1
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024:1-27. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
3
|
Li P, Zhou H, Yan R, Yan W, Yang L, Li T, Qin X, Zhou Y, Li L, Bao J, Li J, Li S, Liu Y. Aligned fibrous scaffolds promote directional migration of breast cancer cells via caveolin-1/YAP-mediated mechanosensing. Mater Today Bio 2024; 28:101245. [PMID: 39318372 PMCID: PMC11421348 DOI: 10.1016/j.mtbio.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Tumorigenesis and metastasis are highly dependent on the interactions between the tumor and the surrounding microenvironment. In 3D matrix, the fibrous structure of the extracellular matrix (ECM) undergoes dynamic remodeling during tumor progression. In particular, during the late stage of tumor development, the fibers become more aggregated and oriented. However, it remains unclear how cancer cells respond to the organizational change of ECM fibers and exhibit distinct morphology and behavior. Here, we used electrospinning technology to fabricate biomimetic ECM with distinct fiber arrangements, which mimic the structural characteristics of normal or tumor tissues and found that aligned and oriented nanofibers induce cytoskeletal rearrangement to promote directed migration of cancer cells. Mechanistically, caveolin-1(Cav-1)-expressing cancer cells grown on aligned fibers exhibit increased integrin β1 internalization and actin polymerization, which promoted stress fiber formation, focal adhesion dynamics and YAP activity, thereby accelerating the directional cell migration. In general, the linear fibrous structure of the ECM provides convenient tracks on which tumor cells can invade and migrate. Moreover, histological data from both mice and patients with tumors indicates that tumor tissue exhibits a greater abundance of isotropic ECM fibers compared to normal tissue. And Cav-1 downregulation can suppress cancer cells muscle invasion through the inhibition of YAP-dependent mechanotransduction. Taken together, our findings revealed the Cav-1 is indispensable for the cellular response to topological change of ECM, and that the Cav-1/YAP axis is an attractive target for inhibiting cancer cell directional migration which induced by linearization of ECM fibers.
Collapse
Affiliation(s)
- Ping Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hanying Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ran Yan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Wei Yan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Lu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yanyan Zhou
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Li Li
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Junjie Li
- Breast Surgery Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, PR China
- Department of Urology, Deyang People's Hospital, Deyang, 618099, Sichuan, PR China
| |
Collapse
|
4
|
Sajib MS, Zahra FT, Lamprou M, Akwii RG, Park JH, Osorio M, Tullar P, Doci CL, Zhang C, Huveneers S, Van Buul JD, Wang MH, Markiewski MM, Srivastava SK, Zheng Y, Gutkind JS, Hu J, Bickel U, Maeda DY, Zebala JA, Lionakis MS, Trasti S, Mikelis CM. Tumor-induced endothelial RhoA activation mediates tumor cell transendothelial migration and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614304. [PMID: 39372784 PMCID: PMC11451620 DOI: 10.1101/2024.09.22.614304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact β 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
Collapse
|
5
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
6
|
Huang S, Hu J, Hu M, Hou Y, Zhang B, Liu J, Liu X, Chen Z, Wang L. Cooperation between SIX1 and DHX9 transcriptionally regulates integrin-focal adhesion signaling mediated metastasis and sunitinib resistance in KIRC. Oncogene 2024; 43:2951-2969. [PMID: 39174859 DOI: 10.1038/s41388-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
High invasive capacity and acquired tyrosine kinase inhibitors (TKI) resistance of kidney renal clear cell carcinoma (KIRC) cells remain obstacles to prolonging the survival time of patients with advanced KIRC. In the present study, we reported that sine oculis homeobox 1 (SIX1) was upregulated in sunitinib-resistant KIRC cells and metastatic KIRC tissues. Subsequently, we found that SIX1 mediated metastasis and sunitinib resistance via Focal adhesion (FA) signaling, and knockdown of SIX1 enhanced the antitumor efficiency of sunitinib in KIRC. Mechanistically, Integrin subunit beta 1 (ITGB1), an upstream gene of FA signaling, was a direct transcriptional target of SIX1. In addition, we showed that DExH-box helicase 9 (DHX9) was an important mediator for SIX1-induced ITGB1 transcription, and silencing the subunits of SIX1/DHX9 complex significantly reduced transcription of ITGB1. Downregulation of SIX1 attenuated nuclear translocation of DHX9 and abrogated the binding of DHX9 to ITGB1 promoter. Collectively, our results unveiled a new signal axis SIX1/ITGB1/FAK in KIRC and identified a novel therapeutic strategy for metastatic KIRC patients.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Banghua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, 430060, China
| | - Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
7
|
Kreis NN, Moon HH, Wordeman L, Louwen F, Solbach C, Yuan J, Ritter A. KIF2C/MCAK a prognostic biomarker and its oncogenic potential in malignant progression, and prognosis of cancer patients: a systematic review and meta-analysis as biomarker. Crit Rev Clin Lab Sci 2024; 61:404-434. [PMID: 38344808 DOI: 10.1080/10408363.2024.2309933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/24/2024]
Abstract
KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
8
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
10
|
Wang B, Pareek G, Kundu M. ULK/Atg1: phasing in and out of autophagy. Trends Biochem Sci 2024; 49:494-505. [PMID: 38565496 PMCID: PMC11162330 DOI: 10.1016/j.tibs.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
11
|
Lebreton S, Paladino S, Lelek M, Tramier M, Zimmer C, Zurzolo C. Actin cytoskeleton differently regulates cell surface organization of GPI-anchored proteins in polarized epithelial cells and fibroblasts. Front Mol Biosci 2024; 11:1360142. [PMID: 38774234 PMCID: PMC11106487 DOI: 10.3389/fmolb.2024.1360142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
The spatiotemporal compartmentalization of membrane-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) on the cell surface regulates their biological activities. These GPI-APs occupy distinct cellular functions such as enzymes, receptors, and adhesion molecules, and they are implicated in several vital cellular processes. Thus, unraveling the mechanisms and regulators of their membrane organization is essential. In polarized epithelial cells, GPI-APs are enriched at the apical surface, where they form small cholesterol-independent homoclusters and larger heteroclusters accommodating multiple GPI-AP species, all confined within areas of approximately 65-70 nm in diameter. Notably, GPI-AP homoclustering occurs in the Golgi apparatus through a cholesterol- and calcium-dependent mechanism that drives their apical sorting. Despite the critical role of Golgi GPI-AP clustering in their cell surface organization and the importance of cholesterol in heterocluster formation, the regulatory mechanisms governing GPI-AP surface organization, particularly in the context of epithelial polarity, remain elusive. Given that the actin cytoskeleton undergoes substantial remodeling during polarity establishment, this study explores whether the actin cytoskeleton regulates the spatiotemporal apical organization of GPI-APs in MDCK cells. Utilizing various imaging techniques (number and brightness, FRET/FLIM, and dSTORM coupled to pair correlation analysis), we demonstrate that the apical organization of GPI-APs, at different scales, does not rely on the actin cytoskeleton, unlike in fibroblastic cells. Interestingly, calcium chelation disrupts the organization of GPI-APs at the apical surface by impairing Golgi GPI-AP clustering, emphasizing the existence of an interplay among Golgi clustering, apical sorting, and surface organization in epithelial cells. In summary, our findings unveil distinct mechanisms regulating the organization of GPI-APs in cell types of different origins, plausibly allowing them to adapt to different external signals and different cellular environments in order to achieve specialized functions.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- Institut Pasteur, Unité de Trafic Membranaire et Pathogenèse, Paris, France
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Mickaël Lelek
- Imaging and Modeling Unit, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Marc Tramier
- Université Rennes, Centre National de la recherche scientifique, IGDR (Genetics and Development Institute of Rennes), Unité mixte de receherche 6290, Rennes, France
| | - Christophe Zimmer
- Imaging and Modeling Unit, Department of Computational Biology, Institut Pasteur, Paris, France
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Chiara Zurzolo
- Institut Pasteur, Unité de Trafic Membranaire et Pathogenèse, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Stock C. pH-regulated single cell migration. Pflugers Arch 2024; 476:639-658. [PMID: 38214759 PMCID: PMC11006768 DOI: 10.1007/s00424-024-02907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Over the last two decades, extra- and intracellular pH have emerged as fundamental regulators of cell motility. Fundamental physiological and pathological processes relying on appropriate cell migration, such as embryonic development, wound healing, and a proper immune defense on the one hand, and autoimmune diseases, metastatic cancer, and the progression of certain parasitic diseases on the other, depend on surrounding pH. In addition, migrating single cells create their own localized pH nanodomains at their surface and in the cytosol. By this means, the migrating cells locally modulate their adhesion to, and the re-arrangement and digestion of, the extracellular matrix. At the same time, the cytosolic nanodomains tune cytoskeletal dynamics along the direction of movement resulting in concerted lamellipodia protrusion and rear end retraction. Extracellular pH gradients as found in wounds, inflamed tissues, or the periphery of tumors stimulate directed cell migration, and long-term exposure to acidic conditions can engender a more migratory and invasive phenotype persisting for hours up to several generations of cells after they have left the acidic milieu. In the present review, the different variants of pH-dependent single cell migration are described. The underlying pH-dependent molecular mechanisms such as conformational changes of adhesion molecules, matrix protease activity, actin (de-)polymerization, and signaling events are explained, and molecular pH sensors stimulated by H+ signaling are presented.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hepatology, Infectiology & Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Jahnke K, Staufer O. Membranes on the move: The functional role of the extracellular vesicle membrane for contact-dependent cellular signalling. J Extracell Vesicles 2024; 13:e12436. [PMID: 38649339 PMCID: PMC11035383 DOI: 10.1002/jev2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Extracellular vesicles (EVs), lipid-enclosed structures released by virtually all life forms, have gained significant attention due to their role in intercellular and interorganismal communication. Despite their recognized importance in disease processes and therapeutic applications, fundamental questions about their primary function remain. Here, we propose a different perspective on the primary function of EVs, arguing that they serve as essential elements providing membrane area for long-distance, contact-dependent cellular communication based on protein-protein interaction. While EVs have been recognized as carriers of genetic information, additional unique advantages that they could provide for cellular communication remain unclear. Here, we introduce the concept that the substantial membrane area provided by EVs allows for membrane contact-dependent interactions that could be central to their function. This membrane area enables the lateral diffusion and sorting of membrane ligands like proteins, polysaccharides or lipids in two dimensions, promoting avidity-driven effects and assembly of co-stimulatory architectures at the EV-cell interface. The concept of vesicle-induced receptor sequestration (VIRS), for example, describes how EVs confine and focus receptors at the EV contact site, promoting a dense local concentration of receptors into signalosomes. This process can increase the signalling strength of EV-presented ligands by 10-1000-fold compared to their soluble counterparts. The speculations in this perspective advance our understanding of EV-biology and have critical implications for EV-based applications and therapeutics. We suggest a shift in perspective from viewing EVs merely as transporters of relevant nucleic acids and proteins to considering their unique biophysical properties as presentation platforms for long-distance, contact-dependent signalling. We therefore highlight the functional role of the EV membrane rather than their content. We further discuss how this signalling mechanism might be exploited by virus-transformed or cancer cells to enhance immune-evasive mechanisms.
Collapse
Affiliation(s)
- Kevin Jahnke
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Oskar Staufer
- INM – Leibniz Institute for New MaterialsSaarbrückenGermany
- Helmholtz Institute for Pharmaceutical ResearchSaarbrückenGermany
- Center for BiophysicsSaarland UniversitySaarbrückenGermany
- Max Planck‐Bristol Center for Minimal BiologyUniversity of BristolBristolUK
| |
Collapse
|
14
|
Saito K, Yokawa S, Kurihara H, Yaoita E, Mizuta S, Tada K, Oda M, Hatakeyama H, Ohta Y. FilGAP controls cell-extracellular matrix adhesion and process formation of kidney podocytes. FASEB J 2024; 38:e23504. [PMID: 38421271 DOI: 10.1096/fj.202301691rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.
Collapse
Affiliation(s)
- Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Seiji Yokawa
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Sciences, Aino University, Osaka, Ibaraki, Japan
| | - Eishin Yaoita
- Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Sari Mizuta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kanae Tada
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Moemi Oda
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroyasu Hatakeyama
- Department of Physiology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
15
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biomaterials reprogram collective cell migration and cell cycling by forcing homeostatic conditions. Cell Rep 2024; 43:113743. [PMID: 38358889 DOI: 10.1016/j.celrep.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Cells attach to the world through either cell-extracellular matrix adhesion or cell-cell adhesion, and traditional biomaterials imitate the matrix for integrin-based adhesion. However, materials incorporating cadherin proteins that mimic cell-cell adhesion offer an alternative to program cell behavior and integrate into living tissues. We investigated how cadherin substrates affect collective cell migration and cell cycling in epithelia. Our approach involved biomaterials with matrix proteins on one-half and E-cadherin proteins on the other, forming a "Janus" interface across which we grew a single sheet of cells. Tissue regions over the matrix side exhibited normal collective dynamics, but an abrupt behavior shift occurred across the Janus boundary onto the E-cadherin side, where cells attached to the substrate via E-cadherin adhesions, resulting in stalled migration and slowing of the cell cycle. E-cadherin surfaces disrupted long-range mechanical coordination and nearly doubled the length of the G0/G1 phase of the cell cycle, linked to the lack of integrin focal adhesions on the E-cadherin surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Djakbarova U, Madraki Y, Chan ET, Wu T, Atreaga-Muniz V, Akatay AA, Kural C. Tension-induced adhesion mode switching: the interplay between focal adhesions and clathrin-containing adhesion complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579324. [PMID: 38370749 PMCID: PMC10871318 DOI: 10.1101/2024.02.07.579324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Integrin-based adhesion complexes are crucial in various cellular processes, including proliferation, differentiation, and motility. While the dynamics of canonical focal adhesion complexes (FAs) have been extensively studied, the regulation and physiological implications of the recently identified clathrin-containing adhesion complexes (CCACs) are still not well understood. In this study, we investigated the spatiotemporal mechanoregulations of FAs and CCACs in a breast cancer model. Employing single-molecule force spectroscopy coupled with live-cell fluorescence microscopy, we discovered that FAs and CCACs are mutually exclusive and inversely regulated complexes. This regulation is orchestrated through the modulation of plasma membrane tension, in combination with distinct modes of actomyosin contractility that can either synergize with or counteract this modulation. Our findings indicate that increased membrane tension promotes the association of CCACs at integrin αVβ5 adhesion sites, leading to decreased cancer cell proliferation, spreading, and migration. Conversely, lower membrane tension promotes the formation of FAs, which correlates with the softer membranes observed in cancer cells, thus potentially facilitating cancer progression. Our research provides novel insights into the biomechanical regulation of CCACs and FAs, revealing their critical and contrasting roles in modulating cancer cell progression.
Collapse
Affiliation(s)
- Umida Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily T. Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - A. Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Merta H, Isogai T, Paul B, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577043. [PMID: 38328045 PMCID: PMC10849733 DOI: 10.1101/2024.01.24.577043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knock-in technologies, here we map the proteomic landscape of the human ER and nuclear envelope. Spatial proteomics reveals enrichments of proteins into ER tubules, sheets, and nuclear envelope. We uncover an ER-enriched actin-binding protein, Calmin (CLMN), and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. CLMN depletion perturbs focal adhesion disassembly, actin dynamics, and cell movement. Mechanistically, CLMN-depleted cells also exhibit defects in calcium signaling near ER-actin interfaces, suggesting CLMN promotes calcium signaling near adhesions to facilitate their disassembly. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas TX 75390
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
18
|
Wang X, Zhang D, Zhu Y, Li D, Shen L, Wang Q, Gao Y, Li X, Yu M. Protein lysine acetylation played an important role in NH 3-induced AEC2 damage and pulmonary fibrosis in piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168303. [PMID: 37939958 DOI: 10.1016/j.scitotenv.2023.168303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Gaseous ammonia (NH3), as a main air pollutant in pig farms and surrounding areas, directly affects animal and human health. The lung, as an important organ for gas exchange in the respiratory system, is damaged after NH3 exposure, but the underlying mechanism needs to be further explored. In this study, seven weeks old piglets were exposed to 50 ppm NH3 for 30 days, and displayed pulmonary fibrosis. Then, the toxicological mechanism of NH3-induced pulmonary fibrosis was explored from the aspects of whole genome wide protein expression and post-translational modification. Totally, 404 differentially expressed proteins (DEPs) and 136 differentially lysine acetylated proteins (DAPs) were identified. The expression or lysine acetylation levels of proteins involved in mitochondrial energy metabolism including fatty acid oxidation (CPT1A, ACADVL, ACADS, HADHA, and HADHB), TCA cycle (IDH2 and MDH2), and oxidative phosphorylation (NDUFB7, NDUFV1, ATP5PB, ATP5F1A, COX5A, and COX5B) were significantly changed after NH3 exposure, which suggested that NH3 disrupted mitochondrial energy metabolism in the lung of piglets. Next, we found that type 2 alveolar epithelial cells (AEC2) damaged after NH3 exposure in vivo and in vitro. Integrin-linked kinase (ILK) was enriched in focal adhesion pathway, and showed significantly up-regulated acetylation levels at K191 (FC = 2.99) and K209 sites (FC = 1.52) after NH3 exposure. We illustrated that ILK-K191 hyper-acetylation inhibited AEC2 proliferation and induced AEC2 apoptosis by down-regulating pAKT-S473 in vitro. In conclusion, for the first time, our study revealed that protein acetylation played an important role in the process of NH3-induced pulmonary fibrosis in piglets. Our findings provided valuable insights into toxicological harm of NH3 to human health.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Zhu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojie Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Wang S, Li M, Liu P, Dong Y, Geng R, Zheng T, Zheng Q, Li B, Ma P. Col1a1 mediates the focal adhesion pathway affecting hearing in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2024; 185:112349. [PMID: 38103809 DOI: 10.1016/j.exger.2023.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Age-related hearing loss (ARHL) is a common neurodegenerative disease. Its molecular mechanisms have not been fully elucidated. In the present study, we obtained differential mRNA expression in the cochlea of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by RNA-seq. Gene ontology (GO) analysis was used to identify molecular functions associated with hearing in miR-29a-/- mice, including being actin binding (GO: 0003779) and immune processes. We focused on the intersection of differential genes, miR-29a target genes and the sensory perception of sound (GO:0007605) genes, with six mRNA at this intersection, and we selected Col1a1 as our target gene. We validated Col1a1 as the direct target of miR-29a by molecular and cellular experiments. Total 6 pathways involved in Col1a1 were identified by through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We selected the focal adhesion pathway as our target pathway based. Their expression levels in miR-29a-/- mice were verified by qRT-PCR and Western blot. Compared with miR-29a+/+ mice, the expression levels of Col1a1, Itga4, Itga2, Itgb3, Itgb7, Pik3r3 and Ptk2 were different in miR-29a-/- mice. Immunofluorescence was used to locate genes in the cochlea. Col1a1, Itga4 and Itgb3 were differentially expressed in the basilar membranes and stria vascularis and spiral ganglion neurons compared to miR-29a+/+ mice. Pik3r3 and Ptk2 were differentially expressed in the basilar membranes and stria vascularis, but not at the s spiral ganglion neurons compared to miR-29a+/+ mice. Our results show that when miR-29a is knocked out, the Col1a1 mediates the focal adhesion pathway may affect the hearing of miR-29a-/- mice. These findings may provide a new direction for effective treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China.
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China; School of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
20
|
Czarnowska E, Ratajska A, Jankowska-Steifer E, Flaht-Zabost A, Niderla-Bielińska J. Extracellular matrix molecules associated with lymphatic vessels in health and disease. Histol Histopathol 2024; 39:13-34. [PMID: 37350542 DOI: 10.14670/hh-18-641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.
Collapse
Affiliation(s)
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
21
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Jiang X, Li T, Hai X, Zheng X, Wang Z, Lyu F. Integrated behavior and transcriptomic analysis provide valuable insights into the response mechanisms of Dastarcus helophoroides Fairmaire to light exposure. Front Physiol 2023; 14:1250836. [PMID: 38107477 PMCID: PMC10722319 DOI: 10.3389/fphys.2023.1250836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
Light traps have been widely used to monitor and manage pest populations, but natural enemies are also influenced. The Dastarcus helophoroides Fairmaire is an important species of natural enemy for longhorn beetles. However, the molecular mechanism of D. helophoroides in response to light exposure is still scarce. Here, integrated behavioral, comparative transcriptome and weighted gene co-expression network analyses were applied to investigate gene expression profiles in the head of D. helophoroides at different light exposure time. The results showed that the phototactic response rates of adults were 1.67%-22.5% and females and males displayed a negative phototaxis under different light exposure [6.31 × 1018 (photos/m2/s)]; the trapping rates of female and male were influenced significantly by light exposure time, diel rhythm, and light wavelength in the behavioral data. Furthermore, transcriptome data showed that a total of 1,052 significantly differentially expressed genes (DEGs) were identified under different light exposure times relative to dark adaptation. Bioinformatics analyses revealed that the "ECM-receptor interaction," "focal adhesion," "PI3K-Akt signaling," and "lysosome" pathways were significantly downregulated with increasing light exposure time. Furthermore, nine DEGs were identified as hub genes using WGCNA analysis. The results revealed molecular mechanism in negative phototactic behavior response of D. helophoroides under the light exposure with relative high intensity, and provided valuable insights into the underlying molecular response mechanism of nocturnal beetles to light stress.
Collapse
Affiliation(s)
- Xianglan Jiang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Tengfei Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoxia Hai
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiang Zheng
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding, Hebei, China
| | - Zhigang Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fei Lyu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
23
|
He S, Zhang J, Liu Z, Wang Y, Hao X, Wang X, Zhou Z, Ye X, Zhao Y, Zhao Y, Wang R. Upregulated Cytoskeletal Proteins Promote Pathological Angiogenesis in Moyamoya Disease. Stroke 2023; 54:3153-3164. [PMID: 37886851 DOI: 10.1161/strokeaha.123.044476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Moyamoya disease (MMD) is a rare progressive vascular disease that leads to intracranial internal carotid artery stenosis and eventual occlusion. However, its pathogenesis remains unclear. The purpose of this study is to explore the role of abnormally expressed proteins in the pathogenesis of MMD. METHODS Data-independent acquisition mass spectrometry identifies the differentially expressed proteins in MMD serum by detecting the serum from 60 patients with MMD and 20 health controls. The differentially expressed proteins were validated using enzyme linked immunosorbent assays. Immunofluorescence for superficial temporal artery and middle cerebral artery specimens was used to explore the morphological changes of vascular wall in MMD. In vitro experiments were used to explore the changes and mechanisms of differentially expressed proteins on endothelial cells. RESULTS Proteomic analysis showed that a total of 14 726 peptides and 1555 proteins were quantified by mass spectrometry data. FLNA (filamin A) and ZYX (zyxin) proteins were significantly higher in MMD serum compared with those in health controls (Log2FC >2.9 and >2.8, respectively). Immunofluorescence revealed an intimal hyperplasia in superficial temporal artery and middle cerebral artery specimens of MMD. FLNA and ZYX proteins increased the proportion of endothelial cells in S phase and promoted their proliferation, angiogenesis, and cytoskeleton enlargement. Mechanistic studies revealed that AKT (serine/threonine kinase)/GSK-3β (glycogen synthase kinase 3β)/β-catenin signaling pathway plays a major role in these FLNA- and ZYX-induced changes in endothelial cells. CONCLUSIONS This study provides proteomic data on a large sample size of MMD. The differential expression of FLNA and ZYX in patient with MMD and following in vitro experiments suggest that these upregulated proteins are related to the pathology of cerebrovascular intimal hyperplasia in MMD and are involved in MMD pathogenesis, with diagnostic and therapeutic ramifications.
Collapse
Affiliation(s)
- Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing, China (S.H., Yuanli Zhao, R.W.)
- Center of Stroke, Beijing Institute for Brain Disorders, China (S.H., Yuanli Zhao)
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Ziqi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Xiaokuan Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Xilong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Zhenyu Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing, China (S.H., Yuanli Zhao, R.W.)
- Center of Stroke, Beijing Institute for Brain Disorders, China (S.H., Yuanli Zhao)
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China (Yuanli Zhao, R.W.)
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (S.H., J.Z., Z.L., Y.W., X.H., X.W., Z.Z., X.Y., Yahui Zhao, Yuanli Zhao, R.W.)
- China National Clinical Research Center for Neurological Diseases, Beijing, China (S.H., Yuanli Zhao, R.W.)
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, China (Yuanli Zhao, R.W.)
| |
Collapse
|
24
|
Elnagdy M, Wang Y, Rodriguez W, Zhang J, Bauer P, Wilkey DW, Merchant M, Pan J, Farooqui Z, Cannon R, Rai S, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261:361-371. [PMID: 37735782 PMCID: PMC10653049 DOI: 10.1002/path.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFβ1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFβ1 levels were highly correlated with PDE4 expression. TGFβ1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFβ1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohamed Elnagdy
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Walter Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Zainab Farooqui
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Shesh Rai
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
25
|
Wu X, Chen M, Lin S, Chen S, Gu J, Wu Y, Qu M, Gong W, Yao Q, Li H, Zou X, Chen D, Xiao G. Loss of Pinch Proteins Causes Severe Degenerative Disc Disease-Like Lesions in Mice. Aging Dis 2023; 14:1818-1833. [PMID: 37196110 PMCID: PMC10529740 DOI: 10.14336/ad.2023.0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023] Open
Abstract
Degenerative disc disease (DDD) is one of the most common skeletal disorders affecting aged populations. DDD is the leading cause of low back/neck pain, resulting in disability and huge socioeconomic burdens. However, the molecular mechanisms underlying DDD initiation and progression remain poorly understood. Pinch1 and Pinch2 are LIM-domain-containing proteins with crucial functions in mediating multiple fundamental biological processes, such as focal adhesion, cytoskeletal organization, cell proliferation, migration, and survival. In this study, we found that Pinch1 and Pinch2 were both highly expressed in healthy intervertebral discs (IVDs) and dramatically downregulated in degenerative IVDs in mice. Deleting Pinch1 in aggrecan-expressing cells and Pinch2 globally (AggrecanCreERT2; Pinch1fl/fl; Pinch2-/-) caused striking spontaneous DDD-like lesions in lumbar IVDs in mice. Pinch loss inhibited cell proliferation and promoted extracellular matrix (ECM) degradation and apoptosis in lumbar IVDs. Pinch loss markedly enhanced the production of pro-inflammatory cytokines, especially TNFα, in lumbar IVDs and exacerbated instability-induced DDD defects in mice. Pharmacological inhibition of TNFα signaling mitigated the DDD-like lesions caused by Pinch loss. In human degenerative NP samples, reduced expression of Pinch proteins was correlated with severe DDD progression and a markedly upregulated expression of TNFα. Collectively, we demonstrate the crucial role of Pinch proteins in maintaining IVD homeostasis and define a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Sheng Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| | - Jingliang Gu
- Department of Orthopedics, Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China.
| | - Yuchen Wu
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
26
|
Chen Y, Jin L, Ma Y, Liu Y, Zhu Q, Huang Y, Feng W. BACH1 promotes lung adenocarcinoma cell metastasis through transcriptional activation of ITGA2. Cancer Sci 2023; 114:3568-3582. [PMID: 37311571 PMCID: PMC10475762 DOI: 10.1111/cas.15884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACH1 plays an important role in promoting cancer. This study aims to further verify the relationship between the expression level of BACH1 in lung adenocarcinoma prognosis, as well as the influence of BACH1 expression on lung adenocarcinoma and the potential mechanism. The expression level of BACH1 in lung adenocarcinoma and its relationship with prognosis was evaluated by lung adenocarcinoma tissue microarray analysis combined with bioinformatics approaches. Gene knockdown and overexpression were used to investigate the functions and molecular mechanisms of BACH1 in lung adenocarcinoma cells. The regulatory downstream pathways and target genes of BACH1 in lung adenocarcinoma cells were explored by bioinformatics and RNA sequencing data analysis, real-time PCR, western blot analysis, and cell immunofluorescence and cell adhesion assays. Chromatin immunoprecipitation and dual-luciferase reporter assays were carried out to verify the target gene binding site. In the present study, BACH1 is abnormally highly expressed in lung adenocarcinoma tissues, and high BACH1 expression is negatively correlated with patient prognosis. BACH1 promotes the migration and invasion of lung adenocarcinoma cells. Mechanistically, BACH1 directly binds to the upstream sequence of the ITGA2 promoter to promote ITGA2 expression, and the BACH1-ITGA2 axis is involved in cytoskeletal regulation in lung adenocarcinoma cells by activating the FAK-RAC1-PAK signaling pathway. Our results indicated that BACH1 positively regulates the expression of ITGA2 through a transcriptional mechanism, thereby activating the FAK-RAC1-PAK signaling pathway to participate in the formation of the cytoskeleton in tumor cells and then promoting the migration and invasion of tumor cells.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Longyu Jin
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yuchao Ma
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yicai Liu
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Qianjun Zhu
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yu Huang
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Wei Feng
- Department of Cardiothoracic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
27
|
Zheng C, Liu H, Zhao P, Lu W, Song S, He T, Fan J, Wang D, Yang P, Jie Q, Zheng HF, Luo Z, Yang L. Targeting sulfation-dependent mechanoreciprocity between matrix and osteoblasts to mitigate bone loss. Sci Transl Med 2023; 15:eadg3983. [PMID: 37611084 DOI: 10.1126/scitranslmed.adg3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Sulfation is a widespread modification of biomolecules that has been incompletely explored to date. Through cross-phenotype meta-analysis of bone mineral density in up to 426,824 genotyped human participants along with phenotypic characterization of multiple mutant mouse lines, we identified a causative role for sulfate transporter solute carrier family 26 member A2 (SLC26A2) deficiency in osteoporosis. Ablation of SLC26A2 in osteoblasts caused severe bone loss and accumulation of immature bone cells and elicited peculiar pericellular matrix (PCM) production characterized by undersulfation coupled with decreased stiffness. These altered chemophysical properties of the PCM disrupted the formation of focal adhesions in osteoblasts. Bulk RNA sequencing and functional assays revealed that the mechanoreciprocal inhibition of focal adhesion kinase (FAK) and Yes1-associated transcriptional regulator (YAP)/WW domain containing transcription regulator 1 (TAZ) signaling impinged osteoblast maturation upon SLC26A2 deficiency. Moreover, pharmacological abrogation of the Hippo kinases and forced wheel-running ameliorated SLC26A2-deficient osteoporosis by promoting YAP/TAZ activity. Analysis of mouse single-cell RNA sequencing data suggested coordination among sulfate metabolism, focal adhesion, and YAP/TAZ activity during osteoblast-to-osteocyte transition. In addition to the SLC26A2-deficient setting, altered FAK and YAP/TAZ signaling was also observed in bone cells of ovariectomized mice and patients with osteoporosis, and pharmacological enforcing of YAP/TAZ activity ameliorated bone loss in ovariectomized mice. Collectively, these data unveil a role for sulfation in the developmental mechanoreciprocity between matrix and osteoblasts, which could be leveraged to prevent bone loss.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - He Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Pianpian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shiju Song
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ting He
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Pengfei Yang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Jie
- Department of Orthopedic Surgery, Hong Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an 710049, China
- Research Center for Skeletal Developmental Deformity and Injury repair, College of Life Science and Medicine, Northwest University, Xi'an 710069, China
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
28
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically-gated A-kinase anchoring protein (AKAP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554038. [PMID: 37645895 PMCID: PMC10462126 DOI: 10.1101/2023.08.20.554038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cAMP-dependent protein kinase (Protein Kinase A; PKA) is a ubiquitous, promiscuous kinase whose activity is focused and specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to the extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), intracellular complexes coupling ECM-bound integrins to the actin cytoskeleton, suggesting the existence of one or more FA AKAPs. Using a combination of a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1-R13. Direct binding assays and nuclear magnetic resonance spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Finally, single-molecule experiments with talin1 and PKA, and experiments in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. These observations identify the first mechanically-gated anchoring protein for PKA, a new force-dependent binding partner for talin1, and thus a new mechanism for coupling cellular tension and signal transduction.
Collapse
|
29
|
Steinberg T, Dieterle MP, Ramminger I, Klein C, Brossette J, Husari A, Tomakidi P. On the Value of In Vitro Cell Systems for Mechanobiology from the Perspective of Yes-Associated Protein/Transcriptional Co-Activator with a PDZ-Binding Motif and Focal Adhesion Kinase and Their Involvement in Wound Healing, Cancer, Aging, and Senescence. Int J Mol Sci 2023; 24:12677. [PMID: 37628858 PMCID: PMC10454169 DOI: 10.3390/ijms241612677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanobiology comprises how cells perceive different mechanical stimuli and integrate them into a process called mechanotransduction; therefore, the related mechanosignaling cascades are generally important for biomedical research. The ongoing discovery of key molecules and the subsequent elucidation of their roles in mechanobiology are fundamental to understanding cell responses and tissue conditions, such as homeostasis, aging, senescence, wound healing, and cancer. Regarding the available literature on these topics, it becomes abundantly clear that in vitro cell systems from different species and tissues have been and are extremely valuable tools for enabling the discovery and functional elucidation of key mechanobiological players. Therefore, this review aims to discuss the significant contributions of in vitro cell systems to the identification and characterization of three such key players using the selected examples of yes-associated protein (YAP), its paralog transcriptional co-activator with a PDZ-binding motif (TAZ), and focal adhesion kinase (FAK) and their involvement in wound healing, cancer, aging, and senescence. In addition, the reader is given suggestions as to which future prospects emerge from the in vitro studies discussed herein and which research questions still remain open.
Collapse
Affiliation(s)
- Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Charlotte Klein
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Julie Brossette
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| |
Collapse
|
30
|
Sauter D, Schröter M, Frey C, Weber C, Mersdorf U, Janiesch JW, Platzman I, Spatz JP. Artificial Cytoskeleton Assembly for Synthetic Cell Motility. Macromol Biosci 2023; 23:e2200437. [PMID: 36459417 DOI: 10.1002/mabi.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Imitation of cellular processes in cell-like compartments is a current research focus in synthetic biology. Here, a method is introduced for assembling an artificial cytoskeleton in a synthetic cell model system based on a poly(N-isopropyl acrylamide) (PNIPAM) composite material. Toward this end, a PNIPAM-based composite material inside water-in-oil droplets that are stabilized with PNIPAM-functionalized and commercial fluorosurfactants is introduced. The temperature-mediated contraction/release behavior of the PNIPAM-based cytoskeleton is investigated. The reversibility of the PNIPAM transition is further examined in bulk and in droplets and it could be shown that hydrogel induced deformation could be used to controllably manipulate droplet-based synthetic cell motility upon temperature changes. It is envisioned that a combination of the presented artificial cytoskeleton with naturally occurring components might expand the bandwidth of the bottom-up synthetic biology.
Collapse
Affiliation(s)
- Désirée Sauter
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Martin Schröter
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christoph Frey
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Cornelia Weber
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Ulrike Mersdorf
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| |
Collapse
|
31
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biointerfaces reprogram collective cell migration and cell cycling by forcing homeostatic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550505. [PMID: 37546933 PMCID: PMC10402016 DOI: 10.1101/2023.07.25.550505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cells attach to the world around them in two ways-cell:extracellular-matrix adhesion and cell:cell adhesion-and conventional biomaterials are made to resemble the matrix to encourage integrin-based cell adhesion. However, interest is growing for cell-mimetic interfaces that mimic cell-cell interactions using cadherin proteins, as this offers a new way to program cell behavior and design synthetic implants and objects that can integrate directly into living tissues. Here, we explore how these cadherin-based materials affect collective cell behaviors, focusing specifically on collective migration and cell cycle regulation in cm-scale epithelia. We built culture substrates where half of the culture area was functionalized with matrix proteins and the contiguous half was functionalized with E-cadherin proteins, and we grew large epithelia across this 'Janus' interface. Parts of the tissues in contact with the matrix side of the Janus interface exhibited normal collective dynamics, but an abrupt shift in behaviors happened immediately across the Janus boundary onto the E-cadherin side, where cells formed hybrid E-cadherin junctions with the substrate, migration effectively froze in place, and cell-cycling significantly decreased. E-cadherin materials suppressed long-range mechanical correlations in the tissue and mechanical information reflected off the substrate interface. These effects could not be explained by conventional density, shape index, or contact inhibition explanations. E-cadherin surfaces nearly doubled the length of the G0/G1 phase of the cell cycle, which we ultimately connected to the exclusion of matrix focal adhesions induced by the E-cadherin culture surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA, 08544
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA, 08544
| |
Collapse
|
32
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
33
|
Chen J, Vishweshwaraiah YL, Mailman RB, Tabdanov ED, Dokholyan NV. A noncommutative combinatorial protein logic circuit controls cell orientation in nanoenvironments. SCIENCE ADVANCES 2023; 9:eadg1062. [PMID: 37235645 PMCID: PMC10219599 DOI: 10.1126/sciadv.adg1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Single-protein-based devices that integrate signal sensing with logical operations to generate functional outputs offer exceptional promise for monitoring and modulating biological systems. Engineering such intelligent nanoscale computing agents is challenging, as it requires the integration of sensor domains into a functional protein via intricate allosteric networks. We incorporate a rapamycin-sensitive sensor (uniRapR) and a blue light-responsive LOV2 domain into human Src kinase, creating a protein device that functions as a noncommutative combinatorial logic circuit. In our design, rapamycin activates Src kinase, causing protein localization to focal adhesions, whereas blue light exerts the reverse effect that inactivates Src translocation. Focal adhesion maturation induced by Src activation reduces cell migration dynamics and shifts cell orientation to align along collagen nanolane fibers. Using this protein device, we reversibly control cell orientation by applying the appropriate input signals, a framework that may be useful in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | - Richard B. Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Liu J, Lu F, Ithychanda SS, Apostol M, Das M, Deshpande G, Plow EF, Qin J. A mechanism of platelet integrin αIIbβ3 outside-in signaling through a novel integrin αIIb subunit-filamin-actin linkage. Blood 2023; 141:2629-2641. [PMID: 36867840 PMCID: PMC10356577 DOI: 10.1182/blood.2022018333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The communication of talin-activated integrin αIIbβ3 with the cytoskeleton (integrin outside-in signaling) is essential for platelet aggregation, wound healing, and hemostasis. Filamin, a large actin crosslinker and integrin binding partner critical for cell spreading and migration, is implicated as a key regulator of integrin outside-in signaling. However, the current dogma is that filamin, which stabilizes inactive αIIbβ3, is displaced from αIIbβ3 by talin to promote the integrin activation (inside-out signaling), and how filamin further functions remains unresolved. Here, we show that while associating with the inactive αIIbβ3, filamin also associates with the talin-bound active αIIbβ3 to mediate platelet spreading. Fluorescence resonance energy transfer-based analysis reveals that while associating with both αIIb and β3 cytoplasmic tails (CTs) to maintain the inactive αIIbβ3, filamin is spatiotemporally rearranged to associate with αIIb CT alone on activated αIIbβ3. Consistently, confocal cell imaging indicates that integrin α CT-linked filamin gradually delocalizes from the β CT-linked focal adhesion marker-vinculin likely because of the separation of integrin α/β CTs occurring during integrin activation. High-resolution crystal and nuclear magnetic resonance structure determinations unravel that the activated integrin αIIb CT binds to filamin via a striking α-helix→β-strand transition with a strengthened affinity that is dependent on the integrin-activating membrane environment containing enriched phosphatidylinositol 4,5-bisphosphate. These data suggest a novel integrin αIIb CT-filamin-actin linkage that promotes integrin outside-in signaling. Consistently, disruption of such linkage impairs the activation state of αIIbβ3, phosphorylation of focal adhesion kinase/proto-oncogene tyrosine kinase Src, and cell migration. Together, our findings advance the fundamental understanding of integrin outside-in signaling with broad implications in blood physiology and pathology.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Fan Lu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| | - Sujay Subbayya Ithychanda
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Marcin Apostol
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Mitali Das
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Gauravi Deshpande
- Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Edward F. Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
35
|
Jain P, Rimal R, Möller M, Singh S. Topographical influence of electrospun basement membrane mimics on formation of cellular monolayer. Sci Rep 2023; 13:8382. [PMID: 37225757 DOI: 10.1038/s41598-023-34934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Functional unit of many organs like lung, kidney, intestine, and eye have their endothelial and epithelial monolayers physically separated by a specialized extracellular matrix called the basement membrane. The intricate and complex topography of this matrix influences cell function, behavior and overall homeostasis. In vitro barrier function replication of such organs requires mimicking of these native features on an artificial scaffold system. Apart from chemical and mechanical features, the choice of nano-scale topography of the artificial scaffold is integral, however its influence on monolayer barrier formation is unclear. Though studies have reported improved single cell adhesion and proliferation in presence of pores or pitted topology, corresponding influence on confluent monolayer formation is not well reported. In this work, basement membrane mimic with secondary topographical cues is developed and its influence on single cells and their monolayers is investigated. We show that single cells cultured on fibers with secondary cues form stronger focal adhesions and undergo increased proliferation. Counterintuitively, absence of secondary cues promoted stronger cell-cell interaction in endothelial monolayers and promoted formation of integral tight barriers in alveolar epithelial monolayers. Overall, this work highlights the importance of choice of scaffold topology to develop basement barrier function in in vitro models.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Hanafy NAN. Extracellular alkaline pH enhances migratory behaviors of hepatocellular carcinoma cells as a caution against the indiscriminate application of alkalinizing drug therapy: In vitro microscopic studies. Acta Histochem 2023; 125:152032. [PMID: 37119607 DOI: 10.1016/j.acthis.2023.152032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
The migratory process is a highly organized, differentiated, and polarized stage by which many signaling pathways are regulated to control cell migration. Since the significant evidence of migrating cells is the reorganization of the cytoskeleton. In the recent study, the cell migration model was assessed on the fact that any disruption obtained in the cellular monolayer confluent, may cause stimulation for surrounding cells to migrate. We attempt to demonstrate the morphological alterations associated with these migrating cells. In this case, sterilized 1 N NaOH (1 µl) was used as alkaline burnt. It leads to scratching the monolayer of hepatocellular carcinoma (HLF cell line) allowing cells to lose their connection. Scanning electron microscopy (SEM), fluorescence microscopy, light inverted microscopy, and dark field were used for discovering the morphological alterations associated with migrating cancer cells. The findings show that cells exhibited distinctive alterations including a polarizing stage, accumulation of the actin nodules in front of the nucleus, and protrusions. Nuclei appeared as lobulated shapes during migration. Lamellipodia and uropod were extended as well. Additionally, TGFβ1 proved its expression in HLF and SNU449 after their stimulation. It is demonstrated that hepatocellular carcinoma cells can migrate after their stimulation and there is a caution against the indiscriminate application of alkalinizing drug therapy.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
37
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
38
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
39
|
Wang Z, Yang L, Zhou F, Li J, Wu X, Zhong X, Lv H, Yi S, Gao Q, Yang Z, Zhao P, Wu Y, Wu C, Zhang L, Wang H, Zhang L. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130820. [PMID: 36860031 DOI: 10.1016/j.jhazmat.2023.130820] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
One of the significant limitations of aquaculture worldwide is the prevalence of divalent copper (Cu). Crayfish (Procambarus clarkii) are economically important freshwater species adapted to a variety of environmental stimuli, including heavy metal stresses; however, large-scale transcriptomic data of the hepatopancreas of crayfish in response to Cu stress are still scarce. Here, integrated comparative transcriptome and weighted gene co-expression network analyses were initially applied to investigate gene expression profiles of the hepatopancreas of crayfish subjected to Cu stress for different periods. As a result, 4662 significant differentially expressed genes (DEGs) were identified following Cu stress. Bioinformatics analyses revealed that the "focal adhesion" pathway was one of the most significantly upregulated response pathways following Cu stress, and seven DEGs mapped to this pathway were identified as hub genes. Furthermore, the seven hub genes were examined by quantitative PCR, and each was found to have a substantial increase in transcript abundance, suggesting a critical role of the "focal adhesion" pathway in the response of crayfish to Cu stress. Our transcriptomic data can be a good resource for the functional transcriptomics of crayfish, and these results may provide valuable insights into the molecular response mechanisms underlying crayfish to Cu stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yi Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
40
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
41
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Petrenko Y, Dejneka A, Lunov O. Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment. ACS Biomater Sci Eng 2023; 9:2408-2425. [PMID: 37001010 PMCID: PMC10170482 DOI: 10.1021/acsbiomaterials.2c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
It has become evident that physical stimuli of the cellular microenvironment transmit mechanical cues regulating key cellular functions, such as proliferation, migration, and malignant transformation. Accumulating evidence suggests that tumor cells face variable mechanical stimuli that may induce metabolic rewiring of tumor cells. However, the knowledge of how tumor cells adapt metabolism to external mechanical cues is still limited. We therefore designed soft 3D collagen scaffolds mimicking a pathological mechanical environment to decipher how liver tumor cells would adapt their metabolic activity to physical stimuli of the cellular microenvironment. Here, we report that the soft 3D microenvironment upregulates the glycolysis of HepG2 and Alexander cells. Both cell lines adapt their mitochondrial activity and function under growth in the soft 3D microenvironment. Cells grown in the soft 3D microenvironment exhibit marked mitochondrial depolarization, downregulation of mitochondrially encoded cytochrome c oxidase I, and slow proliferation rate in comparison with stiff monolayer cultures. Our data reveal the coupling of liver tumor glycolysis to mechanical cues. It is proposed here that soft 3D collagen scaffolds can serve as a useful model for future studies of mechanically regulated cellular functions of various liver (potentially other tissues as well) tumor cells.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague 14021, Czech Republic
| | - Yuriy Petrenko
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague 18221, Czech Republic
| |
Collapse
|
42
|
Zhao YX, Yang Z, Ma LB, Wang F, Wang Y, Xiang C. HIF1A overexpression predicts the high lymph node metastasis risk and indicates a poor prognosis in papillary thyroid cancer. Heliyon 2023; 9:e14714. [PMID: 36994412 PMCID: PMC10040699 DOI: 10.1016/j.heliyon.2023.e14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Objective To investigate the value of Hypoxia-inducible factor 1 A (HIF1A) in predicting lymph node metastasis (LNM) stage and clinical outcomes of papillary thyroid cancer (PTC) patients. Materials and methods The HIF1A gene expression analysis in PTC was performed by bioinformatics approaches followed by evaluating its protein level using immunohistochemistry analysis. The role of HIF1A in predicting the LNM stage was evaluated by logistic regression analysis, nomogram construction, and receiver operating characteristic (ROC) analysis. We performed survival analyses to determine its prognostic value. Enrichment analysis was conducted, and immune cell infiltration and stromal content were evaluated to examine the underlying mechanism of HIF1A in PTC. Results HIF1A transcription and protein levels were significantly high in PTC tissue (P < 0.05). Its overexpression predicted high LNM risk and unfavorable prognosis for PTC patients (P < 0.05). Cox regression analysis revealed HIF1A as an independent prognostic biomarker for the disease-free interval (DFI) (P < 0.01). In addition, HIF1A was positively related to tumor-suppressive immunity but was negatively correlated with anti-tumor immunity. HIF1A upregulation was also associated with increased stromal content. Conclusions HIF1A overexpression is an independent predictor for worse DFI in PTC. The HIF1A expression may affect the prognosis of PTC patients through immune- and stroma-related pathways. Our study provides new insight into the role of HIF1A in PTC biology and clinical management.
Collapse
Affiliation(s)
- Yong-xun Zhao
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Corresponding author. The Seventh Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou 730000, Gansu, China.
| | - Ze Yang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li-bin Ma
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fang Wang
- The Pathology Department, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Corresponding author. Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
43
|
Norris EG, Pan XS, Hocking DC. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J Biol Chem 2023; 299:102922. [PMID: 36669646 PMCID: PMC9846890 DOI: 10.1016/j.jbc.2023.102922] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin. We determined that S1-RBD supported adhesion of fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells, while RBD-coated microparticles attached to epithelial monolayers in a cation-dependent manner. Cell adhesion to S1-RBD was RGD dependent and inhibited by blocking antibodies against αv and β3 but not α5 or β1 integrins. Similarly, we observed direct binding of S1-RBD to recombinant human αvβ3 and αvβ6 integrins, but not α5β1 integrins, using surface plasmon resonance. S1-RBD adhesion initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin; triggered Akt activation; and supported cell proliferation. Thus, the RGD sequence of S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raises the possibility that S1-mediated dysregulation of extracellular matrix dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
44
|
Martínez OMR, Ramos MAN, Acevedo AAS, Colón CCC, Ramos DM, Rivera CC, Rosario MEC. pH-Selective Reactions to Selectively Reduce Cancer Cell Proliferation: Effect of CaS Nanostructures in Human Skin Melanoma and Benign Fibroblasts. BIOCHEM 2023; 3:15-30. [PMID: 37035583 PMCID: PMC10079261 DOI: 10.3390/biochem3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An acidic extracellular pH value (pHe) is characteristic of many cancers, in contrast to the physiologic pHe found in most benign cells. This difference in pH offers a unique opportunity to design and engineer chemicals that can be employed for pH-selective reactions in the extracellular fluid of cancer cells. The viability of human skin melanoma and corresponding fibroblasts exposed to CaS dispersions is reported. The viability of melanoma cells decreases with CaS dispersion concentration and reaches 57% at 3%, a value easily distinguishable from melanoma control experiments. In contrast, the viability of benign fibroblasts remains nearly constant within experimental error over the range of dispersion concentrations studied. The CaS dispersions facilitate vinculin delocalization in the cytoplasmic fluid, a result consistent with improved focal adhesion kinase (FAK) regulation in melanoma cells. Thermodynamic considerations are consistent with the formation ofH 2 S from CaS in the presence of protons. The thermodynamic prediction is verified in independent experiments with solid CaS and acidic aqueous solutions. The amount ofH 2 S formed decreases with pH. An activation energy for the process of (30 ± 10) kJ/mol in the temperature range of 280 to 330 K is estimated from initial rate measurements as a function of temperature. The total Gibbs energy minimization approach was employed to establish the distribution of sulfides-includingH 2 S in the gas and aqueous phases-from the dissociation of CaS as a function of pH to mimic physiologically relevant pH values. Theoretical calculations suggest that partially protonated CaS in solution can be stable until the sulfur atom bonds to two hydrogen atoms, resulting in the formation of Ca2+ andH 2 S , which can be solvated and/or released to the gas phase. Our results are consistent with a model in which CaS is dissociated in the extracellular fluid of melanoma cells selectively. The results are discussed in the context of the potential biomedical applications of CaS dispersions in cancer therapies.
Collapse
Affiliation(s)
- Olga M. Rodríguez Martínez
- Department of Biology, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| | - Michelle A. Narváez Ramos
- Department of Biology, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| | - Angeliz A. Soto Acevedo
- Department of Chemistry, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| | - Carolina C. Colón Colón
- Department of Chemistry, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| | - Darlene Malavé Ramos
- Department of Biology, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| | - Coral Castro Rivera
- Department of Biology, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| | - Miguel E. Castro Rosario
- Department of Chemistry, School of Arts and Sciences, University of Puerto Rico at Mayaguez, Mayaguez, PR 00682, USA
| |
Collapse
|
45
|
Orchard KJA, Akbar M, Crowe LAN, Cole J, Millar NL, Raleigh SM. Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes (Basel) 2023; 14:496. [PMID: 36833423 PMCID: PMC9956879 DOI: 10.3390/genes14020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The development and progression of rotator cuff tendinopathy (RCT) is multifactorial and likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in RCT, including the role of histone modification, is not well established. Using chromatin immunoprecipitation sequencing, differences in the trimethylation status of H3K4 and H3K27 histones in late-stage RCT compared to control were investigated in this study. For H3K4, 24 genomic loci were found to be significantly more trimethylated in RCT compared to control (p < 0.05), implicating genes such as DKK2, JAG2, and SMOC2 in RCT. For H3K27, 31 loci were shown to be more trimethylated (p < 0.05) in RCT compared to control, inferring a role for EPHA3, ROCK1, and DEFβ115. Furthermore, 14 loci were significantly less trimethylated (p < 0.05) in control compared to RCT, implicating EFNA5, GDF6, and GDF7. Finally, the TGFβ signaling, axon guidance, and regulation of focal adhesion assembly pathways were found to be enriched in RCT. These findings suggest that the development and progression of RCT is, at least in part, under epigenetic control, highlighting the influence of histone modifications in this disorder and paving the way to further understand the role of epigenome in RCT.
Collapse
Affiliation(s)
- Kayleigh J. A. Orchard
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Moeed Akbar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Lindsay A. N. Crowe
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - John Cole
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Neal L. Millar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Stuart M. Raleigh
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
46
|
Chen L, Wang N, Zhang Y, Li D, He C, Li Z, Zhang J, Guo Y. Proteomics analysis indicates the involvement of immunity and inflammation in the onset stage of SOD1-G93A mouse model of ALS. J Proteomics 2023; 272:104776. [PMID: 36423857 DOI: 10.1016/j.jprot.2022.104776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease, and the pathogenic mechanism that underlies ALS is still unclear. We analyzed the differentially expressed proteins (DEPs) in the spinal cord between SOD1-G93A transgenic mice at the onset stage and non-transgenic (NTG) littermates based on 4D label-free quantitative proteomics (4D-LFQ) with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In our study, 189 DEPs were screened, of which 166 were up-regulated and 23 down-regulated. Clusters of Orthologous Groups (COG)/ EuKaryotic Orthologous Groups (KOG) classification, subcellular localization annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, clustering analysis and protein-protein interaction (PPI) network analyses were performed. Parallel reaction monitoring (PRM) analysis validated 48 proteins from immunity and inflammation-related pathways of KEGG. We described the function and distribution of DEPs, most of which were involved in the following pathways: complement and coagulation cascades, antigen processing and presentation, NF-kappa B signaling pathway, Retinoic acid-inducible gene I (RIG) -I-like receptor signaling pathway, the extracellular matrix-receptor (ECM-receptor) interaction, focal adhesion, phagosome and lysosome. PPI network analysis identified Fn1, Fga, Serpina1e and Serpina3n as potential biomarkers. Our discoveries broaden the view and expand our understanding of immunity and inflammation in ALS. SIGNIFICANCE: This study gives a comprehensive description of DEPs in the spinal cord proteomics of SOD1-G93A mice at the onset period. Compared with a previous study focusing on progressive stage, we showed that immunity and inflammation play an important role at the onset stage of ALS. Several pathways validated by PRM bring new insight to the pathological mechanisms of ALS. The participation of RIG-I-like signaling pathway in ALS and potential biomarkers Fga, Fn1, Serpina1e and Serpina3n are supplements to existing knowledge.
Collapse
Affiliation(s)
- Lin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China; Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Ningyuan Wang
- Xiangya School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Dongxiao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Caili He
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
47
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 291] [Impact Index Per Article: 291.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Xue Q, Varady SR, Waddell TQA, Roman MR, Carrington J, Roh-Johnson M. Lack of Paxillin phosphorylation promotes single-cell migration in vivo. J Cell Biol 2023; 222:213850. [PMID: 36723624 PMCID: PMC9929932 DOI: 10.1083/jcb.202206078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Focal adhesions are structures that physically link the cell to the extracellular matrix for cell migration. Although cell culture studies have provided a wealth of information regarding focal adhesion biology, it is critical to understand how focal adhesions are dynamically regulated in their native environment. We developed a zebrafish system to visualize focal adhesion structures during single-cell migration in vivo. We find that a key site of phosphoregulation (Y118) on Paxillin exhibits reduced phosphorylation in migrating cells in vivo compared to in vitro. Furthermore, expression of a non-phosphorylatable version of Y118-Paxillin increases focal adhesion disassembly and promotes cell migration in vivo, despite inhibiting cell migration in vitro. Using a mouse model, we further find that the upstream kinase, focal adhesion kinase, is downregulated in cells in vivo, and cells expressing non-phosphorylatable Y118-Paxillin exhibit increased activation of the CRKII-DOCK180/RacGEF pathway. Our findings provide significant new insight into the intrinsic regulation of focal adhesions in cells migrating in their native environment.
Collapse
Affiliation(s)
- Qian Xue
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sophia R.S. Varady
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Mackenzie R. Roman
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Carrington
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA,School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
49
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|