1
|
Cooper RD, Luckau TK, Toffelmier E, Cook DG, Martinelli S, Fawcett MH, Shaffer HB. A novel genetic strategy to enable rapid detection of rare non-native alleles. Sci Rep 2024; 14:26027. [PMID: 39472468 PMCID: PMC11522522 DOI: 10.1038/s41598-024-76149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Established invasive species represent one of the most harmful and challenging threats to native biodiversity, necessitating methods for Early Detection and Rapid Response. Cryptic invasions are particularly challenging and often require expensive and time-consuming molecular surveys which limits their usefulness for management. We present a novel application of the Fluidigm SNP-Type Assay to identify rare non-native alleles that significantly reduces the cost and time to generate diagnostic results. We demonstrate the efficacy of this method using experimental Fluidigm pools (99% accuracy) and sequence data (96% accuracy). We apply our novel methodology to an endangered population of California tiger salamanders in Sonoma County where two individual non-native tiger salamander hybrids have previously been detected since 2008. We screened 5805 larvae in 387 sample-pools containing 15 larvae each. We did not detect any non-native hybrids in the population, a result that was verified with sequence data, though we strongly recommend additional years of sampling to confirm hybrid absence. Our success with a challenging, large-genome amphibian suggests this method may be applied to any system, and would be particularly useful when it is necessary for conservation practitioners to rapidly identify rare taxa or genes of interest.
Collapse
Affiliation(s)
- Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Tara K Luckau
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA
| | - Dave G Cook
- , 3003 Magowan Drive, Santa Rosa, CA, 95405, USA
| | - Stacy Martinelli
- California Department of Fish and Wildlife, Wildlife and Lands Management Program, Santa Rosa, CA, 95403, USA
| | - Michael H Fawcett
- Fawcett Environmental Consulting, 598 South First Street, Dunsmuir, CA, 96025, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Szczepański S, Łabiszak B, Lasek M, Wachowiak W. Hybridization has localized effect on genetic variation in closely related pine species. BMC PLANT BIOLOGY 2024; 24:1007. [PMID: 39455923 PMCID: PMC11520059 DOI: 10.1186/s12870-024-05732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hybridization is a known phenomenon in nature but its genetic impact on populations of parental species remains less understood. We investigated the evolutionary consequences of the interspecific gene flow in several contact zones of closely related pine species. Using a set of genetic markers from both nuclear and organellar genomes, we analyzed four hybrid zones (384 individuals) and a large panel of reference allopatric populations of parental taxa (2104 individuals from 96 stands). RESULTS We observed reduced genetic diversity in maternally transmitted mitochondrial genomes of pure pine species and hybrids from contact zones compared to reference allopatric populations. The distribution of mtDNA haplotypes followed geographic rather than species boundaries. Additionally, no new haplotypes emerged in the contact zones, instead these zones contained the most common local variants. However, species diverged significantly at nuclear genomes and populations in contact zones exhibited similar or higher genetic diversity compared to the reference stands. There were no signs of admixture in any allopatric population, while clear admixture was evident in the contact zones, indicating that hybridization has a geographically localized effect on the genetic variation of the analyzed pine species. CONCLUSIONS Our results suggest that hybrid zones act as sinks rather than melting pots of genetic diversity. Hybridization influences sympatric populations but is confined to contact zones. The spectrum of parental species ancestry in hybrids reflects the old evolutionary history of the sympatric populations. These findings also imply that introgression may play a crucial role in the adaptation of hybrids to specific environments.
Collapse
Affiliation(s)
- Sebastian Szczepański
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Bartosz Łabiszak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Martyna Lasek
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Witold Wachowiak
- Department of Plant Ecology and Environmental Protection, Institute of Environmental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
3
|
Liu L, James J, Zhang YQ, Wang ZF, Arakaki M, Vadillo G, Zhou QJ, Lascoux M, Ge XJ. The 'queen of the Andes' (Puya raimondii) is genetically fragile and fragmented: a consequence of long generation time and semelparity? THE NEW PHYTOLOGIST 2024; 244:277-291. [PMID: 39135394 DOI: 10.1111/nph.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Jennifer James
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, 75236, Sweden
| | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712044, China
| | - Zheng-Feng Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mónica Arakaki
- Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Giovana Vadillo
- Plant Physiology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Qiu-Jie Zhou
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
4
|
Pezzi PH, Wheeler LC, Freitas LB, Smith SD. Incomplete lineage sorting and hybridization underlie tree discordance in Petunia and related genera (Petunieae, Solanaceae). Mol Phylogenet Evol 2024; 198:108136. [PMID: 38909873 DOI: 10.1016/j.ympev.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Despite the overarching history of species divergence, phylogenetic studies often reveal distinct topologies across regions of the genome. The sources of these gene tree discordances are variable, but incomplete lineage sorting (ILS) and hybridization are among those with the most biological importance. Petunia serves as a classic system for studying hybridization in the wild. While field studies suggest that hybridization is frequent, the extent of reticulation within Petunia and its closely related genera has never been examined from a phylogenetic perspective. In this study, we used transcriptomic data from 11 Petunia, 16 Calibrachoa, and 10 Fabiana species to illuminate the relationships between these species and investigate whether hybridization played a significant role in the diversification of the clade. We inferred that gene tree discordance within genera is linked to hybridization events along with high levels of ILS due to their rapid diversification. Moreover, network analyses estimated deeper hybridization events between Petunia and Calibrachoa, genera that have different chromosome numbers. Although these genera cannot hybridize at the present time, ancestral hybridization could have played a role in their parallel radiations, as they share the same habitat and life history.
Collapse
Affiliation(s)
- Pedro H Pezzi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
5
|
Wang Y, Wu X, Chen Y, Xu C, Wang Y, Wang Q. Phylogenomic analyses revealed widely occurring hybridization events across Elsholtzieae (Lamiaceae). Mol Phylogenet Evol 2024; 198:108112. [PMID: 38806075 DOI: 10.1016/j.ympev.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Obtaining a robust phylogeny proves challenging due to the intricate evolutionary history of species, where processes such as hybridization and incomplete lineage sorting can introduce conflicting signals, thereby complicating phylogenetic inference. In this study, we conducted comprehensive sampling of Elsholtzieae, with a particular focus on its largest genus, Elsholtzia. We utilized 503 nuclear loci and complete plastome sequences obtained from 99 whole-genome sequencing datasets to elucidate the interspecific relationships within the Elsholtzieae. Additionally, we explored various sources of conflicts between gene trees and species trees. Fully supported backbone phylogenies were recovered, and the monophyly of Elsholtzia and Keiskea was not supported. Significant gene tree heterogeneity was observed at numerous nodes, particularly regarding the placement of Vuhuangia and the E. densa clade. Further investigations into potential causes of this discordance revealed that incomplete lineage sorting (ILS), coupled with hybridization events, has given rise to substantial gene tree discordance. Several species, represented by multiple samples, exhibited a closer association with geographical distribution rather than following a strictly monophyletic pattern in plastid trees, suggesting chloroplast capture within Elsholtzieae and providing evidence of hybridization. In conclusion, this study provides phylogenomic insights to untangle taxonomic problems in the tribe Elsholtzieae, especially the genus Elsholtzia.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexue Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yinghui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
de Sá FP, Akopyan M, Santana EM, Haddad CFB, Zamudio KR. Mitonuclear and phenotypic discordance in an Atlantic Forest frog hybrid zone. Ecol Evol 2024; 14:e70262. [PMID: 39279790 PMCID: PMC11393776 DOI: 10.1002/ece3.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Discordance between mitochondrial and nuclear DNA is common among animals and can be the result of a number of evolutionary processes, including incomplete lineage sorting and introgression. Particularly relevant in contact zones, mitonuclear discordance is expected because the mitochondrial genome is haploid and primarily uniparentally inherited, whereas nuclear loci are evolving at slower rates. In addition, when closely related taxa come together in hybrid zones, the distribution of diagnostic phenotypic characters and their concordance with the mitochondrial or nuclear lineages can also inform on historical and ongoing dynamics within hybrid zones. Overall, genetic and phenotypic discordances provide evidence for evolutionary divergence and processes that maintain boundaries among sister species or lineages. In this study, we characterized patterns of genetic and phenotypic variation in a contact zone between Cycloramphus dubius and Cycloramphus boraceiensis, two sister species of frogs endemic to the Atlantic Coastal Forest of Brazil. We examined genomic-scale nuclear diversification across 19 populations, encompassing the two parental forms and a contact zone between them. We compared the distribution of genomic DNA variability with that of a mitochondrial locus (16S) and two morphological traits (dorsal tubercles and body size). Our results reveal multiple divergent lineages with ongoing admixture. We detected discordance in patterns of introgression across the three data types. Cycloramphus dubius males are significantly larger than C. boraceiensis males, and we posit that competition among males in the hybrid zone, coupled with mate choice by females, may be one mechanism leading to patterns of introgression observed between the species.
Collapse
Affiliation(s)
- Fábio P de Sá
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP) Instituto de Biociências, Universidade Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
| | - Maria Akopyan
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA
| | - Erika M Santana
- Departamento de Ecologia Instituto de Biociências, Universidade de São Paulo (USP) São Paulo Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP) Instituto de Biociências, Universidade Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
| | - Kelly R Zamudio
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| |
Collapse
|
7
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wu Y, Linan AG, Hoban S, Hipp AL, Ricklefs RE. Divergent ecological selection maintains species boundaries despite gene flow in a rare endemic tree, Quercus acerifolia (maple-leaf oak). J Hered 2024; 115:575-587. [PMID: 38881254 DOI: 10.1093/jhered/esae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
Strong gene flow from outcrossing relatives tends to blur species boundaries, while divergent ecological selection can counteract gene flow. To better understand how these two forces affect the maintenance of species boundaries, we focused on a species complex including a rare species, maple-leaf oak (Quercus acerifolia), which is found in only four disjunct ridges in Arkansas. Its limited range and geographic proximity to co-occurring close relatives create the possibility for genetic swamping. In this study, we gathered genome-wide single nucleotide polymorphisms (SNPs) using restriction-site-associated DNA sequencing (RADseq) from 190 samples of Q. acerifolia and three of its close relatives, Q. shumardii, Q. buckleyi, and Q. rubra. We found that Q. shumardii and Q. acerifolia are reciprocally monophyletic with low support, suggesting incomplete lineage sorting, introgression between Q. shumardii and Q. acerifolia, or both. Analyses that model allele distributions demonstrate that admixture contributes strongly to this pattern. Populations of Q. acerifolia experience gene flow from Q. shumardii and Q. rubra, but we found evidence that divergent selection is likely maintaining species boundaries: 1) ex situ collections of Q. acerifolia have a higher proportion of hybrids compared to the mature trees of the wild populations, suggesting ecological selection against hybrids at the seed/seedling stage; 2) ecological traits co-vary with genomic composition; and 3) Q. acerifolia shows genetic differentiation at loci hypothesized to influence tolerance of radiation, drought, and high temperature. Our findings strongly suggest that in maple-leaf oak, selection results in higher divergence at regions of the genome despite gene flow from close relatives.
Collapse
Affiliation(s)
- Yingtong Wu
- Biology Department, University of Missouri-St. Louis, St. Louis, MO, United States
- Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO, United States
| | - Alexander G Linan
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, United States
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, IL, United States
| | - Andrew L Hipp
- Center for Tree Science, The Morton Arboretum, Lisle, IL, United States
- The Field Museum, Integrative Research Center, Chicago, IL, United States
| | - Robert E Ricklefs
- Biology Department, University of Missouri-St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Ramirez-Duarte WF, Moran BM, Powell DL, Bank C, Sousa VC, Rosenthal GG, Schumer M, Rochman CM. Hybridization in the Anthropocene - how pollution and climate change disrupt mate selection in freshwater fish. Biol Rev Camb Philos Soc 2024. [PMID: 39092475 DOI: 10.1111/brv.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Chemical pollutants and/or climate change have the potential to break down reproductive barriers between species and facilitate hybridization. Hybrid zones may arise in response to environmental gradients and secondary contact between formerly allopatric populations, or due to the introduction of non-native species. In freshwater ecosystems, field observations indicate that changes in water quality and chemistry, due to pollution and climate change, are correlated with an increased frequency of hybridization. Physical and chemical disturbances of water quality can alter the sensory environment, thereby affecting chemical and visual communication among fish. Moreover, multiple chemical compounds (e.g. pharmaceuticals, metals, pesticides, and industrial contaminants) may impair fish physiology, potentially affecting phenotypic traits relevant for mate selection (e.g. pheromone production, courtship, and coloration). Although warming waters have led to documented range shifts, and chemical pollution is ubiquitous in freshwater ecosystems, few studies have tested hypotheses about how these stressors may facilitate hybridization and what this means for biodiversity and species conservation. Through a systematic literature review across disciplines (i.e. ecotoxicology and evolutionary biology), we evaluate the biological interactions, toxic mechanisms, and roles of physical and chemical environmental stressors (i.e. chemical pollution and climate change) in disrupting mate preferences and inducing interspecific hybridization in freshwater fish. Our study indicates that climate change-driven changes in water quality and chemical pollution may impact visual and chemical communication crucial for mate choice and thus could facilitate hybridization among fishes in freshwater ecosystems. To inform future studies and conservation management, we emphasize the importance of further research to identify the chemical and physical stressors affecting mate choice, understand the mechanisms behind these interactions, determine the concentrations at which they occur, and assess their impact on individuals, populations, species, and biological diversity in the Anthropocene.
Collapse
Affiliation(s)
- Wilson F Ramirez-Duarte
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Room 3055, Toronto, Ontario, M5S 3B2, Canada
| | - Benjamin M Moran
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
| | - Daniel L Powell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
| | - Claudia Bank
- Institute of Ecology and Evolution, Universität Bern, Baltzerstrasse 6, Bern, 3012, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, 1015, Switzerland
| | - Vitor C Sousa
- Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Campo Grande 016, Lisbon, 1749-016, Portugal
| | - Gil G Rosenthal
- Department of Biology, Università degli Studi di Padova, Padova, 35131, Italy
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', Calnali, Hgo, 43244, Mexico
| | - Molly Schumer
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
| | - Chelsea M Rochman
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Room 3055, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
10
|
Catanese G, Vázquez‐Luis M, Giacobbe S, García‐March JR, Zotou M, Patricia P, Papadakis O, Tena‐Medialdea J, Katsanevakis S, Grau A. Internal transcribed spacer as effective molecular marker for the detection of natural hybridization between the bivalves Pinna nobilis and Pinna rudis. Ecol Evol 2024; 14:e70227. [PMID: 39193167 PMCID: PMC11347391 DOI: 10.1002/ece3.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The Pinna nobilis, a Mediterranean mollusc, has suffered population declines due to a massive mortality event associated with various factors including the parasite Haplosporidium pinnae. Some populations show resilience, possibly due to local environmental conditions. In this study, a molecular multiplex PCR method was developed using species-specific primers targeting Internal Transcribed Spacer (ITS) regions of P. nobilis and P. rudis, allowing accurate species identification and hybrid detection. Samples from Mediterranean areas were analysed, including putative hybrids and individuals from five other bivalve species. DNA was isolated, ITS regions were amplified and sequenced, and phylogenetic analyses confirmed species differentiation and primer specificity. The multiplex-PCR successfully identified P. nobilis, P. rudis, and their hybrids based on distinct amplicon patterns. This study highlights the value of molecular tools in species conservation, especially for monitoring and managing hybridization, supporting effective biodiversity conservation strategies.
Collapse
Affiliation(s)
- Gaetano Catanese
- IRFAP LIMIA (Laboratorio de Investigaciones Marinas y Acuicultura) – Govern de les Illes BalearsPort d'AndratxBalearic IslandsSpain
| | - Maite Vázquez‐Luis
- IEO‐CSIC, Centro Oceanográfico de Baleares Instituto Español de OceanografíaPalma de MallorcaSpain
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, ChiBioFarAmUniversità Degli Studi di MessinaMessinaItaly
| | - José Rafael García‐March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR‐UCV)Universidad Católica de ValenciaCalpeSpain
| | - Maria Zotou
- Department of Marine SciencesUniversity of the AegeanMytileneGreece
| | - Prado Patricia
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR‐UCV)Universidad Católica de ValenciaCalpeSpain
- Institut d'Estudis Professionals Aqüícoles i Ambientals de Catalunya (IEPAAC)TarragonaSpain
- IRTA‐La RàpitaTarragonaSpain
| | | | - José Tena‐Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR‐UCV)Universidad Católica de ValenciaCalpeSpain
| | | | - Amalia Grau
- IRFAP LIMIA (Laboratorio de Investigaciones Marinas y Acuicultura) – Govern de les Illes BalearsPort d'AndratxBalearic IslandsSpain
| |
Collapse
|
11
|
Korábek O, Hausdorf B. Accelerated mitochondrial evolution and asymmetric fitness of hybrids contribute to the persistence of Helix thessalica in the Helix pomatia range. Mol Ecol 2024; 33:e17474. [PMID: 39031116 DOI: 10.1111/mec.17474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Interbreeding and introgression between recently diverged species is common. However, the processes that prevent these species from merging where they co-occur are not well understood. We studied the mechanisms that allowed an isolated group of populations of the snail Helix thessalica to persist within the range of the related Helix pomatia despite high gene flow. Using genomic cline analysis, we found that the nuclear gene flow between the two taxa across the mosaic hybrid zone was not different from that expected under neutral admixture, but that the exchange of mtDNA was asymmetric. Tests showed that there is relaxed selection in the mitochondrial genome of H. thessalica and that the substitution rate is elevated compared to that of H. pomatia. A lack of hybrids that combine the mtDNA of H. thessalica with a mainly (>46%) H. pomatia genomic background indicates that the nuclear-encoded mitochondrial proteins of H. pomatia are not well adapted to the more rapidly evolving proteins and RNAs encoded by the mitochondrion of H. thessalica. The presumed reduction of fitness of hybrids with the fast-evolving mtDNA of H. thessalica and a high H. pomatia ancestry, similar to 'Darwin's Corollary to Haldane's rule', resulted in a relative loss of H. pomatia nuclear ancestry compared to H. thessalica ancestry in the hybrid zone. This probably prevents the H. thessalica populations from merging quickly with the surrounding H. pomatia populations and supports the hypothesis that incompatibilities between rapidly evolving mitochondrial genes and nuclear genes contribute to speciation.
Collapse
Affiliation(s)
- Ondřej Korábek
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Hamburg, Germany
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Bernhard Hausdorf
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum, Hamburg, Germany
- Universität Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Garcez FS, Tchaicka L, Lemos FG, Kasper CB, Dalponte JC, Eizirik E. Phylogeographic analyses of an endemic Neotropical fox (Lycalopex vetulus) reveal evidence of hybridization with a different canid species (L. gymnocercus). J Hered 2024; 115:399-410. [PMID: 38412545 DOI: 10.1093/jhered/esae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
The hoary fox (Lycalopex vetulus) is the only species of the Canidae (Mammalia: Carnivora) endemic to Brazil, and so far has been the target of few genetic studies. Using microsatellites and mtDNA markers, we investigated its present genetic diversity and population structure. We also tested the hypothesis that this species currently hybridizes with the pampas fox (L. gymnocercus), as suggested by previous mtDNA data from two individuals. We collected tissue and blood samples from animals representing most of the two species' distributions in Brazil (n = 87), including their recently discovered geographic contact zone in São Paulo state. We observed that the hoary fox exhibits high levels of genetic diversity and low levels of population structure. We identified six individuals from São Paulo state with clear evidence of hybridization based on introgressed pampas fox mitochondrial DNA and/or admixed microsatellite genotypes (three individuals bore both types of evidence). These results demonstrate the existence of admixed individuals between hoary and pampas foxes in southeastern Brazil, representing the first identified case of interspecies admixture between native South American canids. We discuss our findings in the context of the evolutionary history of these foxes and address potential conservation implications of this interspecies hybridization process.
Collapse
Affiliation(s)
- Fabricio Silva Garcez
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ligia Tchaicka
- Departamento de Química e Biologia, Centro de Educação, Ciências Exatas e Naturais (CECEN), Universidade Estadual do Maranhão (UEMA), São Luís, MA, Brazil
| | - Frederico Gemesio Lemos
- Departamento de Ciências Biológicas, Universidade Federal de Catalão (UFCAT), Programa de Conservação de Mamíferos do Cerrado (PCMC), Catalão, GO, Brazil
| | - Carlos Benhur Kasper
- Laboratório de Biologia de Mamíferos e Aves (LABIMAVE), Universidade Federal do Pampa (UNIPAMPA), São Gabriel, RS, Brazil
| | - Júlio Cesar Dalponte
- Instituto para a Conservação dos Carnívoros Neotropicais (Pró-Carnívoros), Atibaia, SP, Brazil
| | - Eduardo Eizirik
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Instituto para a Conservação dos Carnívoros Neotropicais (Pró-Carnívoros), Atibaia, SP, Brazil
| |
Collapse
|
13
|
Houminer N, Osem Y, Riov J, Sherman A, Rozen A, Sela H, David-Schwartz R. Exploring interspecific hybridization dynamics in artificial forests of Pinus brutia and P. halepensis: Implications for sustainable afforestation. Mol Ecol 2024; 33:e17413. [PMID: 38771006 DOI: 10.1111/mec.17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Interspecific hybridization increases genetic diversity, which is essential for coping with changing environments. Hybrid zones, occurring naturally in overlapping habitats of closely related species, can be artificially established during afforestation. The resulting interspecific hybridization may promote sustainability in artificial forests, particularly in regions facing degradation due to climate change. Currently, there is limited evidence of hybridization during regeneration of artificial forests. Here, we studied the frequency of Pinus brutia Ten. × P. halepensis Mill. hybridization in five planted forests in Israel in three stages of forest regeneration: seeds before dispersal, emerged seedlings and recruited seedlings at the end of the dry season. We found hybrids on P. brutia, but not on P. halepensis trees due to asynchronous cone production phenology. Using 94 single-nucleotide polymorphism (SNP) markers, we found hybrids at all stages, most of which were hybrids of advanced generations. The hybrid proportions increased from 4.7 ± 2.1 to 8.2 ± 1.4 and 21.6 ± 6.4 per cent, from seeds to emerged seedlings and to recruited seedlings stages, respectively. The increased hybrid ratio implies an advantage of hybrids over P. brutia during forest regeneration. To test this hypothesis, we measured seedling growth rate and morphological traits under controlled conditions and found that the hybrid seedlings exhibited selected traits of the two parental species, which likely contributed to the fitness and survival of the hybrids during the dry season. This study highlights the potential contribution of hybrids to sustainable-planted forests and contributes to the understanding of genetic changes that occur during the regeneration of artificial forests.
Collapse
Affiliation(s)
- Naomi Houminer
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yagil Osem
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| | - Joseph Riov
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| | - Ada Rozen
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| | - Hanan Sela
- Institute Institute of Evolution, University of Haifa, Haifa, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| |
Collapse
|
14
|
Santostasi NL, Bauduin S, Grente O, Gimenez O, Ciucci P. Simulating the efficacy of wolf-dog hybridization management with individual-based modeling. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14312. [PMID: 38894638 DOI: 10.1111/cobi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/21/2024]
Abstract
Introgressive hybridization between wolves and dogs is a conservation concern due to its potentially deleterious long-term evolutionary consequences. European legislation requires that wolf-dog hybridization be mitigated through effective management. We developed an individual-based model (IBM) to simulate the life cycle of gray wolves that incorporates aspects of wolf sociality that affect hybridization rates (e.g., the dissolution of packs after the death of one/both breeders) with the goal of informing decision-making on management of wolf-dog hybridization. We applied our model by projecting hybridization dynamics in a local wolf population under different mate choice and immigration scenarios and contrasted results of removal of admixed individuals with their sterilization and release. In several scenarios, lack of management led to complete admixture, whereas reactive management interventions effectively reduced admixture in wolf populations. Management effectiveness, however, strongly depended on mate choice and number and admixture level of individuals immigrating into the wolf population. The inclusion of anthropogenic mortality affecting parental and admixed individuals (e.g., poaching) increased the probability of pack dissolution and thus increased the probability of interbreeding with dogs or admixed individuals and boosted hybridization and introgression rates in all simulation scenarios. Recognizing the necessity of additional model refinements (appropriate parameterization, thorough sensitivity analyses, and robust model validation) to generate management recommendations applicable in real-world scenarios, we maintain confidence in our model's potential as a valuable conservation tool that can be applied to diverse situations and species facing similar threats.
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
- National Biodiversity Future Center, Palermo, Italy
| | - Sarah Bauduin
- Direction de la Recherche et Appui Scientifique, Service Conservation et Gestion des Espèces à Enjeux, Office Français de la Biodiversité, Juvignac, France
| | - Oksana Grente
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Olivier Gimenez
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Roma, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
15
|
Xun H, Lv R, Yu Y, Yao J, Wang R, Sha Y, Wang H, Zhang D, Xu C, Wang T, Zhang Z, Liu B, Gong L. Evolutionary genomics of two diploid goat grass species belonging to the section Sitopsis of Aegilops, Aegilops longissima, and Aegilops sharonensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38859560 DOI: 10.1111/tpj.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Aegilops longissima and Ae. sharonensis, being classified into the Sitopsis section of genus Aegilops, are distinct species both taxonomically and ecologically. Nevertheless, earlier observations indicate that the two species are not reproductively isolated to full extent and can inter-bred upon secondary contact. However, the genomic underpinnings of the morpho-ecological differentiation between the two foci species remained unexplored. Here, we resequenced 31 representative accessions of the two species and conducted in-depth comparative genomic analyses. We demonstrate recurrent and ongoing natural hybridizations between Ae. longissima and Ae. sharonensis, and depict features of genome composition of the resultant hybrids at both individual and population levels. We also delineate genomic regions and candidate genes potentially underpinning the differential morphological and edaphic adaptations of the two species. Intriguingly, a binary morphology was observed in the hybrids, suggesting existence of highly diverged genomic regions that remain uneroded by the admixtures. Together, our results provide new insights into the molding effects of interspecific hybridization on genome composition and mechanisms preventing merge of the two species.
Collapse
Affiliation(s)
- Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yue Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Han Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Deshi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
16
|
Setsuko S, Sugai K, Tamaki I, Hayama K, Kato H. Ecotype variation in the endemic tree Callicarpa subpubescens on small oceanic islands: genetic, phenotypic, and environmental insights. Heredity (Edinb) 2024; 132:309-319. [PMID: 38714843 PMCID: PMC11166659 DOI: 10.1038/s41437-024-00684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 06/13/2024] Open
Abstract
Callicarpa subpubescens, endemic to the Ogasawara Islands, is suggested to have multiple ecotypes in the Hahajima Islands, specifically in the central part of the Ogasawara Islands. In this study, associations between genetic groups and spatial distribution, habitat, leaf morphology, size structure, and flowering time of each genetic group were investigated on Hahajima and the satellite Imoutojima Islands. Genetic groups were identified using EST-SSR markers, revealing four ecotypes named based on morphological features: Dwarf (D), Glabrescent (G), Tall (T), and Middle (M), with M being a result of the hybridization of G and T. Ecotype D, adapted to dry environments, is characterized by small tree size, dense thick leaves with abundant hairs, and is distributed in dry scrub. Ecotype G, adapted to understory of mesic forests, lacks leaf hairs. Ecotype T, adapted to the canopy of mesic forests, has hairy leaves and is tall in tree height. Ecotype M, adapted to the canopy of mesic scrub or edges of mesic forests, has hairy leaves but with a shorter tree height than ecotype T. Flowering peaks differed among all ecotype pairs except G and M, but the flowering times more or less overlapped among all ecotypes, suggesting that pre-mating isolation among ecotypes is not perfect. Post-mating isolation is considered absent, as there were no differences in the results, germination, and survival rates of one-year seedlings among inter- and intra-ecotype crossings. The existence of such ecotypes provides valuable insights into the ongoing speciation processes adapting to the oceanic island environments.
Collapse
Affiliation(s)
- Suzuki Setsuko
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Kyoko Sugai
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan
| | - Ichiro Tamaki
- Gifu Field Science Center, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kayo Hayama
- Ogasawara Environmental Planning Laboratory, Motochi, Ogasawara, Tokyo, 100-2211, Japan
| | - Hidetoshi Kato
- Makino Herbarium, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
17
|
Yang X, Su Y, Huang S, Hou Q, Wei P, Hao Y, Huang J, Xiao H, Ma Z, Xu X, Wang X, Cao S, Cao X, Zhang M, Wen X, Ma Y, Peng Y, Zhou Y, Cao K, Qiao G. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. HORTICULTURE RESEARCH 2024; 11:uhae109. [PMID: 38883333 PMCID: PMC11179850 DOI: 10.1093/hr/uhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi 830046, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Pengcheng Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Yani Hao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jiaqi Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
McFarlane SE, Jahner JP, Lindtke D, Buerkle CA, Mandeville EG. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones. Mol Ecol 2024; 33:e17359. [PMID: 38699787 DOI: 10.1111/mec.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Hybrid zones have been viewed as an opportunity to see speciation in action. When hybrid zones are replicated, it is assumed that if the same genetic incompatibilities are maintaining reproductive isolation across all instances of secondary contact, those incompatibilities should be identifiable by consistent patterns in the genome. In contrast, changes in allele frequencies due to genetic drift should be idiosyncratic for each hybrid zone. To test this assumption, we simulated 20 replicates of each of 12 hybrid zone scenarios with varied genetic incompatibilities, rates of migration, selection and different starting population size ratios of parental species. We found remarkable variability in the outcomes of hybridisation in replicate hybrid zones, particularly with Bateson-Dobzhansky-Muller incompatibilities and strong selection. We found substantial differences among replicates in the overall genomic composition of individuals, including admixture proportions, inter-specific ancestry complement and number of ancestry junctions. Additionally, we found substantial variation in genomic clines among replicates at focal loci, regardless of locus-specific selection. We conclude that processes other than selection are responsible for some consistent outcomes of hybridisation, whereas selection on incompatibilities can lead to genomically widespread and highly variable outcomes. We highlight the challenge of mapping between pattern and process in hybrid zones and call attention to how selection against incompatibilities will commonly lead to variable outcomes. We hope that this study informs future research on replicate hybrid zones and encourages further development of statistical techniques, theoretical models and exploration of additional axes of variation to understand reproductive isolation.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Joshua P Jahner
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biology Department, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
19
|
Verleysen L, Depecker J, Bollen R, Asimonyio J, Hatangi Y, Kambale JL, Mwanga Mwanga I, Ebele T, Dhed'a B, Stoffelen P, Ruttink T, Vandelook F, Honnay O. Crop-to-wild gene flow in wild coffee species: the case of Coffea canephora in the Democratic Republic of the Congo. ANNALS OF BOTANY 2024; 133:917-930. [PMID: 38441303 PMCID: PMC11089259 DOI: 10.1093/aob/mcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND AND AIMS Plant breeders are increasingly turning to crop wild relatives (CWRs) to ensure food security in a rapidly changing environment. However, CWR populations are confronted with various human-induced threats, including hybridization with their nearby cultivated crops. This might be a particular problem for wild coffee species, which often occur near coffee cultivation areas. Here, we briefly review the evidence for wild Coffea arabica (cultivated as Arabica coffee) and Coffea canephora (cultivated as Robusta coffee) and then focused on C. canephora in the Yangambi region in the Democratic Republic of the Congo. There, we examined the geographical distribution of cultivated C. canephora and the incidence of hybridization between cultivated and wild individuals within the rainforest. METHODS We collected 71 C. canephora individuals from home gardens and 12 C. canephora individuals from the tropical rainforest in the Yangambi region and genotyped them using genotyping-by-sequencing (GBS). We compared the fingerprints with existing GBS data from 388 C. canephora individuals from natural tropical rainforests and the INERA Coffee Collection, a Robusta coffee field gene bank and the most probable source of cultivated genotypes in the area. We then established robust diagnostic fingerprints that genetically differentiate cultivated from wild coffee, identified cultivated-wild hybrids and mapped their geographical position in the rainforest. KEY RESULTS We identified cultivated genotypes and cultivated-wild hybrids in zones with clear anthropogenic activity, and where cultivated C. canephora in home gardens may serve as a source for crop-to-wild gene flow. We found relatively few hybrids and backcrosses in the rainforests. CONCLUSIONS The cultivation of C. canephora in close proximity to its wild gene pool has led to cultivated genotypes and cultivated-wild hybrids appearing within the natural habitats of C. canephora. Yet, given the high genetic similarity between the cultivated and wild gene pool, together with the relatively low incidence of hybridization, our results indicate that the overall impact in terms of risk of introgression remains limited so far.
Collapse
Affiliation(s)
- Lauren Verleysen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Jonas Depecker
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Robrecht Bollen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Justin Asimonyio
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, DR Congo
| | - Yves Hatangi
- Meise Botanic Garden, Meise, Belgium
- Université de Kisangani, Kisangani, DR Congo
- Liège University, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Jean-Léon Kambale
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, DR Congo
| | | | - Thsimi Ebele
- Institut National des Etudes et Recherches Agronomique, Yangambi, DR Congo
| | | | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Filip Vandelook
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| |
Collapse
|
20
|
Rota F, Carnicero P, Casazza G, Nascimbene J, Schönswetter P, Wellstein C. Survival in nunatak and peripheral glacial refugia of three alpine plant species is partly predicted by altitudinal segregation. Mol Ecol 2024; 33:e17343. [PMID: 38596873 DOI: 10.1111/mec.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.
Collapse
Affiliation(s)
- Francesco Rota
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pau Carnicero
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gabriele Casazza
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Juri Nascimbene
- BIOME Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
21
|
Lawson DJ, Howard-McCombe J, Beaumont M, Senn H. How admixed captive breeding populations could be rescued using local ancestry information. Mol Ecol 2024:e17349. [PMID: 38634332 DOI: 10.1111/mec.17349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
This paper asks the question: can genomic information be used to recover a species that is already on the pathway to extinction due to genetic swamping from a related and more numerous population? We show that a breeding strategy in a captive breeding program can use whole genome sequencing to identify and remove segments of DNA introgressed through hybridisation. The proposed policy uses a generalized measure of kinship or heterozygosity accounting for local ancestry, that is, whether a specific genetic location was inherited from the target of conservation. We then show that optimizing these measures would minimize undesired ancestry while also controlling kinship and/or heterozygosity, in a simulated breeding population. The process is applied to real data representing the hybridized Scottish wildcat breeding population, with the result that it should be possible to breed out domestic cat ancestry. The ability to reverse introgression is a powerful tool brought about through the combination of sequencing with computational advances in ancestry estimation. Since it works best when applied early in the process, important decisions need to be made about which genetically distinct populations should benefit from it and which should be left to reform into a single population.
Collapse
Affiliation(s)
- Daniel J Lawson
- Institute of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
| | - Jo Howard-McCombe
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh, UK
| |
Collapse
|
22
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
23
|
Liu X, Lin L, Sinding MHS, Bertola LD, Hanghøj K, Quinn L, Garcia-Erill G, Rasmussen MS, Schubert M, Pečnerová P, Balboa RF, Li Z, Heaton MP, Smith TPL, Pinto RR, Wang X, Kuja J, Brüniche-Olsen A, Meisner J, Santander CG, Ogutu JO, Masembe C, da Fonseca RR, Muwanika V, Siegismund HR, Albrechtsen A, Moltke I, Heller R. Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations. Nat Commun 2024; 15:2921. [PMID: 38609362 PMCID: PMC11014984 DOI: 10.1038/s41467-024-47015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael P Heaton
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Rui Resende Pinto
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jonas Meisner
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Rute R da Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Cooper RD, Shaffer HB. Managing invasive hybrids with pond hydroperiod manipulation in an endangered salamander system. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14167. [PMID: 37551773 DOI: 10.1111/cobi.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
When invasive and endangered native taxa hybridize, the resulting admixture introduces novel conservation challenges. Across a large region of central California, a hybrid swarm consisting of admixed endangered California tiger salamanders (CTS) (Ambystoma californiense) and introduced barred tiger salamanders (BTS) (Ambystoma mavortium) has replaced native populations, threatening the genetic integrity of CTS and the vernal pool systems they inhabit. We employed a large-scale, genomically informed field experiment to test whether shortening breeding pond hydroperiod would favor native CTS genotypes. We constructed 14 large, seminatural ponds to evaluate the effect of hydroperiod duration on larval survival and mass at metamorphosis. We tracked changes in non-native allele frequencies with a 5237-gene exon capture array and employed a combination of custom Bayesian and generalized linear models to quantify the effect of pond duration on salamander fitness. Earlier work on this system showed hybrid superiority under many conditions and suggested that hybrids are favored in human-modified ponds with artificially long hydroperiods. Consistent with these earlier studies, we found overwhelming evidence for hybrid superiority. Very short hydroperiods substantially reduced the mass (1.1-1.5 fold) and survival probability (10-13 fold) of both native and hybrid larvae, confirming that hydroperiod likely exerts a strong selective pressure in the wild. We identified 86 genes, representing 1.8% of 4723 screened loci, that significantly responded to this hydroperiod-driven selection. In contrast to earlier work, under our more natural experimental conditions, native CTS survival and size at metamorphosis were always less than hybrids, suggesting that hydroperiod management alone will not shift selection to favor native larval genotypes. However, shortening pond hydroperiod may limit productivity of hybrid ponds, complementing other strategies to remove hybrids while maintaining vernal pool ecosystems. This study confirms and expands on previous work that highlights the importance of hydroperiod management to control invasive aquatic species.
Collapse
Affiliation(s)
- Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
25
|
Touchette L, Godbout J, Lamothe M, Porth I, Isabel N. A cryptic syngameon within Betula shrubs revealed: Implications for conservation in changing subarctic environments. Evol Appl 2024; 17:e13689. [PMID: 38633131 PMCID: PMC11022622 DOI: 10.1111/eva.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.
Collapse
Affiliation(s)
- Lyne Touchette
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Julie Godbout
- Ministère des Ressources naturelles et des Forêts, Direction de la recherche forestièreQuébecQuébecCanada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| |
Collapse
|
26
|
Brown MR, Abbott RJ, Twyford AD. The emerging importance of cross-ploidy hybridisation and introgression. Mol Ecol 2024; 33:e17315. [PMID: 38501394 DOI: 10.1111/mec.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.
Collapse
Affiliation(s)
- Max R Brown
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Royal Botanical Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Ohsowski BM, Redding C, Geddes P, Lishawa SC. Field-based measurement tools to distinguish clonal Typha taxa and estimate biomass: a resource for conservation and restoration. FRONTIERS IN PLANT SCIENCE 2024; 15:1348144. [PMID: 38533400 PMCID: PMC10963450 DOI: 10.3389/fpls.2024.1348144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Two species of clonal Typha [T. latifolia (native) and T. angustifolia (exotic)] hybridize to form the highly invasive, heterotic (high vigor) T. × glauca in North American wetlands leading to increased primary production, litter accumulation, and biodiversity loss. Conservation of T. latifolia has become critical as invasive Typha has overwhelmed wetlands. In the field, Typha taxa identification is difficult due to subtle differences in morphology, and molecular identification is often unfeasible for managers. Furthermore, improved methods to non-destructively estimate Typha biomass is imperative to enhance ecological impact assessments. To address field-based Typha ID limitations, our study developed a predictive model from 14 Typha characters in 7 northern Michigan wetlands to accurately distinguish Typha taxa (n = 33) via linear discriminant analysis (LDA) of molecularly identified specimens. In addition, our study developed a partial least squares regression (PLS) model to predict Typha biomass from field collected measurements (n = 75). Results indicate that two field measurements [Leaf Counts, Longest Leaf] can accurately differentiate the three Typha taxa and advanced-generation hybrids. The LDA model had a 100% correct prediction rate of T. latifolia. The selected PLS biomass prediction model (sqrt[Typha Dry Mass] ~ log[Ramet Area at 30 cm] + Inflorescence Presence + Total Ramet Height + sqrt[Organic Matter Depth]) improved upon existing simple linear regression (SLR) height-to-biomass predictions. The rapid field-based Typha identification and biomass assessment tools presented in this study advance targeted management for regional conservation of T. latifolia and ecological restoration of wetlands impacted by invasive Typha taxa.
Collapse
Affiliation(s)
- Brian M. Ohsowski
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| | - Cassidy Redding
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| | - Pamela Geddes
- Department of Biology and Environmental Science Program, Northeastern Illinois University, Chicago, IL, United States
| | - Shane C. Lishawa
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Sinaga P, Klichowska E, Nowak A, Nobis M. Hybridization and introgression events in cooccurring populations of closely related grasses (Poaceae: Stipa) in high mountain steppes of Central Asia. PLoS One 2024; 19:e0298760. [PMID: 38412151 PMCID: PMC10898772 DOI: 10.1371/journal.pone.0298760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Stipa is a genus comprising ca. 150 species found in warm temperate regions of the Old World and around 30% of its representatives are of hybrid origin. In this study, using integrative taxonomy approach, we tested the hypothesis that hybridization and introgression are the explanations of the morphological intermediacy in species belonging to Stipa sect. Smirnovia, one of the species-rich sections in the mountains of Central Asia. Two novel nothospecies, S. magnifica × S. caucasica subsp. nikolai and S. lingua × S. caucasica subsp. nikolai, were identified based on a combination of morphological characters and SNPs markers. SNPs marker revealed that all S. lingua × S. caucasica samples were F1 hybrids, whereas most of S. magnifica × S. caucasica samples were backcross hybrids. Furthermore, the above mentioned hybrids exhibit transgressive morphological characters to each of their parental species. These findings have implications for understanding the process of hybridization in the genus Stipa, particularly in the sect. Smirnovia. As a taxonomic conclusion, we describe the two new nothospecies S. × muksuensis (from Tajikistan) and S. × ochyrae (from Kyrgyzstan) and present an identification key to species morphologically similar to the taxa mentioned above.
Collapse
Affiliation(s)
- Patar Sinaga
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Arkadiusz Nowak
- Polish Academy of Sciences Botanical Garden – Center for Biological Diversity Conservation in Powsin, Warszawa, Poland
- Botanical Garden of the Wrocław University, Wrocław, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
29
|
Hernández F, Janzen T, Lavretsky P. simRestore: A decision-making tool for adaptive management of the native genetic status of wild populations. Mol Ecol Resour 2024; 24:e13892. [PMID: 37966172 DOI: 10.1111/1755-0998.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Anthropogenic hybridization, or higher and non-natural rates of gene flow directly and indirectly induced by human activities, is considered a significant threat to biodiversity. The primary concern for conservation is the potential for genomic extinction and loss of adaptiveness for native species due to the extensive introgression of non-native genes. To alleviate or reverse trends for such scenarios requires the direct integration of genomic data within a model framework for effective management. Towards this end, we developed the simRestore R program as a decision-making tool that integrates ecological and genomic information to simulate ancestry outcomes from optimized conservation strategies. In short, the program optimizes supplementation and removal strategies across generations until a set native genetic threshold is reached within the studied population. Importantly, in addition to helping with initial decision-making, simulations can be updated with the outcomes of ongoing efforts, allowing for the adaptive management of populations. After demonstrating functionality, we apply and optimize among actionable management strategies for the endangered Hawaiian duck for which the current primary threat is genetic extinction through ongoing anthropogenic hybridization with feral mallards. Simulations demonstrate that supplemental and removal efforts can be strategically tailored to move the genetic ancestry of Hawaii's hybrid populations towards Hawaiian duck without the need to completely start over. Further, we discuss ecological parameter sensitivity, including which factors are most important to ensure genetic outcomes (i.e. number of offspring). Finally, to facilitate use, the program is also available online as a Shiny Web application.
Collapse
Affiliation(s)
- Flor Hernández
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Thijs Janzen
- Department of Ecological Genomics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
30
|
Olofsson JK, Tyler T, Dunning LT, Hjertson M, Rühling Å, Hansen AJ. Morphological and genetic evidence suggest gene flow among native and naturalized mint species. AMERICAN JOURNAL OF BOTANY 2024; 111:e16280. [PMID: 38334273 DOI: 10.1002/ajb2.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
PREMISE Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.
Collapse
Affiliation(s)
- Jill K Olofsson
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
| | - Torbjörn Tyler
- Department of Biology, The Biological Museum, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
| | - Mats Hjertson
- Museum of Evolution, Botany, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - Åke Rühling
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
- Biological Museum, Gyllings väg 9, SE-572 36 Oskarshamn, Sverige
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark
| |
Collapse
|
31
|
McGaughran A, Dhami MK, Parvizi E, Vaughan AL, Gleeson DM, Hodgins KA, Rollins LA, Tepolt CK, Turner KG, Atsawawaranunt K, Battlay P, Congrains C, Crottini A, Dennis TPW, Lange C, Liu XP, Matheson P, North HL, Popovic I, Rius M, Santure AW, Stuart KC, Tan HZ, Wang C, Wilson J. Genomic Tools in Biological Invasions: Current State and Future Frontiers. Genome Biol Evol 2024; 16:evad230. [PMID: 38109935 PMCID: PMC10776249 DOI: 10.1093/gbe/evad230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Dianne M Gleeson
- Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Carolyn K Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kathryn G Turner
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Kamolphat Atsawawaranunt
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Carlos Congrains
- Entomology Section, Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- US Department of Agriculture-Agricultural Research Service, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169–007, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claudia Lange
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Xiaoyue P Liu
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Iva Popovic
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc, Blanes, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg 2006, South Africa
| | - Anna W Santure
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Katarina C Stuart
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Hui Zhen Tan
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Cui Wang
- The Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Benham PM, Walsh J, Bowie RCK. Spatial variation in population genomic responses to over a century of anthropogenic change within a tidal marsh songbird. GLOBAL CHANGE BIOLOGY 2024; 30:e17126. [PMID: 38273486 DOI: 10.1111/gcb.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Combating the current biodiversity crisis requires the accurate documentation of population responses to human-induced ecological change. However, our ability to pinpoint population responses to human activities is often limited to the analysis of populations studied well after the fact. Museum collections preserve a record of population responses to anthropogenic change that can provide critical baseline data on patterns of genetic diversity, connectivity, and population structure prior to the onset of human perturbation. Here, we leverage a spatially replicated time series of specimens to document population genomic responses to the destruction of nearly 90% of coastal habitats occupied by the Savannah sparrow (Passerculus sandwichensis) in California. We sequenced 219 sparrows collected from 1889 to 2017 across the state of California using an exome capture approach. Spatial-temporal analyses of genetic diversity found that the amount of habitat lost was not predictive of genetic diversity loss. Sparrow populations from southern California historically exhibited lower levels of genetic diversity and experienced the most significant temporal declines in genetic diversity. Despite experiencing the greatest levels of habitat loss, we found that genetic diversity in the San Francisco Bay area remained relatively high. This was potentially related to an observed increase in gene flow into the Bay Area from other populations. While gene flow may have minimized genetic diversity declines, we also found that immigration from inland freshwater-adapted populations into tidal marsh populations led to the erosion of divergence at loci associated with tidal marsh adaptation. Shifting patterns of gene flow through time in response to habitat loss may thus contribute to negative fitness consequences and outbreeding depression. Together, our results underscore the importance of tracing the genomic trajectories of multiple populations over time to address issues of fundamental conservation concern.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jennifer Walsh
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
33
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
34
|
Shi YJ, Huang JL, Mi JX, Li J, Meng FY, Zhong Y, He F, Tian FF, Zhang F, Chen LH, Yang HB, Hu HL, Wan XQ. A model of hybrid speciation process drawn from three new poplar species originating from distant hybridization between sections. Mol Phylogenet Evol 2024; 190:107966. [PMID: 37981264 DOI: 10.1016/j.ympev.2023.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Although numerous studies have been conducted on hybrid speciation, our understanding of this process remains limited. Through an 18-year systematic investigation of all taxa of Populus on the Qinghai-Tibet Plateau, we discovered three new taxa with clear characteristics of sect. Leucoides. Further evidence was gathered from morphology, whole-genome bioinformatics, biogeography, and breeding to demonstrate synthetically that they all originated from distant hybridization between sect. Leucoides and sect. Tacamahaca. P. gonggaensis originated from the hybridization of P. lasiocarpa with P. cathayana, P. butuoensis from the hybridization of P. wilsonii with P. szechuanica, and P. dafengensis from the hybridization of P. lasiocarpa with P. szechuanica. Due to heterosis, the three hybrid taxa possess greater ecological adaptability than their ancestral species. We propose a hybrid speciation process model that incorporates orthogonal, reverse, and backcrossing events. This model can adequately explain some crucial evolutionary concerns, such as the nuclear-cytoplasmic conflict on phylogeny and the extinction of ancestral species within the distribution range of hybrid species.
Collapse
Affiliation(s)
- Yu-Jie Shi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Jin-Liang Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xuan Mi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan-Yu Meng
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei-Fei Tian
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang-Hua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| | - Han-Bo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| | - Hong-Lin Hu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Qin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Chengdu 611130, China.
| |
Collapse
|
35
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
36
|
Gepts P. Biocultural diversity and crop improvement. Emerg Top Life Sci 2023; 7:151-196. [PMID: 38084755 PMCID: PMC10754339 DOI: 10.1042/etls20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.
Collapse
Affiliation(s)
- Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780, U.S.A
| |
Collapse
|
37
|
Kim AS, Kreiner JM, Hernández F, Bock DG, Hodgins KA, Rieseberg LH. Temporal collections to study invasion biology. Mol Ecol 2023; 32:6729-6742. [PMID: 37873879 DOI: 10.1111/mec.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.
Collapse
Affiliation(s)
- Amy S Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Westbrook AS, DiTommaso A. Hybridization in agricultural weeds: A review from ecological, evolutionary, and management perspectives. AMERICAN JOURNAL OF BOTANY 2023; 110:e16258. [PMID: 38031455 DOI: 10.1002/ajb2.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Agricultural weeds frequently hybridize with each other or with related crop species. Some hybrid weeds exhibit heterosis (hybrid vigor), which may be stabilized through mechanisms like genome duplication or vegetative reproduction. Even when heterosis is not stabilized, hybridization events diversify weed gene pools and often enable adaptive introgression. Consequently, hybridization may promote weed evolution and exacerbate weed-crop competition. However, hybridization does not always increase weediness. Even when viable and fertile, hybrid weeds sometimes prove unsuccessful in crop fields. This review provides an overview of weed hybridization and its management implications. We describe intrinsic and extrinsic factors that influence hybrid fitness in agroecosystems. We also survey the rapidly growing literature on crop-weed hybridization and the link between hybridization and invasiveness. These topics are increasingly relevant in this era of genetic tools for crop improvement, intensive and simplified cropping systems, and globalized trade. The review concludes with suggested research priorities, including hybridization in the context of climate change, plant-insect interactions, and redesigned weed management programs. From a weed management perspective, hybridization is one of many reasons that researchers and land managers must diversify their weed control toolkits.
Collapse
Affiliation(s)
- Anna S Westbrook
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Antonio DiTommaso
- Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Howard-McCombe J, Jamieson A, Carmagnini A, Russo IRM, Ghazali M, Campbell R, Driscoll C, Murphy WJ, Nowak C, O'Connor T, Tomsett L, Lyons LA, Muñoz-Fuentes V, Bruford MW, Kitchener AC, Larson G, Frantz L, Senn H, Lawson DJ, Beaumont MA. Genetic swamping of the critically endangered Scottish wildcat was recent and accelerated by disease. Curr Biol 2023; 33:4761-4769.e5. [PMID: 37935118 DOI: 10.1016/j.cub.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats,1,2 though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years,3 the onset of hybridization was only within the last 70 years. Our analyses reveal that the domestic ancestry present in modern wildcats is markedly over-represented in many parts of the genome, including the major histocompatibility complex (MHC). We hypothesize that introgression provides wildcats with protection against diseases harbored and introduced by domestic cats, and that this selection contributes to maladaptive genetic swamping through linkage drag. Using the case of the Scottish wildcat, we demonstrate the importance of local ancestry estimates to both understand the impacts of hybridization in wild populations and support conservation efforts to mitigate the consequences of anthropogenic and environmental change.
Collapse
Affiliation(s)
- Jo Howard-McCombe
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK; RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK.
| | - Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, UK; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany; School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - Muhammad Ghazali
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK
| | - Ruairidh Campbell
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney OX13 5QL, UK; NatureScot, Great Glen House, Leachkin Road, Inverness IV3 8NW, UK
| | | | - William J Murphy
- Texas A&M University, Veterinary Integrative Biosciences, College Station, TX 77843, USA
| | - Carsten Nowak
- Senckenberg Research Institute and Natural History Museum, Center for Wildlife Genetics, 63571 Weimar, Germany
| | - Terry O'Connor
- BioArCh, Department of Archaeology, University of York, York YO10 5NG, UK
| | - Louise Tomsett
- Mammal Section, Science Department, Natural History Museum, London SW7 5BD, UK
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK; School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany; School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, UK.
| | - Daniel J Lawson
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK.
| | - Mark A Beaumont
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
40
|
Hernández F, Palmieri L, Brunet J. Introgression and persistence of cultivar alleles in wild carrot (Daucus carota) populations in the United States. AMERICAN JOURNAL OF BOTANY 2023; 110:e16242. [PMID: 37681637 DOI: 10.1002/ajb2.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PREMISE Cultivated species and their wild relatives often hybridize in the wild, and the hybrids can survive and reproduce in some environments. However, it is unclear whether cultivar alleles are permanently incorporated into the wild genomes or whether they are purged by natural selection. This question is key to accurately assessing the risk of escape and spread of cultivar genes into wild populations. METHODS We used genomic data and population genomic methods to study hybridization and introgression between cultivated and wild carrot (Daucus carota) in the United States. We used single nucleotide polymorphisms (SNPs) obtained via genotyping by sequencing for 450 wild individuals from 29 wild georeferenced populations in seven states and 144 cultivars from the United States, Europe, and Asia. RESULTS Cultivated and wild carrot formed two genetically differentiated groups, and evidence of crop-wild admixture was detected in several but not all wild carrot populations in the United States. Two regions were identified where cultivar alleles were present in wild carrots: California and Nantucket Island (Massachusetts). Surprisingly, there was no evidence of introgression in some populations with a long-known history of sympatry with the crop, suggesting that post-hybridization barriers might prevent introgression in some areas. CONCLUSIONS Our results provide support for the introgression and long-term persistence of cultivar alleles in wild carrots populations. We thus anticipate that the release of genetically engineered (GE) cultivars would lead to the introduction and spread of GE alleles in wild carrot populations.
Collapse
Affiliation(s)
- Fernando Hernández
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, 8000, Bahía Blanca, Argentina
- CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Camino La Carrindanga Km 7, 8000, Bahía Blanca, Argentina
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Luciano Palmieri
- Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Madison, WI, USA
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, WI, USA
| |
Collapse
|
41
|
Takaya K, Taguchi Y, Ise T. Identification of hybrids between the Japanese giant salamander ( Andrias japonicus) and Chinese giant salamander ( Andrias cf. davidianus) using deep learning and smartphone images. Ecol Evol 2023; 13:e10698. [PMID: 37953985 PMCID: PMC10632944 DOI: 10.1002/ece3.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Human-mediated hybridization between native and non-native species is causing biodiversity loss worldwide. Hybridization has contributed to the extinction of many species through direct and indirect processes such as loss of reproductive opportunity and genetic introgression. Therefore, it is essential to manage hybrids to conserve biodiversity. However, specialized knowledge is required to identify the target species based on visual characteristics when two species have similar features. Although image recognition technology can be a powerful tool for identifying hybrids, studies have yet to utilize deep learning approaches. Hence, this study aimed to identify hybrids between the native Japanese giant salamander (Andrias japonicus) and the non-native Chinese giant salamander (Andrias cf. davidianus) using EfficientNetV2 and smartphone images. We used smartphone images of 11 individuals of native A. japonicus (five training and six test images) and 20 individuals of hybrids between A. japonicus and A. cf. davidianus (five training and 15 test images). In our experimental environment, an AI model constructed with EfficientNetV2 exhibited 100% accuracy in identifying hybrids. In addition, gradient-weighted class activation mapping revealed that the AI model was able to classify A. japonicus and hybrids between A. japonicus and A. cf. davidianus on the basis of the dorsal head spot patterning. Our approach thus enables the identification of hybrids against A. japonicus, which was previously considered difficult by non-experts. Furthermore, since this study achieved reliable identification using smartphone images, it is expected to be applied to a wide range of citizen science projects.
Collapse
Affiliation(s)
- Kosuke Takaya
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Yuki Taguchi
- Hiroshima City Asa Zoological ParkHiroshimaJapan
| | - Takeshi Ise
- Field Science Education and Research CenterKyoto UniversityKyotoJapan
| |
Collapse
|
42
|
Zeng L, Shu W, He H, Li T, Yang X, Li L. Post-pollination barriers contribute to coexistence of partially pollinator-sharing Arisaema species (Araceae). Ecol Evol 2023; 13:e10696. [PMID: 37928192 PMCID: PMC10620566 DOI: 10.1002/ece3.10696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Reproductive isolation plays an important role in maintaining the species integrity of sympatric close relatives. For sympatric Arisaema species, interspecific gene flow is expected to be effectively prevented by pre-pollination barriers, particularly strong pollinator isolation mediated by fungus gnats. However, due to the lack of quantitative studies combining multiple pre- and post-pollination barriers, it is not known whether pre-pollination isolation is complete, and whether post-pollination barriers also contribute to reproductive isolation among some Arisaema species. In this study, we quantified the individual strengths and absolute contributions of four pre- and post-pollination barriers (phenological isolation, pollinator isolation, hybrid fruit formation, and hybrid seed formation) among three sympatric Arisaema species (A. bockii, A. lobatum, and A. erubescens). Although phenological isolation and pollinator isolation reduced the frequencies of interspecific pollen transfer among these species, the partial overlap of flowering times and pollinator assemblages resulted in incomplete pre-pollination isolation. Post-pollination barriers also contributed to reproductive isolation at the hybrid fruit and seed formation stages. We propose that, although pre-pollination barriers are expected to contribute more to total isolation than post-pollination barriers in Arisaema, pre-pollination barriers may not completely prevent interspecific pollen transfer among some Arisaema species. Post-pollination barriers, which are generally ignored, may also have contributed significantly to reproductive isolation in Arisaema.
Collapse
Affiliation(s)
- Luo Zeng
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Wei‐Jie Shu
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Hua He
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Tao Li
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Xiao‐Chen Yang
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Li Li
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| |
Collapse
|
43
|
Yu J, Zhao H, Niu Y, You Y, Barrett RL, Ranaivoson RM, Rabarijaona RN, Parmar G, Yuan L, Jin X, Li P, Li J, Wen J, Chen Z, Lu L. Distinct hybridization modes in wide- and narrow-ranged lineages of Causonis (Vitaceae). BMC Biol 2023; 21:209. [PMID: 37807051 PMCID: PMC10561429 DOI: 10.1186/s12915-023-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Explaining contrasting patterns of distribution between related species is crucial for understanding the dynamics of biodiversity. Despite instances where hybridization and whole genome duplication (WGD) can yield detrimental outcomes, a role in facilitating the expansion of distribution range has been proposed. The Vitaceae genus Causonis exhibits great variations in species' distribution ranges, with most species in the derived lineages having a much wider range than those in the early-diverged lineages. Hybridization and WGD events have been suggested to occur in Causonis based on evidence of phylogenetic discordance. The genus, therefore, provides us with an opportunity to for explore different hybridization and polyploidization modes in lineages with contrasting species' distribution ranges. However, the evolutionary history of Causonis incorporating potential hybridization and WGD events remains to be explored. RESULTS With plastid and nuclear data from dense sampling, this study resolved the phylogenetic relationships within Causonis and revealed significant cyto-nuclear discordance. Nuclear gene tree conflicts were detected across the genus, especially in the japonica-corniculata clade, which were mainly attributed to gene flow. This study also inferred the allopolyploid origin of the core Causonis species, which promoted the accumulation of stress-related genes. Causonis was estimated to have originated in continental Asia in the early Eocene, and experienced glaciation in the early Oligocene, shortly after the divergence of the early-divergent lineages. The japonica-corniculata clade mainly diversified in the Miocene, followed by temperature declines that may have facilitated secondary contact. Species distribution modeling based on current climate change predicted that the widespread C. japonica tends to be more invasive, while the endemic C. ciliifera may be at risk of extinction. CONCLUSIONS This study presents Causonis, a genus with complex reticulate evolutionary history, as a model of how hybridization and WGD modes differ in lineages of contrasting species' geographic ranges. It is important to consider specific evolutionary histories and genetic properties of the focal species within conservation strategies.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Zhao
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yanting Niu
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW, 2567, Australia
- School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Kensington, NSW, 2052, Australia
| | - Rindra Manasoa Ranaivoson
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Romer Narindra Rabarijaona
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Langxing Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiaofeng Jin
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions/School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianhua Li
- Biology Department, Hope College, Holland, MI, 49423, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
44
|
Kersten O, Star B, Krabberød AK, Atmore LM, Tørresen OK, Anker-Nilssen T, Descamps S, Strøm H, Johansson US, Sweet PR, Jakobsen KS, Boessenkool S. Hybridization of Atlantic puffins in the Arctic coincides with 20th-century climate change. SCIENCE ADVANCES 2023; 9:eadh1407. [PMID: 37801495 PMCID: PMC10558128 DOI: 10.1126/sciadv.adh1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
The Arctic is experiencing the fastest rates of global warming, leading to shifts in the distribution of its biota and increasing the potential for hybridization. However, genomic evidence of recent hybridization events in the Arctic remains unexpectedly rare. Here, we use whole-genome sequencing of contemporary and 122-year-old historical specimens to investigate the origin of an Arctic hybrid population of Atlantic puffins (Fratercula arctica) on Bjørnøya, Norway. We show that the hybridization between the High Arctic, large-bodied subspecies F. a. naumanni and the temperate, smaller-sized subspecies F. a. arctica began as recently as six generations ago due to an unexpected southward range expansion of F. a. naumanni. Moreover, we find a significant temporal loss of genetic diversity across Arctic and temperate puffin populations. Our observations provide compelling genomic evidence of the impacts of recent distributional shifts and loss of diversity in Arctic communities during the 20th century.
Collapse
Affiliation(s)
- Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders K. Krabberød
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lane M. Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, Langnes, Tromsø, Norway
| | | | - Paul R. Sweet
- American Museum of Natural History, New York, NY, USA
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sanne Boessenkool
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Blanckaert A, Sriram V, Bank C. In search of the Goldilocks zone for hybrid speciation II: hard times for hybrid speciation? Evolution 2023; 77:2162-2172. [PMID: 37459183 PMCID: PMC10547126 DOI: 10.1093/evolut/qpad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Hybridization opens a unique window for observing speciation mechanisms and is a potential engine of speciation. One controversially discussed outcome of hybridization is homoploid hybrid speciation by reciprocal sorting, where a hybrid population maintains a mixed combination of the parental genetic incompatibilities, preventing further gene exchange between the newly formed population and the two parental sources. Previous work showed that, for specific linkage architectures (i.e., the genomic location and order of hybrid incompatibilities), reciprocal sorting could reliably result in hybrid speciation. Yet, the sorting of incompatibilities creates a risk of population extinction. To understand how the demographic consequences of the purging of incompatibilities interact with the formation of a hybrid species, we model an isolated hybrid population resulting from a single admixture event. We study how population size, linkage architecture, and the strength of the incompatibility affect survival of the hybrid population, resolution/purging of the genetic incompatibilities and the probability of observing hybrid speciation. We demonstrate that the extinction risk is highest for intermediately strong hybrid incompatibilities. In addition, the linkage architecture displaying the highest hybrid speciation probabilities changes drastically with population size. Overall, this indicates that population dynamics can strongly affect the outcome of hybridization and the hybrid speciation probability.
Collapse
Affiliation(s)
- Alexandre Blanckaert
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | | | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
46
|
Giakoumis M, Pinilla-Buitrago GE, Musher LJ, Wares JP, Baird SJE, Hickerson MJ. Evidence of introgression, ecological divergence and adaptation in Asterias sea stars. Mol Ecol 2023; 32:5541-5557. [PMID: 37691604 DOI: 10.1111/mec.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome-wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.
Collapse
Affiliation(s)
- Melina Giakoumis
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
- The American Museum of Natural History, New York, New York City, USA
| | - Gonzalo E Pinilla-Buitrago
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
| | - Lukas J Musher
- The Academy of Natural Sciences of Drexel University, Pennsylvania, Philadelphia, USA
| | - John P Wares
- Odum School of Ecology and Department of Genetics, University of Georgia, Georgia, Athens, USA
| | - Stuart J E Baird
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Michael J Hickerson
- The Graduate Center, The City University of New York, New York, New York City, USA
- The City College of New York, New York, New York City, USA
- The American Museum of Natural History, New York, New York City, USA
| |
Collapse
|
47
|
Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, Keais GL, Kim A, Owens GL, Rieseberg LH. Genomics of plant speciation. PLANT COMMUNICATIONS 2023; 4:100599. [PMID: 37050879 PMCID: PMC10504567 DOI: 10.1016/j.xplc.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhe Cai
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Eric González-Segovia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Amy Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
48
|
Fabbri G, Molinaro L, Mucci N, Pagani L, Scandura M. Anthropogenic hybridization and its influence on the adaptive potential of the Sardinian wild boar (Sus scrofa meridionalis). J Appl Genet 2023; 64:521-530. [PMID: 37369962 PMCID: PMC10457222 DOI: 10.1007/s13353-023-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
The wild boar (Sus scrofa meridionalis) arrived in Sardinia with the first human settlers in the early Neolithic with the potential to hybridize with the domestic pig (S. s. domesticus) throughout its evolution on the island. In this paper, we investigated the possible microevolutionary effects of such introgressive hybridization on the present wild boar population, comparing Sardinian wild specimens with several commercial pig breeds and Sardinian local pigs, along with a putatively unadmixed wild boar population from Central Italy, all genotyped with a medium density SNP chip. We first aimed at identifying hybrids in the population using different approaches, then examined genomic regions enriched for domestic alleles in the hybrid group, and finally we applied two methods to find regions under positive selection to possibly highlight instances of domestic adaptive introgression into a wild population. We found three hybrids within the Sardinian sample (3.1% out of the whole dataset). We reported 11 significant windows under positive selection with a method that looks for overly differentiated loci in the target population, compared with other two populations. We also identified 82 genomic regions with signs of selection in the domestic pig but not in the wild boar, two of which overlapped with genomic regions enriched for domestic alleles in the hybrid pool. Genes in these regions can be linked with reproductive success. Given our results, domestic introgression does not seem to be pervasive in the Sardinian wild boar. Nevertheless, we suggest monitoring the possible spread of advantageous domestic alleles in the coming years.
Collapse
Affiliation(s)
- Giulia Fabbri
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2A, 07100, Sassari, Italy.
| | - Ludovica Molinaro
- Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell'Emilia, Bologna, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131, Padua, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2A, 07100, Sassari, Italy
| |
Collapse
|
49
|
Gawrońska B, Marszałek M, Kosiński P, Podsiedlik M, Bednorz L, Zeyland J. No wonder, it is a hybrid. Natural hybridization between Jacobaea vulgaris and J. erucifolia revealed by molecular marker systems and its potential ecological impact. Ecol Evol 2023; 13:e10467. [PMID: 37664498 PMCID: PMC10468328 DOI: 10.1002/ece3.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Progressive changes in the environment are related to modifications of the habitat. Introducing exotic species, and interbreeding between species can lead to processes that in the case of rare species or small populations threatens their integrity. Given the declining trends of many populations due to increased hybridization, early recognition of hybrids becomes important in conservation management. Natural hybridization is prevalent in Jacobaea. There are many naturally occurring interspecific hybrids in this genus, including those between Jacobaea vulgaris and its relatives. Although Jacobaea erucifolia and J. vulgaris often co-occur and are considered closely related, apart from the few reports of German botanists on the existence of such hybrids, there is no information on research confirming hybridization between them. Morphologically intermediate individuals, found in the sympatric distributions of J. vulgaris and J. erucifolia, were hypothesized to be their hybrids. Two molecular marker systems (nuclear and chloroplast DNA markers) were employed to test this hypothesis and characterize putative hybrids. Nuclear and chloroplast DNA sequencing results and taxon-specific amplified fragment length polymorphism (AFLP) fragment distribution analysis confirmed the hybrid nature of all 25 putative hybrids. The AFLP patterns of most hybrids demonstrated a closer relationship to J. erucifolia, suggesting frequent backcrossing. Moreover, they showed that several individuals previously described as pure were probably also of hybrid origin, backcrosses to J. erucifolia and J. vulgaris. This study provides the first molecular confirmation that natural hybrids between J. vulgaris and J. erucifolia occur in Poland. Hybridization appeared to be bidirectional but asymmetrical with J. vulgaris as the usual maternal parent.
Collapse
Affiliation(s)
- Barbara Gawrońska
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Małgorzata Marszałek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Piotr Kosiński
- Department of Botany, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
| | - Marek Podsiedlik
- Natural History Collections, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Leszek Bednorz
- Department of Botany, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
50
|
Kim J, Harris KD, Kim IK, Shemesh S, Messer PW, Greenbaum G. Incorporating ecology into gene drive modelling. Ecol Lett 2023; 26 Suppl 1:S62-S80. [PMID: 37840022 DOI: 10.1111/ele.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Shahar Shemesh
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|