1
|
Yoo CH, Rani N, Shen S, Loggia ML, Gaynor K, Moore KE, Bagdasarian FA, Lin YS, Edwards RR, Price JC, Hooker JM, Wey HY. Investigating neuroepigenetic alterations in chronic low back pain with positron emission tomography. Pain 2024; 165:2586-2594. [PMID: 38776171 PMCID: PMC11511648 DOI: 10.1097/j.pain.0000000000003272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
ABSTRACT Epigenetics has gained considerable interest as potential mediators of molecular alterations that could underlie the prolonged sensitization of nociceptors, neurons, and glia in response to various environmental stimuli. Histone acetylation and deacetylation, key processes in modulating chromatin, influence gene expression; elevated histone acetylation enhances transcriptional activity, whereas decreased acetylation leads to DNA condensation and gene repression. Altered levels of histone deacetylase (HDAC) have been detected in various animal pain models, and HDAC inhibitors have demonstrated analgesic effects in these models, indicating HDACs' involvement in chronic pain pathways. However, animal studies have predominantly examined epigenetic modulation within the spinal cord after pain induction, which may not fully reflect the complexity of chronic pain in humans. Moreover, methodological limitations have previously impeded an in-depth study of epigenetic changes in the human brain. In this study, we employed [ 11 C]Martinostat, an HDAC-selective radiotracer, positron emission tomography to assess HDAC availability in the brains of 23 patients with chronic low back pain (cLBP) and 11 age-matched and sex-matched controls. Our data revealed a significant reduction of [ 11 C]Martinostat binding in several brain regions associated with pain processing in patients with cLBP relative to controls, highlighting the promising potential of targeting HDAC modulation as a therapeutic strategy for cLBP.
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Nisha Rani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Kate Gaynor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Katelyn E. Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Frederick A. Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Yu-Shiaun Lin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Robert R. Edwards
- Anesthesia and Pain Management Center, Department of Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Julie C. Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
2
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
3
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
4
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Thakur V, Gonzalez MA, Parada M, Martinez RD, Chattopadhyay M. Role of Histone Deacetylase Inhibitor in Diabetic Painful Neuropathy. Mol Neurobiol 2024; 61:2283-2296. [PMID: 37875708 DOI: 10.1007/s12035-023-03701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Diabetic painful neuropathy (DPN) is one of the most detrimental complications of diabetes. Alterations in neuroinflammatory mediators play significant roles in the development of DPN. Infiltration of the neutrophils and monocyte/macrophages contributes substantial role in the degenerative process of the distal sciatic nerve by forming neutrophil extracellular traps (NETs) under diabetic condition. Citrullination of histones due to increase in protein arginine deiminase (PAD) enzyme activity under hyperglycemia may promote NET formation, which can further increase the cytokine production by activating macrophages and proliferation of neutrophils. This study reveals that the increase in histone deacetylases (HDAC) is crucial in DPN and inhibition of HDAC using HDAC inhibitor (HDACi) FK228 would suppress NETosis and alleviate diabetic nerve degeneration and pain. FK228, also known as romidepsin, is FDA approved for the treatment of cutaneous T-cell lymphoma yet the molecular mechanisms of this drug are not completely understood in DPN. In this study, type 2 diabetic (T2D) mice with pain were treated with HDACi, FK228 1 mg/kg; I.P. 2 × /week for 3 weeks. The results demonstrate that FK228 treatment can alleviate thermal hyperalgesia and mechanical allodynia significantly along with changes in the expression of HDACs in the dorsal root ganglia (DRG) and spinal cord dorsal horn neurons of diabetic animals. The results also indicate that FK228 treatment can alter the expression of neutrophil elastase (NE), extracellular or cell free DNA (cfDNA), citrullinated histone-3 (CitH3), PADI4, growth-associated protein (GAP)-43, and glucose transporter (GLUT)-4. Overall, this study suggests that FK228 could amend the expression of nerve regeneration markers and inflammatory mediators in diabetic animals and may offer an alternative treatment approach for DPN.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Mayra A Gonzalez
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Maria Parada
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Robert D Martinez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
6
|
Westlund KN, Montera M, Goins AE, Shilling MW, Afaghpour-Becklund M, Alles SR, Hui SE. Epigenetic HDAC5 Inhibitor Reverses Craniofacial Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2024; 25:428-450. [PMID: 37777035 PMCID: PMC10842645 DOI: 10.1016/j.jpain.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Identifying and resolving molecular complexities underlying chronic neuropathic pain is a significant challenge. Among the numerous classes of histone deacetylases, Class I (HDAC 1-3) and Class III (sirtuins) have been best studied in experimental pain models where inhibitor pre-treatments but not post-treatments abrogate the development of pain-related behaviors. Post-treatment here in week 3 with less well-studied Class IIa HDAC4/5 selective inhibitor LMK235 diminishes the trigeminal ganglia increases of HDAC5 RNA and protein in two chronic orofacial neuropathic pain models to levels measured in naïve mice at week 10 post-model induction. HDAC4 RNA reported in lower limb inflammatory pain models is not evident in the trigeminal models. Many other gene alterations persisting at week 10 in the trigeminal ganglia (TG) are restored to naïve levels in mice treated with LMK235. Important pain-related upregulated genes Hoxc8,b9,d8; P2rx4, Cckbr, growth hormone (Gh), and schlafen (Slfn4) are greatly reduced in LMK235-treated mice. Fold increase in axon regeneration/repair genes Sostdc1, TTr, and Folr1 after injury are doubled by LMK235 treatment. LMK235 reduces the excitability of trigeminal ganglia neurons in culture isolated from nerve injured mice compared to vehicle-treated controls, with no effect on neurons from naïve mice. Electrophysiological characterization profile includes a shift where ∼20% of the small neurons recorded under LMK235-treated conditions are high threshold, whereas none of the neurons under control conditions have high thresholds. LMK235 reverses long-standing mechanical and cold hypersensitivity in chronic trigeminal neuropathic pain models in males and females (5,10 mg/kg), preventing development of anxiety- and depression-like behaviors. PERSPECTIVE: Data here support HDAC5 as key epigenetic factor in chronic trigeminal neuropathic pain persistence, validated with the study of RNA alterations, TG neuronal excitability, and pain-related behaviors. HDAC5 inhibitor given in week 3 restores RNA balance at 10 weeks, while upregulation remains for response to wound healing and chronic inflammation RNAs.
Collapse
Affiliation(s)
- Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Marena Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Aleyah E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Mark W. Shilling
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Mitra Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sascha R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - S. Elise Hui
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
7
|
Tang Y, Du J, Wu H, Wang M, Liu S, Tao F. Potential Therapeutic Effects of Short-Chain Fatty Acids on Chronic Pain. Curr Neuropharmacol 2024; 22:191-203. [PMID: 36173071 PMCID: PMC10788890 DOI: 10.2174/1570159x20666220927092016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
The intestinal homeostasis maintained by the gut microbiome and relevant metabolites is essential for health, and its disturbance leads to various intestinal or extraintestinal diseases. Recent studies suggest that gut microbiome-derived metabolites short-chain fatty acids (SCFAs) are involved in different neurological disorders (such as chronic pain). SCFAs are produced by bacterial fermentation of dietary fibers in the gut and contribute to multiple host processes, including gastrointestinal regulation, cardiovascular modulation, and neuroendocrine-immune homeostasis. Although SCFAs have been implicated in the modulation of chronic pain, the detailed mechanisms that underlie such roles of SCFAs remain to be further investigated. In this review, we summarize currently available research data regarding SCFAs as a potential therapeutic target for chronic pain treatment and discuss several possible mechanisms by which SCFAs modulate chronic pain.
Collapse
Affiliation(s)
- Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory for Molecular Neurology of Xinxiang, Xinxiang, Henan, China
| | - Juan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongfeng Wu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengyao Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas, Texas, USA
| | - Feng Tao
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University Dallas, Texas, USA
| |
Collapse
|
8
|
Bai P, Liu Y, Yang L, Ding W, Mondal P, Sang N, Liu G, Lu X, Ho TT, Zhou Y, Wu R, Birar VC, Wilks MQ, Tanzi RE, Lin H, Zhang C, Li W, Shen S, Wang C. Development and Pharmacochemical Characterization Discover a Novel Brain-Permeable HDAC11-Selective Inhibitor with Therapeutic Potential by Regulating Neuroinflammation in Mice. J Med Chem 2023; 66:16075-16090. [PMID: 37972387 DOI: 10.1021/acs.jmedchem.3c01491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Na Sang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Gang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Thanh Tu Ho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Vishal C Birar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
9
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
10
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
11
|
Zheng H, Liu X, Guo S. Aberrant expression of histone deacetylase 8 in endometriosis and its potential as a therapeutic target. Reprod Med Biol 2023; 22:e12531. [PMID: 37564680 PMCID: PMC10410010 DOI: 10.1002/rmb2.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose To screen Zn2+-dependent histone deacetylase (HDAC) 1-11 in endometriotic cells and then evaluated the HDACs identified from the screening in ovarian endometrioma (OE) and deep endometriotic (DE) lesions, and to evaluate the therapeutic potential of HDAC8 inhibition in mice. Methods Quantification of gene and protein expression levels of HDAC1-11 in endometriotic cells stimulated by TGF-β1, and immunohistochemistry analysis of Class I HDACs and HDAC6 in OE/DE lesion samples. The therapeutic potential of HDAC8 inhibition was evaluated by a mouse model of deep endometriosis. Results The screening identified Class I HDACs and HDAC6 as targets of interest. Immunohistochemistry analysis found a significant elevation in HDAC8 immunostaining in both OE and DE lesions, which was corroborated by gene and protein expression quantification. For other Class I HDACs and HDAC6, their lesional expression was more subtle and nuanced. HDAC1 and HDAC6 staining was significantly elevated in DE lesions while HDAC2 and HDAC3 staining was reduced in DE lesions. Treatment of mice with induced deep endometriosis with an HDAC8 inhibitor resulted in significantly longer hotplate latency, a reduction of lesion weight by nearly two-thirds, and significantly reduced lesional fibrosis. Conclusions These findings highlight the progression-dependent nature of specific HDAC aberrations in endometriosis, and demonstrate, for the first titme, the therapeutic potential of suppressing HDAC8.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Present address:
Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Zheng H, Liu X, Guo S. Corroborating evidence for aberrant expression of histone deacetylase 8 in endometriosis. Reprod Med Biol 2023; 22:e12527. [PMID: 37476367 PMCID: PMC10354415 DOI: 10.1002/rmb2.12527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose The aim of this study was to evaluate the dynamic change in staining of Class I HDACs and Hdac6 in lesions harvested serially from different time points in mice with induced endometriosis. In addition, the effect of Hdac8 activation as well as Hdac8 and Hdac6 inhibition on lesional progression and fibrogenesis was evaluated. Methods Immunohistochemistry analysis of Class I HDACs and Hdac6 in serially harvested lesion samples in mouse. Hdac8 activation, as well as Hdac6/8 inhibition, was evaluated in mice with induced endometriosis. Results We found a progressive increase in lesional staining of Hdac1, Hdac8, and Hdac6 and gradual decrease in Hdac2 staining and consistently reduced staining of Hdac3 during the course of lesional progression. The stromal Hdac8 staining correlated most prominently with all markers of lesional fibrosis. Hdac8 activation significantly accelerated the progression and fibrogenesis of endometriotic lesions. In contrast, specific inhibition of Hdac8 or Hdac6, especially of Hdac8, significantly hindered lesional progression and fibrogenesis. Conclusions Hdac8 is progressively and aberrantly overexpressed as endometriotic lesions progress. This, along with the documented HDAC1 upregulation in endometriosis and the overwhelming evidence for the therapeutic potentials of HDACIs, calls for further and in-depth investigation of epigenetic aberrations of endometriosis in general and of HDACs in particular.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of GynecologyShanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
- Present address:
Gusu School, Center for Human Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of GynecologyShanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Jiang W, Tan XY, Li JM, Yu P, Dong M. DNA Methylation: A Target in Neuropathic Pain. Front Med (Lausanne) 2022; 9:879902. [PMID: 35872752 PMCID: PMC9301322 DOI: 10.3389/fmed.2022.879902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory nervous system of the central and peripheral nervous systems, has become a global health concern. Recent studies have demonstrated that epigenetic mechanisms are among those that underlie NP; thus, elucidating the molecular mechanism of DNA methylation is crucial to discovering new therapeutic methods for NP. In this review, we first briefly discuss DNA methylation, demethylation, and the associated key enzymes, such as methylases and demethylases. We then discuss the relationship between NP and DNA methylation, focusing on DNA methyltransferases including methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET) enzymes. Based on experimental results of neuralgia in animal models, the mechanism of DNA methylation-related neuralgia is summarized, and useful targets for early drug intervention in NP are discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ming Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Yu
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Ming Dong
| |
Collapse
|
14
|
Takasu K, Niidome K, Hasegawa M, Ogawa K. Histone Deacetylase Inhibitor Improves the Dysfunction of Hippocampal Gamma Oscillations and Fast Spiking Interneurons in Alzheimer's Disease Model Mice. Front Mol Neurosci 2021; 14:782206. [PMID: 35027883 PMCID: PMC8751405 DOI: 10.3389/fnmol.2021.782206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/05/2022] Open
Abstract
The hippocampal gamma oscillation is important for cognitive function, and its deficit is related to cognitive impairment in Alzheimer's disease (AD). Recently, it has been recognized that post-translational modification via histone acetylation is a fundamental molecular mechanism for regulating synaptic plasticity and cognitive function. However, little is known regarding the regulation of hippocampal gamma oscillation by histone acetylation. We investigated whether histone acetylation regulated kainate-induced gamma oscillations and their important regulator, fast-spiking interneurons, using acute hippocampal slices of AD model mice (PSAPP transgenic mice). We found a decrease in kainate-induced gamma oscillations in slices from PSAPP mice, accompanied with the increased activity of fast spiking interneurons in basal state and the decreased activity in activated state. The histone deacetylase (HDAC) inhibitor (SAHA, named vorinostat) restored deficits of gamma oscillation in PSAPP mice, accompanied with rescue of activity of fast spiking interneurons in basal and activated state. The effect of SAHA was different from that of the clinical AD drug donepezil, which rescued only function of fast spiking interneurons in basal state. Besides, activator of nuclear receptor family 4a (NR4a) receptor (cytosporone B), as one of the epigenetic modification related to HDAC inhibition, rescued the deficits in gamma oscillations in PSAPP mice. These results suggested a novel mechanism in which HDAC inhibition improved impairment of gamma oscillations in PSAPP mice by restoring the activity of fast spiking interneurons both in basal and activated state. The reversal of gamma oscillation deficits by HDAC inhibition and/or NR4a activation appears to be a potential therapeutic target for treating cognitive impairment in AD patients.
Collapse
Affiliation(s)
| | | | | | - Koichi Ogawa
- Pain and Neuroscience, Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
15
|
Abstract
Neuropathic pain (NP) is a common symptom in many diseases of the somatosensory
nervous system, which severely affects the patient’s quality of life.
Epigenetics are heritable alterations in gene expression that do not cause
permanent changes in the DNA sequence. Epigenetic modifications can affect gene
expression and function and can also mediate crosstalk between genes and the
environment. Increasing evidence shows that epigenetic modifications, including
DNA methylation, histone modification, non-coding RNA, and RNA modification, are
involved in the development and maintenance of NP. In this review, we focus on
the current knowledge of epigenetic modifications in the development and
maintenance of NP. Then, we illustrate different facets of epigenetic
modifications that regulate gene expression and their crosstalk. Finally, we
discuss the burgeoning evidence supporting the potential of emerging epigenetic
therapies, which has been valuable in understanding mechanisms and offers novel
and potent targets for NP therapy.
Collapse
Affiliation(s)
- Danzhi Luo
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
- Sun Yet-Sen Memorial Hospital of Sun
Yet-Sen University, Guangzhou, China
| | - Xiaohong Li
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jinshu Liang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
- Jun Zhou, Department of Anesthesiology, The
Third Affiliated Hospital of Southern Medical University, Guangzhou 510630,
China.
| |
Collapse
|
16
|
Torres-Perez JV, Irfan J, Febrianto MR, Di Giovanni S, Nagy I. Histone post-translational modifications as potential therapeutic targets for pain management. Trends Pharmacol Sci 2021; 42:897-911. [PMID: 34565578 DOI: 10.1016/j.tips.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Effective pharmacological management of pain associated with tissue pathology is an unmet medical need. Transcriptional modifications in nociceptive pathways are pivotal for the development and the maintenance of pain associated with tissue damage. Accumulating evidence has shown the importance of the epigenetic control of transcription in nociceptive pathways via histone post-translational modifications (PTMs). Hence, histone PTMs could be targets for novel effective analgesics. Here, we discuss the current understanding of histone PTMs in the modulation of gene expression affecting nociception and pain phenotypes following tissue injury. We also provide a critical view of the translational implications of preclinical models and discuss opportunities and challenges of targeting histone PTMs to relieve pain in clinically relevant tissue injuries.
Collapse
Affiliation(s)
- Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| | - Jahanzaib Irfan
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Muhammad Rizki Febrianto
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK.
| | - Istvan Nagy
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
17
|
English K, Barton MC. HDAC6: A Key Link Between Mitochondria and Development of Peripheral Neuropathy. Front Mol Neurosci 2021; 14:684714. [PMID: 34531721 PMCID: PMC8438325 DOI: 10.3389/fnmol.2021.684714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Peripheral neuropathy, which is the result of nerve damage from lesions or disease, continues to be a major health concern due to the common manifestation of neuropathic pain. Most investigations into the development of peripheral neuropathy focus on key players such as voltage-gated ion channels or glutamate receptors. However, emerging evidence points to mitochondrial dysfunction as a major player in the development of peripheral neuropathy and resulting neuropathic pain. Mitochondrial dysfunction in neuropathy includes altered mitochondrial transport, mitochondrial metabolism, as well as mitochondrial dynamics. The mechanisms that lead to mitochondrial dysfunction in peripheral neuropathy are poorly understood, however, the Class IIb histone deacetylase (HDAC6), may play an important role in the process. HDAC6 is a key regulator in multiple mechanisms of mitochondrial dynamics and may contribute to mitochondrial dysregulation in peripheral neuropathy. Accumulating evidence shows that HDAC6 inhibition is strongly associated with alleviating peripheral neuropathy and neuropathic pain, as well as mitochondrial dysfunction, in in vivo and in vitro models of peripheral neuropathy. Thus, HDAC6 inhibitors are being investigated as potential therapies for multiple peripheral neuropathic disorders. Here, we review emerging studies and integrate recent advances in understanding the unique connection between peripheral neuropathy and mitochondrial dysfunction through HDAC6-mediated interactions.
Collapse
Affiliation(s)
- Krystal English
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth McGovern Medical School, Houston, TX, United States
| | - Michelle Craig Barton
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Pereira V, Lamoine S, Cuménal M, Lolignier S, Aissouni Y, Pizzoccaro A, Prival L, Balayssac D, Eschalier A, Bourinet E, Busserolles J. Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity. Mol Neurobiol 2021; 58:3575-3587. [PMID: 33772465 DOI: 10.1007/s12035-021-02361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathy is the most frequent dose-limiting adverse effect of oxaliplatin. Acute pain symptoms that are induced or exacerbated by cold occur in almost all patients immediately following the first infusions. Evidence has shown that oxaliplatin causes ion channel expression modulations in dorsal root ganglia neurons, which are thought to contribute to peripheral hypersensitivity. Most dysregulated genes encode ion channels involved in cold and mechanical perception, noteworthy members of a sub-group of potassium channels of the K2P family, TREK and TRAAK. Downregulation of these K2P channels has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. We investigated the molecular mechanisms underlying this peripheral dysregulation in a murine model of neuropathic pain triggered by a single oxaliplatin administration. We found that oxaliplatin-mediated TREK-TRAAK downregulation, as well as downregulation of other K+ channels of the K2P and Kv families, involves a transcription factor known as the neuron-restrictive silencer factor (NRSF) and its epigenetic co-repressors histone deacetylases (HDACs). NRSF knockdown was able to prevent most of these K+ channel mRNA downregulation in mice dorsal root ganglion neurons as well as oxaliplatin-induced acute cold and mechanical hypersensitivity. Interestingly, pharmacological inhibition of class I HDAC reproduces the antinociceptive effects of NRSF knockdown and leads to an increased K+ channel expression in oxaliplatin-treated mice.
Collapse
Affiliation(s)
- Vanessa Pereira
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Mélissa Cuménal
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, F-34094, Montpellier, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - David Balayssac
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, F-34094, Montpellier, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France.
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
19
|
Yeh TY, Luo IW, Hsieh YL, Tseng TJ, Chiang H, Hsieh ST. Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 2020; 9:cells9122725. [PMID: 33371371 PMCID: PMC7767346 DOI: 10.3390/cells9122725] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain exerts a global burden caused by the lesions in the somatosensory nerve system, including the central and peripheral nervous systems. The mechanisms of nerve injury-induced neuropathic pain involve multiple mechanisms, various signaling pathways, and molecules. Currently, poor efficacy is the major limitation of medications for treating neuropathic pain. Thus, understanding the detailed molecular mechanisms should shed light on the development of new therapeutic strategies for neuropathic pain. Several well-established in vivo pain models were used to investigate the detail mechanisms of peripheral neuropathic pain. Molecular mediators of pain are regulated differentially in various forms of neuropathic pain models; these regulators include purinergic receptors, transient receptor potential receptor channels, and voltage-gated sodium and calcium channels. Meanwhile, post-translational modification and transcriptional regulation are also altered in these pain models and have been reported to mediate several pain related molecules. In this review, we focus on molecular mechanisms and mediators of neuropathic pain with their corresponding transcriptional regulation and post-translational modification underlying peripheral sensitization in the dorsal root ganglia. Taken together, these molecular mediators and their modification and regulations provide excellent targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - I-Wei Luo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hostpital, Kaohsiung 80708, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Brian and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88182); Fax: +886-223915292
| |
Collapse
|
20
|
Miao J, Zhou X, Ji T, Chen G. NF-κB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. J Neuroinflammation 2020; 17:225. [PMID: 32723328 PMCID: PMC7389436 DOI: 10.1186/s12974-020-01901-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Neuropathic pain is related to the sustained activation of neuroglial cells and the production of proinflammatory cytokines in the spinal dorsal horn. However, the clinical efficacy of currently available treatments is very limited. The transcription factor nuclear factor κB (NF-κB) is a ubiquitously expressed protein family and considered to be crucial in autoimmunity. Thus, our study aimed to examine the influence of NF-κB p65 in chronic constriction injury (CCI)-induced neuropathic pain as well as its underlying mechanism. METHODS A rat model of neuropathic pain was established by CCI induction followed by isolation of microglial cells. The binding of NF-κB p65 to HDAC2, of miR-183 to TXNIP, and of TXNIP to NLRP3 was investigated. Expression of miR-183, NF-κB p65, HDAC2, TXNIP, and NLRP3 was determined with their functions in CCI rats and microglial cells analyzed by gain- and loss-of-function experiments. RESULTS NF-κB p65 and HDAC2 were upregulated while miR-183 was downregulated in the dorsal horn of the CCI rat spinal cord. NF-κB p65 was bound to the HDAC2 promoter and then increased its expression. HDAC2 reduced miR-183 expression by deacetylation of histone H4. Additionally, miR-183 negatively regulated TXNIP. Mechanistically, NF-κB p65 downregulated the miR-183 expression via the upregulation of HDAC2 and further induced inflammatory response by activating the TXNIP-NLRP3 inflammasome axis, thus aggravating the neuropathic pain in CCI rats and microglial cells. CONCLUSION These results revealed a novel transcriptional mechanism of interplay between NF-κB and HDAC2 focusing on neuropathic pain via the miR-183/TXNIP/NLRP3 axis.
Collapse
Affiliation(s)
- Jiamin Miao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Jianggan District, Hangzhou, 310012, Zhejiang Province, China.
| | - Xuelong Zhou
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Jianggan District, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
21
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
22
|
Sakloth F, Manouras L, Avrampou K, Mitsi V, Serafini RA, Pryce KD, Cogliani V, Berton O, Jarpe M, Zachariou V. HDAC6-selective inhibitors decrease nerve-injury and inflammation-associated mechanical hypersensitivity in mice. Psychopharmacology (Berl) 2020; 237:2139-2149. [PMID: 32388618 PMCID: PMC7470631 DOI: 10.1007/s00213-020-05525-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Lefteris Manouras
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Valeria Cogliani
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Olivier Berton
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
- Division of Neuroscience & Behavior, National institute on Drug Abuse (NIDA), 6001 Executive Blvd, Rm 4289, Rockville, MD, 20852, USA
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
23
|
He XT, Hu XF, Zhu C, Zhou KX, Zhao WJ, Zhang C, Han X, Wu CL, Wei YY, Wang W, Deng JP, Chen FM, Gu ZX, Dong YL. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J Neuroinflammation 2020; 17:125. [PMID: 32321538 PMCID: PMC7175547 DOI: 10.1186/s12974-020-01740-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP. METHODS BCP model was established by intra-tibia tumor cell inoculation (TCI). The expression levels and distribution sites of histone deacetylases (HDACs) in the spinal dorsal horn and dorsal root ganglia were evaluated by Western blot and immunofluorescent staining, respectively. Suberoylanilide hydroxamic acid (SAHA), a clinically used HDAC inhibitor, was then intraperitoneally and intrathecally injected to rescue the increased expression levels of HDAC1 and HDAC2. The analgesic effects of SAHA administration on BCP were then evaluated by measuring the paw withdrawal thresholds (PWTs). The effects of SAHA on activation of glial cells and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the spinal dorsal horn and dorsal root ganglia of TCI rats were further evaluated by immunofluorescent staining and Western blot analysis. Subsequently, the effects of SAHA administration on tumor growth and cancer cell-induced bone destruction were analyzed by hematoxylin and eosin (HE) staining and micro-CT scanning. RESULTS TCI caused rapid and long-lasting increased expression of HDAC1/HDAC2 in glial cells of the spinal dorsal horn and dorsal root ganglia. Inhibiting HDACs by SAHA not only reversed TCI-induced upregulation of HDACs but also inhibited the activation of glial cells in the spinal dorsal horn and dorsal root ganglia, and relieved TCI-induced mechanical allodynia. Further, we found that SAHA administration could not prevent cancer infiltration or bone destruction in the tibia, which indicated that the analgesic effects of SAHA were not due to its anti-tumor effects. Moreover, we found that SAHA administration could inhibit GSK3β activity in the spinal dorsal horn and dorsal root ganglia, which might contributed to the relief of BCP. CONCLUSION Our findings suggest that HDAC1 and HDAC2 are involved in the glia-mediated neuroinflammation in the spinal dorsal horn and dorsal root ganglia underlying the pathogenesis of BCP, which indicated that inhibiting HDACs by SAHA might be a potential strategy for pain relief of BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Fan Hu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Han
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chang-Le Wu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan-Yan Wei
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
24
|
Lohse I, Brothers SP. Pathogenesis and Treatment of Pancreatic Cancer Related Pain. Anticancer Res 2020; 40:1789-1796. [PMID: 32234867 DOI: 10.21873/anticanres.14133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is often diagnosed due to the patient seeking medical attention for abdominal pain. It is among the most painful cancers, with pain severity strongly correlating with prognosis. Perineural invasion is a prominent feature of pancreatic cancer and often the first route of metastasis resulting in neuropathic pain. While surgical pain is present, it is generally short-lived; chemo- and radio-therapy associated side effect pain is often longer lasting and more difficult to manage. Treatment-induced mucositis in response to chemotherapy occurs throughout the GI tract resulting in infection-prone ulcers on the lip, buccal mucosa, palate or tongue. Cisplatin treatment is associated with axonal neuropathy in the dorsal root ganglion, although other large sensory fibers can be affected. Opioid-induced hyperalgesia can also emerge in patients. Along with traditional means to address pain, neurolytic celiac plexus block of afferent nociceptive fibers has been reported to be effective in 74% of patients. Moreover, as cancer treatments become more effective and result in improved survival, treatment-related side effects become more prevalent. Here, pancreatic cancer and treatment associated pain are reviewed along with current treatment strategies. Potential future therapeutic strategies to target the pathophysiology underlying pancreatic cancer and pain induction are also presented.
Collapse
Affiliation(s)
- Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Psychiatry and Behavioral Sciences, University of Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL, U.S.A
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A. .,Department of Psychiatry and Behavioral Sciences, University of Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL, U.S.A
| |
Collapse
|
25
|
Sosanya NM, Kumar R, Clifford JL, Chavez R, Dimitrov G, Srinivasan S, Gautam A, Trevino AV, Williams M, Hammamieh R, Cheppudira BP, Christy RJ, Crimmins SL. Identifying Plasma Derived Extracellular Vesicle (EV) Contained Biomarkers in the Development of Chronic Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:82-96. [DOI: 10.1016/j.jpain.2019.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
|
26
|
Li S, Hua D, Wang Q, Yang L, Wang X, Luo A, Yang C. The Role of Bacteria and Its Derived Metabolites in Chronic Pain and Depression: Recent Findings and Research Progress. Int J Neuropsychopharmacol 2019; 23:26-41. [PMID: 31760425 PMCID: PMC7064053 DOI: 10.1093/ijnp/pyz061] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic pain is frequently comorbid with depression in clinical practice. Recently, alterations in gut microbiota and metabolites derived therefrom have been found to potentially contribute to abnormal behaviors and cognitive dysfunction via the "microbiota-gut-brain" axis. METHODS PubMed was searched and we selected relevant studies before October 1, 2019. The search keyword string included "pain OR chronic pain" AND "gut microbiota OR metabolites"; "depression OR depressive disorder" AND "gut microbiota OR metabolites". We also searched the reference lists of key articles manually. RESULTS This review systematically summarized the recent evidence of gut microbiota and metabolites in chronic pain and depression in animal and human studies. The results showed the pathogenesis and therapeutics of chronic pain and depression might be partially due to gut microbiota dysbiosis. Importantly, bacteria-derived metabolites, including short-chain fatty acids, tryptophan-derived metabolites, and secondary bile acids, offer new insights into the potential linkage between key triggers in gut microbiota and potential mechanisms of depression. CONCLUSION Studying gut microbiota and its metabolites has contributed to the understanding of comorbidity of chronic pain and depression. Consequently, modulating dietary structures or supplementation of specific bacteria may be an available strategy for treating chronic pain and depression.
Collapse
Affiliation(s)
- Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaoyan Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xinlei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Correspondence: Chun Yang, MD, PhD, Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China (; )
| |
Collapse
|
27
|
Linking Lifestyle Factors to Complex Pain States: 3 Reasons Why Understanding Epigenetics May Improve the Delivery of Patient-Centered Care. J Orthop Sports Phys Ther 2019; 49:683-687. [PMID: 31570075 DOI: 10.2519/jospt.2019.0612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Persistent pain is determined by a diverse and ever-changing combination of biology, psychology, and society. Research suggests a need to embrace a patient-centered, biopsychosocial approach to improve outcomes. Only through in-depth understanding of complex mechanisms and by using mechanism-based reasoning can the clinician tailor interventions-the basic tenet of patient-centered care. Epigenetics is helping to unravel complex underlying mechanisms and might have at least 3 major clinical implications for orthopaedic and sports physical therapists. First, it promotes mechanism-based clinical reasoning by improved understanding of the pathophysiology of many health conditions and the underlying mechanisms of action of commonly used interventions. Second, it might help patient subgrouping, allowing more targeted interventions. Finally, it might be used as a biomarker to monitor the effects of environmental factors and lifestyle interventions on health. For these reasons, the authors urge clinicians and clinical researchers to follow this rapidly growing area of research, as it might be soon contributing to patient assessment. J Orthop Sports Phys Ther 2019;49(10):683-687. doi:10.2519/jospt.2019.0612.
Collapse
|
28
|
Li YJ, Zhang K, Sun T, Wang J, Guo YY, Yang L, Yang Q, Li YJ, Liu SB, Zhao MG, Wu YM. Epigenetic suppression of liver X receptor β in anterior cingulate cortex by HDAC5 drives CFA-induced chronic inflammatory pain. J Neuroinflammation 2019; 16:132. [PMID: 31255170 PMCID: PMC6599528 DOI: 10.1186/s12974-019-1507-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 01/30/2023] Open
Abstract
Background Liver X receptors (LXRs), including LXRα and LXRβ, are key regulators of transcriptional programs for both cholesterol homeostasis and inflammation in the brain. Here, the modes of action of LXRs and the epigenetic mechanisms regulating LXRβ expression in anterior cingulate cortex (ACC) of chronic inflammatory pain (CIP) are investigated. Methods The deficit of LXR isoform and analgesic effect of LXR activation by GW3965 were evaluated using the mouse model of CIP induced by hindpaw injection of complete Freund’s adjuvant (CFA). The mechanisms involved in GW-mediated analgesic effects were analyzed with immunohistochemical methods, ELISA, co-immunoprecipitation (Co-IP), Western blot, and electrophysiological recording. The epigenetic regulation of LXRβ expression was investigated by chromatin immunoprecipitation, quantitative real-time PCR, and sequencing. Results We revealed that CFA insult led to LXRβ reduction in ACC, which was associated with upregulated expression of histone deacetylase 5 (HDAC5), and knockdown of LXRβ by shRNA led to thermal hyperalgesia. Co-IP showed that LXRβ interacted with NF-κB p65 physically. LXRβ activation by GW3965 exerted analgesic effects by inhibiting the nuclear translocation of NF-κB, reducing the phosphorylation of mitogen-activated protein kinases (MAPKs) in ACC, and decreasing the promoted input-output and enhanced mEPSC frequency in ACC neurons after CFA exposure. In vitro experiments confirmed that HDAC5 triggered histone deacetylation on the promoter region of Lxrβ, resulting in downregulation of Lxrβ transcription. Conclusion These findings highlight an epigenetic mechanism underlying LXRβ deficits linked to CIP, and LXRβ activation may represent a potential novel target for the treatment of CIP with an alteration in inflammation responses and synaptic transmission in ACC. Electronic supplementary material The online version of this article (10.1186/s12974-019-1507-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Jiao Li
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Kun Zhang
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Ting Sun
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Jian Wang
- Department of Ambulatorium, 94750 Army Hospital, Liancheng, 366200, FuJian Province, People's Republic of China
| | - Yan-Yan Guo
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Le Yang
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Qi Yang
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China
| | - Yan-Jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.,Department of Acupuncture and Moxibustion, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi Province, People's Republic of China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Ming-Gao Zhao
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, People's Republic of China. .,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
| |
Collapse
|
29
|
Polli A, Ickmans K, Godderis L, Nijs J. When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity. Arch Phys Med Rehabil 2019; 100:1153-1161. [DOI: 10.1016/j.apmr.2018.09.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
30
|
HDAC2, but not HDAC1, regulates Kv1.2 expression to mediate neuropathic pain in CCI rats. Neuroscience 2019; 408:339-348. [PMID: 31022463 DOI: 10.1016/j.neuroscience.2019.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
The expression of potassium ion channel subunit 1.2 (Kv1.2) in the dorsal root ganglion (DRG) influences the excitability of neurons, which contributes to the induction and development of neuropathic pain (NPP); however, the molecular mechanisms underlying the downregulation of Kv1.2 in NPP remain unknown. Histone deacetylase (HDAC) inhibitors are reported to attenuate the development of pain hypersensitivity in rats with NPP. Whether HDAC inhibitors contribute to regulation of Kv1.2 expression, and which specific HDAC subunit is involved in NPP, remain unexplored. In this study we established a chronic constrictive injury (CCI) model and used western blot, quantitative real-time PCR, immunostaining, intrathecal injection, and siRNA methods to explore which HDAC subunit is involved in regulating Kv1.2 expression to mediate NPP. Our results demonstrated that nerve injury led to upregulation of HDAC1 expression in the DRG, and of HDAC2 in the DRG and spinal cord. Double-labeling immunofluorescence histochemistry showed that Kv1.2 principally co-localized with HDAC2, but not HDAC1, in NF200-positive large neurons of the DRG. Intrathecal injection with the HDAC inhibitor, suberoylanilide hydroxamic acid, attenuated mechanical and thermal hypersensitivity and reversed the decreased expression of Kv1.2 in rats with CCI. Furthermore, treatment with HDAC2, but not HDAC1, siRNA also relieved mechanical and thermal hypersensitivity and upregulated the Kv1.2 expression in this model. In vitro transfection of PC12 cells with HDAC2 and HDAC1 siRNA confirmed that only HDAC2 siRNA could regulate the expression of Kv1.2. These findings suggest that HDAC2, but not HDAC1, is involved in NPP through regulation of Kv1.2 expression.
Collapse
|
31
|
Ouyang B, Chen D, Hou X, Wang T, Wang J, Zou W, Song Z, Huang C, Guo Q, Weng Y. Normalizing HDAC2 Levels in the Spinal Cord Alleviates Thermal and Mechanical Hyperalgesia After Peripheral Nerve Injury and Promotes GAD65 and KCC2 Expression. Front Neurosci 2019; 13:346. [PMID: 31024248 PMCID: PMC6468568 DOI: 10.3389/fnins.2019.00346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain is a worldwide health concern with poor treatment outcomes. Accumulating evidence suggests that histone hypoacetylation is involved in development and maintenance of neuropathic pain. Thus, many natural and synthetic histone deacetylase (HDACs) inhibitors were tested and exhibited a remarkable analgesic effect against neuropathic pain in animals. However, studies evaluating specific subtypes of HDACs contributing to neuropathic pain are limited. In this study, using the chronic constriction injury (CCI) rat model, we found that mRNA and protein levels of HDAC2 were increased in the lumbar spinal cord of rats after sciatic nerve injury. Intrathecal injection of TSA, a pan-HDAC inhibitor, suppressed the increase in HDAC2 protein but not mRNA, and showed a dose-dependent pain-relieving effect. By introducing HDAC2-specific shRNA into the spinal cord via a lentivirus vector, we confirmed that HDAC2 mediates mechanical and thermal hyperalgesia after nerve injury. Further examination found two essential participants in neuropathic pain in the inhibitory circuit of the central nervous system: GAD65 and KCC2 were increased in the spinal cord of CCI rats after HDAC2 knockdown. Thus, our research confirmed that HDAC2 was involved in mechanical and thermal hyperalgesia induced by peripheral nerve injury. Furthermore, GAD65 and KCC2 were the possible downstream targets of HDAC2 in pain modulation pathways.
Collapse
Affiliation(s)
- Bihan Ouyang
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
| | - Dan Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Xinran Hou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Tongxuan Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Feng XL, Deng HB, Wang ZG, Wu Y, Ke JJ, Feng XB. Suberoylanilide Hydroxamic Acid Triggers Autophagy by Influencing the mTOR Pathway in the Spinal Dorsal Horn in a Rat Neuropathic Pain Model. Neurochem Res 2018; 44:450-464. [PMID: 30560396 DOI: 10.1007/s11064-018-2698-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
Histone acetylation levels can be upregulated by treating cells with histone deacetylase inhibitors (HDACIs), which can induce autophagy. Autophagy flux in the spinal cord of rats following the left fifth lumber spinal nerve ligation (SNL) is involved in the progression of neuropathic pain. Suberoylanilide hydroxamic acid (SAHA), one of the HDACIs can interfere with the epigenetic process of histone acetylation, which has been shown to ease neuropathic pain. Recent research suggest that SAHA can stimulate autophagy via the mammalian target of rapamycin (mTOR) pathway in some types of cancer cells. However, little is known about the role of SAHA and autophagy in neuropathic pain after nerve injury. In the present study, we aim to investigate autophagy flux and the role of the mTOR pathway on spinal cells autophagy activation in neuropathic pain induced by SNL in rats that received SAHA treatment. Autophagy-related proteins and mTOR or its active form were assessed by using western blot, immunohistochemistry, double immunofluorescence staining and transmission electron microscopy (TEM). We found that SAHA decreased the paw mechanical withdrawal threshold (PMWT) of the lower compared with SNL. Autophagy flux was mainly disrupted in the astrocytes and neuronal cells of the spinal cord dorsal horn on postsurgical day 28 and was reversed by daily intrathecal injection of SAHA (n = 100 nmol/day or n = 200 nmol/day). SAHA also decreased mTOR and phosphorylated mTOR (p-mTOR) expression, especially p-mTOR expression in astrocytes and neuronal cells of the spinal dorsal horn. These results suggest that SAHA attenuates neuropathic pain and contributes to autophagy flux in astrocytes and neuronal cells of the spinal dorsal horn via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiang-Lan Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Hong-Bo Deng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Zheng-Gang Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Yun Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Jian-Juan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China
| | - Xiao-Bo Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Rd, Wuhan, 430071, Hubei, China.
| |
Collapse
|
33
|
Guha D, Shamji MF. The Dorsal Root Ganglion in the Pathogenesis of Chronic Neuropathic Pain. Neurosurgery 2018; 63 Suppl 1:118-126. [PMID: 27399376 DOI: 10.1227/neu.0000000000001255] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Mohammed F Shamji
- Department of Surgery and.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Wang X, Shen X, Xu Y, Xu S, Xia F, Zhu B, Liu Y, Wang W, Wu H, Wang F. The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain 2018; 14:1744806918798408. [PMID: 30105933 PMCID: PMC6144590 DOI: 10.1177/1744806918798408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a common chronic pain condition with mechanisms far clearly
been elucidated. Mounting preclinical and clinical studies have shown
neuropathic pain is highly associated with histone acetylation modification,
which follows expression regulation of various pain-related molecules such as
mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65,
Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic
factor, and certain chemokines. As two types of pivotal enzymes involved in
histone acetylation, histone deacetylases induce histone deacetylation to
silence gene expression; in contrast, histone acetyl transferases facilitate
histone acetylation to potentiate gene transcription. Accordingly, upregulation
or blockade of acetylation may be a promising intervention direction for
neuropathic pain treatment. In fact, numerous animal studies have suggested
various histone deacetylase inhibitors, Sirt (class III histone deacetylases)
activators, and histone acetyl transferases inhibitors are effective in
neuropathic pain treatment via targeting specific epigenetic sites. In this
review, we summarize the characteristics of the molecules and mechanisms of
neuropathy-related acetylation, as well as the acetylation upregulation and
blockade for neuropathic pain therapy. Finally, we will discuss the current drug
advances focusing on neuropathy-related acetylation along with the underlying
treatment mechanisms.
Collapse
Affiliation(s)
- Xian Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yingli Xu
- 2 Nursing Center, Operating Room, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Fan Xia
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Bei Zhu
- 3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yusheng Liu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
36
|
Nerve Injury-Induced Chronic Pain Is Associated with Persistent DNA Methylation Reprogramming in Dorsal Root Ganglion. J Neurosci 2018; 38:6090-6101. [PMID: 29875269 DOI: 10.1523/jneurosci.2616-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Nerve injury-induced hyperactivity of primary sensory neurons in the dorsal root ganglion (DRG) contributes to chronic pain development, but the underlying epigenetic mechanisms remain poorly understood. Here we determined genome-wide changes in DNA methylation in the nervous system in neuropathic pain. Spinal nerve ligation (SNL), but not paclitaxel treatment, in male Sprague Dawley rats induced a consistent low-level hypomethylation in the CpG sites in the DRG during the acute and chronic phases of neuropathic pain. DNA methylation remodeling in the DRG occurred early after SNL and persisted for at least 3 weeks. SNL caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands, in introns, intergenic regions, and repetitive sequences. In contrast, SNL caused more gains of methylation in the spinal cord and prefrontal cortex. The DNA methylation changes in the injured DRGs recapitulated developmental reprogramming at the neonatal stage. Methylation reprogramming was correlated with increased gene expression variability. A diet deficient in methyl donors induced hypomethylation and pain hypersensitivity. Intrathecal administration of the DNA methyltransferase inhibitor RG108 caused long-lasting pain hypersensitivity. DNA methylation reprogramming in the DRG thus contributes to nerve injury-induced chronic pain. Restoring DNA methylation may represent a new therapeutic approach to treat neuropathic pain.SIGNIFICANCE STATEMENT Epigenetic mechanisms are critically involved in the transition from acute to chronic pain after nerve injury. However, genome-wide changes in DNA methylation in the nervous system and their roles in neuropathic pain development remain unclear. Here we used digital restriction enzyme analysis of methylation to quantitatively determine genome-wide DNA methylation changes caused by nerve injury. We showed that nerve injury caused DNA methylation changes at 8% of CpG sites with prevailing hypomethylation outside of CpG islands in the dorsal root ganglion. Reducing DNA methylation induced pain hypersensitivity, whereas increasing DNA methylation attenuated neuropathic pain. These findings extend our understanding of the epigenetic mechanism of chronic neuropathic pain and suggest new strategies to treat nerve injury-induced chronic pain.
Collapse
|
37
|
Choi G, Yang TJ, Yoo S, Choi SI, Lim JY, Cho PS, Hwang SW. TRPV4-Mediated Anti-nociceptive Effect of Suberanilohydroxamic Acid on Mechanical Pain. Mol Neurobiol 2018; 56:444-453. [PMID: 29707744 DOI: 10.1007/s12035-018-1093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/29/2022]
Abstract
Biological effects of suberanilohydroxamic acid (SAHA) have mainly been observed in the context of tumor suppression via epigenetic mechanisms, but other potential outcomes from its use have also been proposed in different fields such as pain modulation. Here, we tried to understand whether SAHA modulates specific pain modalities by a non-epigenetic unknown mechanism. From 24 h Complete Freund's Adjuvant (CFA)-inflamed hind paws of mice, mechanical and thermal inflammatory pain indices were collected with or without immediate intraplantar injection of SAHA. To examine the action of SAHA on sensory receptor-specific pain, transient receptor potential (TRP) ion channel-mediated pain indices were collected in the same manner of intraplantar treatment. Activities of primarily cultured sensory neurons and heterologous cells transfected with TRP channels were monitored to determine the molecular mechanism underlying the pain-modulating effect of SAHA. As a result, immediate and localized pretreatment with SAHA, avoiding an epigenetic intervention, acutely attenuated mechanical inflammatory pain and receptor-specific pain evoked by injection of a TRP channel agonist in animal models. We show that a component of the mechanisms involves TRPV4 inhibition based on in vitro intracellular Ca2+ imaging and electrophysiological assessments with heterologous expression systems and cultured sensory neurons. Taken together, the present study provides evidence of a novel off-target action and its mechanism of SAHA in its modality-specific anti-nociceptive effect and suggests the utility of this compound for pharmacological modulation of pain.
Collapse
Affiliation(s)
- Geunyeol Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Tae-Jin Yang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Seung-In Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Pyung Sun Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 02841, South Korea.
| |
Collapse
|
38
|
|
39
|
Zou Y, Xu F, Tang Z, Zhong T, Cao J, Guo Q, Huang C. Distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve. Mol Pain 2018; 12:1744806916681566. [PMID: 28256957 PMCID: PMC5521344 DOI: 10.1177/1744806916681566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although calcitonin gene-related peptide is a recognized pain transducer, the expression of calcitonin gene-related peptide in primary afferents may be differentially affected following different types of nerve injury. Here, we examined whether different calcitonin gene-related peptide expression patterns in primary afferents contributes to distinct sensory disturbances in three animal models of sciatic nerve injury: chronic constriction injury, mild (100g force) or strong (1000g force) transient crush in rats. Assessments of withdrawal reflexes and spontaneous behavior indicated that chronic constriction injury and mild crush resulted in positive neuropathic symptoms (static/dynamic mechanical allodynia, heat hyperalgesia, cold allodynia, spontaneous pain). However, strong crush led to both positive (dynamic mechanical allodynia, cold allodynia, spontaneous pain) and negative symptoms (static mechanical hypoesthesia, heat hypoalgesia). Calcitonin gene-related peptide immunoreactivity in dorsal root ganglia and corresponding spinal cord segments, and calcitonin gene-related peptide mRNA levels in dorsal root ganglia, indicated that the primary afferent calcitonin gene-related peptide supply was markedly reduced only after strong crush. This reduction paralleled the development of negative symptoms (static mechanical hypoesthesia and heat hypoalgesia). Administration of exogenous calcitonin gene-related peptide intrathecally after strong crush did not alter heat hypoalgesia but ameliorated static mechanical hypoesthesia, an effect blocked by a calcitonin gene-related peptide receptor antagonist. Thus, reducing the primary afferent calcitonin gene-related peptide supply contributed to subsequent negative neuropathic symptoms, especially to static mechanical stimuli. Moreover, nerve injury caused a subcellular redistribution of calcitonin gene-related peptide from small- and medium-size dorsal root ganglia neurons to large-size dorsal root ganglia neurons, which paralleled the development of positive neuropathic symptoms. Intrathecal administration of the calcitonin gene-related peptide receptor antagonist ameliorated these positive symptoms, indicating that the expression of calcitonin gene-related peptide in large-size dorsal root ganglia neurons is important for the positive neuropathic symptoms in all three models. Taken together, these results suggest that distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve.
Collapse
Affiliation(s)
- Yu Zou
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Fangting Xu
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhaohui Tang
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Tao Zhong
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Jiawei Cao
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Qulian Guo
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Changsheng Huang
- 1 Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Kummer KK, Kalpachidou T, Kress M, Langeslag M. Signatures of Altered Gene Expression in Dorsal Root Ganglia of a Fabry Disease Mouse Model. Front Mol Neurosci 2018; 10:449. [PMID: 29422837 PMCID: PMC5788883 DOI: 10.3389/fnmol.2017.00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder with involvement of the nervous system. Accumulation of glycosphingolipids within peripheral nerves and/or dorsal root ganglia results in pain due to small-fiber neuropathy, which affects the majority of patients already in early childhood. The α-galactosidase A deficient mouse proved to be an adequate model for Fabry disease, as it shares many symptoms including altered temperature sensitivity and pain perception. To characterize the signatures of gene expression that might underlie Fabry disease-associated sensory deficits and pain, we performed one-color based hybridization microarray expression profiling of DRG explants from adult α-galactosidase A deficient mice and age-matched wildtype controls. Protein-protein interaction (PPI) and pathway analyses were performed for differentially regulated mRNAs. We found 812 differentially expressed genes between adult α-galactosidase A deficient mice and age-matched wildtype controls, 506 of them being upregulated, and 306 being downregulated. Among the enriched pathways and processes, the disease-specific pathways “lysosome” and “ceramide metabolic process” were identified, enhancing reliability of the current analysis. Novel pathways that we identified include “G-protein coupled receptor signaling” and “retrograde transport” for the upregulated genes. From the analysis of downregulated genes, immune-related pathways, autoimmune, and infection pathways emerged. The current analysis is the first to present a differential gene expression profile of DRGs from α-galactosidase A deficient mice, thereby providing knowledge on possible mechanisms underlying neuropathic pain related symptoms in Fabry patients. Therefore, the presented data provide new insights into the development of the pain phenotype and might lead to new treatment strategies.
Collapse
Affiliation(s)
- Kai K Kummer
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Histone deacetylase 5 (HDAC5) regulates neuropathic pain through SRY-related HMG-box 10 (SOX10)-dependent mechanism in mice. Pain 2017; 159:526-539. [DOI: 10.1097/j.pain.0000000000001125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats. Anesthesiology 2017; 127:862-877. [DOI: 10.1097/aln.0000000000001809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Background
Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear.
Methods
Male Sprague–Dawley rats received hind paw injections of complete Freund’s adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel.
Results
The intraplantar complete Freund’s adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4–expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund’s adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7–mediated currents were enhanced in neurons of the complete Freund’s adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4–targeted antisense small interfering RNA to the complete Freund’s adjuvant–treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons).
Conclusions
Complete Freund’s adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is likely mediated by the enhanced expression of voltage-gated sodium channel 1.7.
Collapse
|
43
|
Zammataro M, Merlo S, Barresi M, Parenti C, Hu H, Sortino MA, Chiechio S. Chronic Treatment with Fluoxetine Induces Sex-Dependent Analgesic Effects and Modulates HDAC2 and mGlu2 Expression in Female Mice. Front Pharmacol 2017; 8:743. [PMID: 29104538 PMCID: PMC5654865 DOI: 10.3389/fphar.2017.00743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Gender and sex differences in pain recognition and drug responses have been reported in clinical trials and experimental models of pain. Among antidepressants, contradictory results have been observed in patients treated with selective serotonin reuptake inhibitors (SSRIs). This study evaluated sex differences in response to the SSRI fluoxetine after chronic administration in the mouse formalin test. Adult male and female CD1 mice were intraperitoneally injected with fluoxetine (10 mg/kg) for 21 days and subjected to pain assessment. Fluoxetine treatment reduced the second phase of the formalin test only in female mice without producing behavioral changes in males. We also observed that fluoxetine was able to specifically increase the expression of metabotropic glutamate receptor type-2 (mGlu2) in females. Also a reduced expression of the epigenetic modifying enzyme, histone deacetylase 2 (HDAC2), in dorsal root ganglia (DRG) and dorsal horn (DH) together with an increase histone 3 acetylation (H3) level was observed in females but not in males. With this study we provide evidence that fluoxetine induces sex specific changes in HDAC2 and mGlu2 expression in the DH of the spinal cord and in DRGs and suggests a molecular explanation for the analgesic effects in female mice.
Collapse
Affiliation(s)
- Magda Zammataro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
44
|
HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring μ-opioid receptor in spinal cord. Brain Res 2017; 1669:97-105. [DOI: 10.1016/j.brainres.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/09/2023]
|
45
|
Kamarulzaman NS, Dewadas HD, Leow CY, Yaacob NS, Mokhtar NF. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int 2017; 17:74. [PMID: 28785170 PMCID: PMC5540501 DOI: 10.1186/s12935-017-0442-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its 'neonatal' splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors. AIM This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA). METHODS The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10-10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured. RESULTS mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin. CONCLUSIONS This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.
Collapse
Affiliation(s)
- Nur Sabrina Kamarulzaman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Hemaniswarri Dewi Dewadas
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
46
|
Khangura RK, Bali A, Jaggi AS, Singh N. Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol 2017; 795:36-42. [DOI: 10.1016/j.ejphar.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
|
47
|
Suberoylanilide hydroxamic acid prevents downregulation of spinal glutamate transporter-1 and attenuates spinal nerve ligation-induced neuropathic pain behavior. Neuroreport 2016; 27:427-34. [PMID: 26953753 DOI: 10.1097/wnr.0000000000000558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutamate transporter-1 (GLT-1) reduction causes dysregulation of excitatory-inhibitory balance, contributing toward neuropathic pain development. However, the mechanisms underlying GLT-1 downregulation are still unclear. Histone acetylation plays a pivotal role in the regulation of gene expression. We sought to examine the contribution of histone acetylation on pain hypersensitivity and GLT-1 downregulation in neuropathic pain development. Histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) was intrathecally infused to rats through osmotic pumps from -5 days to 7 days after spinal nerve ligation (SNL). Behavioral tests indicated that SAHA could significantly prevent SNL-induced mechanical allodynia and thermal hyperalgesia. The effect was dose related and lasted to 10 days after SNL when the SAHA infusion was stopped on day 7. Immunohistochemistry, western blot, and real-time reverse transcription PCR analysis showed that SAHA significantly prevented SNL-induced downregulation of GLT-1 in the spinal dorsal horn. In addition, SNL-induced weakened acetylation of histone H3 (AcH3) was significantly inhibited by SAHA. Immunofluorescent histochemistry showed that both GLT-1 and AcH3 had high expressions in the dorsal horn. Double staining indicated that several GLT-1-positive cells were colocalized with AcH3. Our data provide evidence that histone deacetylation may contribute toward the loss of GLT-1 and this could be a new consideration for the development of more effective strategies for treating neuropathic pain.
Collapse
|
48
|
Tao W, Zhou W, Wang Y, Sun T, Wang H, Zhang Z, Jin Y. Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain. Neuroscience 2016; 339:54-63. [PMID: 27646288 DOI: 10.1016/j.neuroscience.2016.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/31/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
The efficacy of opioids in patients with chronic neuropathic pain remains controversial. Although activation of δ-opioid receptors (DORs) in the brainstem reduces inflammation-induced persistent hyperalgesia, it is not effective under persistent neuropathic pain conditions and these clinical problems remain largely unknown. In this study, by using a chronic constriction injury (CCI) of the sciatic nerve in rats, we found that in the brainstem nucleus raphe magnus (NRM), DORs emerged on the surface membrane of central synaptic terminals on day 3 after CCI surgery and disappeared on day 14. Histone deacetylase (HDAC) inhibitors microinjected into the NRM in vivo increased the level of synaptosomal DOR protein and NRM infusion of DOR agonists producing an antinociceptive effect in a nerve growth factor (NGF) signaling-dependent manner. In vitro, in CCI rat slices incubated with HDAC inhibitors, DOR agonists significantly inhibited EPSCs. This effect was blocked by tyrosine receptor kinase A antagonists. Chromatin immunoprecipitation analysis revealed that NRM infusion of HDAC inhibitors in CCI rats increased the level of histone H4 acetylation at Ngf gene promoter regions. NGF was infused into the NRM or incubated CCI rat slices drove DORs to the surface membrane of synaptic terminals. Taken together, epigenetic upregulation of NGF activity by HDAC inhibitors in the NRM promotes the trafficking of DORs to pain-modulating neuronal synapses under neuropathic pain conditions, leading to δ-opioid analgesia. These findings indicate that therapeutic use of DOR agonists combined with HDAC inhibitors might be effective in chronic neuropathic pain managements.
Collapse
Affiliation(s)
- Wenjuan Tao
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenjie Zhou
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuping Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tingting Sun
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haitao Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan Jin
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
49
|
Wang W, Cui SS, Lu R, Zhang H. Is there any therapeutic value for the use of histone deacetylase inhibitors for chronic pain? Brain Res Bull 2016; 125:44-52. [PMID: 27090944 DOI: 10.1016/j.brainresbull.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Chronic pain is a complex clinical condition that reduces the quality of life for billions of people. In recent years, the role of epigenetic modulation in the control of long-term neuronal plasticity has attracted the attention of pain researchers. The epigenetic mechanisms include covalent modifications of DNA and/or histone proteins. Mounting evidence suggests that the activity of histone deacetylases (HDACs) and levels of histone acetylation are dynamic and that these enzymes modulate pain-related synaptic plasticity. Therefore, HDACs play essential roles in chronic pain development and maintenance. In this mini review, we will discuss the role of HDACs in the pathogenesis of chronic pain and will consider the therapeutic value of HDAC inhibitors in treating chronic pain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Shan-Shan Cui
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan 430071, China.
| | - Rui Lu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Hui Zhang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
50
|
Ligon CO, Moloney RD, Greenwood-Van Meerveld B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2016; 357:84-93. [DOI: 10.1124/jpet.115.231670] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|