1
|
Shiratsuru S, Pauli JN. Food-safety trade-offs drive dynamic behavioural antipredator responses among snowshoe hares. J Anim Ecol 2024; 93:1710-1721. [PMID: 39311413 DOI: 10.1111/1365-2656.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024]
Abstract
Prey adopt various antipredator responses to minimize the risk of predation, and the fitness costs of antipredator responses can have emergent effects on the population dynamics of prey species. While the trade-off between food acquisition and predation avoidance has long been recognized in predicting antipredator responses, less attention has been paid to the dynamics of the food-safety trade-off driven by temporal variation in multiple risk factors under changing seasonal conditions. Here, we monitored foraging and vigilance behaviour of a central prey species, snowshoe hares (Lepus americanus), at fine temporal scales over the winter with various types of predation risk, while also experimentally manipulating predation risk by attracting predators to foraging patches. Hares increased foraging and decreased vigilance over the winter, but hares under chronic risk decreased their antipredator efforts to a lesser degree, indicating that those individuals prioritized risk avoidance over food acquisition. Hares also decreased foraging and increased antipredator efforts in response to the temporal activity of predators and environmental cues of predation risk. However, the magnitude of the responses to the environmental cues was mediated by time of winter. While we did not detect a reactive response of hares to acute risk, we did find that hares exhibiting camouflage mismatch proactively increased vigilance. Overall, our results highlight the importance of species-specific traits and changing seasonal conditions in addition to temporal variation in multiple risk factors in predicting antipredator responses and the context dependence of risk effects.
Collapse
Affiliation(s)
- Shotaro Shiratsuru
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Forbes KJ, Barrera MA, Nielsen-Roine K, Hersh EW, Janes JK, Harrower WL, Gorrell JC. Stabilizing selection and mitochondrial heteroplasmy in the Canada lynx ( Lynx canadensis). Genome 2024. [PMID: 39226612 DOI: 10.1139/gen-2023-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitochondrial DNA is commonly used in population genetic studies to investigate spatial structure, intraspecific variation, and phylogenetic relationships. The control region is the most rapidly evolving and largest non-coding region, but its analysis can be complicated by heteroplasmic signals of genome duplication in many mammals, including felids. Here, we describe the presence of heteroplasmy in the control region of Canada lynx (Lynx canadensis) through intra-individual sequence variation. Our results demonstrate multiple haplotypes of varying length in each lynx, resulting from different copy numbers of the repetitive sequence RS-2 and suggest possible heteroplasmic single nucleotide polymorphisms in both repetitive sequences RS-2 and RS-3. Intra-individual variation was only observed in the repetitive sequences while inter-individual variation was detected in the flanking regions outside of the repetitive sequences, indicating that heteroplasmic mutations are restricted to these repeat regions. Although each lynx displayed multiple haplotypes of varying length, we found the most common variant contained three complete copies of the RS-2 repeat unit, suggesting copy number is regulated by stabilizing selection. While genome duplication offers potential for increased diversity, heteroplasmy may lead to a selective advantage or detriment in the face of mitochondrial function and disease, which could have significant implications for wildlife populations experiencing decline (e.g., bottlenecks) as a result of habitat modification or climate change.
Collapse
Affiliation(s)
- Krystyn J Forbes
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - McIntyre A Barrera
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Karsten Nielsen-Roine
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Evan W Hersh
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
| | - Jasmine K Janes
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
- Ecosystem Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
- Species Survival Commission, Orchid Specialist Group, IUCN North America, Washington, DC, USA
| | - William L Harrower
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jamieson C Gorrell
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada
- Ecosystem Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| |
Collapse
|
3
|
Ruiz-Moreno A, Emslie MJ, Connolly SR. High response diversity and conspecific density-dependence, not species interactions, drive dynamics of coral reef fish communities. Ecol Lett 2024; 27:e14424. [PMID: 38634183 DOI: 10.1111/ele.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Species-to-species and species-to-environment interactions are key drivers of community dynamics. Disentangling these drivers in species-rich assemblages is challenging due to the high number of potentially interacting species (the 'curse of dimensionality'). We develop a process-based model that quantifies how intraspecific and interspecific interactions, and species' covarying responses to environmental fluctuations, jointly drive community dynamics. We fit the model to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. We found that fluctuating relative abundances are driven by species' heterogenous responses to environmental fluctuations, whereas interspecific interactions are negligible. Species differences in long-term average abundances are driven by interspecific variation in the magnitudes of both conspecific density-dependence and density-independent growth rates. This study introduces a novel approach to overcoming the curse of dimensionality, which reveals highly individualistic dynamics in coral reef fish communities that imply a high level of niche structure.
Collapse
Affiliation(s)
- Alfonso Ruiz-Moreno
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Sean R Connolly
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
4
|
Soininen EM, Neby M. Small rodent population cycles and plants - after 70 years, where do we go? Biol Rev Camb Philos Soc 2024; 99:265-294. [PMID: 37827522 DOI: 10.1111/brv.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Small rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long-lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant-herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant-rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore-relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent-plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant-herbivore interactions have - or do not have - plausible effects on rodent population dynamics.
Collapse
Affiliation(s)
- Eeva M Soininen
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Høyvangvegen 40, Ridabu, 2322, Norway
| |
Collapse
|
5
|
Radley JJ, Herman JP. Preclinical Models of Chronic Stress: Adaptation or Pathology? Biol Psychiatry 2023; 94:194-202. [PMID: 36631383 PMCID: PMC10166771 DOI: 10.1016/j.biopsych.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The experience of prolonged stress changes how individuals interact with their environment and process interoceptive cues, with the end goal of optimizing survival and well-being in the face of a now-hostile world. The chronic stress response includes numerous changes consistent with limiting further damage to the organism, including development of passive or active behavioral strategies and metabolic adjustments to alter energy mobilization. These changes are consistent with symptoms of pathology in humans, and as a result, chronic stress has been used as a translational model for diseases such as depression. While it is of heuristic value to understand symptoms of pathology, we argue that the chronic stress response represents a defense mechanism that is, at its core, adaptive in nature. Transition to pathology occurs only after the adaptive capacity of an organism is exhausted. We offer this perspective as a means of framing interpretations of chronic stress studies in animal models and how these data relate to adaptation as opposed to pathology.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio.
| |
Collapse
|
6
|
Oli MK, Kenney AJ, Boonstra R, Boutin S, Murray DL, Peers MJL, Gilbert BS, Jung TS, Chaudhary V, Hines JE, Krebs CJ. Does coat colour influence survival? A test in a cyclic population of snowshoe hares. Proc Biol Sci 2023; 290:20221421. [PMID: 37015272 PMCID: PMC10072933 DOI: 10.1098/rspb.2022.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Some mammal species inhabiting high-latitude biomes have evolved a seasonal moulting pattern that improves camouflage via white coats in winter and brown coats in summer. In many high-latitude and high-altitude areas, the duration and depth of snow cover has been substantially reduced in the last five decades. This reduction in depth and duration of snow cover may create a mismatch between coat colour and colour of the background environment, and potentially reduce the survival rate of species that depend on crypsis. We used long-term (1977-2020) field data and capture-mark-recapture models to test the hypothesis that whiteness of the coat influences winter apparent survival in a cyclic population of snowshoe hares (Lepus americanus) at Kluane, Yukon, Canada. Whiteness of the snowshoe hare coat in autumn declined during this study, and snowshoe hares with a greater proportion of whiteness in their coats in autumn survived better during winter. However, whiteness of the coat in spring did not affect subsequent summer survival. These results are consistent with the hypothesis that the timing of coat colour change in autumn can reduce overwinter survival. Because declines in cyclic snowshoe hare populations are strongly affected by low winter survival, the timing of coat colour change may adversely affect snowshoe hare population dynamics as climate change continues.
Collapse
Affiliation(s)
- Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- School of Biological Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, AB24 2TZ, UK
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada M1C 1A4
| | | | - Dennis L Murray
- Department of Biology, Trent University, Peterborough, ON, Canada K9L 1Z8
| | | | - B Scott Gilbert
- Renewable Resources Management Program, Yukon University, Whitehorse, Yukon, Canada Y1A 5K4
| | - Thomas S Jung
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada Y1A 2C6
| | - Vratika Chaudhary
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - James E Hines
- U.S. Geological Survey Eastern Ecological Science Center, Laurel, MD 20708, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
7
|
Edwards PD, Boonstra R, Oli MK. An experimental analysis of density dependence in meadow voles: Within-season and delayed effects. Ecology 2023; 104:e4008. [PMID: 36807294 DOI: 10.1002/ecy.4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2023]
Abstract
Wild mammal populations exhibit a variety of dynamics, ranging from fairly stable with little change in population size over time to high-amplitude cyclic or erratic fluctuations. A persistent question in population ecology is why populations fluctuate as they do. Answering this seemingly simple question has proven to be challenging. Broadly, density-dependent feedback mechanisms should allow populations to grow at low density and slow or halt growth at high density. However, experimental tests of what demographic processes result in density-dependent feedback and on what timescale have proven elusive. Here, we used replicated density perturbation experiments and capture-mark-recapture analyses to test density-dependent population growth in populations of meadow voles (Microtus pennsylvanicus) during the summer breeding season by manipulating founding population density and observing the pattern of survival, reproduction, and population growth. High population density had no consistent effect on survival rates but generally negatively influenced recruitment and population growth rates. However, these density-dependent effects varied within the breeding season and across years. Our study provides evidence that density-dependent feedback mechanisms operate at finer time scales than previously believed and that process, additively with delayed year effects, is key to understanding multiyear population demography.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
8
|
Kennah JL, Peers MJL, Vander Wal E, Majchrzak YN, Menzies AK, Studd EK, Boonstra R, Humphries MM, Jung TS, Kenney AJ, Krebs CJ, Boutin S. Coat color mismatch improves survival of a keystone boreal herbivore: Energetic advantages exceed lost camouflage. Ecology 2023; 104:e3882. [PMID: 36208219 DOI: 10.1002/ecy.3882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023]
Abstract
Climate warming is causing asynchronies between animal phenology and environments. Mismatched traits, such as coat color change mismatched with snow, can decrease survival. However, coat change does not serve a singular adaptive benefit of camouflage, and alternate coat change functions may confer advantages that supersede mismatch costs. We found that mismatch reduced, rather than increased, autumn mortality risk of snowshoe hares in Yukon by 86.5% when mismatch occurred. We suggest that the increased coat insulation and lower metabolic rates of winter-acclimatized hares confer energetic advantages to white mismatched hares that reduce their mortality risk. We found that white mismatched hares forage 17-77 min less per day than matched brown hares between 0°C and -10°C, thus lowering their predation risk and increasing survival. We found no effect of mismatch on spring mortality risk, during which mismatch occurred at warmer temperatures, suggesting a potential temperature limit at which the costs of conspicuousness outweigh energetic benefits.
Collapse
Affiliation(s)
- Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Michael J L Peers
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Allyson K Menzies
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Emily K Studd
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Murray M Humphries
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Andrade R, Cobbold CA. Heterogeneity in Behaviour and Movement can Influence the Stability of Predator-Prey Periodic Travelling Waves. Bull Math Biol 2023; 85:1. [PMID: 36418648 PMCID: PMC9684289 DOI: 10.1007/s11538-022-01101-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Cyclic predator-prey systems are often observed in nature. In a spatial setting, these can manifest as periodic traveling waves (PTW). Environmental change and direct human activity are known to, among other effects, increase the heterogeneity of the physical environment, which prey and predator inhabit. Aiming to understand the effects of heterogeneity on predator-prey PTWs, we consider a one-dimensional infinite landscape Rosenzweig-MacArthur reaction-diffusion model, with alternating patch types, and study the PTWs in this system. Applying the method of homogenisation, we show how heterogeneity can affect the stability of PTW solutions. We illustrate how the effects of heterogeneity can be understood and interpreted using Turchin's concept of residence index (encapsuling diffusion rate and patch preference). In particular, our results show that prey heterogeneity acts to modulate the effects of predator heterogeneity, by this we mean that as prey increasingly spend more time in one patch type over another the stability of the PTWs becomes more sensitive to heterogeneity in predator movement and behaviour.
Collapse
Affiliation(s)
- Renato Andrade
- grid.8756.c0000 0001 2193 314XSchool of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ UK
| | - Christina A. Cobbold
- grid.8756.c0000 0001 2193 314XSchool of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ UK ,grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QW UK
| |
Collapse
|
10
|
Twining JP, Lawton C, White A, Sheehy E, Hobson K, Montgomery WI, Lambin X. Restoring vertebrate predator populations can provide landscape-scale biological control of established invasive vertebrates: Insights from pine marten recovery in Europe. GLOBAL CHANGE BIOLOGY 2022; 28:5368-5384. [PMID: 35706099 PMCID: PMC9542606 DOI: 10.1111/gcb.16236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Invasive species pose one of the greatest global threats to biodiversity. There has been a long history of importing coevolved natural enemies to act as biological control agents to try to suppress densities of invasive species, with historically limited success and frequent adverse impacts on native biodiversity. Our understanding of the processes and drivers of successful biological control has been focussed on invertebrates and is evidently limited and potentially ill-suited with respect to biological control of vertebrate populations. The restoration of native vertebrate predator populations provides a promising nature-based solution for slowing, halting, or even reversing the spread of some invasive vertebrates over spatial scales relevant to the management of wildlife populations. Here, we first review the growing literature and data from the pine marten-red and grey squirrel system in Europe. We synthesise a multi-decadal dataset to show that the recovery of a native predator has resulted in rapid, landscape-scale declines of an established invasive species. We then use the model system, predator-prey interaction theory, and examples from the literature to develop ecological theory relating to natural biological control in vertebrates and evolutionary processes in native-invasive predator-prey interactions. We find support for the hypotheses that evolutionary naivety of invasive species to native predators and lack of local refuges results in higher predation of naive compared to coevolved prey. We apply lessons learnt from the marten-squirrel model system to examine the plausibility of specific native predator solutions to some of the Earth's most devastating invasive vertebrates. Given the evidence, we conclude that depletion of vertebrate predator populations has increased ecosystem vulnerability to invasions and thus facilitated the spread of invasive species. Therefore, restoration of vertebrate predator populations is an underappreciated, fundamental, nature-based solution to the crisis of invasive species and should be a priority for vertebrate invasive species management globally.
Collapse
Affiliation(s)
- Joshua P. Twining
- Department of Natural ResourcesCornell UniversityIthacaNew YorkUSA
- School of Biological SciencesQueen's UniversityBelfastUK
| | - Colin Lawton
- School of Natural Sciences, Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Andy White
- Maxwell Institute for Mathematical Sciences, Department of MathematicsHeriot‐Watt UniversityEdinburghUK
| | - Emma Sheehy
- School of Natural Sciences, Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Keziah Hobson
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | | | - Xavier Lambin
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
11
|
Wan X, Holyoak M, Yan C, Le Maho Y, Dirzo R, Krebs CJ, Stenseth NC, Zhang Z. Broad-scale climate variation drives the dynamics of animal populations: a global multi-taxa analysis. Biol Rev Camb Philos Soc 2022; 97:2174-2194. [PMID: 35942895 DOI: 10.1111/brv.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Climate is a major extrinsic factor affecting the population dynamics of many organisms. The Broad-Scale Climate Hypothesis (BSCH) was proposed by Elton to explain the large-scale synchronous population cycles of animals, but the extent of support and whether it differs among taxa and geographical regions is unclear. We reviewed publications examining the relationship between the population dynamics of multiple taxa worldwide and the two most commonly used broad-scale climate indices, El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Our review and synthesis (based on 561 species from 221 papers) reveals that population changes of mammals, birds and insects are strongly affected by major oceanic shifts or irregular oceanic changes, particularly in ENSO- and NAO-influenced regions (Pacific and Atlantic, respectively), providing clear evidence supporting Elton's BSCH. Mammal and insect populations tended to increase during positive ENSO phases. Bird populations tended to increase in positive NAO phases. Some species showed dual associations with both positive and negative phases of the same climate index (ENSO or NAO). These findings indicate that some taxa or regions are more or less vulnerable to climate fluctuations and that some geographical areas show multiple weather effects related to ENSO or NAO phases. Beyond confirming that animal populations are influenced by broad-scale climate variation, we document extensive patterns of variation among taxa and observe that the direct biotic and abiotic mechanisms for these broad-scale climate factors affecting animal populations are very poorly understood. A practical implication of our research is that changes in ENSO or NAO can be used as early signals for pest management and wildlife conservation. We advocate integrative studies at both broad and local scales to unravel the omnipresent effects of climate on animal populations to help address the challenge of conserving biodiversity in this era of accelerated climate change.
Collapse
Affiliation(s)
- Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, California, Davis, 95616, USA
| | - Chuan Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67000, France.,Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Rodolfo Dirzo
- Department of Biology and Woods Institute for the Environment, Stanford University, Stanford, California, 94305, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Boonstra R, Gandhi N, Kraushaar A, Galbreath K. From Habitat to Hormones: Year-around territorial behavior in rock-dwelling but not in forest and grassland lagomorphs and the role of DHEA. Horm Behav 2022; 142:105179. [PMID: 35477059 DOI: 10.1016/j.yhbeh.2022.105179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Abstract
Year-around defense of extremely patchy habitat may require hormones that drive territorial behavior, but have no other costly physiological effects. The American pika (Ochotona princeps), but not the snowshoe hare (Lepus americanus) nor the eastern cottontail rabbit (Sylvilagus floridanus), exhibits this behavior. The former engages in contest competition against all individuals independent of sex to protect its territory in highly fragmented patches on mountain talus slopes; the latter in scramble competition in more continuous forests, grasslands, and shrublands. The hormonal basis for this difference in lagomorphs is unknown. Dehydroepiandrosterone is a prohormone produced by the zona reticularis of the adrenal cortex. It has no effect on aggressive behavior until converted in the brain to estrogen. We assessed levels (DHEA-S plus DHEA) in all species collected in the wild. In nonbreeding pikas, levels were 256 times higher than in hares and 22 times higher than in rabbits. Within species, females and males had similar levels. The proportion of the adrenal cortex devoted to the zona reticularis was significantly larger in pikas than in hares or rabbits. Our evidence is consistent with the hypothesis that dehydroepiandrosterone drives this individual-based, year-around territoriality in pikas. We propose a definitive experiment to determine this and recommend comparative studies in central Asia where there is high diversity of pika species whose behavior ranges from individual-based territoriality to colonial. Thus, we speculate that the wild American pika has the adrenal-brain nexus for all seasons and is an excellent model to understand how habitat drives the hormonal control of spacing behavior.
Collapse
Affiliation(s)
- Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| | - Nisha Gandhi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Alec Kraushaar
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Kurt Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| |
Collapse
|
13
|
Gobin J, Hossie TJ, Derbyshire RE, Sonnega S, Cambridge TW, Scholl L, Kloch ND, Scully A, Thalen K, Smith G, Scott C, Quinby F, Reynolds J, Miller HA, Faithfull H, Lucas O, Dennison C, McDonald J, Boutin S, O’Donoghue M, Krebs CJ, Boonstra R, Murray DL. Functional Responses Shape Node and Network Level Properties of a Simplified Boreal Food Web. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.898805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological communities are fundamentally connected through a network of trophic interactions that are often complex and difficult to model. Substantial variation exists in the nature and magnitude of these interactions across various predators and prey and through time. However, the empirical data needed to characterize these relationships are difficult to obtain in natural systems, even for relatively simple food webs. Consequently, prey-dependent relationships and specifically the hyperbolic form (Holling’s Type II), in which prey consumption increases with prey density but ultimately becomes saturated or limited by the time spent handling prey, are most widely used albeit often without knowledge of their appropriateness. Here, we investigate the sensitivity of a simplified food web model for a natural, boreal system in the Kluane region of the Yukon, Canada to the type of functional response used. Intensive study of this community has permitted best-fit functional response relationships to be determined, which comprise linear (type I), hyperbolic (type II), sigmoidal (type III), prey- and ratio-dependent relationships, and inverse relationships where kill rates of alternate prey are driven by densities of the focal prey. We compare node- and network-level properties for a food web where interaction strengths are estimated using best-fit functional responses to one where interaction strengths are estimated exclusively using prey-dependent hyperbolic functional responses. We show that hyperbolic functional responses alone fail to capture important ecological interactions such as prey switching, surplus killing and caching, and predator interference, that in turn affect estimates of cumulative kill rates, vulnerability of prey, generality of predators, and connectance. Exclusive use of hyperbolic functional responses also affected trends observed in these metrics over time and underestimated annual variation in several metrics, which is important given that interaction strengths are typically estimated over relatively short time periods. Our findings highlight the need for more comprehensive research aimed at characterizing functional response relationships when modeling predator-prey interactions and food web structure and function, as we work toward a mechanistic understanding linking food web structure and community dynamics in natural systems.
Collapse
|
14
|
Paterson JT, Proffitt KM, Rotella JJ. Incorporating vital rates and harvest into stochastic population models to forecast elk population dynamics. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Kelly M. Proffitt
- Montana Department of Fish, Wildlife, and Parks Bozeman 59718 MT USA
| | - Jay J. Rotella
- Montana State University 310 Lewis Hall Bozeman MT 59718 USA
| |
Collapse
|
15
|
Long-distance, synchronized and directional fall movements suggest migration in Arctic hares on Ellesmere Island (Canada). Sci Rep 2022; 12:5003. [PMID: 35322061 PMCID: PMC8943133 DOI: 10.1038/s41598-022-08347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Animal migration contributes largely to the seasonal dynamics of High Arctic ecosystems, linking distant habitats and impacting ecosystem structure and function. In polar deserts, Arctic hares are abundant herbivores and important components of food webs. Their annual migrations have long been suspected, but never confirmed. We tracked 25 individuals with Argos satellite telemetry to investigate the existence of migration in a population living at Alert (Ellesmere Island, Nunavut, Canada). During fall, 21 hares undertook directional, long-distance movements in a southwestern direction towards Lake Hazen. Daily movement rates averaged 1.3 ± 0.5 km, 4.3 ± 1.6 km, and 1.7 ± 0.9 km before, during, and after relocation, respectively. Straight-line and minimum cumulative distances traveled averaged 98 ± 18 km (range: 72-148 km) and 198 ± 62 km (range: 113-388 km), respectively. This is the first report of large-scale seasonal movements in Arctic hares and, surprisingly, in any lagomorph species. These movements may be part of an annual migratory pattern. Our results redefine our understanding of the spatial ecology of Arctic hares, demonstrate unsuspected mobility capacities in lagomorphs, and open new perspectives regarding the ecological dynamics of the northern polar deserts.
Collapse
|
16
|
Majchrzak YN, Peers MJL, Studd EK, Menzies AK, Walker PD, Shiratsuru S, McCaw LK, Boonstra R, Humphries M, Jung TS, Kenney AJ, Krebs CJ, Murray DL, Boutin S. Balancing food acquisition and predation risk drives demographic changes in snowshoe hare population cycles. Ecol Lett 2022; 25:981-991. [PMID: 35148018 DOI: 10.1111/ele.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Snowshoe hare cycles are one of the most prominent phenomena in ecology. Experimental studies point to predation as the dominant driving factor, but previous experiments combining food supplementation and predator removal produced unexplained multiplicative effects on density. We examined the potential interactive effects of food limitation and predation in causing hare cycles using an individual-based food-supplementation experiment over-winter across three cycle phases that naturally varied in predation risk. Supplementation doubled over-winter survival with the largest effects occurring in the late increase phase. Although the proximate cause of mortality was predation, supplemented hares significantly decreased foraging time and selected for conifer habitat, potentially reducing their predation risk. Supplemented hares also lost less body mass which resulted in the production of larger leverets. Our results establish a mechanistic link between how foraging time, mass loss and predation risk affect survival and reproduction, potentially driving demographic changes associated with hare cycles.
Collapse
Affiliation(s)
- Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael J L Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Emily K Studd
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Allyson K Menzies
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Philip D Walker
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shotaro Shiratsuru
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Laura K McCaw
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Murray Humphries
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada.,Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis L Murray
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Menzies A, Studd EK, Seguin JL, Derbyshire RE, Murray D, Boutin S, Humphries MM. Activity, heart rate, and energy expenditure of a cold-climate mesocarnivore, the Canada lynx. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The energetic consequences of body size, behaviour, and fine-scale environmental variation remain understudied, particularly among free-ranging carnivores, due to logistical and methodological challenges of studying them in the field. Here, we present novel activity, heart rate, and metabolic data on free-ranging Canada lynx (Lynx canadensis Kerr, 1792) to a) investigate intraspecific patterns of energy expenditure, particularly how they relate to body size, environmental conditions, and activity variation, and b) position lynx - a cold-climate, mesocarnivore - within interspecific allometries of carnivore energetics. Lynx demonstrated limited behavioural and metabolic responses to environmental conditions, despite extreme cold and moderate snow depths during our study, but marked body size patterns with larger lynx having higher activity and lower resting heart rate than smaller lynx. Compared to similar-sized carnivores, lynx were less active and had lower heart rate, likely due to their ambush hunting style, but higher energy expenditure, likely due to their cold-climate existence and access to abundant prey. Overall, lynx were more similar to other ambush hunters than to sympatric cold-climate species and mesocarnivores. Our data provide insight into the relative importance of abiotic and biotic drivers of carnivore energetics and the ways in which predators maintain energy balance in variable environments.
Collapse
Affiliation(s)
- Allyson Menzies
- University of Guelph School of Environmental Sciences, 170218, Guelph, Ontario, Canada, N1G 2W1
| | | | - Jacob Luc Seguin
- Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada
| | - Rachael Elizabeth Derbyshire
- Trent University, Biology, DNA B 108.8, 1600 West Bank Drive, Peterborough, Ontario, Canada, K9L 0G2,
- 204-180 Edingburgh St.Peterborough, Ontario, Canada, K9H 3E2,
| | - D.L. Murray
- Departments of Biology and Environmental, Studies, Trent University, Peterborough, Ontario, Canada, K9J 7B8
| | - Stan Boutin
- University of Alberta, Department of Biological Sciences, Cw405 Biological Sciences, Edmonton, Alberta, Canada, T6G 2E9
| | - Murray M Humphries
- McGill University, Natural Resource Sciences, 21111 Lakeshore, Ste-Ane-de-Bellevue, Quebec, Canada, H9X 3V9
| |
Collapse
|
18
|
Oli MK, Kenney AJ, Boonstra R, Boutin S, Chaudhary V, Hines JE, Krebs CJ. Estimating abundance, temporary emigration, and the pattern of density dependence in a cyclic snowshoe hare (Lepus americanus) population in Yukon, Canada. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estimates of demographic parameters based on capture–mark–recapture (CMR) methods may be biased when some individuals in the population are temporarily unavailable for capture (temporary emigration). We estimated snowshoe hare abundance, apparent survival, and probability of temporary emigration in a population of snowshoe hares (Lepus americanus Erxleben, 1777) in the Yukon (Canada) using Pollock’s robust design CMR model, and population density using spatially explicit CMR models. Survival rates strongly varied among cyclic phases, seasons, and across five population cycles. We found strong evidence that temporary emigration was Markovian (i.e., nonrandom), suggesting that it varied among individuals that were temporary emigrant in the previous sampling period and those that were present in the sampled area. The probability of temporary emigration for individuals that were in the study area during the previous sampling occasion (γ″) varied among cycles. Probability that individuals that were temporarily absent from the sampled area would remain temporary emigrants (γ′) showed strongly seasonal pattern, low in winter and high during summers. Snowshoe hare population density ranged from 0.017 (0.015–0.05) hares/ha to 4.43 (3.90–5.00) hares/ha and showed large-scale cyclical fluctuations. Autocorrelation functions and autoregressive analyses revealed that our study population exhibited statistically significant cyclic fluctuations, with a periodicity of 9–10 years.
Collapse
Affiliation(s)
- Madan K. Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Alice J. Kenney
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Vratika Chaudhary
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - James E. Hines
- Eastern Ecological Science Center, U.S. Geological Survey, Laurel, MD 20708, USA
| | - Charles J. Krebs
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Richmond IC, Balluffi-Fry J, Vander Wal E, Leroux SJ, Rizzuto M, Heckford TR, Kennah JL, Riefesel GR, Wiersma YF. Individual snowshoe hares manage risk differently: integrating stoichiometric distribution models and foraging ecology. J Mammal 2021. [DOI: 10.1093/jmammal/gyab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Herbivores making space use decisions must consider the trade-off between perceived predation risk and forage quality. Herbivores, specifically snowshoe hares (Lepus americanus), must constantly navigate landscapes that vary in predation risk and food quality, providing researchers with the opportunity to explore the factors that govern their foraging decisions. Herein, we tested predictions that intersect the risk allocation hypothesis (RAH) and optimal foraging theory (OFT) in a spatially explicit ecological stoichiometry framework to assess the trade-off between predation risk and forage quality. We used individual and population estimates of snowshoe hare (n = 29) space use derived from biotelemetry across three summers. We evaluated resource forage quality for lowbush blueberry (Vaccinium angustifolium), a common and readily available forage species within our system, using carbon:nitrogen and carbon:phosphorus ratios. We used habitat complexity to proxy perceived predation risk. We analyzed how forage quality of blueberry, perceived predation risk, and their interaction impact the intensity of herbivore space use. We used generalized mixed effects models, structured to enable us to make inferences at the population and individual home range level. We did not find support for RAH and OFT. However, variation in the individual-level reactions norms in our models showed that individual hares have unique responses to forage quality and perceived predation risk. Our finding of individual-level responses indicates that there is fine-scale decision-making by hares, although we did not identify the mechanism. Our approach illustrates spatially explicit empirical support for individual behavioral responses to the food quality–predation risk trade-off.
Collapse
Affiliation(s)
- Isabella C Richmond
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Travis R Heckford
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gabrielle R Riefesel
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
20
|
Balluffi-Fry J, Leroux SJ, Wiersma YF, Richmond IC, Heckford TR, Rizzuto M, Kennah JL, Vander Wal E. Integrating plant stoichiometry and feeding experiments: state-dependent forage choice and its implications on body mass. Oecologia 2021; 198:579-591. [PMID: 34743229 DOI: 10.1007/s00442-021-05069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Intraspecific feeding choices comprise a large portion of herbivore foraging decisions. Plant resource quality is heterogeneously distributed, affected by nutrient availability and growing conditions. Herbivores navigate landscapes, foraging not only according to food qualities, but also energetic and nutritional demands. We test three non-exclusive foraging hypotheses using the snowshoe hare (Lepus americanus): (1) herbivore feeding choices and body conditions respond to intraspecific plant quality variation; (2) high energetic demands mitigate feeding responses; and (3) feeding responses are inflated when nutritional demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus and terpene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant growing conditions to explain spruce quality variation (R2 < 0.36). We then offered two qualities of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their feeding and body condition responses (n = 75). We proxied energetic demands (H2) with ambient temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce quality (nitrogen and phosphorus content) in home ranges. Hares with the strongest preference for high-quality spruce lost on average 2.2% less weight than hares who ate the least high-quality spruce relative to low-quality spruce. The results supported our energetic predictions as follows: hares in colder temperatures and with less-insulative coats (lower % white) consumed more spruce and were less selective towards high-quality spruce. Collectively, we found variation in plant growing conditions within herbivore home ranges substantial enough to affect herbivore body conditions, but energetic stats mediate plant-herbivore interactions.
Collapse
Affiliation(s)
- Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. .,Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Isabella C Richmond
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Travis R Heckford
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
21
|
Jager HI, Long JW, Malison RL, Murphy BP, Rust A, Silva LGM, Sollmann R, Steel ZL, Bowen MD, Dunham JB, Ebersole JL, Flitcroft RL. Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecol Evol 2021; 11:12259-12284. [PMID: 34594498 PMCID: PMC8462151 DOI: 10.1002/ece3.8026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 01/08/2023] Open
Abstract
Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire-adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2-dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more-frequent, lower-severity fires will favor opportunistic species and that less-frequent high-severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less-severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no-analog future.
Collapse
Affiliation(s)
- Henriette I. Jager
- Environmental Sciences DivisionOak Ridge National Laboratory (ORNL)Oak RidgeTNUSA
| | - Jonathan W. Long
- U.S. Department of AgriculturePacific Southwest Research StationDavisCAUSA
| | - Rachel L. Malison
- Flathead Lake Biological StationThe University of MontanaPolsonMTUSA
| | - Brendan P. Murphy
- School of Environmental ScienceSimon Fraser UniversityBurnabyBCCanada
| | - Ashley Rust
- Civil and Environmental Engineering DepartmentColorado School of MinesGoldenCOUSA
| | - Luiz G. M. Silva
- Institute for Land, Water and SocietyCharles Sturt UniversityAlburyNSWAustralia
- Department of CivilEnvironmental and Geomatic EngineeringStocker LabInstitute of Environmental EngineeringETH ZurichZürichSwitzerland
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation BiologyUniversity of California DavisDavisCAUSA
| | - Zachary L. Steel
- Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Mark D. Bowen
- Thomas Gast & Associates Environmental ConsultantsArcataCAUSA
| | - Jason B. Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science CenterCorvallisORUSA
| | - Joseph L. Ebersole
- Center for Public Health and Environmental AssessmentPacific Ecological Systems DivisionU.S. Environmental Protection AgencyCorvallisORUSA
| | | |
Collapse
|
22
|
Lavergne SG, Krebs CJ, Kenney AJ, Boutin S, Murray D, Palme R, Boonstra R. The impact of variable predation risk on stress in snowshoe hares over the cycle in North America's boreal forest: adjusting to change. Oecologia 2021; 197:71-88. [PMID: 34435235 DOI: 10.1007/s00442-021-05019-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022]
Abstract
The boreal forest is one of the world's ecosystems most affected by global climate warming. The snowshoe hare, its predators, and their population dynamics dominate the mammalian component of the North American boreal forest. Our past research has shown the 9-11-year hare cycle to be predator driven, both directly as virtually all hares that die are killed by their predators, and indirectly through sublethal risk effects on hare stress physiology, behavior, and reproduction. We replicated this research over the entire cycle by measuring changes in predation risk expected to drive changes in chronic stress. We examined changes in hare condition and stress axis function using a hormonal challenge protocol in the late winter of 7 years-spanning all phases of the cycle from the increase through to the low (2014-2020). We simultaneously monitored changes in hare abundance as well as those of their primary predators, lynx and coyotes. Despite observing the expected changes in hare-predator numbers over the cycle, we did not see the predicted changes in chronic stress metrics in the peak and decline phases. Thus, the comprehensive physiological signature indicative of chronic predator-induced stress seen from our previous work was not present in this current cycle. We postulate that hares may now be increasingly showing behavior-mediated rather than stress-mediated responses to their predators. We present evidence that increases in primary productivity have affected boreal community structure and function. We speculate that climate change has caused this major shift in the indirect effects of predation on hares.
Collapse
Affiliation(s)
- Sophia G Lavergne
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dennis Murray
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
23
|
Shiratsuru S, Majchrzak YN, Peers MJL, Studd EK, Menzies AK, Derbyshire R, Humphries MM, Krebs CJ, Murray DL, Boutin S. Food availability and long-term predation risk interactively affect antipredator response. Ecology 2021; 102:e03456. [PMID: 34165786 DOI: 10.1002/ecy.3456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 11/07/2022]
Abstract
Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015-2016 to 2018-2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares' antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.
Collapse
Affiliation(s)
- Shotaro Shiratsuru
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Michael J L Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Emily K Studd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada.,Department of Natural Resource Sciences, McGill University, St-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Allyson K Menzies
- Department of Natural Resource Sciences, McGill University, St-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Murray M Humphries
- Department of Natural Resource Sciences, McGill University, St-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis L Murray
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| |
Collapse
|
24
|
Studd EK, Derbyshire RE, Menzies AK, Simms JF, Humphries MM, Murray DL, Boutin S. The Purr‐fect Catch: Using accelerometers and audio recorders to document kill rates and hunting behaviour of a small prey specialist. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emily K. Studd
- Department of Biological Sciences University of Alberta Edmonton AB Canada
- Department of Natural Resource Sciences McGill University Sainte‐Anne‐de‐Bellevue QC Canada
| | | | - Allyson K. Menzies
- Department of Natural Resource Sciences McGill University Sainte‐Anne‐de‐Bellevue QC Canada
| | | | - Murray M. Humphries
- Department of Natural Resource Sciences McGill University Sainte‐Anne‐de‐Bellevue QC Canada
| | | | - Stan Boutin
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| |
Collapse
|
25
|
Heger T, Aguilar-Trigueros CA, Bartram I, Braga RR, Dietl GP, Enders M, Gibson DJ, Gómez-Aparicio L, Gras P, Jax K, Lokatis S, Lortie CJ, Mupepele AC, Schindler S, Starrfelt J, Synodinos AD, Jeschke JM. The Hierarchy-of-Hypotheses Approach: A Synthesis Method for Enhancing Theory Development in Ecology and Evolution. Bioscience 2021; 71:337-349. [PMID: 33867867 PMCID: PMC8038874 DOI: 10.1093/biosci/biaa130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the current era of Big Data, existing synthesis tools such as formal meta-analyses are critical means to handle the deluge of information. However, there is a need for complementary tools that help to (a) organize evidence, (b) organize theory, and (c) closely connect evidence to theory. We present the hierarchy-of-hypotheses (HoH) approach to address these issues. In an HoH, hypotheses are conceptually and visually structured in a hierarchically nested way where the lower branches can be directly connected to empirical results. Used for organizing evidence, this tool allows researchers to conceptually connect empirical results derived through diverse approaches and to reveal under which circumstances hypotheses are applicable. Used for organizing theory, it allows researchers to uncover mechanistic components of hypotheses and previously neglected conceptual connections. In the present article, we offer guidance on how to build an HoH, provide examples from population and evolutionary biology and propose terminological clarifications.
Collapse
Affiliation(s)
- Tina Heger
- Department of Biodiversity Research and Systematic Botany, University of Potsdam, Potsdam, Germany
- Department of Restoration Ecology, Technical University of Munich, Freising, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Carlos A Aguilar-Trigueros
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Isabelle Bartram
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Institute of Sociology, University of Freiburg, Freiburg
| | - Raul Rennó Braga
- Universidade Federal do Paraná, Laboratório de Ecologia e Conservação, Curitiba, Brazil
| | - Gregory P Dietl
- Paleontological Research Institution and the Department of Earth and Atmospheric Sciences at Cornell University, Ithaca, New York
| | - Martin Enders
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - David J Gibson
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois
| | - Lorena Gómez-Aparicio
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, LINCGlobal, Sevilla, Spain
| | - Pierre Gras
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), also in Berlin, Germany
| | - Kurt Jax
- Department of Restoration Ecology, Technical University of Munich, Freising, Germany
- Department of Conservation Biology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Sophie Lokatis
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Christopher J Lortie
- Department of Biology, York University, York, Canada, as well as with the National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California
| | - Anne-Christine Mupepele
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, and the Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, both in Germany
| | - Stefan Schindler
- Environment Agency Austria and University of Vienna's Division of Conservation Biology, Vegetation, and Landscape Ecology, Vienna, Austria, and his third affiliation is with Community Ecology and Conservation, Czech University of Life Sciences Prague, Prague, Czech Republic, Finally
| | - Jostein Starrfelt
- University of Oslo's Centre for Ecological and Evolutionary Synthesis and with the Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, both in Oslo, Norway
| | - Alexis D Synodinos
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Centre for Biodiversity Theory and Modelling, Theoretical, and Experimental Ecology Station, CNRS, Moulis, France
| | - Jonathan M Jeschke
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
26
|
Contribution of late-litter juveniles to the population dynamics of snowshoe hares. Oecologia 2021; 195:949-957. [PMID: 33743069 DOI: 10.1007/s00442-021-04895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Determining the factors driving cyclic dynamics in species has been a primary focus of ecology. For snowshoe hares (Lepus americanus), explanations of their 10-year population cycles most commonly feature direct predation during the peak and decline, in combination with their curtailment in reproduction. Hares are thought to stop producing third and fourth litters during the cyclic decline and do not recover reproductive output for several years. The demographic effects of these reproductive changes depend on the consistency of this pattern across cycles, and the relative contribution to population change of late-litter versus early litter juveniles. We used monitoring data on snowshoe hares in Yukon, Canada, to examine the contribution of late-litter juveniles to the demography of their cycles, by assigning litter group for individuals caught in autumn based on body size and capture date. We found that fourth-litter juveniles occur consistently during the increase phase of each cycle, but are rare and have low over-winter survival (0.05) suggesting that population increase is unlikely to be caused by their occurrence. The proportion of third-litter juveniles captured in the autumn remains relatively constant across cycle phases, while over-winter survival rates varies particularly for earlier-litter juveniles (0.14-0.39). Juvenile survival from all litters is higher during the population increase and peak, relative to the low and decline. Overall, these results suggest that the transition from low phase to population growth may stem in large part from changes in juvenile survival as opposed to increased reproductive output through the presence of a 4th litter.
Collapse
|
27
|
Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, Huitu O, Jacob J, Johnsen K, Koskela E, Luque-Larena JJ, Lecomte N, Leirs H, Mariën J, Neby M, Rätti O, Sievert T, Singleton GR, van Cann J, Vanden Broecke B, Ylönen H. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 2021; 195:601-622. [PMID: 33369695 PMCID: PMC7940343 DOI: 10.1007/s00442-020-04810-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.
Collapse
Affiliation(s)
- Harry P Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| | - Fraucke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| | - Stefan Halle
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Otso Huitu
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jens Jacob
- Federal Research Centre for Cultivated Plants, Vertebrate Research, Julius Kühn-Institut, Toppheideweg 88, 48161, Münster, Germany
| | - Kaja Johnsen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Juan Jose Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenierıas Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre D'Études Nordiques, Department of Biology, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB, E1A 3E9, Canada
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Osmo Rätti
- Arctic Centre, University of Lapland, P.O. Box 122, 96101, Rovaniemi, Finland
| | - Thorbjörn Sievert
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Grant R Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Natural Resources Institute, University of Greenwich, Chatham Marine, Kent, ME4 4TB, UK
| | - Joannes van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
28
|
Abstract
The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions. Carnivore recovery is both good news for conservation and a challenge for management, particularly when recovery occurs in human-dominated landscapes. Therefore, we conclude by discussing several management considerations that, adapted to local contexts, may favor the recovery of apex predator populations and their ecological functions in nature.
Collapse
|
29
|
Abstract
AbstractUnderstanding biotic interactions and abiotic forces that govern population regulation is crucial for predicting stability from both theoretical and applied perspectives. In recent years, social information has been proposed to profoundly affect the dynamics of populations and facilitate the coexistence of interacting species. However, we have limited knowledge about how social information use influences cyclic and non-cyclic fluctuations of populations and if any population-level effects can be expected in species where individuals do not form social groups. In this study, I built individual-based models in a factorial design to investigate how predator avoidance behaviour and associated inadvertent social information (ISI) use alters the predictions of classical predator–prey population models in non-grouping (e.g., randomly moving) animals. Simulation results showed that ISI use in prey stabilized population dynamics by disrupting high-amplitude cyclic fluctuations in both predator and prey populations. Moreover, it also decreased the strength of the negative feedback of second-order dependence between predator and prey. I propose that if social cues are commonly used sources of information in animals regardless of the level of social organization, then similar social information-mediated effects on trophic interactions and population dynamics may be prevalent in natural communities.
Collapse
|
30
|
Anderson TL, Sheppard LW, Walter JA, Rolley RE, Reuman DC. Synchronous effects produce cycles in deer populations and deer‐vehicle collisions. Ecol Lett 2020; 24:337-347. [DOI: 10.1111/ele.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas L. Anderson
- Department of Biology Appalachian State University 572 Rivers St. Boone NC28608USA
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
| | - Lawrence W. Sheppard
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
| | - Jonathan A. Walter
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
- Department of Environmental Sciences University of Virginia 291 McCormick Rd Charlottesville VA22904USA
| | - Robert E. Rolley
- Wisconsin Department of Natural Resources 101 S. Webster St. Madison WI53707USA
| | - Daniel C. Reuman
- Deparment of Ecology and Evolutionary Biology and Kansas Biological Survey University of Kansas 2101 Constant Ave Lawrence KS66049USA
- Laboratory of Populations Rockefeller University 1230 York Ave. New York NY10065USA
| |
Collapse
|
31
|
Zanette LY, Clinchy M. Ecology and Neurobiology of Fear in Free-Living Wildlife. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ecology of fear concerns the population-, community-, and ecosystem-level consequences of the behavioral interactions between predators and prey, i.e., the aggregate impacts of individual responses to life-threatening events. We review new experiments demonstrating that fear itself is powerful enough to affect the population growth rate in free-living wild birds and mammals, and fear of large carnivores—or the human super predator—can cause trophic cascades affecting plant and invertebrate abundance. Life-threatening events like escaping a predator can have enduring, even lifelong, effects on the brain, and new interdisciplinary research on the neurobiology of fear in wild animals is both providing insights into post-traumatic stress (PTSD) and reinforcing the likely commonality of population- and community-level effects of fear in nature. Failing to consider fear thus risks dramatically underestimating the total impact predators can have on prey populations and the critical role predator-prey interactions can play in shaping ecosystems.
Collapse
Affiliation(s)
- Liana Y. Zanette
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| | - Michael Clinchy
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| |
Collapse
|
32
|
Dantzer B, McAdam AG, Humphries MM, Lane JE, Boutin S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J Anim Ecol 2020; 89:2397-2414. [PMID: 32929740 DOI: 10.1111/1365-2656.13341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
Long-term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context. Many previous studies have only investigated life-history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness-relevant traits to better understand their population-level responses to those environmental fluctuations. For the past 32 years, we have conducted a long-term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi-year field experiments to examine the physiological and life-history responses of individual red squirrels to fluctuations in food abundance and conspecific density. Our long-term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change. As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life-history plasticity, as does experimental food supplementation. Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life-history plasticity. Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life-history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology. We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life-history plasticity.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew G McAdam
- Department for Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Murray M Humphries
- Natural Resource Sciences Department, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Henden JA, Ims RA, Yoccoz NG, Asbjørnsen EJ, Stien A, Mellard JP, Tveraa T, Marolla F, Jepsen JU. End-user involvement to improve predictions and management of populations with complex dynamics and multiple drivers. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02120. [PMID: 32159900 DOI: 10.1002/eap.2120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.
Collapse
Affiliation(s)
- John-André Henden
- University of Tromsø, The Arctic University, Hansine Hansens veg 18, Tromsø, 9019, Norway
| | - Rolf A Ims
- University of Tromsø, The Arctic University, Hansine Hansens veg 18, Tromsø, 9019, Norway
- Norwegian Institute for Nature Research (NINA), Fram Centre, Postboks 6606 Langnes, Tromsø, 9296, Norway
| | - Nigel G Yoccoz
- University of Tromsø, The Arctic University, Hansine Hansens veg 18, Tromsø, 9019, Norway
- Norwegian Institute for Nature Research (NINA), Fram Centre, Postboks 6606 Langnes, Tromsø, 9296, Norway
| | | | - Audun Stien
- Norwegian Institute for Nature Research (NINA), Fram Centre, Postboks 6606 Langnes, Tromsø, 9296, Norway
| | - Jarad Pope Mellard
- University of Tromsø, The Arctic University, Hansine Hansens veg 18, Tromsø, 9019, Norway
| | - Torkild Tveraa
- Norwegian Institute for Nature Research (NINA), Fram Centre, Postboks 6606 Langnes, Tromsø, 9296, Norway
| | - Filippo Marolla
- University of Tromsø, The Arctic University, Hansine Hansens veg 18, Tromsø, 9019, Norway
| | - Jane Uhd Jepsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, Postboks 6606 Langnes, Tromsø, 9296, Norway
| |
Collapse
|
34
|
Wright AN, Yang LH, Piovia-Scott J, Spiller DA, Schoener TW. Consumer Responses to Experimental Pulsed Subsidies in Isolated versus Connected Habitats. Am Nat 2020; 196:369-381. [PMID: 32813995 DOI: 10.1086/710040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIncreases in consumer abundance following a resource pulse can be driven by diet shifts, aggregation, and reproductive responses, with combined responses expected to result in faster response times and larger numerical increases. Previous work in plots on large Bahamian islands has shown that lizards (Anolis sagrei) increased in abundance following pulses of seaweed deposition, which provide additional prey (i.e., seaweed detritivores). Numerical responses were associated with rapid diet shifts and aggregation, followed by increased reproduction. These dynamics are likely different on isolated small islands, where lizards cannot readily immigrate or emigrate. To test this, we manipulated the frequency and magnitude of seaweed resource pulses on whole small islands and in plots within large islands, and we monitored lizard diet and numerical responses over 4 years. We found that seaweed addition caused persistent increases in lizard abundance on small islands regardless of pulse frequency or magnitude. Increased abundance may have occurred because the initial pulse facilitated population establishment, possibly via enhanced overwinter survival. In contrast with a previous experiment, we did not detect numerical responses in plots on large islands, despite lizards consuming more marine resources in subsidized plots. This lack of a numerical response may be due to rapid aggregation followed by disaggregation or to stronger suppression of A. sagrei by their predators on the large islands in this study. Our results highlight the importance of habitat connectivity in governing ecological responses to resource pulses and suggest that disaggregation and changes in survivorship may be underappreciated drivers of pulse-associated dynamics.
Collapse
|
35
|
Peers MJL, Konkolics SM, Lamb CT, Majchrzak YN, Menzies AK, Studd EK, Boonstra R, Kenney AJ, Krebs CJ, Martinig AR, McCulloch B, Silva J, Garland L, Boutin S. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J Anim Ecol 2020; 89:2156-2167. [DOI: 10.1111/1365-2656.13275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sean M. Konkolics
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Clayton T. Lamb
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | | | - Allyson K. Menzies
- Department of Natural Resource Sciences Macdonald CampusMcGill University Ste‐Anne‐de‐Bellevue QC Canada
| | - Emily K. Studd
- Department of Natural Resource Sciences Macdonald CampusMcGill University Ste‐Anne‐de‐Bellevue QC Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough Toronto ON Canada
| | - Alice J. Kenney
- Department of Zoology University of British Columbia Vancouver BC Canada
| | - Charles J. Krebs
- Department of Zoology University of British Columbia Vancouver BC Canada
| | | | - Baily McCulloch
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Joseph Silva
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Laura Garland
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Stan Boutin
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| |
Collapse
|
36
|
Separate seasons of infection and reproduction can lead to multi-year population cycles. J Theor Biol 2020; 489:110158. [PMID: 31926973 DOI: 10.1016/j.jtbi.2020.110158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/22/2022]
Abstract
Many host-pathogen systems are characterized by a temporal order of disease transmission and host reproduction. For example, this can be due to pathogens infecting certain life cycle stages of insect hosts; transmission occurring during the aggregation of migratory birds; or plant diseases spreading between planting seasons. We develop a simple discrete-time epidemic model with density-dependent transmission and disease affecting host fecundity and survival. The model shows sustained multi-annual cycles in host population abundance and disease prevalence, both in the presence and absence of density dependence in host reproduction, for large horizontal transmissibility, imperfect vertical transmission, high virulence, and high reproductive capability. The multi-annual cycles emerge as invariant curves in a Neimark-Sacker bifurcation. They are caused by a carry-over effect, because the reproductive fitness of an individual can be reduced by virulent effects due to infection in an earlier season. As the infection process is density-dependent but shows an effect only in a later season, this produces delayed density dependence typical for second-order oscillations. The temporal separation between the infection and reproduction season is crucial in driving the cycles; if these processes occur simultaneously as in differential equation models, there are no sustained oscillations. Our model highlights the destabilizing effects of inter-seasonal feedbacks and is one of the simplest epidemic models that can generate population cycles.
Collapse
|
37
|
Oli MK, Krebs CJ, Kenney AJ, Boonstra R, Boutin S, Hines JE. Demography of snowshoe hare population cycles. Ecology 2020; 101:e02969. [PMID: 31922605 DOI: 10.1002/ecy.2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/16/2023]
Abstract
Cyclic fluctuations in abundance exhibited by some mammalian populations in northern habitats ("population cycles") are key processes in the functioning of many boreal and tundra ecosystems. Understanding population cycles, essentially demographic processes, necessitates discerning the demographic mechanisms that underlie numerical changes. Using mark-recapture data spanning five population cycles (1977-2017), we examined demographic mechanisms underlying the 9-10-yr cycles exhibited by snowshoe hares (Lepus americanus Erxleben) in southwestern Yukon, Canada. Snowshoe hare populations always decreased during winter and increased during summer; the balance between winter declines and summer increases characterized the four, multiyear cyclic phases: increase, peak, decline, and low. Little or no recruitment occurred during winter, but summer recruitment varied markedly across the four phases with the highest and lowest recruitment observed during the increase and decline phase, respectively. Population crashes during the decline were triggered by a substantial decline in winter survival and by a lack of subsequent summer recruitment. In contrast, initiation of the increase phase was triggered by a twofold increase in summer recruitment abetted secondarily by improvements in subsequent winter survival. We show that differences in peak density across cycles are explained by differences in overall population growth rate, amount of time available for population growth to occur, and starting population density. Demographic mechanisms underlying snowshoe hare population cycles were consistent across cycles in our study site but we do not yet know if similar demographic processes underlie population cycles in other northern snowshoe hare populations.
Collapse
Affiliation(s)
- Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, 32611, Florida, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver, V6T 1Z4, British Columbia, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., Vancouver, V6T 1Z4, British Columbia, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Ontario, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Alberta, Canada
| | - James E Hines
- USGS Patuxent Wildlife Research Center, 12311 Beech Forest Road, Patuxant, 20708, Maryland, USA
| |
Collapse
|
38
|
Rizzuto M, Leroux SJ, Vander Wal E, Wiersma YF, Heckford TR, Balluffi‐Fry J. Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare ( Lepus americanus). Ecol Evol 2019; 9:14453-14464. [PMID: 31938532 PMCID: PMC6953652 DOI: 10.1002/ece3.5880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022] Open
Abstract
Intraspecific variability in ecological traits is widespread in nature. Recent evidence, mostly from aquatic ecosystems, shows individuals differing at the most fundamental level, that of their chemical composition. Age, sex, or body size and condition may be key drivers of intraspecific variability in the body concentrations of carbon (C), nitrogen (N), and phosphorus (P). However, we still have a rudimentary understanding of the patterns and drivers of intraspecific variability in chemical composition of terrestrial consumers, particularly vertebrates.Here, we investigate the elemental composition of the snowshoe hare Lepus americanus. Based on snowshoe hare ecology, we predicted older, larger individuals to have higher concentration of N or P and lower C content compared with younger, smaller individuals. We also predicted females to have higher concentrations of N, P, and lower C than males due to the higher reproductive costs they incur. Finally, we predicted that individuals in better body condition would have higher N and P than those in worse condition, irrespective of age.We obtained C, N, and P concentrations and ratios from a sample of 50 snowshoe hares. We then used general linear models to test our predictions on the relationship between age, sex, body size or condition and stoichiometric variability in hares.We found considerable variation in C, N, and P stoichiometry within our sample. Contrary to our predictions, we found weak evidence of N content decreasing with age. As well, sex appeared to have no relationship with hare body elemental composition. Conversely, as expected, P content increased with body size and condition. Finally, we found no relationship between variability in C content and any of our predictor variables.Snowshoe hare stoichiometry does not appear to vary with individual age, sex, body size, or condition. However, the weak relationship between body N concentration and age may suggest varying nutritional requirements of individuals at different ages. Conversely, body P's weak relationship to body size and condition appears in line with this limiting element's importance in terrestrial ecosystems. Snowshoe hares are keystone herbivores in the boreal forest of North America, and the substantial stoichiometric variability we find in our sample could have important implications for nutrient dynamics, in both boreal and adjacent ecosystems.
Collapse
Affiliation(s)
- Matteo Rizzuto
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Shawn J. Leroux
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Eric Vander Wal
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Yolanda F. Wiersma
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | - Travis R. Heckford
- Department of BiologyMemorial University of NewfoundlandSt. John'sNFCanada
| | | |
Collapse
|
39
|
Lavergne S, Smith K, Kenney A, Krebs C, Palme R, Boonstra R. Physiology and behaviour of juvenile snowshoe hares at the start of the 10-year cycle. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Barraquand F, Gimenez O. Integrating multiple data sources to fit matrix population models for interacting species. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Krebs CJ, Boonstra R, Gilbert BS, Kenney AJ, Boutin S. Impact of climate change on the small mammal community of the Yukon boreal forest. Integr Zool 2019; 14:528-541. [PMID: 30983064 PMCID: PMC6900156 DOI: 10.1111/1749-4877.12397] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Long‐term monitoring is critical to determine the stability and sustainability of wildlife populations, and if change has occurred, why. We have followed population density changes in the small mammal community in the boreal forest of the southern Yukon for 46 years with density estimates by live trapping on 3–5 unmanipulated grids in spring and autumn. This community consists of 10 species and was responsible for 9% of the energy flow in the herbivore component of this ecosystem from 1986 to 1996, but this increased to 38% from 2003 to 2014. Small mammals, although small in size, are large in the transfer of energy from plants to predators and decomposers. Four species form the bulk of the biomass. There was a shift in the dominant species from the 1970s to the 2000s, with Myodes rutilus increasing in relative abundance by 22% and Peromyscus maniculatus decreasing by 22%. From 2007 to 2018, Myodes comprised 63% of the catch, Peromyscus 20%, and Microtus species 17%. Possible causes of these changes involve climate change, which is increasing primary production in this boreal forest, and an associated increase in the abundance of 3 rodent predators, marten (Martes americana), ermine (Mustela ermine) and coyotes (Canis latrans). Following and understanding these and potential future changes will require long‐term monitoring studies on a large scale to measure metapopulation dynamics. The small mammal community in northern Canada is being affected by climate change and cannot remain stable. Changes will be critically dependent on food–web interactions that are species‐specific.
Collapse
Affiliation(s)
- Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - B Scott Gilbert
- Renewable Resources Management Program, Yukon College, Whitehorse, Yukon, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Selås V. Annual change in forest grouse in southern Norway: variation explained by temperatures, bilberry seed production and the lunar nodal phase cycle. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Vidar Selås
- V. Selås (https://orcid.org/0002-8020-4868) ✉ , Faculty of Environmental Sciences and Natural Resource Management, Norwegian Univ. of Life Sciences, PO Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
43
|
Mougeot F, Lambin X, Rodríguez-Pastor R, Romairone J, Luque-Larena JJ. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 2019; 100:e02776. [PMID: 31172505 DOI: 10.1002/ecy.2776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/19/2019] [Accepted: 05/03/2019] [Indexed: 11/05/2022]
Abstract
The study of rodent population cycles has greatly contributed, both theoretically and empirically, to our understanding of the circumstances under which predator-prey interactions destabilize populations. According to the specialist predator hypothesis, reciprocal interactions between voles and small predators that specialize on voles, such as weasels, can cause multiannual cycles. A fundamental feature of classical weasel-vole models is a long time-lag in the numerical response of the predator to variations in prey abundance: weasel abundance increases with that of voles and peaks approximately 1 yr later. We investigated the numerical response of the common weasel (Mustela nivalis) to fluctuating abundances of common voles (Microtus arvalis) in recently colonized agrosteppes of Castilla-y-Léon, northwestern Spain, at the southern limit of the species' range. Populations of both weasels and voles exhibited multiannual cycles with a 3-yr period. Weasels responded quickly and numerically to changes in common-vole abundance, with a time lag between prey and weasel abundance that did not exceed 4 months and occurred during the breeding season, reflecting the quick conversion of prey into predator offspring and/or immigration to sites with high vole populations. We found no evidence of a sustained, high weasel abundance following vole abundance peaks. Weasel population growth rates showed spatial synchrony across study sites approximately 60 km apart. Weasel dynamics were more synchronized with that of common voles than with other prey species (mice or shrews). However, asynchrony within, as well as among sites, in the abundance of voles and alternative prey suggests that weasel mobility could allow them to avoid starvation during low-vole phases, precluding the emergence of prolonged time lag in the numerical response to voles. Our observations are inconsistent with the specialist predator hypothesis as currently formulated, and suggest that weasels might follow rather than cause the vole cycles in northwestern Spain. The reliance of a specialized predator on a functional group of prey such as small rodents does not necessarily lead to a long delay in the numerical response by the predator, depending on the spatial and interspecific synchrony in prey dynamics.
Collapse
Affiliation(s)
- François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, AB24 2TZ, United Kingdom
| | - Ruth Rodríguez-Pastor
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain
| | - Juan Romairone
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain
| | - Juan-José Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain
| |
Collapse
|
44
|
Morris DW, Dupuch A, Moses M, Busniuk K, Otterman H. Differences in behavior help to explain lemming coexistence. J Mammal 2019. [DOI: 10.1093/jmammal/gyz103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Collared (Dicrostonyx groenlandicus) and brown (Lemmus trimucronatus) lemmings coexist in tundra habitats across much of the middle and lower Canadian arctic. Their coexistence, and response to predation risk, appears mediated by behavior. We analyzed field-collected videos of open-field tests to assess potential differences in innate behaviors between the two species. Collared lemmings were less active and exhibited less exploratory behavior than did brown lemmings, which were more active under cover than in the open. Similar behaviors scaling along axes of activity and curiosity were revealed by principal components analysis. Each axis defined different aspects of brown lemming personality, but repeated testing of the same individuals yielded a striking dependence of their behavioral response on open-field treatments. Even so, the differences between species in behavior correlate well with their habitat preferences that resolve competition and govern their coexistence.
Collapse
Affiliation(s)
- Douglas W Morris
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Angélique Dupuch
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, Québec, Canada
| | - MaryJane Moses
- Ontario Ministry of Environment, Conservation and Parks, Thunder Bay, Ontario, Canada
| | - Kaylee Busniuk
- Cognitive and Behavioural Ecology Graduate Program, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Helen Otterman
- Faculty of Health Sciences, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
45
|
Myers JH. Population cycles: generalities, exceptions and remaining mysteries. Proc Biol Sci 2019; 285:rspb.2017.2841. [PMID: 29563267 DOI: 10.1098/rspb.2017.2841] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 01/17/2023] Open
Abstract
Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery.
Collapse
Affiliation(s)
- Judith H Myers
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
46
|
Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S. Advances in population ecology and species interactions in mammals. J Mammal 2019. [DOI: 10.1093/jmammal/gyz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management. Mammals have been central to many computational and statistical developments in recent years, including refinements to traditional approaches and metrics (e.g., capture-recapture) as well as advancements of novel and developing fields (e.g., spatial capture-recapture, occupancy modeling, integrated population models). The study of mammals also poses challenges in terms of fully characterizing dynamics in natural conditions. Ongoing climate change threatens to affect global ecosystems, and mammals provide visible and charismatic subjects for research on local and regional effects of such change as well as predictive modeling of the long-term effects on ecosystem function and stability. Although much remains to be done, the population ecology of mammals continues to be a vibrant and rapidly developing field. We anticipate that the next quarter century will prove as exciting and productive for the study of mammals as has the recent one.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Edward J Heske
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Studd EK, Boudreau MR, Majchrzak YN, Menzies AK, Peers MJL, Seguin JL, Lavergne SG, Boonstra R, Murray DL, Boutin S, Humphries MM. Use of Acceleration and Acoustics to Classify Behavior, Generate Time Budgets, and Evaluate Responses to Moonlight in Free-Ranging Snowshoe Hares. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Wilson EC, Shipley AA, Zuckerberg B, Peery MZ, Pauli JN. An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conserv Lett 2018. [DOI: 10.1111/conl.12614] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Evan C. Wilson
- Department of Forest & Wildlife Ecology University of Wisconsin Madison Wisconsin
| | - Amy A. Shipley
- Department of Forest & Wildlife Ecology University of Wisconsin Madison Wisconsin
| | - Benjamin Zuckerberg
- Department of Forest & Wildlife Ecology University of Wisconsin Madison Wisconsin
| | - M. Zachariah Peery
- Department of Forest & Wildlife Ecology University of Wisconsin Madison Wisconsin
| | - Jonathan N. Pauli
- Department of Forest & Wildlife Ecology University of Wisconsin Madison Wisconsin
| |
Collapse
|
49
|
Peers MJL, Majchrzak YN, Neilson E, Lamb CT, Hämäläinen A, Haines JA, Garland L, Doran-Myers D, Broadley K, Boonstra R, Boutin S. Quantifying fear effects on prey demography in nature. Ecology 2018; 99:1716-1723. [PMID: 29897623 DOI: 10.1002/ecy.2381] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 04/05/2018] [Indexed: 02/03/2023]
Abstract
In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities.
Collapse
Affiliation(s)
- Michael J L Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Eric Neilson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Clayton T Lamb
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Jessica A Haines
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Laura Garland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Darcy Doran-Myers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Kate Broadley
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| |
Collapse
|
50
|
Behrendorff L, Leung LKP, Allen BL. Utilisation of stranded marine fauna washed ashore on K’gari (Fraser Island), Australia, by dingoes. AUST J ZOOL 2018. [DOI: 10.1071/zo18022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stranded marine fauna have been identified as a potentially significant food resource for terrestrial carnivores, but how such subsidisation influences terrestrial species ecology is not well understood. We describe the dietary and behavioural responses of dingoes (Canis familiaris) to the occurrence of large-animal marine strandings (e.g. dead cetaceans, marine turtles and pinnipeds) between 2006 and 2016 on K’gari (Fraser Island), Australia, to better understand the trophic links between marine and terrestrial systems. A total of 309 strandings were recorded during this period (~3.1 strandings per month), yielding an annual average of 30.3 tons of available carrion to the 100–200 dingoes present on the island. Carcass monitoring with camera traps showed that dingoes used carcasses almost daily after a short period of decomposition. Whole packs of up to seven dingoes of all age classes at a time were observed visiting carcasses for multiple successive days. These data demonstrate that large-animal marine subsidies can be a common, substantial and important food source for dingoes, and that the estimated daily dietary needs of roughly 5–10% of the island’s dingo population were supported by this food source. Our data suggest that marine subsidisation can influence terrestrial carnivore diet, behaviour and abundance, which may produce cascading indirect effects for terrestrial ecosystems in contexts where subsidised carnivores interact strongly with other species.
Collapse
|