušek J, Wüsthoff KP, Steger G. "Pathomorphogenic" Changes Caused by Citrus Bark Cracking Viroid and Transcription Factor TFIIIA-7ZF Variants Support Viroid Propagation in Tobacco. Int J Mol Sci 2023; 24:ijms24097790. [PMID: 37175498 PMCID: PMC10178017 DOI: 10.3390/ijms24097790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Viroids are small, non-coding, pathogenic RNAs with the ability to disturb plant developmental processes. This dysregulation redirects the morphogenesis of plant organs, significantly impairing their functionality. Citrus bark cracking viroid (CBCVd) causes detrimental developmental distortions in infected hops (Humulus lupulus) and causes significant economic losses. CBCVd can infect cells and tissues of the model plant tobacco (Nicotiana tabacum), provided it is delivered via transgenesis. The levels of CBCVd in tobacco were enhanced in plant hybrids expressing CBCVd cDNAs and either the tobacco or hop variant of TFIIIA-7ZF, a viroid-mediated splicing derivative of transcription factor IIIA, which is important for viroid replication by DNA-dependent RNA polymerase II. The TFIIIA-7ZF variants can change the tobacco morphogenesis if expressed in leaves and shoots. In addition to the splitting of shoots, the "pathomorphogenic" network in hybrid plants expressing CBCVd and HlTFIIIA-7ZF induced leaf fusions and malformations. Moreover, CBCVd can dramatically change another morphogenesis into teratomic and petal-like tissues if propagated above some limit in young transgenic tobacco microspores and anthers. By comparative RNA profiling of transgenic tobacco shoots bearing TFIIIA-7ZFs and CBCVd-transformed/infected anthers, we found a differential expression of many genes at p < 0.05. As the main common factor showing the differential up-regulation in shoot and anther tissues, a LITTLE ZIPPER 2-like transcription factor was found. We propose that this factor, which can interact as a competitive inhibitor of the also dysregulated homeobox-leucin zipper family protein (HD-ZIPIII) in apical meristem, is essential for a network responsible for some morphological changes and modifications of plant degradome within shoot meristem regulation and secondary xylem differentiation.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Kevin P Wüsthoff
- Institut für Pysikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Gerhard Steger
- Institut für Pysikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
10
|
Chen Q, Yan J, Tong T, Zhao P, Wang S, Zhou N, Cui X, Dai M, Jiang YQ, Yang B. ANAC087 transcription factor positively regulates age-dependent leaf senescence through modulating the expression of multiple target genes in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:967-984. [PMID: 36519581 DOI: 10.1111/jipb.13434] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Leaf senescence is the final stage of leaf development and appropriate onset and progression of leaf senescence are critical for reproductive success and fitness. Although great progress has been made in identifying key genes regulating leaf senescence and elucidating the underlining mechanisms in the model plant Arabidopsis, there is still a gap to understanding the complex regulatory network. In this study, we discovered that Arabidopsis ANAC087 transcription factor (TF) positively modulated leaf senescence. Expression of ANAC087 was induced in senescing leaves and the encoded protein acted as a transcriptional activator. Both constitutive and inducible overexpression lines of ANAC087 showed earlier senescence than control plants, whereas T-DNA insertion mutation and dominant repression of the ANAC087 delayed senescence rate. A quantitative reverse transcription-polymerase chain reaction (qRT-PCR) profiling showed that the expression of an array of senescence-associated genes was upregulated in inducible ANAC087 overexpression plants including BFN1, NYE1, CEP1, RbohD, SAG13, SAG15, and VPEs, which are involved in programmed cell death (PCD), chlorophyll degradation and reactive oxygen species (ROS) accumulation. In addition, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays demonstrated that ANAC087 directly bound to the canonical NAC recognition sequence (NACRS) motif in promoters of its target genes. Moreover, mutation of two representative target genes, BFN1 or NYE1 alleviated the senescence rate of ANAC087-overexpression plants, suggesting their genetic regulatory relationship. Taken together, this study indicates that ANAC087 serves as an important regulator linking PCD, ROS, and chlorophyll degradation to leaf senescence.
Collapse
Affiliation(s)
- Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Na Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Moyu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|
11
|
Yu M, Arai N, Ochiai T, Ohyama T. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae. ANNALS OF BOTANY 2023; 131:335-346. [PMID: 36546767 PMCID: PMC9992940 DOI: 10.1093/aob/mcac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants trap and digest insects and similar-sized animals. Many studies have examined enzymes in the digestive fluids of these plants and have gradually unveiled the origins and gene expression of these enzymes. However, only a few attempts have been made at characterization of nucleases. This study aimed to reveal gene expression and the structural, functional and evolutionary characteristics of an S1-type nuclease (DAN1) in the digestive fluid of an Australian sundew, Drosera adelae, whose trap organ shows unique gene expression and related epigenetic regulation. METHODS Organ-specificity in Dan1 expression was examined using glandular tentacles, laminas, roots and inflorescences, and real-time PCR. The methylation status of the Dan1 promoter in each organ was clarified by bisulphite sequencing. The structural characteristics of DAN1 were studied by a comparison of primary structures of S1-type nucleases of three carnivorous and seven non-carnivorous plants. DAN1 was prepared using a cell-free protein synthesis system. Requirements for metal ions, optimum pH and temperature, and substrate preference were examined using conventional methods. KEY RESULTS Dan1 is exclusively expressed in the glandular tentacles and its promoter is almost completely unmethylated in all organs. This is in contrast to the S-like RNase gene da-I of Dr. adelae, which shows similar organ-specific expression, but is controlled by a promoter that is specifically unmethylated in the glandular tentacles. Comparison of amino acid sequences of S1-type nucleases identifies seven and three positions where amino acid residues are conserved only among the carnivorous plants and only among the non-carnivorous plants, respectively. DAN1 prefers a substrate RNA over DNA in the presence of Zn2+, Mn2+ or Ca2+ at an optimum pH of 4.0. CONCLUSIONS Uptake of phosphates from prey is suggested to be the main function of DAN1, which is very different from the known functions of S1-type nucleases. Evolution has modified the structure and expression of Dan1 to specifically function in the digestive fluid.
Collapse
Affiliation(s)
- Meng Yu
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Arai
- Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Tadahiro Ochiai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
12
|
Yoshitake Y, Yoshimoto K. Intracellular phosphate recycling systems for survival during phosphate starvation in plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1088211. [PMID: 36733584 PMCID: PMC9888252 DOI: 10.3389/fpls.2022.1088211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and plants use inorganic phosphate (Pi) as their P source, but its bioavailable form, orthophosphate, is often limited in soils. Hence, plants have several mechanisms for adaptation to Pi starvation. One of the most common response strategies is "Pi recycling" in which catabolic enzymes degrade intracellular constituents, such as phosphoesters, nucleic acids and glycerophospholipids to salvage Pi. Recently, several other intracellular degradation systems have been discovered that salvage Pi from organelles. Also, one of sphingolipids has recently been identified as a degradation target for Pi recycling. So, in this mini-review we summarize the current state of knowledge, including research findings, about the targets and degradation processes for Pi recycling under Pi starvation, in order to further our knowledge of the whole mechanism of Pi recycling.
Collapse
|
13
|
Moshchenskaya YL, Galibina NA, Nikerova KM, Tarelkina TV, Korzhenevsky MA, Sofronova IN, Ershova MA, Semenova LI. Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3438. [PMID: 36559551 PMCID: PMC9785643 DOI: 10.3390/plants11243438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family-BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells' PCD during the formation of Scots pine heartwood were discussed.
Collapse
Affiliation(s)
- Yulia L. Moshchenskaya
- Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya st., 185910 Petrozavodsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ye X, Li Q, Liu C, Wu Q, Wan Y, Wu X, Zhao G, Zou L, Xiang D. Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1004802. [PMID: 36311101 PMCID: PMC9597304 DOI: 10.3389/fpls.2022.1004802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization and urbanization have caused serious cadmium (Cd) pollution in soil. Tartary buckwheat is an important pseudocereal crop with the potential ability to tolerate various stresses. However, the responses to Cd stress in this species are unclear. In this study, we assessed the phenotypic, cytological, physiological, and transcriptomic characteristics of Tartary buckwheat under the various concentrations of Cd treatments to investigate the responses and their regulatory pathways for the first time. The results showed Tartary buckwheat could tolerate the high Cd concentration of 50 mg/L under Cd stress. The average root diameters increased as a result of more cell layers of the endodermis and the bigger size of the pericycle. Cd primarily accumulated in roots and relatively less transferred to leaves. Antioxidant activities and malondialdehyde (MDA) accumulation varied in different tissues and different Cd concentrations of treatments. Meanwhile, Cd stress led to the formation of Casparian strips in roots and damaged the cytoderm and organelles. The weighted gene co-expression and interaction network analyses revealed that 9 core genes induced by Cd stress were involved in metal ion binding, Ca signal transduction, cell wall organization, antioxidant activities, carbohydrate metabolic process, DNA catabolic process, and plant senescence, which regulated a series of phenotypic, cytological, and physiological changes above. These results laid the foundation for a deep understanding of the responses to Cd toxicity in Tartary buckwheat. It's also a critical reference for the functional characterization of genes for Cd tolerance.
Collapse
|
15
|
Lee YC, Tsai PT, Huang XX, Tsai HL. Family Members Additively Repress the Ectopic Expression of BASIC PENTACYSTEINE3 to Prevent Disorders in Arabidopsis Circadian Vegetative Development. FRONTIERS IN PLANT SCIENCE 2022; 13:919946. [PMID: 35693178 PMCID: PMC9182635 DOI: 10.3389/fpls.2022.919946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family members are plant-specific GAGA-motif binding factors (GAFs) controlling multiple developmental processes of growth and propagation. BPCs recruit histone remodeling factors for transcriptional repression of downstream targets. It has been revealed that BPCs have an overlapping and antagonistic relationship in regulating development. In this study, we showed disturbances interfering with the homeostasis of BPC expressions impede growth and development. The ectopic expression of BPC3 results in the daily growth defect shown by higher-order bpc mutants. Oscillations of multiple circadian clock genes are phase-delayed in the quadruple mutant of bpc1 bpc2 bpc4 bpc6 (bpc1,2,4,6). By introducing the overexpression of BPC3 into wild-type Arabidopsis, we found that BPC3 is a repressor participating in its repression and repressing multiple regulators essential to the circadian clock. However, the induction of BPC3 overexpression did not fully replicate clock defects shown by the quadruple mutant, indicating that in addition to the BPC3 antagonization, BPC members also cofunction in the circadian clock regulation. A leaf edge defect similar to that shown by bpc1,2,4,6 is also observed under BPC3 induction, accompanied by repression of a subset of TCPs required for the edge formation. This proves that BPC3 is a repressor that must be confined during the vegetative phase. Our findings demonstrate that BPCs form a meticulous repressor network for restricting their repressive functions to molecular mechanisms controlling plant growth and development.
Collapse
|
16
|
Matoušek J, Steger G. The Splicing Variant TFIIIA-7ZF of Viroid-Modulated Transcription Factor IIIA Causes Physiological Irregularities in Transgenic Tobacco and Transient Somatic Depression of "Degradome" Characteristic for Developing Pollen. Cells 2022; 11:784. [PMID: 35269406 PMCID: PMC8909551 DOI: 10.3390/cells11050784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Viroids are small, non-coding, pathogenic RNAs with a significant ability of adaptation to several basic cellular processes in plants. TFIIIA-7ZF, a splicing variant of transcription factor IIIA, is involved in replication of nuclear-replicating viroids by DNA-dependent polymerase II. We overexpressed NbTFIIIA-7ZF from Nicotiana benthamiana in tobacco (Nicotiana tabacum) where it caused morphological and physiological deviations like plant stunting, splitting of leaf petioles, pistils or apexes, irregular branching of shoots, formation of double-blade leaves, deformation of main stems, and modification of glandular trichomes. Plant aging and senescence was dramatically delayed in transgenic lines. Factors potentially involved in viroid degradation and elimination in pollen were transiently depressed in transgenic leaves. This depressed "degradome" in young plants involved NtTudor S-like nuclease, dicers, argonoute 5, and pollen extracellular nuclease I showing expression in tobacco anthers and leaves. Analysis of the "degradome" in tobacco leaves transformed with either of two hop viroids confirmed modifications of the "degradome" and TFIIIA expression. Thus, the regulatory network connected to TFIIIA-7ZF could be involved in plant pathogenesis as well as in viroid adaptation to avoid its degradation. These results support the hypothesis on a significant impact of limited TFIIIA-7ZF on viroid elimination in pollen.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic;
| | - Gerhard Steger
- Institutfür Pysikalische Biologie, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
17
|
Zn 2+-Dependent Nuclease Is Involved in Nuclear Degradation during the Programmed Cell Death of Secretory Cavity Formation in Citrus grandis 'Tomentosa' Fruits. Cells 2021; 10:cells10113222. [PMID: 34831444 PMCID: PMC8622950 DOI: 10.3390/cells10113222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/02/2023] Open
Abstract
Zn2+- and Ca2+-dependent nucleases exhibit activity toward dsDNA in the four classes of cation-dependent nucleases in plants. Programmed cell death (PCD) is involved in the degradation of cells during schizolysigenous secretory cavity formation in Citrus fruits. Recently, the Ca2+-dependent DNase CgCAN was proven to play a key role in nuclear DNA degradation during the PCD of secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits. However, whether Zn2+-dependent nuclease plays a role in the PCD of secretory cells remains poorly understood. Here, we identified a Zn2+-dependent nuclease gene, CgENDO1, from Citrus grandis ‘Tomentosa’, the function of which was studied using Zn2+ ions cytochemical localization, DNase activity assays, in situ hybridization, and protein immunolocalization. The full-length cDNA of CgENDO1 contains an open reading frame of 906 bp that encodes a protein 301 amino acids in length with a S1/P1-like functional domain. CgENDO1 degrades linear double-stranded DNA at acidic and neutral pH. CgENDO1 is mainly expressed in the late stage of nuclear degradation of secretory cells. Further spatiotemporal expression patterns of CgENDO1 showed that CgENDO1 is initially located on the endoplasmic reticulum and then moves into intracellular vesicles and nuclei. During the late stage of nuclear degradation, it was concentrated in the area of nuclear degradation involved in nuclear DNA degradation. Our results suggest that the Zn2+-dependent nuclease CgENDO1 plays a direct role in the late degradation stage of the nuclear DNA in the PCD of secretory cavity cells of Citrus grandis ‘Tomentosa’ fruits.
Collapse
|
18
|
M-Hamvas M, Vasas G, Beyer D, Nagylaki E, Máthé C. Microcystin-LR, a Cyanobacterial Toxin, Induces DNA Strand Breaks Correlated with Changes in Specific Nuclease and Protease Activities in White Mustard ( Sinapis alba) Seedlings. PLANTS 2021; 10:plants10102045. [PMID: 34685854 PMCID: PMC8537482 DOI: 10.3390/plants10102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022]
Abstract
There is increasing evidence for the induction of programmed cell death (PCD) in vascular plants by the cyanobacterial toxin microcystin-LR (MC-LR). Our aim was to detect the occurrence of PCD-related DNA strand breaks and their possible connections to specific nuclease and protease activities. DNA breaks were studied by the deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method in the photoperiodically grown dicot model of white mustard (Sinapis alba). In-gel nuclease and protease activity assays showed changes in the activities of specific isoenzymes during treatments with MC-LR. Strand breaks occurred both in the developing root epidermis and cortex. Several isoenzyme activities were related to these breaks, for example: an increase in the activity of neutral 80–75 kDa, acidic high MW (100–120 kDa) and, most importantly, an increase in the activity of neutral 26–20 kDa nucleases, all of them having single-stranded DNA cleaving (SSP nuclease) activities. Increases in the activities of alkaline proteases in the 61–41 kDa range were also detected and proved to be in relation with MC-LR-induced PCD. This is one of the first pieces of evidence on the correlation of PCD-related DNA strand breaks with specific hydrolase activities in a model dicot treated with a cyanobacterial toxin known to have environmental importance.
Collapse
|
19
|
Hendrix B, Zheng W, Bauer MJ, Havecker ER, Mai JT, Hoffer PH, Sanders RA, Eads BD, Caruano-Yzermans A, Taylor DN, Hresko C, Oakes J, Iandolino AB, Bennett MJ, Deikman J. Topically delivered 22 nt siRNAs enhance RNAi silencing of endogenous genes in two species. PLANTA 2021; 254:60. [PMID: 34448043 PMCID: PMC8390415 DOI: 10.1007/s00425-021-03708-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/16/2021] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION 22 nt siRNAs applied to leaves induce production of transitive sRNAs for targeted genes and can enhance local silencing. Systemic silencing was only observed for a GFP transgene. RNA interference (RNAi) is a gene silencing mechanism important in regulating gene expression during plant development, response to the environment and defense. Better understanding of the molecular mechanisms of this pathway may lead to future strategies to improve crop traits of value. An abrasion method to deliver siRNAs into leaf cells of intact plants was used to investigate the activities of 21 and 22 nt siRNAs in silencing genes in Nicotiana benthamiana and Amaranthus cruentus. We confirmed that both 21 and 22 nt siRNAs were able to silence a green fluorescent protein (GFP) transgene in treated leaves of N. benthamiana, but systemic silencing of GFP occurred only when the guide strand contained 22 nt. Silencing in the treated leaves of N. benthamiana was demonstrated for three endogenous genes: magnesium cheletase subunit I (CHL-I), magnesium cheletase subunit H (CHL-H), and GENOMES UNCOUPLED4 (GUN4). However, systemic silencing of these endogenous genes was not observed. Very high levels of transitive siRNAs were produced for GFP in response to treatment with 22 nt siRNAs but only low levels were produced in response to a 21 nt siRNA. The endogenous genes tested also produced transitive siRNAs in response to 22 nt siRNAs. 22 nt siRNAs produced greater local silencing phenotypes than 21 nt siRNAs for three of the genes. These special properties of 22 nt siRNAs were also observed for the CHL-H gene in A. cruentus. These experiments suggest a functional role for transitive siRNAs in amplifying the RNAi response.
Collapse
Affiliation(s)
- Bill Hendrix
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
- Bayer U.S. LLC, Research and Development, Crop Science, Biologics Pest Control, 890 Embarcadero Drive, West Sacramento, CA, 95605, USA
| | - Wei Zheng
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
| | - Matthew J Bauer
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Ericka R Havecker
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Jennifer T Mai
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
| | - Paul H Hoffer
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
- California Governor's Office of Emergency Services, 3650 Schriever Avenue, Mather, CA, 95655, USA
| | - Rick A Sanders
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
| | - Brian D Eads
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | | | - Danielle N Taylor
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Chelly Hresko
- Bayer Crop Science, 700 Chesterfield Parkway West, Chesterfield, MO, 63017, USA
| | - Janette Oakes
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
| | | | - Michael J Bennett
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA
| | - Jill Deikman
- Bayer Crop Science, 37437 State Highway 16, Woodland, CA, 95695, USA.
| |
Collapse
|
20
|
Yan J, Li Y, Zhao P, Mu B, Chen Q, Li X, Cui X, Wang Z, Li J, Li S, Yang B, Jiang YQ. Membrane-Bound Transcriptional Activator NTL1 from Rapeseed Positively Modulates Leaf Senescence through Targeting Genes Involved in Reactive Oxygen Species Production and Programmed Cell Death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4968-4980. [PMID: 33877836 DOI: 10.1021/acs.jafc.1c00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Leaf senescence is the last stage of leaf development and is determined by various environmental and endogenous signals. Leaf senescence can determine plant productivity and fitness. Transcription factors (TFs) with the transmembrane domain constitute a special group of regulatory proteins that can translocate from the membrane system into nuclei to exert the transcriptional function upon endogenous or exogenous stimuli. Reactive oxygen species (ROSs) play an important role in numerous processes throughout the life cycle of plants including leaf senescence. Leaf senescence is characterized by massive programmed cell death (PCD) and is a type of developmental PCD. The transcriptional regulatory relationships between membrane-bound TFs and leaf senescence remain largely uncharacterized, especially in rapeseed (Brassica napus L.), an important oil crop. Here, we show that BnaNTL1 is a membrane-bound NAC (NAM, ATAF, and CUC) TF, which is predominantly expressed in senescent leaves. Expression of BnaNTL1ΔTM, a form of BnaNTL1 devoid of the transmembrane domain, can induce serious HR-like cell death symptoms and ROS accumulation in cells. Plants overexpressing BnaNTL1ΔTM show earlier leaf senescence compared with the control, accompanied by chlorophyll degradation and electrolyte leakage. Genes involved in ROS production (RbohD), PCD (VPEs and CEP1), and leaf senescence (BFN1) are significantly induced and activated by BnaNTL1ΔTM according to the quantitative reverse transcription PCR (qRT-PCR) analysis and dual luciferase reporter (Dual-LUC) assay. Moreover, electrophoretic mobility shift assay revealed that BnaNTL1 directly bound to the NTLBS elements in promoters of RbohD, γVPE, and BFN1. In conclusion, these results demonstrate that BnaNTL1 positively modulates ROS production and HR-like cell death to induce leaf senescence.
Collapse
Affiliation(s)
- Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yanfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bangbang Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhaoqiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shaojun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Ma C, Chen Q, Wang S, Lers A. Downregulation of GeBP-like α factor by MiR827 suggests their involvement in senescence and phosphate homeostasis. BMC Biol 2021; 19:90. [PMID: 33941183 PMCID: PMC8091714 DOI: 10.1186/s12915-021-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background Leaf senescence is a genetically controlled degenerative process intimately linked to phosphate homeostasis during plant development and responses to environmental conditions. Senescence is accelerated by phosphate deficiency, with recycling and mobilization of phosphate from senescing leaves serving as a major phosphate source for sink tissues. Previously, miR827 was shown to play a significant role in regulating phosphate homeostasis, and induction of its expression was also observed during Arabidopsis leaf senescence. However, whether shared mechanisms underlie potentially common regulatory roles of miR827 in both processes is not understood. Here, we dissect the regulatory machinery downstream of miR827. Results Overexpression or inhibited expression of miR827 led to an acceleration or delay in the progress of senescence, respectively. The transcriptional regulator GLABRA1 enhancer-binding protein (GeBP)-like (GPLα) gene was identified as a possible target of miR827. GPLα expression was elevated in miR827-suppressed lines and reduced in miR827-overexpressing lines. Furthermore, heterologous co-expression of pre-miR827 in tobacco leaves reduced GPLα transcript levels, but this effect was eliminated when pre-miR827 recognition sites in GPLα were mutated. GPLα expression is induced during senescence and its inhibition or overexpression resulted in senescence acceleration and inhibition, accordingly. Furthermore, GPLα expression was induced by phosphate deficiency, and overexpression of GPLα led to reduced expression of phosphate transporter 1 genes, lower leaf phosphate content, and related root morphology. The encoded GPLα protein was localized to the nucleus. Conclusions We suggest that MiR827 and the transcription factor GPLα may be functionally involved in senescence and phosphate homeostasis, revealing a potential new role for miR827 and the function of the previously unstudied GPLα. The close interactions between senescence and phosphate homeostasis are further emphasized by the functional involvement of the two regulatory components, miR827 and GPLα, in both processes and the interactions between them.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Department of Postharvest Science, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, 7505101, Rishon LeZion, Israel
| | - Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Amnon Lers
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
22
|
Yan J, Chen Q, Cui X, Zhao P, Gao S, Yang B, Liu JX, Tong T, Deyholos MK, Jiang YQ. Ectopic overexpression of a membrane-tethered transcription factor gene NAC60 from oilseed rape positively modulates programmed cell death and age-triggered leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:600-618. [PMID: 33119146 DOI: 10.1111/tpj.15057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Senescence is an integrative final stage of plant development that is governed by internal and external cues. The NAM, ATAF1/2, CUC2 (NAC) transcription factor (TF) family is specific to plants and membrane-tethered NAC TFs (MTTFs) constitute a unique and sophisticated mechanism in stress responses and development. However, the function of MTTFs in oilseed rape (Brassica napus L.) remains unknown. Here, we report that BnaNAC60 is an MTTF associated with the endoplasmic reticulum (ER) membrane. Expression of BnaNAC60 was induced during the progression of leaf senescence. Translocation of BnaNAC60 into nuclei was induced by ER stress and oxidative stress treatments. It binds to the NTLBS motif, rather than the canonical NAC recognition site. Overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, induces significant reactive oxygen species (ROS) accumulation and hypersensitive response-like cell death in both tobacco (Nicotiana benthamiana) and oilseed rape protoplasts. Moreover, ectopic overexpression of BnaNAC60 devoid of the transmembrane domain, but not the full-length BnaNAC60, in Arabidopsis also induces precocious leaf senescence. Furthermore, screening and expression profiling identified an array of functional genes that are significantly induced by BnaNAC60 expression. Further it was found that BnaNAC60 can activate the promoter activities of BnaNYC1, BnaRbohD, BnaBFN1, BnaZAT12, and multiple BnaVPEs in a dual-luciferase reporter assay. Electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative PCR assays revealed that BnaNAC60 directly binds to the promoter regions of these downstream target genes. To summarize, our data show that BnaNAC60 is an MTTF that modulates cell death, ROS accumulation, and leaf senescence.
Collapse
Affiliation(s)
- Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shidong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tiantian Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Gupta N, Gupta M, Akhatar J, Goyal A, Kaur R, Sharma S, Goyal P, Mukta A, Kaur N, Mittal M, Singh MP, Bharti B, Sardana VK, Banga SS. Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. PLANT MOLECULAR BIOLOGY 2021; 105:161-175. [PMID: 32997301 DOI: 10.1007/s11103-020-01076-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Genome wide association studies allowed prediction of 17 candidate genes for association with nitrogen use efficiency. Novel information obtained may provide better understanding of genomic controls underlying germplasm variations for this trait in Indian mustard. Nitrogen use efficiency (NUE) of Indian mustard (Brassica juncea (L.) Czern & Coss.) is low and most breeding efforts to combine NUE with crop performance have not succeeded. Underlying genetics also remain unexplored. We tested 92 SNP-genotyped inbred lines for yield component traits, N uptake efficiency (NUPEFF), nitrogen utilization efficiency (NUTEFF), nitrogen harvest index (NHI) and NUE for two years at two nitrogen doses (No without added N and N100 added @100 kg/ha). Genotypes IC-2489-88, M-633, MCP-632, HUJM 1080, GR-325 and DJ-65 recorded high NUE at low N. These also showed improved crop performance under high N. One determinate mustard genotype DJ-113 DT-3 revealed maximum NUTEFF. Genome wide association studies (GWAS) facilitated recognition of 17 quantitative trait loci (QTLs). Environment specificity was high. B-genome chromosomes (B02, B03, B05, B07 and B08) harbored many useful loci. We also used regional association mapping (RAM) to supplement results from GWAS. Annotation of the genomic regions around peak SNPs helped to predict several gene candidates for root architecture, N uptake, assimilation and remobilization. CAT9 (At1g05940) was consistently envisaged for both NUE and NUPEFF. Major N transporter genes, NRT1.8 and NRT3.1 were predicted for explaining variation for NUTEFF and NUPEFF, respectively. Most significant amino acid transporter gene, AAP1 appeared associated with NUE under limited N conditions. All these candidates were predicted in the regions of high linkage disequilibrium. Sequence information of the predicted candidate genes will permit development of molecular markers to aid breeding for high NUE.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Prinka Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Archana Mukta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Mohini Prabha Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - V K Sardana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, 141004, Ludhiana, India.
| |
Collapse
|
24
|
Singh P, Bharti N, Singh AP, Tripathi SK, Pandey SP, Chauhan AS, Kulkarni A, Sane AP. Petal abscission in fragrant roses is associated with large scale differential regulation of the abscission zone transcriptome. Sci Rep 2020; 10:17196. [PMID: 33057097 PMCID: PMC7566604 DOI: 10.1038/s41598-020-74144-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
Flowers of fragrant roses such as Rosa bourboniana are ethylene-sensitive and undergo rapid petal abscission while hybrid roses show reduced ethylene sensitivity and delayed abscission. To understand the molecular mechanism underlying these differences, a comparative transcriptome of petal abscission zones (AZ) of 0 h and 8 h ethylene-treated flowers from R. bourboniana was performed. Differential regulation of 3700 genes (1518 up, 2182 down) representing 8.5% of the AZ transcriptome was observed between 0 and 8 h ethylene-treated R. bourboniana petal AZ. Abscission was associated with large scale up-regulation of the ethylene pathway but prominent suppression of the JA, auxin and light-regulated pathways. Regulatory genes encoding kinases/phosphatases/F-box proteins and transcription factors formed the major group undergoing differential regulation besides genes for transporters, wall modification, defense and phenylpropanoid pathways. Further comparisons with ethylene-treated petals of R. bourboniana and 8 h ethylene-treated AZ (R. hybrida) identified a core set of 255 genes uniquely regulated by ethylene in R. bourboniana AZ. Almost 23% of these encoded regulatory proteins largely conserved with Arabidopsis AZ components. Most of these were up-regulated while an entire set of photosystem genes was prominently down-regulated. The studies provide important information on regulation of petal abscission in roses.
Collapse
Affiliation(s)
- Priya Singh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Neeraj Bharti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India.,High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune, 411008, India
| | - Amar Pal Singh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,National Institute for Plant Genome Research, New Delhi, 110067, India
| | - Siddharth Kaushal Tripathi
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,National Centre for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Saurabh Prakash Pandey
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Singh Chauhan
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Aniruddha P Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Khadka J, Raviv B, Swetha B, Grandhi R, Singiri JR, Novoplansky N, Gutterman Y, Galis I, Huang Z, Grafi G. Maternal environment alters dead pericarp biochemical properties of the desert annual plant Anastatica hierochuntica L. PLoS One 2020; 15:e0237045. [PMID: 32735576 PMCID: PMC7394380 DOI: 10.1371/journal.pone.0237045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022] Open
Abstract
The dead organs enclosing embryos (DOEEs) emerge as central components of the dispersal unit (DU) capable for long-term storage of active proteins and other substances that affect seed performance and fate. We studied the effect of maternal environment (salt and salt+heat) on progeny DU (dry indehiscent fruit) focusing on pericarp properties of Anastatica hierochuntica. Stressed plants displayed increased seed abortion and low level and rate of germination. Hydrated pericarps released antimicrobial factors and allelopathic substances that inhibit germination of heterologous species. Proteome analysis of dead pericarps revealed hundreds of proteins, among them nucleases, chitinases and proteins involved in reactive oxygen species detoxification and cell wall modification. Salt treatment altered the composition and level of proteins stored in the pericarp. We observed changes in protein profile released from seeds of salt-treated plants with a notable increase in a small anti-fungal protein, defensin. The levels of phytohormones including IAA, ABA and salicylic acid were reduced in dead pericarps of stressed plants. The data presented here highlighted the predominant effects of maternal environment on progeny DUs of the desert plant A. hierochuntica, particularly on pericarp properties, which in turn might affect seed performance and fate, soil fertility and consequently plant biodiversity.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Bupur Swetha
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Rohith Grandhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Jeevan R. Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Yitzchak Gutterman
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, Israel
- * E-mail:
| |
Collapse
|
26
|
Bennett M, Deikman J, Hendrix B, Iandolino A. Barriers to Efficient Foliar Uptake of dsRNA and Molecular Barriers to dsRNA Activity in Plant Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:816. [PMID: 32595687 PMCID: PMC7304407 DOI: 10.3389/fpls.2020.00816] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/20/2020] [Indexed: 05/23/2023]
Abstract
Foliar application of dsRNA to elicit an RNA interference (RNAi) response is currently under consideration as a crop protection strategy. To access the RNAi machinery of a plant, foliarly applied dsRNAs must traverse the plant cuticle, avoid nuclease degradation, and penetrate the cell wall and plasma membrane. Application methods and co-formulants have been identified by Bayer Crop Science researchers and others that can help bypass barriers to dsRNA uptake in plants leading to an RNAi response in greenhouse grown, young plants and cell cultures. However, these advances in dsRNA delivery have yet to yield systemic RNAi silencing of an endogenous gene target required for product concepts such as weed control. Systemic RNAi silencing in plants has only been observed with the GFP transgene in Nicotiana benthamiana. Because biologically meaningful whole plant RNAi has not been observed for endogenous gene products in N. benthamiana or in other plant species tested, under growing conditions including field production, the regulatory risk assessment of foliarly applied dsRNA-based products should not consider exposure scenarios that include systemic response to small RNAs in treated plants.
Collapse
|
27
|
Phylogenetic Analysis and In Vitro Bifunctional Nuclease Assay of Arabidopsis BBD1 and BBD2. Molecules 2020; 25:molecules25092169. [PMID: 32384799 PMCID: PMC7249048 DOI: 10.3390/molecules25092169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
Nucleases are a very diverse group of enzymes that play important roles in many crucial physiological processes in plants. We previously reported that the highly conserved region (HCR), domain of unknown function 151 (DUF151) and UV responsive (UVR) domain-containing OmBBD is a novel nuclease that does not share homology with other well-studied plant nucleases. Here, we report that DUF151 domain-containing proteins are present in bacteria, archaea and only Viridiplantae kingdom of eukarya, but not in any other eukaryotes. Two Arabidopsis homologs of OmBBD, AtBBD1 and AtBBD2, shared 43.69% and 44.38% sequence identity and contained all three distinct domains of OmBBD. We confirmed that the recombinant MBP-AtBBD1 and MBP-AtBBD2 exhibited non-substrate-specific DNase and RNase activity, like OmBBD. We also found that a metal cofactor is not necessarily required for DNase activity of AtBBD1 and AtBBD2, but their activities were much enhanced in the presence of Mg2+ or Mn2+. Using a yeast two-hybrid assay, we found that AtBBD1 and AtBBD2 each form a homodimer but not a heterodimer and that the HCR domain is possibly crucial for dimerization.
Collapse
|
28
|
Cao L, Zhang P, Lu X, Wang G, Wang Z, Zhang Q, Zhang X, Wei X, Mei F, Wei L, Wang T. Systematic Analysis of the Maize OSCA Genes Revealing ZmOSCA Family Members Involved in Osmotic Stress and ZmOSCA2.4 Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2020; 21:ijms21010351. [PMID: 31948071 PMCID: PMC6982122 DOI: 10.3390/ijms21010351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
OSCAs are hyperosmolality-gated calcium-permeable channel proteins. In this study, two co-expression modules, which are strongly associated with maize proline content, were screened by weighted correlation network analysis, including three ZmOSCA family members. Phylogenetic and protein domain analyses revealed that 12 ZmOSCA members were classified into four classes, which all contained DUF221 domain. The promoter region contained multiple core elements responsive to abiotic stresses and hormones. Colinear analysis revealed that ZmOSCAs had diversified prior to maize divergence. Most ZmOSCAs responded positively to ABA, PEG, and NaCl treatments. ZmOSCA2.3 and ZmOSCA2.4 were up-regulated by more than 200-fold under the three stresses, and showed significant positive correlations with proline content. Yeast two-hybrid and bimolecular fluorescence complementation indicated that ZmOSCA2.3 and ZmOSCA2.4 proteins interacted with ZmEREB198. Over-expression of ZmOSCA2.4 in Arabidopsis remarkably improved drought resistance. Moreover, over-expression of ZmOSCA2.4 enhanced the expression of drought tolerance-associated genes and reduced the expression of senescence-associated genes. We also found that perhaps ZmOSCA2.4 was regulated by miR5054.The results provide a high-quality molecular resource for selecting resistant breeding, and lay a foundation for elucidating regulatory mechanism of ZmOSCA under abiotic stresses.
Collapse
Affiliation(s)
- Liru Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Pengyu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
| | - Xiaomin Lu
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Guorui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
| | - Zhenhua Wang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Qianjin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Xin Zhang
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Xin Wei
- Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.L.); (Z.W.); (Q.Z.); (X.Z.); (X.W.)
| | - Fujian Mei
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
| | - Li Wei
- National Engineering Research Centre for Wheat, Zhengzhou 450002, China
- Correspondence: (L.W.); (T.W.)
| | - Tongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; (L.C.); (P.Z.); (G.W.); (F.M.)
- Correspondence: (L.W.); (T.W.)
| |
Collapse
|
29
|
Wang Y, Kumaishi K, Suzuki T, Ichihashi Y, Yamaguchi N, Shirakawa M, Ito T. Morphological and Physiological Framework Underlying Plant Longevity in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:600726. [PMID: 33224176 PMCID: PMC7674609 DOI: 10.3389/fpls.2020.600726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/09/2023]
Abstract
Monocarpic plants have a single reproductive phase, in which their longevity is developmentally programmed by molecular networks. In the reproductive phase of Arabidopsis thaliana, the inflorescence meristem (IM) maintains a central pool of stem cells and produces a limited number of flower primordia, which result in seed formation and the death of the whole plant. In this study, we observed morphological changes in the IM at cellular and intracellular resolutions until the end of the plant life cycle. We observed four biological events during the periods from 1 week after bolting (WAB) till the death of stem cells: (1) the gradual reduction in the size of the IM, (2) the dynamic vacuolation of IM cells, (3) the loss of the expression of the stem cell determinant WUSCHEL (WUS), and (4) the upregulation of the programmed cell death marker BIFUNCTIONAL NUCLEASE1 (BFN1) in association with the death of stem cells. These results indicate that the stem cell population gradually decreases in IM during plant aging and eventually is fully terminated. We further show that the expression of WUS became undetectable in IM at 3 WAB prior to the loss of CLAVATA3 (CLV3) expression at 5 WAB; CLV3 is a negative regulator of WUS. Moreover, clv3 plants showed delayed loss of WUS and lived 6 weeks longer compared with wild-type plants. These results indicated that the prolonged expression of CLV3 at 4-5 WAB may be a safeguard that inhibits the reactivation of WUS and promotes plant death. Finally, through transcriptome analysis, we determined that reactive oxygen species (ROS) are involved in the control of plant longevity. Our work presents a morphological and physiological framework for the regulation of plant longevity in Arabidopsis.
Collapse
Affiliation(s)
- Yukun Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, Tsukuba, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, Tsukuba, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Makoto Shirakawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Makoto Shirakawa,
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Toshiro Ito,
| |
Collapse
|
30
|
Singh P, Singh AP, Tripathi SK, Kumar V, Sane AP. Petal abscission in roses is associated with the activation of a truncated version of the animal PDCD4 homologue, RbPCD1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110242. [PMID: 31521226 DOI: 10.1016/j.plantsci.2019.110242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Abscission is a developmental process that leads to shedding of organs not needed by the plant. Apart from wall hydrolysis, the cells of the abscission zone (AZ) are also believed to undergo programmed cell death (PCD). We show that ethylene-induced petal abscission in Rosa bourboniana is accompanied with the activation of RbPCD1 (PROGRAMMED CELL DEATH LIKE 1) encoding a protein of 78 amino acids. Its expression increases during natural and ethylene-induced petal abscission. Its transcription in most tissues is up-regulated by ethylene. RbPCD1 shows similarity to the N-terminal domain of animal PDCD4 (PROGRAMMED CELL DEATH PROTEIN 4) proteins that are activated during apoptosis and function as transcriptional and translational repressors. RbPCD1 resides in the nucleus and cytoplasm and acts as a transcriptional repressor. Constitutive expression of RbPCD1 in transgenic Arabidopsis is seedling lethal. Heat-induced expression of RbPCD1 under the soybean heat-shock promoter affects leaf function, inflorescence development, silique formation, seed yield and reduces survival. Nuclear localization of RbPCD1 is necessary for manifestation of its effects. RbPCD1 may be necessary to mediate some of the ethylene-induced changes during abscission and senescence in specific tissues.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amar Pal Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Siddharth Kaushal Tripathi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Vinod Kumar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Sui W, Guo K, Li L, Liu S, Takano T, Zhang X. Arabidopsis Ca 2+-dependent nuclease AtCaN2 plays a negative role in plant responses to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:213-222. [PMID: 30824054 DOI: 10.1016/j.plantsci.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Eukaryotic nucleases are involved in processes such as DNA restriction digestion, repair, recombination, transposition, and programmed cell death (PCD). Studies on the role of nucleases have mostly focused on PCD during plant development, while the information on nucleases involved in responses to different abiotic stress conditions remains limited. Here, we identified a Ca2+-dependent nuclease, AtCaN2, in Arabidopsis thaliana and characterized its activity, expression patterns, and involvement in plant responses to salt stress. AtCaN2 showed a dual endonuclease and exonuclease activity, being able to degrade circular plasmids, RNA, single-stranded DNA, and double-stranded DNA. Expression analysis showed that AtCaN2 was strongly induced in senescent siliques and by salt stress. Overexpression of AtCaN2 decreased the plant tolerance to salt stress conditions, leading to an excessive H2O2 accumulation. However, an atcan2 mutant showed better tolerance to salt stress and a lower level of H2O2 accumulation. Moreover, the expression of several genes (AtAPX1, AtGPX8, and AtSOD1), encoding reactive oxygen species-scavenging enzymes (ascorbate peroxidase 1, glutathione peroxidase 8, and superoxide dismutase 1, respectively), was highly induced in the atcan2 mutant under salt stress conditions. In addition, salt-stress-induced cell death was increased in the AtCaN2-overexpressing transgenic plant but decreased in the atcan2 mutant. On the basis of these findings, we conclude that AtCaN2 plays a negative role in plant tolerance to salt stress. A AtCaN2 knock out could reduce ROS accumulation, decrease ROS-induced PCD, and improve overall plant tolerance.
Collapse
Affiliation(s)
- Wenting Sui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Kunyuan Guo
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Li Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
32
|
Takami T, Ohnishi N, Kurita Y, Iwamura S, Ohnishi M, Kusaba M, Mimura T, Sakamoto W. Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. NATURE PLANTS 2018; 4:1044-1055. [PMID: 30420711 DOI: 10.1038/s41477-018-0291-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and chloroplasts (plastids) both harbour extranuclear DNA that originates from the ancestral endosymbiotic bacteria. These organelle DNAs (orgDNAs) encode limited genetic information but are highly abundant, with multiple copies in vegetative tissues, such as mature leaves. Abundant orgDNA constitutes a substantial pool of organic phosphate along with RNA in chloroplasts, which could potentially contribute to phosphate recycling when it is degraded and relocated. However, whether orgDNA is degraded nucleolytically in leaves remains unclear. In this study, we revealed the prevailing mechanism in which organelle exonuclease DPD1 degrades abundant orgDNA during leaf senescence. The DPD1 degradation system is conserved in seed plants and, more remarkably, we found that it was correlated with the efficient use of phosphate when plants were exposed to nutrient-deficient conditions. The loss of DPD1 compromised both the relocation of phosphorus to upper tissues and the response to phosphate starvation, resulting in reduced plant fitness. Our findings highlighted that DNA is also an internal phosphate-rich reservoir retained in organelles since their endosymbiotic origin.
Collapse
Affiliation(s)
- Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Shoko Iwamura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
33
|
Podzimek T, Přerovská T, Šantrůček J, Kovaľ T, Dohnálek J, Matoušek J, Lipovová P. N-glycosylation of tomato nuclease TBN1 produced in N. benthamiana and its effect on the enzyme activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:152-161. [PMID: 30348313 DOI: 10.1016/j.plantsci.2018.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
A unique analysis of an enzyme activity versus structure modification of the tomato nuclease R-TBN1 is presented. R-TBN1, the non-specific nuclease belonging to the S1-P1 nuclease family, was recombinantly produced in N. benthamiana. The native structure is posttranslationally modified by N-glycosylation at three sites. In this work, it was found that this nuclease is modified by high-mannose type N-glycosylation with a certain degree of macro- and microheterogeneity. To monitor the role of N-glycosylation in its activity, hypo- and hyperglycosylated nuclease mutants, R-TBN1 digested by α-mannosidase, and R-TBN1 deglycosylated by PNGase F were prepared. Deglycosylated R-TBN1 and mutant N94D/N112D were virtually inactive. Compared to R-TBN1 wt, both N94D and N112D mutants showed about 60% and 10% of the activity, respectively, while the N186D, D36S, and D36S/E104 N mutants were equally or even more active than R-TBN1 wt. The partial demannosylation of R-TBN1 did not affect the nuclease activity; moreover, a little shift in substrate specificity was observed. The results show two facts: 1) which sites must be occupied by a glycan for the proper folding and stability and 2) how N. benthamiana glycosylates the foreign nuclease. At the same time, the modifications can be interesting in designing the nuclease activity or specificity through its glycosylation.
Collapse
Affiliation(s)
- Tomáš Podzimek
- University of Chemical Technology Prague, Technická 3, Prague 6, 166 28, Czech Republic.
| | - Tereza Přerovská
- University of Chemical Technology Prague, Technická 3, Prague 6, 166 28, Czech Republic
| | - Jiří Šantrůček
- University of Chemical Technology Prague, Technická 3, Prague 6, 166 28, Czech Republic
| | - Tomáš Kovaľ
- Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., Biocev, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., Biocev, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre, ASCR v.v.i., Institute of Plant Molecular Biology, Branišovská 32, 370 05, České Budějovice, Czech Republic
| | - Petra Lipovová
- University of Chemical Technology Prague, Technická 3, Prague 6, 166 28, Czech Republic
| |
Collapse
|
34
|
Moyano L, Correa MD, Favre LC, Rodríguez FS, Maldonado S, López-Fernández MP. Activation of Nucleases, PCD, and Mobilization of Reserves in the Araucaria angustifolia Megagametophyte During Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:1275. [PMID: 30214454 PMCID: PMC6125354 DOI: 10.3389/fpls.2018.01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The megagametophyte of mature seeds of Araucaria angustifolia consists of cells with thin walls, one or more nuclei, a central vacuole storing proteins, and a cytoplasm rich in amyloplasts, mitochondria and lipid bodies. In this study, we describe the process of mobilization of reserves and analyzed the dismantling of the tissue during germination, using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and amyloplasts, DNA degradation, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrate that DNA fragmentation in nuclei occurs at early stages of germination, which correlates with induction of specific nucleases. The results of the present study add knowledge on the dismantling of the megagametophyte of genus Araucaria, a storage tissue that stores starch as the main reserve substance, as well as on the PCD pathway, by revealing new insights into the role of nucleases and the expression patterns of putative nuclease genes during germination.
Collapse
Affiliation(s)
- Laura Moyano
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| | - María D. Correa
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo C. Favre
- Departamentos de Industrias y Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Florencia S. Rodríguez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sara Maldonado
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| | - María P. López-Fernández
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| |
Collapse
|
35
|
Over-expression of SINAL7 increases biomass and drought tolerance, and also delays senescence in Arabidopsis. J Biotechnol 2018; 283:11-21. [PMID: 30003973 DOI: 10.1016/j.jbiotec.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/10/2018] [Accepted: 07/08/2018] [Indexed: 11/22/2022]
Abstract
The seven in absentia like 7 gene (At5g37890, SINAL7) from Arabidopsis thaliana encodes a RING finger protein belonging to the SINA superfamily that possesses E3 ubiquitin-ligase activity. SINAL7 has the ability to self-ubiquitinate and to mono-ubiquitinate glyceraldehyde-3-P dehydrogenase 1 (GAPC1), suggesting a role for both proteins in a hypothetical signaling pathway in Arabidopsis. In this study, the in vivo effects of SINAL7 on plant physiology were examined by over-expressing SINAL7 in transgenic Arabidopsis plants. Phenotypic and gene expression analyses suggest the involvement of SINAL7 in the regulation of several vegetative parameters, essentially those that affect the aerial parts of the plants. Over-expression of SINAL7 resulted in an increase in the concentrations of hexoses and sucrose, with a concommitant increase in plant biomass, particularly in the number of rosette leaves and stem thickness. Interestingly, using the CAB1 (chlorophyll ab binding protein 1) gene as a marker revealed a delay in the onset of senescence. Transgenic plants also displayed a remarkable level of drought resistance, indicating the complexity of the response to SINAL7 over-expression.
Collapse
|
36
|
Koval T, Dohnálek J. Characteristics and application of S1–P1 nucleases in biotechnology and medicine. Biotechnol Adv 2018; 36:603-612. [DOI: 10.1016/j.biotechadv.2017.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
|
37
|
M-Hamvas M, Ajtay K, Beyer D, Jámbrik K, Vasas G, Surányi G, Máthé C. Cylindrospermopsin induces biochemical changes leading to programmed cell death in plants. Apoptosis 2018; 22:254-264. [PMID: 27787653 DOI: 10.1007/s10495-016-1322-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study we provide cytological and biochemical evidence that the cyanotoxin cylindrospermopsin (CYN) induces programmed cell death (PCD) symptoms in two model vascular plants: the dicot white mustard (Sinapis alba) and the monocot common reed (Phragmites australis). Cytological data include chromatin fragmentation and the increase of the ratio of TUNEL-positive cells in roots, the latter being detected in both model systems studied. The strongest biochemical evidence is the elevation of the activity of several single-stranded DNA preferring nucleases-among them enzymes active at both acidic and alkaline conditions and are probably directly related to DNA breaks occurring at the initial stages of plant PCD: 80 kDa nucleases and a 26 kDa nuclease, both having dual (single- and double-stranded nucleic acid) specificity. Moreover, the total protease activity and in particular, a 53-56 kDa alkaline protease activity increases. This protease could be inhibited by PMSF, thus regarded as serine protease. Serine proteases are detected in all organs of Brassicaceae (Arabidopsis) having importance in differentiation of specialized plant tissue through PCD, in protein degradation/processing during early germination and defense mechanisms induced by a variety of biotic and abiotic stresses. However, knowledge of the physiological roles of these proteases and nucleases in PCD still needs further research. It is concluded that CYN treatment induces chromatin fragmentation and PCD in plant cells by activating specific nucleases and proteases. CYN is proposed to be a suitable molecule to study the mechanism of plant apoptosis.
Collapse
Affiliation(s)
- Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Kitti Ajtay
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Dániel Beyer
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Katalin Jámbrik
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Gyula Surányi
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary.
| |
Collapse
|
38
|
Lambert R, Quiles FA, Gálvez-Valdivieso G, Piedras P. Nucleases activities during French bean leaf aging and dark-induced senescence. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:235-242. [PMID: 28898802 DOI: 10.1016/j.jplph.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions.
Collapse
Affiliation(s)
- Rocío Lambert
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Francisco Antonio Quiles
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
39
|
Framework for gradual progression of cell ontogeny in the Arabidopsis root meristem. Proc Natl Acad Sci U S A 2017; 114:E8922-E8929. [PMID: 28973915 DOI: 10.1073/pnas.1707400114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem, a group of slowly dividing quiescent center cells is thought to limit stem cell activity to directly neighboring cells, thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction to the more gradual changes in cell division potential and differentiation that occur as cells move further away from the quiescent center. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the Arabidopsis root meristem gradually transition from stem cell activity toward differentiation.
Collapse
|
40
|
Nasr Esfahani M, Inoue K, Chu HD, Nguyen KH, Van Ha C, Watanabe Y, Burritt DJ, Herrera-Estrella L, Mochida K, Tran LSP. Comparative transcriptome analysis of nodules of two Mesorhizobium-chickpea associations with differential symbiotic efficiency under phosphate deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28628240 DOI: 10.1111/tpj.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphate (Pi) deficiency is known to be a major limitation for symbiotic nitrogen fixation (SNF), and hence legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop chickpea (Cicer arietinum L.), which enable nodules to respond to low-Pi availability. Thus, to elucidate these mechanisms in chickpea nodules at molecular level, we used an RNA sequencing approach to investigate transcriptomes of the nodules in Mesorhizobium mediterraneum SWRI9-(MmSWRI9)-chickpea and M. ciceri CP-31-(McCP-31)-chickpea associations under Pi-sufficient and Pi-deficient conditions, of which the McCP-31-chickpea association has a better SNF capacity than the MmSWRI9-chickpea association during Pi starvation. Our investigation revealed that more genes showed altered expression patterns in MmSWRI9-induced nodules than in McCP-31-induced nodules (540 vs. 225) under Pi deficiency, suggesting that the Pi-starvation-more-sensitive MmSWRI9-induced nodules required expression change in a larger number of genes to cope with low-Pi stress than the Pi-starvation-less-sensitive McCP-31-induced nodules. The functional classification of differentially expressed genes (DEGs) was examined to gain an understanding of how chickpea nodules respond to Pi starvation, caused by soil Pi deficiency. As a result, more DEGs involved in nodulation, detoxification, nutrient/ion transport, transcriptional factors, key metabolic pathways, Pi remobilization and signalling were found in Pi-starved MmSWRI9-induced nodules than in Pi-starved McCP-31-induced nodules. Our findings have enabled the identification of molecular processes that play important roles in the acclimation of nodules to Pi deficiency, ultimately leading to the development of Pi-efficient chickpea symbiotic associations suitable for Pi-deficient soils.
Collapse
Affiliation(s)
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Ha Duc Chu
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong, North Tu Liem, Hanoi, Vietnam
| | - Kien Huu Nguyen
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Chien Van Ha
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong, North Tu Liem, Hanoi, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
41
|
Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C. Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2513-2529. [PMID: 27707774 DOI: 10.1093/jxb/erw365] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a result of climate changes, land use and agriculture have to adapt to new demands. Agriculture is responsible for a large part of the greenhouse gas (GHG) emissions that have to be urgently reduced in order to protect the environment. At the same time, agriculture has to cope with the challenges of sustainably feeding a growing world population. Reducing the use of the ammonia-nitrate fertilizers that are responsible for a large part of the GHGs released and that have a negative impact on carbon balance is one of the objectives of precision agriculture. One way to reduce N fertilizers without dramatically affecting grain yields is to improve the nitrogen recycling and remobilization performances of plants. Mechanisms involved in nitrogen recycling, such as autophagy, are essential for nutrient remobilization at the whole-plant level and for seed quality. Studies on leaf senescence and nutrient recycling provide new perspectives for improvement. The aim of this review is to give an overview of the mechanisms involved in nitrogen recycling and remobilization during leaf senescence and to present the different approaches undertaken to improve nitrogen remobilization efficiency using both model plants and crop species.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Anne Marmagne
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Fabien Chardon
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
42
|
Heo JO, Blob B, Helariutta Y. Differentiation of conductive cells: a matter of life and death. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:23-29. [PMID: 27794261 DOI: 10.1016/j.pbi.2016.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/26/2023]
Abstract
Two major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained. By contrast, differentiation of xylem tracheary elements (TEs) involves complete clearance of the cellular components by programmed cell death followed by autolysis of the protoplast; this is accompanied by extensive deposition of lignin and cellulose in the cell wall. Emerging molecular data on TE and SE differentiation indicate a central role for NAC and MYB type transcription factors in both processes.
Collapse
Affiliation(s)
- Jung-Ok Heo
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Bernhard Blob
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Ykä Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
43
|
Givaty-Rapp Y, Yadav NS, Khan A, Grafi G. S1-Type Endonuclease 2 in Dedifferentiating Arabidopsis Protoplasts: Translocation to the Nucleus in Senescing Protoplasts Is Associated with De-Glycosylation. PLoS One 2017; 12:e0170067. [PMID: 28068427 PMCID: PMC5222596 DOI: 10.1371/journal.pone.0170067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Cell dedifferentiation characterizes the transition of leaf cells to protoplasts and is accompanied by global chromatin decondensation. Here we show that in Arabidopsis, chromocentric chromatin undergoes prompt and gradual decondensation upon protoplasting. We hypothesized that prompt chromatin decondensation is unlikely to be driven solely by epigenetic means and other factors might be involved. We investigated the possibility that S1-type endonucleases are involved in prompt chromatin decondensation via their capability to target and cleave unpaired regions within superhelical DNA, leading to chromatin relaxation. We showed that the expression and activity of the S1-type endonuclease 2 (ENDO2) is upregulated in dedifferentiating protoplasts concomitantly with chromatin decondensation. Mutation of the ENDO2 gene did not block or delay chromocentric chromatin decondensation upon protoplasting. Further study showed that ENDO2 subcellular localization is essentially cytoplasmic (endoplasmic reticulum-associated) in healthy cells, but often localized to the nucleus and in senescing/dying cells it was associated with fragmented nuclei. Using in gel nuclease assays we identified two ENDO2 variants, designated N1 (cytoplasmic variant) and N2 (cytoplasmic and nuclear variant), and based on their capability to bind concanavalin A (ConA), they appear to be glycosylated and de-glycosylated (or decorated with ConA non-binding sugars), respectively. Our data showed that the genome is responding promptly to acute stress (protoplasting) by acquiring decondensation state, which is not dependent on ENDO2 activity. ENDO2 undergoes de-glycosylation and translocation to the nucleus where it is involved in early stages of cell death probably by introducing double strand DNA breaks into superhelical DNA leading to local chromatin relaxation and fragmentation of nuclei.
Collapse
Affiliation(s)
- Yemima Givaty-Rapp
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Narendra Singh Yadav
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Asif Khan
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Gideon Grafi
- French Associates Institute of Agriculture and Biotechnology of Drylands, The Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- * E-mail:
| |
Collapse
|
44
|
Ootsubo Y, Hibino T, Wakazono T, Mukai Y, Che FS. IREN, a novel EF-hand motif-containing nuclease, functions in the degradation of nuclear DNA during the hypersensitive response cell death in rice. Biosci Biotechnol Biochem 2016; 80:748-60. [PMID: 26766411 DOI: 10.1080/09168451.2015.1123610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hypersensitive response (HR), a type of programmed cell death that is accompanied by DNA degradation and loss of plasma membrane integrity, is a common feature of plant immune responses. We previously reported that transcription of IREN which encodes a novel EF-hand containing plant nuclease is controlled by OsNAC4, a key positive regulator of HR cell death. Transient overexpression of IREN in rice protoplasts also led to rapid DNA fragmentation, while suppression of IREN using RNA interference showed remarkable decrease of DNA fragmentation during HR cell death. Maximum DNA degradation associated with the recombinant IREN was observed in the presence of Ca(2+) and Mg(2+) or Ca(2+) and Mn(2+). Interestingly, DNA degradation mediated by the recombinant IREN was completely abolished by Zn(2+), even when Ca(2+), Mg(2+), or Mn(2+) were present in the reaction buffer. These data indicate that IREN functions in the degradation of nuclear DNA during HR cell death.
Collapse
Affiliation(s)
- Yuka Ootsubo
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Takanori Hibino
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Takahito Wakazono
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Yukio Mukai
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Fang-Sik Che
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| |
Collapse
|
45
|
Wang X, Xin C, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:501. [PMID: 27148324 PMCID: PMC4830833 DOI: 10.3389/fpls.2016.00501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/29/2016] [Indexed: 05/20/2023]
Abstract
Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.
Collapse
Affiliation(s)
- Xiao Wang
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Caiyun Xin
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Rice Research Institute, Shandong Academy of Agricultural SciencesJinan, China
| | - Jian Cai
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Qin Zhou
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Dong Jiang, ; Qin Zhou,
| | - Tingbo Dai
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Weixing Cao
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Dong Jiang
- National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Dong Jiang, ; Qin Zhou,
| |
Collapse
|
46
|
Galsurker O, Doron-Faigenboim A, Teper-Bamnolker P, Daus A, Fridman Y, Lers A, Eshel D. Cellular and Molecular Changes Associated with Onion Skin Formation Suggest Involvement of Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2016; 7:2031. [PMID: 28119713 PMCID: PMC5220068 DOI: 10.3389/fpls.2016.02031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/19/2016] [Indexed: 05/07/2023]
Abstract
Skin formation of onion (Allium cepa L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities. Although onion skin plays a crucial role in postharvest onion storage and shelf life, its formation is poorly understood. We investigated the mode of cell death in the outermost scales that are destined to form the onion skin. Surprisingly, fluorescein diacetate staining and scanning electron microscopy indicated that the outer scale desiccates from the inside out. This striking observation suggests that cell death in the outer scales, during skin formation, is an internal and organized process that does not derive only from air desiccation. DNA fragmentation, a known hallmark of programmed cell death (PCD), was revealed in the outer scales and gradually decreased toward the inner scales of the bulb. Transmission electron microscopy further revealed PCD-related structural alterations in the outer scales which were absent from the inner scales. De novo transcriptome assembly for three different scales: 1st (outer), 5th (intermediate) and 8th (inner) fleshy scales identified 2,542 differentially expressed genes among them. GO enrichment for cluster analysis revealed increasing metabolic processes in the outer senescent scale related to defense response, PCD processes, carbohydrate metabolism and flavonoid biosynthesis, whereas increased metabolism and developmental growth processes were identified in the inner scales. High expression levels of PCD-related genes were identified in the outer scale compared to the inner ones, highlighting the involvement of PCD in outer-skin development. These findings suggest that a program to form the dry protective skin exists and functions only in the outer scales of onion.
Collapse
Affiliation(s)
- Ortal Galsurker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
- The Robert H. Smith Institute of Field Crops and Vegetables, Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Avinoam Daus
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Yael Fridman
- The Alexander Silberman Institute of Life Science, Edmond Safra Campus (G Ram), The Hebrew UniversityJerusalem, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research OrganizationRishon LeZion, Israel
- *Correspondence: Dani Eshel,
| |
Collapse
|
47
|
Stigter KA, Plaxton WC. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence. PLANTS 2015; 4:773-98. [PMID: 27135351 PMCID: PMC4844268 DOI: 10.3390/plants4040773] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 11/16/2022]
Abstract
Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.
Collapse
Affiliation(s)
- Kyla A Stigter
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
48
|
Mochizuki-Kawai H, Niki T, Shibuya K, Ichimura K. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals. PLoS One 2015; 10:e0143502. [PMID: 26605547 PMCID: PMC4659684 DOI: 10.1371/journal.pone.0143502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023] Open
Abstract
In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.
Collapse
Affiliation(s)
| | - Tomoko Niki
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| | - Kenichi Shibuya
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| | - Kazuo Ichimura
- NARO Institute of Floricultural Science, Tsukuba, 305–8519, Japan
| |
Collapse
|
49
|
Kumpf RP, Nowack MK. The root cap: a short story of life and death. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5651-62. [PMID: 26068468 DOI: 10.1093/jxb/erv295] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over 130 years ago, Charles Darwin recognized that sensory functions in the root tip influence directional root growth. Modern plant biology has unravelled that many of the functions that Darwin attributed to the root tip are actually accomplished by a particular organ-the root cap. The root cap surrounds and protects the meristematic stem cells at the growing root tip. Due to this vanguard position, the root cap is predisposed to receive and transmit environmental information to the root proper. In contrast to other plant organs, the root cap shows a rapid turnover of short-lived cells regulated by an intricate balance of cell generation, differentiation, and degeneration. Thanks to these particular features, the root cap is an excellent developmental model system, in which generation, differentiation, and degeneration of cells can be investigated in a conveniently compact spatial and temporal frame. In this review, we give an overview of the current knowledge and concepts of root cap biology, focusing on the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Robert P Kumpf
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
50
|
López-Fernández MP, Burrieza HP, Rizzo AJ, Martínez-Tosar LJ, Maldonado S. Cellular and molecular aspects of quinoa leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:178-187. [PMID: 26259186 DOI: 10.1016/j.plantsci.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves.
Collapse
Affiliation(s)
- María Paula López-Fernández
- IBBEA (Instituto de Biodiversidad y Biología Experimental y Aplicada), CONICET (Consejo Nacional de Investigaciones Científicas Técnicas). Argentina; DBBE (Departamento de Biodiversidad y Biología Experimental), FCEN (Facultad de Ciencias Exactas y Naturales), UBA (Universidad de Buenos Aires), Int. Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Hernán Pablo Burrieza
- IBBEA (Instituto de Biodiversidad y Biología Experimental y Aplicada), CONICET (Consejo Nacional de Investigaciones Científicas Técnicas). Argentina; DBBE (Departamento de Biodiversidad y Biología Experimental), FCEN (Facultad de Ciencias Exactas y Naturales), UBA (Universidad de Buenos Aires), Int. Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Axel Joel Rizzo
- DBBE (Departamento de Biodiversidad y Biología Experimental), FCEN (Facultad de Ciencias Exactas y Naturales), UBA (Universidad de Buenos Aires), Int. Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Leandro Julián Martínez-Tosar
- IBBEA (Instituto de Biodiversidad y Biología Experimental y Aplicada), CONICET (Consejo Nacional de Investigaciones Científicas Técnicas). Argentina
| | - Sara Maldonado
- IBBEA (Instituto de Biodiversidad y Biología Experimental y Aplicada), CONICET (Consejo Nacional de Investigaciones Científicas Técnicas). Argentina; DBBE (Departamento de Biodiversidad y Biología Experimental), FCEN (Facultad de Ciencias Exactas y Naturales), UBA (Universidad de Buenos Aires), Int. Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina.
| |
Collapse
|