1
|
Silva JM, França RKADO, Barros PH, Fontinele HGC, Fonseca SG, Brigido MM, Maranhão AQ. Rescuing pathogen-specific memory B-cell from PBMC of prior Zika virus-infected individuals. Immunol Lett 2025; 271:106944. [PMID: 39542046 DOI: 10.1016/j.imlet.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Immunological memory, a fundamental immune system mechanism, is instrumental in long-term protection. Successful vaccines can elicit and sustain immunological memory against pathogens for the long term. Memory B cells (MBC) are key players in secondary responses due to their longevity and rapid differentiation into high-affinity antibody-secreting cells upon second antigen exposure. However, the availability of circulating MBCs is limited. Here we describe a protocol, which presents a straightforward and practical method for activating and expanding Zika virus (ZIKV) specific MBC. PBMCs collected from individuals who had been infected with ZIKV two years prior were cultured by supplementing with IL-2 and R848, a TLR-7/8 agonist, and then pulsed with inactivated virus. After seven days, this stimulation led to a notable rise in virus-specific functional MBC, as evidenced by a significant increase in the production of anti-ZIKV IgG. Importantly, the ZIKV pulse did not induce changes in the PBMC culture of individuals without a history of ZIKV infection. These findings demonstrate that virus-specific MBC can be expanded in vitro, even using PBMC cultures from individuals infected years before. Therefore, our protocol is a practical and effective tool for studies that require a larger number of human MBCs from previously infected individuals that are functional and specific to the pathogen under investigation.
Collapse
Affiliation(s)
- Jacyelle Medeiros Silva
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil; Molecular Biology Post-Graduation Program, UnB, Brazil
| | - Renato Kaylan Alves de Oliveira França
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil; Molecular Pathology Post-Graduation Program, UnB, Brazil
| | - Pedro Henrique Barros
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil; Molecular Biology Post-Graduation Program, UnB, Brazil
| | - Hitallo Guilherme Costa Fontinele
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil; Molecular Pathology Post-Graduation Program, UnB, Brazil
| | - Simone Gonçalves Fonseca
- Institute of Tropical Pathology and Public Health, University of Goiás, Goiás, Brazil; iii- Institute for Investigation in Immunology - INCT-iii - CNPq/MCT, Brazil
| | - Marcelo Macedo Brigido
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil; Molecular Biology Post-Graduation Program, UnB, Brazil; Molecular Pathology Post-Graduation Program, UnB, Brazil; iii- Institute for Investigation in Immunology - INCT-iii - CNPq/MCT, Brazil.
| | - Andrea Queiroz Maranhão
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil; Molecular Biology Post-Graduation Program, UnB, Brazil; Molecular Pathology Post-Graduation Program, UnB, Brazil; iii- Institute for Investigation in Immunology - INCT-iii - CNPq/MCT, Brazil
| |
Collapse
|
2
|
Marttila S, Rajić S, Ciantar J, Mak JKL, Junttila IS, Kummola L, Hägg S, Raitoharju E, Kananen L. Biological aging of different blood cell types. GeroScience 2025; 47:1075-1092. [PMID: 39060678 PMCID: PMC11872950 DOI: 10.1007/s11357-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland.
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Northern Finland Laboratory Centre (NordLab), Oulu, Finland
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Laura Kananen
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
- Faculty of Social Sciences (Health Sciences), Tampere University, Tampere, Finland.
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Gong S, Beukema M, De Vries-Idema J, Huckriede A. Assessing human B cell responses to influenza virus vaccines and adjuvants in a PBMC-derived in vitro culture system. Vaccine 2025; 44:126563. [PMID: 39616951 DOI: 10.1016/j.vaccine.2024.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024]
Abstract
In vitro systems based on human peripheral blood mononuclear cells (PBMCs) can bridge the gap between preclinical and clinical vaccine evaluation but have so far mainly been exploited to assess vaccine effects on antigen-presenting cells and T cells. Our study aimed to assess whether B cells present in PBMCs also respond to vaccines and reflect the effects of different vaccine formulations and adjuvants. We stimulated PBMCs with whole inactivated virus (WIV) or split virus (SIV) H5N1 influenza vaccine, with or without the addition of the adjuvant cytosine phosphoguanine (CpG) ODN 2395, and collected the cells and supernatants at different timepoints. B cell subsets were measured by flow cytometry, immunoglobulin (IgG) levels by ELISA, B cell-related genes by qPCR, and cytokine levels by intracellular staining. B cells differentiated more readily to plasmablasts and plasma cells and produced more IgG when PBMC cultures were stimulated with WIV than when stimulated with SIV. In line, PRDM1, XBP1, and AICDA, genes associated with the differentiation of B cells to antibody-secreting cells, were expressed at higher levels in WIV- than in SIV-stimulated PBMCs. The combination of WIV and CpG consistently induced the highest levels of antibody-secreting cell differentiation, IgG production, and B-cells secreting IL-6 and IL-10. Taken together, B cells in human PBMC cultures show distinct responses to different types of vaccines and vaccine/CpG combinations. This underlines the suitability of unfractionated PBMCs for evaluating vaccine effects on different types of human immune cells before running costly clinical trials.
Collapse
MESH Headings
- Humans
- Influenza Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Leukocytes, Mononuclear/immunology
- B-Lymphocytes/immunology
- Immunoglobulin G/immunology
- Immunoglobulin G/blood
- Oligodeoxyribonucleotides/immunology
- Oligodeoxyribonucleotides/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza A Virus, H5N1 Subtype/immunology
- Cytokines/metabolism
- Cells, Cultured
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- X-Box Binding Protein 1/immunology
- X-Box Binding Protein 1/genetics
- Adult
- Vaccines, Inactivated/immunology
- Cell Differentiation/immunology
- Interleukin-10/metabolism
- Interleukin-10/immunology
- Positive Regulatory Domain I-Binding Factor 1
Collapse
Affiliation(s)
- Shuran Gong
- Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Beukema
- Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacqueline De Vries-Idema
- Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology & Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Wang W, Hariharan M, Ding W, Bartlett A, Barragan C, Castanon R, Rothenberg V, Song H, Nery J, Aldridge A, Altshul J, Kenworthy M, Liu H, Tian W, Zhou J, Zeng Q, Chen H, Wei B, Gündüz IB, Norell T, Broderick TJ, McClain MT, Satterwhite LL, Burke TW, Petzold EA, Shen X, Woods CW, Fowler VG, Ruffin F, Panuwet P, Barr DB, Beare JL, Smith AK, Spurbeck RR, Vangeti S, Ramos I, Nudelman G, Sealfon SC, Castellino F, Walley AM, Evans T, Müller F, Greenleaf WJ, Ecker JR. Genetics and Environment Distinctively Shape the Human Immune Cell Epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.29.546792. [PMID: 37425926 PMCID: PMC10327221 DOI: 10.1101/2023.06.29.546792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The epigenomic landscape of human immune cells is dynamically shaped by both genetic factors and environmental exposures. However, the relative contributions of these elements are still not fully understood. In this study, we employed single-nucleus methylation sequencing and ATAC-seq to systematically explore how pathogen and chemical exposures, along with genetic variation, influence the immune cell epigenome. We identified distinct exposure-associated differentially methylated regions (eDMRs) corresponding to each exposure, revealing how environmental factors remodel the methylome, alter immune cell states, and affect transcription factor binding. Furthermore, we observed a significant correlation between changes in DNA methylation and chromatin accessibility, underscoring the coordinated response of the epigenome. We also uncovered genotype-associated DMRs (gDMRs), demonstrating that while eDMRs are enriched in regulatory regions, gDMRs are preferentially located in gene body marks, suggesting that exposures and genetic factors exert differential regulatory control. Notably, disease-associated SNPs were frequently colocalized with meQTLs, providing new cell-type-specific insights into the genetic basis of disease. Our findings underscore the intricate interplay between genetic and environmental factors in sculpting the immune cell epigenome, offering a deeper understanding of how immune cell function is regulated in health and disease.
Collapse
Affiliation(s)
- Wenliang Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Manoj Hariharan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wubin Ding
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Vince Rothenberg
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Haili Song
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Joseph Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew Aldridge
- Duke University School of Medicine, Bryan Research Building, 311 Research Drive, Durham, NC 27710, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Bei Wei
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Irem B. Gündüz
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | - Todd Norell
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Timothy J Broderick
- Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL 32502, USA
| | - Micah T. McClain
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Lisa L. Satterwhite
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Thomas W. Burke
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Elizabeth A. Petzold
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Christopher W. Woods
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Durham Veterans Affairs Medical Center, Durham, NC 27705 USA
| | - Vance G. Fowler
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
- Duke Clinical Research Institute, Durham NC 27701 USA
| | - Felicia Ruffin
- Center for Infectious Disease Diagnostics and Innovation, Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710 USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | - Dana B. Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322 USA
| | | | - Anthony K. Smith
- Battelle Memorial Institute, 505 King Ave Columbus OH 43201, USA
| | | | - Sindhu Vangeti
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Flora Castellino
- U.S. Department of Health and Human Services, Administration for Strategic Preparedness and Response, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Anna Maria Walley
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Thomas Evans
- Vaccitech plc, Unit 6-10, Zeus Building, Rutherford Avenue, Harwell OX11 0DF, United Kingdom
| | - Fabian Müller
- Integrative Cellular Biology & Bioinformatics Lab, Saarland University, 66123 Saarbrücken, Germany
| | | | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Freeman AF, Gonzalez CE, Yates B, Cole K, Little L, Flannelly E, Steinberg SM, Mo G, Piette N, Hughes TE, Cuellar-Rodriguez J, Gea-Banacloche J, Heller T, Hammoud DA, Holland SM, Kong HH, Young FD, Jing H, Kayaoglu B, Su HC, Pai SY, Hickstein DD, Shah NN. Hematopoietic cell transplantation for DOCK8 deficiency: Results from a prospective clinical trial. J Allergy Clin Immunol 2025; 155:176-187. [PMID: 39233015 DOI: 10.1016/j.jaci.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND DOCK8 deficiency is a primary immunodeficiency in which allogeneic hematopoietic cell transplantation (HCT) represents the only known cure. We tested the ability of a busulfan-based regimen to achieve reliable engraftment and high levels of donor chimerism with acceptable toxicity in a prospective clinical trial in DOCK8 deficiency. OBJECTIVES To both evaluate the ability of HCT to reverse the clinical phenotype and to correct the immunologic abnormalities by 1 year post HCT. METHODS We conducted a prospective HCT trial for recipients with DOCK8 deficiency. Subjects were recruited from October 5, 2010, to December 30, 2022. Donor sources included fully matched related and unrelated donors and haploidentical donors. The reduced toxicity, myeloablative conditioning regimen contained no serotherapy. Graft-versus-host disease (GVHD) prophylaxis included either a calcineurin inhibitor with methotrexate or post-HCT cyclophosphamide (PT/Cy) followed by tacrolimus and mycophenolate mofetil. The trial was later amended to study PT/Cy in all patients. (Pilot Study of Reduced-Intensity Hematopoietic Stem Cell Transplant of DOCK8 [NCT01176006].) RESULTS: Thirty-six subjects, both children and adults (median age 16.4 years), underwent HCT for DOCK8 deficiency. Most patients, 33 of 36 (92%), achieved full (≥98%) donor chimerism in whole blood as early as day +30. With a median potential follow-up of 7.4 years, 29 (80.6%) were alive with no evidence of new DOCK8 deficiency-related complications. PT/Cy was effective in reducing the risk of acute GVHD in patients who had received matched unrelated donor and haploidentical transplants, but it was associated with transient delays in immune-reconstitution and hemorrhagic cystitis. CONCLUSIONS A busulfan-based HCT regimen using PT/Cy for GVHD prophylaxis and a broad range of donor types and hematopoietic cell sources were well tolerated, leading to the reversal of the clinical immunophenotype.
Collapse
Affiliation(s)
- Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Corina E Gonzalez
- Immune-Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Md.
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Kristen Cole
- Transplant and Cell Therapy Program, Clinical Center, Bethesda, Md
| | - Lauren Little
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Erin Flannelly
- Immune-Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Md
| | - Seth M Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Md
| | - George Mo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | | | | | - Jennifer Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Juan Gea-Banacloche
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Theo Heller
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, Bethesda, Md
| | - Steve M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Fernanda D Young
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Basak Kayaoglu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Sung-Yun Pai
- Immune-Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Md
| | - Dennis D Hickstein
- Immune-Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Md
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| |
Collapse
|
6
|
Cale EM, Shen CH, Olia AS, Radakovich NA, Rawi R, Yang Y, Ambrozak DR, Bennici AK, Chuang GY, Crooks ED, Driscoll JI, Lin BC, Louder MK, Madden PJ, Messina MA, Osawa K, Stewart-Jones GBE, Verardi R, Vrakas Z, Xie D, Zhang B, Binley JM, Connors M, Koup RA, Pierson TC, Doria-Rose NA, Kwong PD, Mascola JR, Gorman J. A multidonor class of highly glycan-dependent HIV-1 gp120-gp41 interface-targeting broadly neutralizing antibodies. Cell Rep 2024; 43:115010. [PMID: 39675002 DOI: 10.1016/j.celrep.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Antibodies that target the gp120-gp41 interface of the HIV-1 envelope (Env) trimer comprise a commonly elicited category of broadly neutralizing antibodies (bNAbs). Here, we isolate and characterize VRC44, a bNAb lineage with up to 52% neutralization breadth. The cryoelectron microscopy (cryo-EM) structure of antibody VRC44.01 in complex with the Env trimer reveals binding to the same gp120-gp41 interface site of vulnerability as antibody 35O22 from a different HIV-1-infected donor. In addition to having similar angles of approach and extensive contacts with glycans N88 and N625, VRC44 and 35O22 derive from the same IGHV1-18 gene and share convergent mutations, indicating these two antibodies to be members of the only known highly glycan-dependent multidonor class. Strikingly, both lineages achieved almost 100% neutralization breadth against virus strains displaying high-mannose glycans. The high breadth and reproducible elicitation of VRC44 and 35O22 lineages validate germline-based methods of immunogen design for targeting the HIV-1 gp120-gp41 interface.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan A Radakovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony K Bennici
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma D Crooks
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick J Madden
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zoe Vrakas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Xie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, Weston, MA 02493, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
7
|
Gutiérrez-Hincapié S, Orrego JC, Franco JL, Trujillo-Vargas CM. Loss-of-function variant in MAGT1 leading to XMEN disease in a Colombian patient with a common variable immunodeficiency. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:39-47. [PMID: 39836832 DOI: 10.7705/biomedica.7636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Common variable immunodeficiency is a diagnosis of exclusion in immunodeficient patients with increased susceptibility to infections, hypogammaglobulinemia, deficient response to vaccination, or low percentages of switched memory B cells. In low- and middle-income countries, the elucidation and study of molecular defects in these patients may take decades. OBJECTIVE To elucidate the genetic defect conferring impaired immunity in a patient diagnosed with common variable immunodeficiency. MATERIALS AND METHODS The clinical phenotype was extracted from the clinical records. NKG2D expression in natural killer cells was evaluated by flow cytometry. The whole exome sequencing was performed in the patient and his parents. Sanger sequencing confirmed the pathogenic variant. RESULTS The patient suffered from upper respiratory and urinary tract infections, autoimmune hemolytic anemia, and hepatopathy. NKG2D was decreased in the different blood subpopulations of natural killer cells. Serologic and viral load studies for Epstein-Barr virus were positive, but no B-cell malignancies have been documented. The patient presented a nonsense variant in the exon 3 of the MAGT1 gen (c.409C>T, rs387906724) in the X chromosome, resulting in an amino acid substitution of arginine for a stop codon in the position 137 of the protein (R137X). The mother also carried the pathogenic variant in a heterozygous state. CONCLUSIONS We report the clinical case of the first Colombian male patient with a pathogenic variant in MAGT1 associated with XMEN disease. Genetic counseling and followup are recommended for families with similar cases to allow prompt detection of new cases.
Collapse
Affiliation(s)
| | - Julio César Orrego
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - José Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Claudia M Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
8
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMID: 39772079 PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. METHODS To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. RESULTS RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. CONCLUSIONS The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
9
|
Remiker AS, Lopes JPM, Jesudas R, Superdock A, Park N, Pateva I. Case Report: Early-onset or recalcitrant cytopenias as presenting manifestations of activated PI3Kδ syndrome. Front Pediatr 2024; 12:1494945. [PMID: 39664282 PMCID: PMC11632462 DOI: 10.3389/fped.2024.1494945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Background Patients with recurrent, chronic, or refractory cytopenias represent a challenging subgroup that may harbor an underlying diagnosis, such as an inborn error of immunity (IEI). Patients with IEIs such as activated phosphoinositide 3-kinase delta syndrome (APDS), frequently have hematologic manifestations, but these are not often reported as presenting symptoms. As a result, IEIs may be overlooked in patients presenting with early and/or recalcitrant cytopenias. Here, we describe the diagnostic journey and management of three patients who presented to a pediatric hematologist/oncologist with early-onset or recalcitrant cytopenias and were ultimately diagnosed with APDS. Case presentations Patients presented with early-onset and/or refractory cytopenias, with two of the three developing multilineage cytopenias. Prior to an APDS diagnosis, two patients underwent a total of approximately 20 procedures, including biopsies, invasive endoscopies, and imaging, with one undergoing eight differential diagnoses that were ruled out through additional testing. Recalcitrant cytopenias, a history of infection, and a family history of lymphoproliferation, infection, or autoimmunity raised suspicion of an underlying IEI, leading to genetic testing. Genetic testing identified a pathogenic variant of PIK3CD in each patient, resulting in the diagnosis of APDS. Following these diagnoses, two patients underwent modifications in the management of care with the administration of intravenous immunoglobulin therapy (IVIG), the mTOR inhibitor sirolimus, or surgical procedures. These treatment modifications either improved or resolved the cytopenias. The third patient showed improvement in immune thrombocytopenia with IVIG 1 month prior to receiving a definitive diagnosis. Following diagnosis, follow-up genetic testing of family members led to the identification of additional cases of APDS. Conclusions These cases highlight the importance of early genetic evaluation in patients with early-onset or recalcitrant cytopenias and demonstrate the challenges of differential diagnosis. In addition, these cases demonstrate beneficial changes in management and outcomes that can follow a definitive diagnosis, including the identification of targeted treatment options. Collectively, this case series supports the notion that underlying IEIs should be considered in the workup of early-onset or recalcitrant cytopenias, particularly in patients who present with a combination of hematologic and immunologic manifestations that are refractory to treatment, manifest at an unusually young age, or can be tied to family history.
Collapse
Affiliation(s)
- Allison S. Remiker
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Hematology/Oncology/Blood and Bone Marrow Transplantation, Children's Wisconsin Hospital, Milwaukee, WI, United States
| | - Joao Pedro Matias Lopes
- Division of Pediatric Allergy/Immunology, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Rohith Jesudas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Alexandra Superdock
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Nami Park
- Medical Affairs, Pharming Healthcare, Inc., Warren, NJ, United States
| | - Irina Pateva
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Hematologic Malignancies II, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
10
|
Nair AG, Leon-Ponte M, Kim VHD, Sussman G, Ehrhardt GR, Grunebaum E. Characterizing CD38 expression in terminally differentiated B cells using variable lymphocyte receptor B tetramers. Front Immunol 2024; 15:1451232. [PMID: 39575239 PMCID: PMC11579616 DOI: 10.3389/fimmu.2024.1451232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction CD38 is an ectoenzyme receptor found on hematopoietic cells and its expression is used in the flow cytometric analysis of sub-populations of circulating B cells among peripheral blood mononuclear cells (PBMC) to aid in diagnosing patients with different antibody production defects (AbD). Monoclonal antibodies derived from the sea lamprey Variable Lymphocyte Receptor B (VLRB) are emerging as an alternative to conventional mammalian antibodies. We hypothesized that VLRB MM3 (V-CD38) which specifically recognizes CD38 in a manner correlating with its enzymatic activity could identify terminally differentiated B cells in human PBMC. Here we investigate the ability of V-CD38 as a tool to diagnose patients with diverse immune abnormalities including AbD. Methods The expression of CD38 on CD3-CD19+CD27+ plasmablasts and CD3-CD19+IgMhiCD27- transitional B cells in PBMC was analyzed by flow cytometry using V-CD38 and compared with a commercial conventional antibody to CD38 (C-CD38). Results A highly significant correlation (p<0.001, r=0.99) between the percentages of plasmablasts recognized by V-CD38 and C-CD38 was observed among 36 healthy controls (HC), 7 patients with AbD and 24 allergic individuals (AI). The use of V-CD38 enabled improved gating of the CD38 expressing cells (CD38+), aiding in the observation that patients with AbD had significantly lower (p=0.002) CD38+ plasmablasts (0.13%±0.13%) than HC (0.52%±0.57%). Only 61.3% of the transitional B cells detected by C-CD38 were also recognized by V-CD38 (r=0.95, p<0.001) among the 67 participants. AI had significantly reduced V-CD38 and C-CD38 transitional cells compared to HC (p=0.026 and p=0.012, respectively). Conclusions V-CD38 is a novel reagent that can assess B cells in human PBMC.
Collapse
Affiliation(s)
- Arundhati G. Nair
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Matilde Leon-Ponte
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Vy HD Kim
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gordon Sussman
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Eyal Grunebaum
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Czarnowicki T, David E, Yamamura K, Han J, He H, Pavel AB, Glickman J, Erickson T, Estrada Y, Krueger JG, Rangel SM, Paller AS, Guttman-Yassky E. Evolution of pathologic B-cell subsets and serum environment-specific sIgEs in patients with atopic dermatitis and controls, from infancy to adulthood. Allergy 2024; 79:2732-2747. [PMID: 39003573 PMCID: PMC11449672 DOI: 10.1111/all.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND While B-cells have historically been implicated in allergy development, a growing body of evidence supports their role in atopic dermatitis (AD). B-cell differentiation across ages in AD, and its relation to disease severity scores, has not been well defined. OBJECTIVE To compare the frequency of B-cell subsets in blood of 0-5, 6-11, 12-17, and ≥18 years old patients with AD versus age-matched controls. METHODS Flow cytometry was used to measure B-cell subset frequencies in the blood of 27 infants, 17 children, 11 adolescents, and 31 adults with moderate-to-severe AD and age-matched controls. IgD/CD27 and CD24/CD38 core gating systems and an 11-color flow cytometry panel were used to determine frequencies of circulating B-cell subsets. Serum total and allergen-specific IgE (sIgEs) levels were measured using ImmunoCAP®. RESULTS Adolescents with AD had lower frequencies of major B-cells subsets (p < .03). CD23 expression increased with age and was higher in AD compared to controls across all age groups (p < .04). In AD patients, multiple positive correlations were observed between IL-17-producing T-cells and B-cell subsets, most significantly non-switched memory (NSM) B-cells (r = .41, p = .0005). AD severity positively correlated with a list of B-cell subsets (p < .05). IL-9 levels gradually increased during childhood, reaching a peak in adolescence, paralleling allergen sensitization, particularly in severe AD. Principal component analysis of the aggregated environmental sIgE data showed that while controls across all ages tightly clustered together, adolescents with AD demonstrated distinct clustering patterns relative to controls. CONCLUSIONS Multiple correlations between B-cells and T-cells, as well as disease severity measures, suggest a complex interplay of immune pathways in AD. Unique B-cell signature during adolescence, with concurrent allergen sensitization and IL-9 surge, point to a potentially wider window of opportunity to implement interventions that may prevent the progression of the atopic march.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Shaare Zedek Medical Center, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden David
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kazuhiko Yamamura
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Joseph Han
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen He
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana B Pavel
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob Glickman
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taylor Erickson
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Yeriel Estrada
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Stephanie M. Rangel
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, IL, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Chiron AS, Locher L, Sarthou A, Gleizes A, Krzysiek R, Chretien P, Hacein-Bey-Abina S. Evaluation of analytical performance of AQUIOS CL flow cytometer and method comparison with bead-based flow cytometry methods. Clin Chem Lab Med 2024; 62:2011-2023. [PMID: 38584471 DOI: 10.1515/cclm-2023-1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVES Given that method validation is mandatory for compliance with the International Organization for Standardization (ISO) 15,189 standard requirements, we evaluated the analytical performance of the AQUIOS CL system (Beckman Coulter) and compared it with two bead-based flow cytometry (FCM) protocols (BD FACSCAntoTM-II and Beckman Coulter DxFLEX). There are no comparative literature data on standardized protocols for counting lymphocyte subsets on the new-generation cytometer DxFLEX. METHODS We evaluated the AQUIOS CL's performance with regard to accuracy, linearity and stability by using dedicated control cell samples and patient samples. We also compared the lymphocyte counts measured on the AQUIOS CL (n=69 samples) with those measured on the BD FACSCAntoTM-II and DxFLEX FCM systems. For 61 samples, FCM results were compared with those measured on the XN-3000 Sysmex hematology analyzer. RESULTS AQUIOS CL showed acceptable performance - even outside the manufacturer's quantification ranges- and strong correlations with bead-based FCM methods. The FCM techniques and the XN-3000 gave similar absolute lymphocyte counts, although values in samples with intense lymphocytosis (B cell lymphoma/leukemia) were underestimated. CONCLUSIONS The AQUIOS CL flow cytometer is a time-saving, single-platform system with good performance, especially when the manufacturer's instructions for use are followed. However, AQUIOS CL's possible limitations and pitfalls impose validation of a bead-based FCM method for immunophenotyping verification or as a back-up system. Although the DxFLEX flow cytometer is more time-consuming to use, it can provide standardized lymphocyte subset counts in case of aberrant results on AQUIOS CL or in the event of equipment failure.
Collapse
Affiliation(s)
- Andrada S Chiron
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Paris, France
| | - Lucy Locher
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Aurélie Sarthou
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Aude Gleizes
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Paris, France
| | - Roman Krzysiek
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Inflammation, Microbiome and Immunosurveillance, Orsay, UMR-996 INSERM, Paris-Saclay University, Orsay, France
| | - Pascale Chretien
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Paris, France
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Hartmann CR, Khan R, Schöning J, Richter M, Willers M, Pirr S, Heckmann J, Dirks J, Morbach H, Konrad M, Fries E, Winkler M, Büchel J, Seidenspinner S, Fischer J, Vollmuth C, Meinhardt M, Marissen J, Schmolke M, Haid S, Pietschmann T, Backes S, Dölken L, Löber U, Keil T, Heuschmann PU, Wöckel A, Sagar, Ulas T, Forslund-Startceva SK, Härtel C, Viemann D. A clinical protocol for a German birth cohort study of the Maturation of Immunity Against respiratory viral Infections (MIAI). Front Immunol 2024; 15:1443665. [PMID: 39355253 PMCID: PMC11442434 DOI: 10.3389/fimmu.2024.1443665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Respiratory viral infections (RVIs) are a major global contributor to morbidity and mortality. The susceptibility and outcome of RVIs are strongly age-dependent and show considerable inter-population differences, pointing to genetically and/or environmentally driven developmental variability. The factors determining the age-dependency and shaping the age-related changes of human anti-RVI immunity after birth are still elusive. Methods We are conducting a prospective birth cohort study aiming at identifying endogenous and environmental factors associated with the susceptibility to RVIs and their impact on cellular and humoral immune responses against the influenza A virus (IAV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MIAI birth cohort enrolls healthy, full-term neonates born at the University Hospital Würzburg, Germany, with follow-up at four defined time-points during the first year of life. At each study visit, clinical metadata including diet, lifestyle, sociodemographic information, and physical examinations, are collected along with extensive biomaterial sampling. Biomaterials are used to generate comprehensive, integrated multi-omics datasets including transcriptomic, epigenomic, proteomic, metabolomic and microbiomic methods. Discussion The results are expected to capture a holistic picture of the variability of immune trajectories with a focus on cellular and humoral key players involved in the defense of RVIs and the impact of host and environmental factors thereon. Thereby, MIAI aims at providing insights that allow unraveling molecular mechanisms that can be targeted to promote the development of competent anti-RVI immunity in early life and prevent severe RVIs. Clinical trial registration https://drks.de/search/de/trial/, identifier DRKS00034278.
Collapse
Affiliation(s)
- Carina R. Hartmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Robin Khan
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Dirks
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Henner Morbach
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Center for Primary Immunodeficiencies and Autoinflammatory Diseases (CIDA), University Hospital Würzburg, Würzburg, Germany
| | - Monika Konrad
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Elena Fries
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Magdalene Winkler
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Jonas Fischer
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Vollmuth
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martin Meinhardt
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sibylle Haid
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research (TWINCORE), a joint venture between the Helmholtz Centre for Infection Research and The Hannover Medical School, Hannover, Germany
| | - Thomas Pietschmann
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research (TWINCORE), a joint venture between the Helmholtz Centre for Infection Research and The Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lars Dölken
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrike Löber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- State Institute of Health I, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Peter U. Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute for Medical Data Science, University Hospital Würzburg, Würzburg, Germany
- Clinical Trial Centre Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sofia K. Forslund-Startceva
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Dorothee Viemann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Center for Infection Research, University Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Comel M, Saad N, Sil D, Apparailly F, Willems M, Djouad F, Andrau JC, Lozano C, Genevieve D. Abnormal Immune Profile in Individuals with Kabuki Syndrome. J Clin Immunol 2024; 45:7. [PMID: 39264387 DOI: 10.1007/s10875-024-01796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To analyze the lymphocyte subsets in individuals with Kabuki syndrome for better characterizing the immunological phenotype of this rare congenital disorder. METHODS We characterized the immunological profile including B-, T- and natural killer-cell subsets in a series (N = 18) of individuals with Kabuki syndrome. RESULTS All 18 individuals underwent genetic analysis: 15 had a variant in KMT2D and 3 a variant in KDM6A. Eleven of the 18 individuals (61%) had recurrent infections and 9 (50%) respiratory infections. Three (17%) had autoimmune diseases. On immunological analysis, 6 (33%) had CD4 T-cell lymphopenia, which was preferentially associated with the KMT2D truncating variant (5/9 individuals). Eight of 18 individuals (44%) had a humoral deficiency and eight (44%) had B lymphopenia. We found abnormal distributions of T-cell subsets, especially a frequent decrease in recent thymic emigrant CD4 + naive T-cell count in 13/16 individuals (81%). CONCLUSION The immunological features of Kabuki syndrome showed variable immune disorders with CD4 + T-cell deficiency in one third of cases, which had not been previously reported. In particular, we found a reduction in recent thymic emigrant naïve CD4 + T-cell count in 13 of 16 individuals, representing a novel finding that had not previously been reported.
Collapse
Affiliation(s)
- Margot Comel
- Montpellier Université, Centre de Référence Anomalies du Développement Syndromes Malformatifs, Génétique Clinique, Hôpital Arnaud de Villeneuve, CHU Montpellier, 371 avenue du Doyen Gaston Giraud. 34295 MONTPELLIER cedex 5, Montpellier, France
| | - Norma Saad
- Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM, U1183, University of Montpellier, Montpellier, France
- Arthritis R&D, Arthritis, Montpellier, France
| | - Debapratim Sil
- Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM, U1183, University of Montpellier, Montpellier, France
- Chrom_Rare Consortium, Trento, Italy
| | - Florence Apparailly
- Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM, U1183, University of Montpellier, Montpellier, France
- Clinical Department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| | - Marjolaine Willems
- Montpellier Université, Centre de Référence Anomalies du Développement Syndromes Malformatifs, Génétique Clinique, Hôpital Arnaud de Villeneuve, CHU Montpellier, 371 avenue du Doyen Gaston Giraud. 34295 MONTPELLIER cedex 5, Montpellier, France
- Clinical Department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM, U1183, University of Montpellier, Montpellier, France
- Chrom_Rare Consortium, Trento, Italy
- Clinical Department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS UMR 5535, Montpellier, France
- Chrom_Rare Consortium, Trento, Italy
| | - Claire Lozano
- Laboratoire d'immunologie, CHU Montpellier, Montpellier, France
| | - David Genevieve
- Montpellier Université, Centre de Référence Anomalies du Développement Syndromes Malformatifs, Génétique Clinique, Hôpital Arnaud de Villeneuve, CHU Montpellier, 371 avenue du Doyen Gaston Giraud. 34295 MONTPELLIER cedex 5, Montpellier, France.
- Institute of Regenerative Medicine and Biotherapy (IRMB), INSERM, U1183, University of Montpellier, Montpellier, France.
- Chrom_Rare Consortium, Trento, Italy.
| |
Collapse
|
15
|
Ionescu LI, Blydt-Hansen T, Foster BJ, Allen U, Birk PE, Hamiwka L, Phan V, Min S, Ivison S, Levings M, West LJ, Mital S, Urschel S. Immune phenotyping in a pediatric multicenter transplant study: Suitability of a preformulated dry-antibody panel system. Hum Immunol 2024; 85:110837. [PMID: 39013208 DOI: 10.1016/j.humimm.2024.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Flow-cytometric immune phenotyping is influenced by cryopreservation and inter-laboratory variability limiting comparability in multicenter studies. We assessed a system of optimized, pre-mixed dry-antibody panel tubes requiring small amounts of whole blood for validity, reliability and challenges in a Canadian multicenter study (POSITIVE) with long-distance sample shipping, using standardized protocols. Thirty-seven children awaiting solid-organ transplant were enrolled for parallel immune-phenotyping with both validated, optimized in-house panels and the dry-antibody system. Samples were collected before, 3 and 12 months post-transplant. Quality-assurance measures and congruence of phenotypes were compared using Bland-Altman comparisons, linear regression and group comparisons. Samples showed excellent lymphocyte viability (mean 94.8 %) and recovery when processed within 30 h. Comparing staining methods, significant correlations (Spearman correlation coefficient >0.6, p < 0.05), mean difference <5 % and variation 2SD <25 % were found for natural-killer, T and B cells, including many immunologically important cell subsets (CD8+, naïve, memory CD4+ T; switched-memory, transitional B). Some subgroups (plasmablasts, CD1d+CD5hi B cells) showed weak correlations, limiting interpretation reliability. The dry-antibody system provides a reliable method for standardized analysis of many immune phenotypes after long-distance shipping when processed within 30 h, rendering the system attractive for pediatric studies due to small blood amounts required and highly standardized processing and analysis.
Collapse
Affiliation(s)
- Lavinia I Ionescu
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Tom Blydt-Hansen
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Pediatric Nephrology, University of British Columbia, Vancouver, Canada
| | - Bethany J Foster
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Nephrology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Upton Allen
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Infectious Diseases, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Patricia E Birk
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Department of Pediatrics and Child Health, Health Sciences Centre Winnipeg, Winnipeg, Manitoba, Canada
| | - Lorraine Hamiwka
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Division of Nephrology, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Veronique Phan
- Division of Nephrology, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Sandar Min
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Lori J West
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada
| | - Seema Mital
- Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada; Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Simon Urschel
- Division of Pediatric Cardiology, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Sîrbulescu RF, Nicholson K, Kawai K, Hilton OM, Sobell D, Jin G, Verrill DE, Dwyer LJ, Xiong Y, Bachanová P, Kim SE, Gallup S, Gelevski D, Daley H, Hernandez Rodriguez DE, Negre H, Sturtevant O, Nikiforow S, Ritz J, Chen YB, Reeves PM, Sluder AE, Berry JD, Sadri-Vakili G, Cudkowicz M, Poznansky MC. Allogeneic B cell immunomodulatory therapy in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23796. [PMID: 38967302 DOI: 10.1096/fj.202302659r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Katharine Nicholson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kento Kawai
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Orla M Hilton
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Don Sobell
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gina Jin
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E Verrill
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Bachanová
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Spencer E Kim
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon Gallup
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dario Gelevski
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Daley
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hélène Negre
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olive Sturtevant
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Nikiforow
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Bin Chen
- The Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James D Berry
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ghazaleh Sadri-Vakili
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Sean M. Healey and AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Rivalta B, Zangari P, Pacillo L, Manno EC, Santilli V, Rotulo GA, Cotugno N, Rossetti C, Vallese S, Paglietti MG, Tomà P, Pardi V, Inserra A, Francalanci P, Milano GM, Alaggio R, Cancrini C, Finocchi A, Palma P, Amodio D. Epstein-Barr virus-associated smooth muscle tumor in a female with ataxia telangiectasia: A case report. Pediatr Blood Cancer 2024; 71:e31019. [PMID: 38616383 DOI: 10.1002/pbc.31019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Beatrice Rivalta
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paolo Tomà
- Radiology and Bioimaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valerio Pardi
- General Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Inserra
- General Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Francalanci
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Hematology and Oncology, Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiency, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Zhang M, Zhang Y, Zhang J, Zhang J, Gao S, Li Z, Tao K, Liang X, Pan J, Zhu M. An automatic analysis and quality assurance method for lymphocyte subset identification. Clin Chem Lab Med 2024; 62:1411-1420. [PMID: 38217085 DOI: 10.1515/cclm-2023-1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVES Lymphocyte subsets are the predictors of disease diagnosis, treatment, and prognosis. Determination of lymphocyte subsets is usually carried out by flow cytometry. Despite recent advances in flow cytometry analysis, most flow cytometry data can be challenging with manual gating, which is labor-intensive, time-consuming, and error-prone. This study aimed to develop an automated method to identify lymphocyte subsets. METHODS We propose a knowledge-driven combined with data-driven method which can gate automatically to achieve subset identification. To improve accuracy and stability, we have implemented a Loop Adjustment Gating to optimize the gating result of the lymphocyte population. Furthermore, we have incorporated an anomaly detection mechanism to issue warnings for samples that might not have been successfully analyzed, ensuring the quality of the results. RESULTS The evaluation showed a 99.2 % correlation between our method results and manual analysis with a dataset of 2,000 individual cases from lymphocyte subset assays. Our proposed method attained 97.7 % accuracy for all cases and 100 % for the high-confidence cases. With our automated method, 99.1 % of manual labor can be saved when reviewing only the low-confidence cases, while the average turnaround time required is only 29 s, reducing by 83.7 %. CONCLUSIONS Our proposed method can achieve high accuracy in flow cytometry data from lymphocyte subset assays. Additionally, it can save manual labor and reduce the turnaround time, making it have the potential for application in the laboratory.
Collapse
Affiliation(s)
- MinYang Zhang
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - YaLi Zhang
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - JingWen Zhang
- Department of Clinical Hematology and Flow Cytometry Lab, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - JiaLi Zhang
- Department of Clinical Hematology and Flow Cytometry Lab, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - SiYuan Gao
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - ZeChao Li
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - KangPei Tao
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - XiaoDan Liang
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - JianHua Pan
- Department of Clinical Hematology and Flow Cytometry Lab, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - Min Zhu
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| |
Collapse
|
19
|
Rao VK, Kulm E, Grossman J, Buchbinder D, Chong H, Bradt J, Webster S, Šedivá A, Dalm VA, Uzel G. Long-term treatment with selective PI3Kδ inhibitor leniolisib in adults with activated PI3Kδ syndrome. Blood Adv 2024; 8:3092-3108. [PMID: 38593221 PMCID: PMC11222951 DOI: 10.1182/bloodadvances.2023011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an inborn error of immunity that manifests as immune deficiency and dysregulation; symptoms include frequent infections and lymphoproliferation. In our dose-finding and phase 3 placebo-controlled trials, treatment with the selective PI3Kδ inhibitor leniolisib reduced lymphoproliferation and normalized lymphocyte subsets. Here, we present 6 years of follow-up from the 6 adult patients in the original dose-finding trial receiving leniolisib. We used data from the ongoing open-label extension study, which was supplemented at later time points by investigators, including health-related quality of life (HRQoL) assessed through a clinician-reported questionnaire. We observed improvements in HRQoL: 5 of 6 patients experienced an increase in physical capabilities and socialization, and a decrease in prescribed medications. Immune subsets improved in all patients: mean transitional B-cell levels decreased from 38.17% to 2.47% and the CD4:CD8 T-cell ratio normalized to 1.11. Manifestations seen before and within the first year of leniolisib exposure, such as infections and gastrointestinal conditions, attenuated after year 2, with few new conditions emerging out to year 6. Thrombocytopenia or lymphopenia remained present in half of patients at year 6. Of 83 adverse events through year 5, 90.36% were grade 1; none were grade 4/5 nor deemed leniolisib related. Collectively, we saw an enhancement in HRQoL as well as durable changes in lymphocyte subsets and clinical manifestations, further supporting the use of leniolisib as a long-term therapeutic option for the treatment of APDS. This trial was registered at www.ClinicalTrials.gov as #NCT02859727.
Collapse
Affiliation(s)
- V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, MD
| | | | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange County, Orange, CA
| | - Hey Chong
- Division of Allergy and Immunology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | | - Sharon Webster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Virgil A. Dalm
- Division of Allergy and Clinical Immunology and Department of Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Hlavackova E, Krenova Z, Kerekes A, Slanina P, Vlkova M. B cell subsets reconstitution and immunoglobulin levels in children and adolescents with B non-Hodgkin lymphoma after treatment with single anti CD20 agent dose included in chemotherapeutic protocols: single center experience and review of the literature. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:167-176. [PMID: 37227099 DOI: 10.5507/bp.2023.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND RTX, an anti-CD20 monoclonal antibody, added to chemotherapy has proven to be effective in children and adolescents with high-grade, high-risk and matured non-Hodgkin lymphoma. RTX leads to prompt CD19+ B lymphocyte depletion. However, despite preserved immunoglobulin production by long-lived plasmablasts after treatment, patients remain at risk of prolonged hypogammaglobulinemia. Further, there are few general guidelines for immunology laboratories and clinical feature monitoring after B cell-targeted therapies. The aim of this paper is to describe B cell reconstitution and immunoglobulin levels after pediatric B-NHL protocols, that included a single RTX dose and to review the literature. METHODS A retrospective single-center study on the impact of a single RTX dose included in a chemotherapeutic pediatric B Non-Hodgkin Lymphoma (B-NHL) treatment protocols. Immunology laboratory and clinical features were evaluated over an eight hundred days follow-up (FU) period, after completing B-NHL treatment. RESULTS Nineteen patients (fifteen Burkitt lymphoma, three Diffuse large B cell lymphoma, and one Marginal zone B cell lymphoma) fulfilled the inclusion criteria. Initiation of B cell subset reconstitution occurred a median of three months after B-NHL treatment. Naïve and transitional B cells declined over the FU in contrast to the marginal zone and the switched memory B cell increase. The percentage of patients with IgG, IgA, and IgM hypogammaglobulinemia declined consistently over the FU. Prolonged IgG hypogammaglobulinemia was detectable in 9%, IgM in 13%, and IgA in 25%. All revaccinated patients responded to protein-based vaccines by specific IgG antibody production increase. Following antibiotic prophylaxes, none of the patients with hypogammaglobulinemia manifested with either a severe or opportunistic infection course. CONCLUSION The addition of a single RTX dose to the chemotherapeutic treatment protocols was not shown to increase the risk of developing secondary antibody deficiency in B-NHL pediatric patients. Observed prolonged hypogammaglobulinemia remained clinically silent. However interdisciplinary agreement on regular long-term immunology FU after anti-CD20 agent treatment is required.
Collapse
Affiliation(s)
- Eva Hlavackova
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Zdenka Krenova
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Arpad Kerekes
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Nieman DC. Exercise immunology: Novel insights. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:277-279. [PMID: 38278352 PMCID: PMC11117002 DOI: 10.1016/j.jshs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Affiliation(s)
- David C Nieman
- Human Performance Laboratory,Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
22
|
Bozhkova M, Gardzheva P, Rangelova V, Taskov H, Murdjeva M. Cutting-edge assessment techniques for B cell immune memory: an overview. BIOTECHNOL BIOTEC EQ 2024; 38. [DOI: 10.1080/13102818.2024.2345119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 10/31/2024] Open
Affiliation(s)
- Martina Bozhkova
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Petya Gardzheva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University–Plovdiv, Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| |
Collapse
|
23
|
Fioredda F, Beccaria A, Casartelli P, Turrini E, Contratto C, Giarratana MC, Bagnasco F, Saettini F, Pillon M, Marzollo A, Zanardi S, Civino A, Onofrillo D, Lanciotti M, Ceccherini I, Grossi A, Coviello D, Terranova P, Lupia M, Del Borrello G, Uva P, Cangelosi D, Cavalca G, Miano M, Dufour C. Late-onset and long-lasting neutropenias in the young: A new entity anticipating immune-dysregulation disorders. Am J Hematol 2024; 99:534-542. [PMID: 38282561 DOI: 10.1002/ajh.27221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
This study identifies a new chronic form of immune neutropenia in the young with or without detectable indirect anti-neutrophil antibodies, characterized by mild/moderate neutropenia low risk of severe infection (14%), tendency to develop autoimmune phenomena over the course of the disease (cumulative incidence of 58.6% after 20 years of disease duration), leukopenia, progressive reduction of absolute lymphocyte count and a T- and B-cell profile similar to autoimmune disorders like Sjogren syndrome, rheumatoid arthritis, and systemic lupus erythematosus (increased HLADR+ and CD3 + TCRγδ cells, reduced T regulatory cells, increased double-negative B and a tendency to reduced B memory cells). In a minority of patients, P/LP variants related to primary immuno-regulatory disorders were found. This new form may fit the group of "Likely acquired neutropenia," a provisional category included in the recent International Guidelines on Diagnosis and Management of Neutropenia of EHA and EUNET INNOCHRON ACTION 18233. The early recognition of this form of neutropenia would help clinicians to delineate better specific monitoring plans, genetic counseling, and potentially targeted therapies.
Collapse
Affiliation(s)
- F Fioredda
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - A Beccaria
- Epidemiology and Biostatistics Unit and DOPO Clinic-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - P Casartelli
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - E Turrini
- Unit of Pediatric and OncoHematology, Department of Mother and Child, Azienda Ospedaliera Universitaria, Parma, Italy
| | - C Contratto
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - M C Giarratana
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - F Bagnasco
- Biostatistics Unit, Scientific Directorate, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - F Saettini
- Department of Pediatric Onco-Hematology, San Gerardo Hospital, Fondazione MBBM, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - M Pillon
- Pediatric Hematology-Oncology Unit, Department of Women's and Children's Health, AziendaOspedaliera-University of Padova, Padua, Italy
| | - A Marzollo
- Pediatric Hematology-Oncology Unit, Department of Women's and Children's Health, AziendaOspedaliera-University of Padova, Padua, Italy
| | - S Zanardi
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - A Civino
- Unit of Rheumathology and Immunology-ospedale Vito Fazzi, Lecce, Italy
| | - D Onofrillo
- Pediatric Hematology and Oncology Unit, Department of Hematology, Spirito Santo Hospital, Pescara, Italy
| | - M Lanciotti
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - I Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - A Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - D Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - P Terranova
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - M Lupia
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - G Del Borrello
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
- Pediatric OncoHematology, Pediatrics Department, Hospital Città Della Salute e Della Scienza, University of Turin, Turin, Italy
| | - P Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - D Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - G Cavalca
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- University of Bologna, Bologna, Italy
| | - M Miano
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - C Dufour
- Haematology Unit-IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
24
|
Lee H, Shin K, Lee Y, Lee S, Lee S, Lee E, Kim SW, Shin HY, Kim JH, Chung J, Kwon S. Identification of B cell subsets based on antigen receptor sequences using deep learning. Front Immunol 2024; 15:1342285. [PMID: 38576618 PMCID: PMC10991714 DOI: 10.3389/fimmu.2024.1342285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
B cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yongju Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Soobin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seungyoun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunjae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Tompa A, Faresjö M. Shift in the B cell subsets between children with type 1 diabetes and/or celiac disease. Clin Exp Immunol 2024; 216:36-44. [PMID: 38134245 PMCID: PMC10929695 DOI: 10.1093/cei/uxad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.
Collapse
Affiliation(s)
- Andrea Tompa
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Division of Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Meshaal S, El Hawary R, Abd Elaziz D, Eldash A, Darwish R, Erfan A, Lotfy S, Saad MM, Chohayeb E, Alkady R, Boutros J, Galal N, Elmarsafy A. Novel homozygous CARD11 variants in two patients with combined immunodeficiency and atopic skin disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:19. [DOI: 10.1186/s43042-024-00489-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/28/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Caspase recruitment domain family, member 11 (CARD11) is an important protein which plays a fundamental role in the activation of NF-κβ pathway in lymphocytes. CARD11 deficiency can be inherited in either autosomal dominant or autosomal recessive forms and present with different phenotypes including combined immunodeficiency, atopic dermatitis, and other variable manifestations. The present report describes clinical phenotypes and immunological defects of two unrelated patients with missense homozygous variants in CARD11 presenting with combined immunodeficiency (CID) and atopic skin disease resembling that reported in dominant negative CARD11 deficiency. The patients underwent next generation sequencing, immunophenotyping of T and B subsets by flow cytometry, T cell stimulation, and evaluation of CARD11 expression.
Results
Both patients had features suggesting CID including repeated pneumoniae with ICU admissions, chronic diarrhea, and itchy atopic skin disease. Patient-1 has homozygous missense variant in the C terminal domain (c.2839G > A, p.Glu947Lys), and patient-2 has homozygous variant in the inhibitory domain (c.1073C > G, p.Pro568Arg). Both have profound defects in Tregs with normal recent thymic emigrants, memory, and naïve CD4+ T cells. However, in response to stimulation, T cells failed to upregulate the expression of CD25. CARD11 expression by flow cytometry was decreased rather than abolished as previously described in patients with autosomal recessive CARD11 deficiency. B cells showed marked deficiency of switched memory and increase in transitional B cells.
Conclusion
Missense variants causing CARD11 deficiency may affect the protein function rather than the expression and can result in a phenotype combining the atopic skin disease and the features of CID.
Collapse
|
27
|
Chen Y, Shen Q, Xiong Y, Dong M, Xu H, Li Z. Using real-world data to inform dosing strategies of rituximab for pediatric patients with frequent-relapsing or steroid-dependent nephrotic syndrome: a prospective pharmacokinetic-pharmacodynamic study. Front Pharmacol 2024; 14:1319744. [PMID: 38264525 PMCID: PMC10803641 DOI: 10.3389/fphar.2023.1319744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
Objectives: Rituximab is frequently used off-label for the treatment of frequent-relapsing/steroid-dependent nephrotic syndrome (FRNS/SDNS). However, the optimal dosing schedules remain undetermined. The objective of this study was to establish a population pharmacokinetic-pharmacodynamic (PK-PD) model in pediatric patients with FRNS/SDNS, and to investigate dosing regimens that provide adequate suppression of B lymphocytes. Methods: A prospective, open-label, single-center study was conducted in Nephrology Department at Children's Hospital of Fudan University, and a two-compartment PK model of rituximab in pediatric FRNS/SDNS has been developed previously by our group. CD19+ lymphocyte count profiles were obtained from these patients. The presence of anti-rituximab antibodies was assessed prior to medication in children who had previously received rituximab or during follow-up at the last sampling point for PK analysis. PK-PD analyses were performed to describe the changes of CD19+ lymphocytes, with rituximab assumed to increase their death rate. Monte Carlo simulation was conducted to evaluate different dosing regimens. Results: In total, 102 measurements of CD19+ lymphocyte counts were available for PK-PD analysis. No detectable levels of anti-rituximab antibodies were observed during the PK follow-up period. A turnover model with saturable stimulatory action of rituximab on the removal of lymphocytes best characterized the relationship between rituximab concentration and CD19+ lymphocyte counts, where the Emax and EC50 were estimated to be 99.6*106/L and 5.87 μg/mL, respectively. Simulations indicated that a single infusion of 750 mg/m2 and 2 infusions of 375 mg/m2 both yielded a 10-week suppression of CD19+ lymphocytes. Conclusion: This study represents a first attempt to quantitatively describe the PK-PD relationship of rituximab in pediatric patients with FRNS/SDNS, and provide a potential pathway for future precision dosing strategy for rituximab therapy. Further clinical studies are warranted to evaluate the efficacy and safety of different dosing schemes.
Collapse
Affiliation(s)
- Yewei Chen
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ye Xiong
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Min Dong
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Zhiping Li
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
28
|
Rao VK, Kulm E, Šedivá A, Plebani A, Schuetz C, Shcherbina A, Dalm VA, Trizzino A, Zharankova Y, Webster S, Orpia A, Körholz J, Lougaris V, Rodina Y, Radford K, Bradt J, Relan A, Holland SM, Lenardo MJ, Uzel G. Interim analysis: Open-label extension study of leniolisib for patients with APDS. J Allergy Clin Immunol 2024; 153:265-274.e9. [PMID: 37797893 PMCID: PMC10841669 DOI: 10.1016/j.jaci.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS; or p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency) is an inborn error of immunity caused by PI3Kδ hyperactivity. Resultant immune deficiency and dysregulation lead to recurrent sinopulmonary infections, herpes viremia, autoimmunity, and lymphoproliferation. OBJECTIVE Leniolisib, a selective PI3Kδ inhibitor, demonstrated favorable impact on immune cell subsets and lymphoproliferation over placebo in patients with APDS over 12 weeks. Here, we report results from an interim analysis of an ongoing open-label, single-arm extension study. METHODS Patients with APDS aged 12 years or older who completed NCT02435173 or had previous exposure to PI3Kδ inhibitors were eligible. The primary end point was safety, assessed via investigator-reported adverse events (AEs) and clinical/laboratory evaluations. Secondary and exploratory end points included health-related quality of life, inflammatory markers, frequency of infections, and lymphoproliferation. RESULTS Between September 2016 and August 2021, 37 patients (median age, 20 years; 42.3% female) were enrolled. Of these 37 patients, 26, 9, and 2 patients had previously received leniolisib, placebo, or other PI3Kδ inhibitors, respectively. At the data cutoff date (December 13, 2021), median leniolisib exposure was 102 weeks. Overall, 32 patients (87%) experienced an AE. Most AEs were grades 1 to 3; none were grade 4. One patient with severe baseline comorbidities experienced a grade 5 AE, determined as unrelated to leniolisib treatment. While on leniolisib, patients had reduced annualized infection rates (P = .004), and reductions in immunoglobulin replacement therapy occurred in 10 of 27 patients. Other observations include reduced lymphadenopathy and splenomegaly, improved cytopenias, and normalized lymphocyte subsets. CONCLUSIONS Leniolisib was well tolerated and maintained durable outcomes with up to 5 years of exposure in 37 patients with APDS. CLINICALTRIALS gov identifier: NCT02859727.
Collapse
Affiliation(s)
- V Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, Md
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Alessandro Plebani
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Catharina Schuetz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Virgil A Dalm
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Rotterdam, The Netherlands; Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Yulia Zharankova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Sharon Webster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alanvin Orpia
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Julia Körholz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kath Radford
- Novartis Pharmaceuticals UK Ltd, London, United Kingdom
| | | | | | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael J Lenardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
29
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
30
|
Mansour R, El-Hassan R, El-Orfali Y, Saidu A, Al-Kalamouni H, Chen Q, Benamar M, Dbaibo G, Hanna-Wakim R, Chatila TA, Massaad MJ. The opposing effects of two gene defects in STX11 and SLP76 on the disease in a patient with an inborn error of immunity. J Allergy Clin Immunol 2023; 152:1597-1606. [PMID: 37595757 DOI: 10.1016/j.jaci.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Inborn errors of immunity are mostly monogenic. However, disease phenotype and outcome may be modified by the coexistence of a second gene defect. OBJECTIVE We sought to identify the genetic basis of the disease in a patient who experienced bleeding episodes, pancytopenia, hepatosplenomegaly, and recurrent pneumonia that resulted in death. METHODS Genetic analysis was done using next-generation sequencing. Protein expression and phosphorylation were determined by immunoblotting. T-cell proliferation and F-actin levels were studied by flow cytometry. RESULTS The patient harbored 2 homozygous deletions in STX11 (c.369_370del, c.374_376del; p.V124fs60∗) previously associated with familial hemophagocytic lymphohistiocytosis and a novel homozygous missense variant in SLP76 (c.767C>T; p.T256I) that resulted in an approximately 85% decrease in SLP76 levels and absent T-cell proliferation. The patient's heterozygous family members showed an approximately 50% decrease in SLP76 levels but normal immune function. SLP76-deficient J14 Jurkat cells did not express SLP76 and had decreased extracellular signal-regulated kinase signaling, basal F-actin levels, and polymerization following T-cell receptor stimulation. Reconstitution of J14 cells with T256I mutant SLP76 resulted in low protein expression and abnormal extracellular signal-regulated kinase phosphorylation and F-actin polymerization after T-cell receptor activation compared with normal expression and J14 function when wild-type SLP76 was introduced. CONCLUSIONS The hypomorphic mutation in SLP76 tones down the hyperinflammation due to STX11 deletion, resulting in a combined immunodeficiency that overshadows the hemophagocytic lymphohistiocytosis phenotype. To our knowledge, this study represents the first report of the opposing effects of 2 gene defects on the disease in a patient with an inborn error of immunity.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adam Saidu
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib Al-Kalamouni
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ghassan Dbaibo
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
31
|
Mansour R, El-Orfali Y, Saidu A, Al-Kalamouni H, Mardirossian H, Hanna-Wakim R, Abboud M, Massaad MJ. A novel homozygous mutation in RASGRP1 that predisposes to immune dysregulation and immunodeficiency associated with uncontrolled Epstein-Barr virus-induced B cell proliferation. Clin Immunol 2023; 257:109813. [PMID: 37898412 DOI: 10.1016/j.clim.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND RASGRP1-deficiency results in an immune dysregulation and immunodeficiency that manifest as autoimmunity, lymphoproliferation, lymphopenia, defective T cell function, and increased incidence of Epstein-Bar Virus infections and lymphomas. OBJECTIVE To investigate the mechanism of autoimmune hemolytic anemia and infections in a male patient of consanguineous parents from Lebanon. METHODS Genetic diagnosis was obtained using next generation and Sanger sequencing. Protein expression and phosphorylation were determined by immunoblotting. T and B cell development and function were studied by flow cytometry. Cytokine and immunoglobulin secretions were quantified by enzyme-linked immunosorbent assay. RESULTS The patient suffered from severe lymphopenia especially affecting the T cell compartment. Genetic analysis revealed a homozygous insertion of adenine at position 1396_1397 in RASGRP1 that abolished protein expression and downstream Ras signaling. T cells from the patient showed severe activation defects resulting in uncontrolled Epstein-Bar Virus-induced B cell proliferation. B cells from the patient were normal. CONCLUSION This report expands the spectrum of mutations in patients with RasGRP1 deficiency, and provides evidence for the important role RasGRP1 plays in the ability of T cells to control Epstein-Bar Virus-induced B cell proliferation. CLINICAL IMPLICATIONS Following diagnosis, the patient will be maintained on oral valganciclovir and monitored regularly for Epstein-Bar Virus infections to avoid the development of Epstein-Bar Virus- induced B cell lymphoma. He is also candidate for hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adam Saidu
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib Al-Kalamouni
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hagop Mardirossian
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Miguel Abboud
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
32
|
Barten LJC, Zuurveld M, Faber J, Garssen J, Klok T. Oral immunotherapy as a curative treatment for food-allergic preschool children: Current evidence and potential underlying mechanisms. Pediatr Allergy Immunol 2023; 34:e14043. [PMID: 38010006 DOI: 10.1111/pai.14043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The worldwide rising prevalence of food allergy is a major public health concern. Standard care consists of allergen avoidance and rescue medication upon accidental exposure. Oral immunotherapy (OIT) is increasingly being studied as a treatment option. Although desensitization (an increased reaction threshold) is often achieved during OIT, sustained unresponsiveness (SU; clinical nonreactivity after finishing OIT) is not achieved in most patients. A few studies have investigated the effectiveness of OIT in children younger than 4 years of age (early = e-OIT) and have shown a much more favorable outcome in terms of SU development. Together with food allergy prevention studies, which have demonstrated high efficacy of early oral allergen exposure, the outcomes of e-OIT studies indicate an early-life window of opportunity to achieve SU, allowing unrestricted dietary intake. However, the underlying mechanism of the high effectiveness of e-OIT is not understood yet. Both cohort and OIT studies indicate early-life immune plasticity. An immature food-allergic response in the first years of life seems to be a major driver of this immune plasticity, along with a higher tolerogenic immunological state. Allergy maturation can likely be disrupted effectively by early intervention, preventing the development of persistent food allergy. Upcoming studies will provide important additional data on the safety, feasibility, and effectiveness of e-OIT. Combined with immune mechanistic studies, this should inform the implementation of e-OIT.
Collapse
Affiliation(s)
- Lieke J C Barten
- Pediatric Allergy Treatment Center, Deventer Hospital, Deventer, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Marit Zuurveld
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Joyce Faber
- Pediatric Allergy Treatment Center, Deventer Hospital, Deventer, The Netherlands
| | - Johan Garssen
- Utrecht Institute for Pharmaceutical Sciences, Division Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Ted Klok
- Pediatric Allergy Treatment Center, Deventer Hospital, Deventer, The Netherlands
| |
Collapse
|
33
|
Houtman BM, Walraven I, de Grouw E, van der Maazen RWM, Kremer LCM, van Dulmen-den Broeder E, van den Heuvel-Eibrink MM, Tissing WJE, Bresters D, van der Pal HJH, de Vries ACH, Louwerens M, van der Heiden-van der Loo M, Neggers SJC, Janssens GO, Blijlevens NMA, Lambeck AJA, Preijers F, Loonen JJ. The Value of IgM Memory B-Cells in the Assessment of Splenic Function in Childhood Cancer Survivors at Risk for Splenic Dysfunction: A DCCSS-LATER Study. J Immunol Res 2023; 2023:5863995. [PMID: 37901347 PMCID: PMC10611543 DOI: 10.1155/2023/5863995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/31/2023] Open
Abstract
Background Childhood cancer survivors (CCS) who received radiotherapy involving the spleen or total body irradiation (TBI) might be at risk for splenic dysfunction. A comprehensive screening test for examining splenic dysfunction is lacking. Objective We investigated whether IgM memory B-cells could be used to assess splenic dysfunction in CCS who received a splenectomy, radiotherapy involving the spleen, or TBI. Methods All CCS were enrolled from the DCCSS-LATER cohort. We analyzed differences in IgM memory B-cells and Howell-Jolly bodies (HJB) in CCS who had a splenectomy (n = 9), received radiotherapy involving the spleen (n = 36), or TBI (n = 15). IgM memory B-cells < 9 cells/µL was defined as abnormal. Results We observed a higher median number of IgM memory B-cells in CCS who received radiotherapy involving the spleen (31 cells/µL, p=0.06) or TBI (55 cells/µL, p = 0.03) compared to CCS who received splenectomy (20 cells/µL). However, only two CCS had IgM memory B-cells below the lower limit of normal. No difference in IgM memory B-cells was observed between CCS with HJB present and absent (35 cells/µL vs. 44 cells/µL). Conclusion Although the number of IgM memory B-cells differed between splenectomized CCS and CCS who received radiotherapy involving the spleen or TBI, only two CCS showed abnormal values. Therefore, this assessment cannot be used to screen for splenic dysfunction.
Collapse
Affiliation(s)
- Bente M. Houtman
- Department of Hematology, Center of Expertise for Cancer Survivorship, Radboud University Medical Center, Nijmegen, Netherlands
| | - Iris Walraven
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elke de Grouw
- Department of Laboratory Medicine—Radboudumc Laboratory of Diagnostics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Leontien C. M. Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | | | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wim J. E. Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Oncology/Hematology, Beatrix Children's Hospital/University of Groningen/University Medical Center Groningen, Groningen, Netherlands
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Andrica C. H. de Vries
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marloes Louwerens
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sebastian J. C. Neggers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Medicine, Section Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geert O. Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Annechien J. A. Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine—Laboratory for Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jacqueline J. Loonen
- Department of Hematology, Center of Expertise for Cancer Survivorship, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
34
|
García-Solís B, Van Den Rym A, Martinez-Martínez L, Franco T, Pérez-Caraballo JJ, Markle J, Cubillos-Zapata C, Marín AV, Recio MJ, Regueiro JR, Navarro-Zapata A, Mestre-Durán C, Ferreras C, Martín Cotázar C, Mena R, de la Calle-Fabregat C, López-Lera A, Fernández Arquero M, Pérez-Martínez A, López-Collazo E, Sánchez-Ramón S, Casanova JL, Martínez-Barricarte R, de la Calle-Martín O, Pérez de Diego R. Inherited human ezrin deficiency impairs adaptive immunity. J Allergy Clin Immunol 2023; 152:997-1009.e11. [PMID: 37301410 PMCID: PMC11009781 DOI: 10.1016/j.jaci.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a group of monogenic diseases that confer susceptibility to infection, autoimmunity, and cancer. Despite the life-threatening consequences of some IEI, their genetic cause remains unknown in many patients. OBJECTIVE We investigated a patient with an IEI of unknown genetic etiology. METHODS Whole-exome sequencing identified a homozygous missense mutation of the gene encoding ezrin (EZR), substituting a threonine for an alanine at position 129. RESULTS Ezrin is one of the subunits of the ezrin, radixin, and moesin (ERM) complex. The ERM complex links the plasma membrane to the cytoskeleton and is crucial for the assembly of an efficient immune response. The A129T mutation abolishes basal phosphorylation and decreases calcium signaling, leading to complete loss of function. Consistent with the pleiotropic function of ezrin in myriad immune cells, multidimensional immunophenotyping by mass and flow cytometry revealed that in addition to hypogammaglobulinemia, the patient had low frequencies of switched memory B cells, CD4+ and CD8+ T cells, MAIT, γδ T cells, and centralnaive CD4+ cells. CONCLUSIONS Autosomal-recessive human ezrin deficiency is a newly recognized genetic cause of B-cell deficiency affecting cellular and humoral immunity.
Collapse
Affiliation(s)
- Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | - Teresa Franco
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jareb J Pérez-Caraballo
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Janet Markle
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Centre for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - María J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Alfonso Navarro-Zapata
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carmen Mestre-Durán
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carla Martín Cotázar
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Roció Mena
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | | | - Alberto López-Lera
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, Madrid, Spain
| | - Miguel Fernández Arquero
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Imagine Institute, University Paris Descartes, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
35
|
Vitallé J, Zenarruzabeitia O, Merino-Pérez A, Terrén I, Orrantia A, Pacho de Lucas A, Iribarren JA, García-Fraile LJ, Balsalobre L, Amo L, de Andrés B, Borrego F. Human IgM hiCD300a + B Cells Are Circulating Marginal Zone Memory B Cells That Respond to Pneumococcal Polysaccharides and Their Frequency Is Decreased in People Living with HIV. Int J Mol Sci 2023; 24:13754. [PMID: 37762055 PMCID: PMC10530418 DOI: 10.3390/ijms241813754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
CD300a is differentially expressed among B cell subsets, although its expression in immunoglobulin (Ig)M+ B cells is not well known. We identified a B cell subset expressing CD300a and high levels of IgM (IgMhiCD300a+). The results showed that IgMhiCD300a+ B cells were CD10-CD27+CD25+IgDloCD21hiCD23-CD38loCD1chi, suggesting that they are circulating marginal zone (MZ) IgM memory B cells. Regarding the immunoglobulin repertoire, IgMhiCD300a+ B cells exhibited a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a- counterpart. Moreover, the shorter complementarity-determining region 3 (CDR3) amino acid (AA) length from IgMhiCD300a+ B cells together with the predicted antigen experience repertoire indicates that this B cell subset has a memory phenotype. IgM memory B cells are important in T cell-independent responses. Accordingly, we demonstrate that this particular subset secretes higher amounts of IgM after stimulation with pneumococcal polysaccharides or a toll-like receptor 9 (TLR9) agonist than IgM+CD300a- cells. Finally, the frequency of IgMhiCD300a+ B cells was lower in people living with HIV-1 (PLWH) and it was inversely correlated with the years with HIV infection. Altogether, these data help to identify a memory B cell subset that contributes to T cell-independent responses to pneumococcal infections and may explain the increase in severe pneumococcal infections and the impaired responses to pneumococcal vaccination in PLWH.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Aitana Merino-Pérez
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Arantza Pacho de Lucas
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Immunology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - José A. Iribarren
- Department of Infectious Diseases, Donostia University Hospital, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Lucio J. García-Fraile
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Internal Medicine, La Princesa University Hospital, 28006 Madrid, Spain
| | - Luz Balsalobre
- Laboratory of Microbiology, UR Salud, Infanta Sofía University Hospital, 28702 Madrid, Spain;
| | - Laura Amo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Madrid, Spain;
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
36
|
Claverie R, Perriguey M, Rico A, Boutiere C, Demortiere S, Durozard P, Hilezian F, Dubrou C, Vely F, Pelletier J, Audoin B, Maarouf A. Efficacy of Rituximab Outlasts B-Cell Repopulation in Multiple Sclerosis: Time to Rethink Dosing? NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200152. [PMID: 37604695 PMCID: PMC10442066 DOI: 10.1212/nxi.0000000000200152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Patients with multiple sclerosis (PwMS) receiving extended dosing of rituximab (RTX) have exhibited no return of disease activity, which suggests that maintenance of deep depletion of circulating B cells is not necessary to maintain the efficacy of RTX in MS. METHODS This was a prospective monocentric observational study including all consecutive PwMS who started or continued RTX after 2019, when the medical staff decided to extend the dosing interval up to 24 months for all patients. Circulating B-cell subsets were monitored regularly and systematically in case of relapse. The first extended interval was analyzed. RESULTS We included 236 PwMS (81% with relapsing-remitting MS; mean [SD] age 43 [12] years; median [range] EDSS score 4 [0-8]; mean relapse rate during the year before RTX start 1.09 [0.99]; 41.5% with MRI activity). The median number of RTX infusions before extension was 4 (1-13). At the time of the analysis, the median delay in dosing was 17 months (8-39); the median proportion of circulating CD19+ B cells was 7% (0-25) of total lymphocytes and that of CD27+ memory B cells was 4% (0-16) of total B cells. The mean annual relapse rate did not differ before and after the extension: 0.03 (0.5) and 0.04 (0.15) (p = 0.51). Similarly, annual relapse rates did not differ before and after extension in patients with EDSS score ≤3 (n = 79) or disease duration ≤5 years (n = 71) at RTX onset. During the "extended dosing" period, MRI demonstrated no lesion accrual in 228 of the 236 patients (97%). Five patients experienced clinical relapse, which was confirmed by MRI. In these patients, the level of B-cell subset reconstitution at the time of the relapse did not differ from that for patients with the same extension window. DISCUSSION The efficacy of RTX outlasted substantial reconstitution of circulating B cells in PwMS, which suggests that renewal of the immune system underlies the prolonged effect of RTX in MS. These findings suggest that extended interval dosing of RTX that leads to a significant reconstitution of circulating B cells is safe in PwMS, could reduce the risk of infection, and could improve vaccine efficacy.
Collapse
Affiliation(s)
- Roxane Claverie
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Marine Perriguey
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Audrey Rico
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Clemence Boutiere
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Sarah Demortiere
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Pierre Durozard
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Frederic Hilezian
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Clea Dubrou
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Frederic Vely
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Jean Pelletier
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| | - Bertrand Audoin
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France.
| | - Adil Maarouf
- From the Department of Neurology (B.A., M.P., A.R., C.B., S.D., F.H., J.P., A.M.), CRMBM, University Hospital of Marseille, Aix-Marseille University; Service d'immunologie (D.C., F.V.), Marseille Immunopôle, APHM, Aix Marseille University, CNRS, INSERM, CIML; Faculté de Pharmacie (R.C.), Aix-Marseille University; and Centre hospitalier d'Ajaccio (P.D.), Service de Neurologie, France
| |
Collapse
|
37
|
Boast B, Goel S, González-Granado LI, Niemela J, Stoddard J, Edwards ESJ, Seneviratne S, Spensberger D, Quesada-Espinosa JF, Allende LM, McDonnell J, Haseley A, Lesmana H, Walkiewicz MA, Muhammad E, Bosco JJ, Fleisher TA, Cohen S, Holland SM, van Zelm MC, Enders A, Kuehn HS, Rosenzweig SD. TCF3 haploinsufficiency defined by immune, clinical, gene-dosage, and murine studies. J Allergy Clin Immunol 2023; 152:736-747. [PMID: 37277074 PMCID: PMC10527523 DOI: 10.1016/j.jaci.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND TCF3 is a transcription factor contributing to early lymphocyte differentiation. Germline monoallelic dominant negative and biallelic loss-of-function (LOF) null TCF3 mutations cause a fully penetrant severe immunodeficiency. We identified 8 individuals from 7 unrelated families with monoallelic LOF TCF3 variants presenting with immunodeficiency with incomplete clinical penetrance. OBJECTIVE We sought to define TCF3 haploinsufficiency (HI) biology and its association with immunodeficiency. METHODS Patient clinical data and blood samples were analyzed. Flow cytometry, Western blot analysis, plasmablast differentiation, immunoglobulin secretion, and transcriptional activity studies were conducted on individuals carrying TCF3 variants. Mice with a heterozygous Tcf3 deletion were analyzed for lymphocyte development and phenotyping. RESULTS Individuals carrying monoallelic LOF TCF3 variants showed B-cell defects (eg, reduced total, class-switched memory, and/or plasmablasts) and reduced serum immunoglobulin levels; most but not all presented with recurrent but nonsevere infections. These TCF3 LOF variants were either not transcribed or translated, resulting in reduced wild-type TCF3 protein expression, strongly suggesting HI pathophysiology for the disease. Targeted RNA sequencing analysis of T-cell blasts from TCF3-null, dominant negative, or HI individuals clustered away from healthy donors, implying that 2 WT copies of TCF3 are needed to sustain a tightly regulated TCF3 gene-dosage effect. Murine TCF3 HI resulted in a reduction of circulating B cells but overall normal humoral immune responses. CONCLUSION Monoallelic LOF TCF3 mutations cause a gene-dosage-dependent reduction in wild-type protein expression, B-cell defects, and a dysregulated transcriptome, resulting in immunodeficiency. Tcf3+/- mice partially recapitulate the human phenotype, underscoring the differences between TCF3 in humans and mice.
Collapse
Affiliation(s)
- Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shubham Goel
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Luis I González-Granado
- Department of Pediatrics, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), School of Medicine, Complutense University, Madrid, Spain
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Emily S J Edwards
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia
| | - Sandali Seneviratne
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dominik Spensberger
- ANU Gene Targeting Facility, Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Luis M Allende
- Department of Immunology, Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - John McDonnell
- Department of Pediatric Allergy and Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Alexandria Haseley
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Harry Lesmana
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Magdalena A Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Emad Muhammad
- Hematology Laboratory, Carmel Medical Center, Haifa, Spain
| | - Julian J Bosco
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Shai Cohen
- Allergy and Clinical Immunology Service, Department of Internal Medicine B, Lin and Carmel Medical Center, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Menno C van Zelm
- Department of Immunology, Monash University, and The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, Australia; Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, Australia
| | - Anselm Enders
- Centre for Personalised Immunology and Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, Md.
| |
Collapse
|
38
|
Castagnoli R, Taietti I, Votto M, Naso M, De Filippo M, Marseglia A, Montagna L, De Amici M, Avanzini MA, Montagna D, Marseglia GL, Licari A. Clinical and immunological phenotypes of selective IgM deficiency in children: Results from a multicenter study. Pediatr Allergy Immunol 2023; 34:e14015. [PMID: 37728524 DOI: 10.1111/pai.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND A few studies assessed the clinical and immunological features of selective IgM deficiency (SIgMD), especially in the pediatric age. We aimed to characterize the clinical and immunological phenotypes of a cohort of pediatric patients with SIgMD according to the different diagnostic criteria available. METHODS In this multicenter study, we evaluated pediatric SIgMD patients diagnosed at the Pediatric Clinic in Pavia, Italy, or through the Italian Primary Immunodeficiency NETwork (IPINET) and monitored changes in their diagnosis over a time frame that ranges from several months to several years. RESULTS Forty-eight patients with SIgMD were included (mean serum IgM: 33 mg/dL). The most common clinical manifestations were recurrent infections (67%) and allergies (48%). Subgroup analysis according to SIgMD definition criteria of the European Society for Immunodeficiencies (ESID) showed no significant difference in clinical manifestations, also considering the group with additional immunological abnormalities. Sixteen patients had long-term follow-up, during which 87% preserved their SIgMD diagnosis, while two patients showed a reduction in IgA in addition to low IgM. CONCLUSIONS Our data suggest that the identification of a reduction in serum IgM in children should lead to a complete immunological work-up to obtain a comprehensive clinical and immunological characterization of the patient. The follow-up of these patients is fundamental to define the disease evolution and appropriate management.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ivan Taietti
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martina Votto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Naso
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria De Filippo
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessia Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenza Montagna
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mara De Amici
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Laboratory of Immuno-Allergology of Clinical Chemistry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Montagna
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
39
|
Strother CA, Brewer-Jensen PD, Becker-Dreps S, Zepeda O, May S, Gonzalez F, Reyes Y, McElvany BD, Averill AM, Mallory ML, Montmayeur AM, Costantini VP, Vinjé J, Baric RS, Bucardo F, Lindesmith LC, Diehl SA. Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters. Front Immunol 2023; 14:1229724. [PMID: 37662930 PMCID: PMC10471973 DOI: 10.3389/fimmu.2023.1229724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb-infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection.
Collapse
Affiliation(s)
- Camilla A. Strother
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, United States
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Paul D. Brewer-Jensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sylvia Becker-Dreps
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Omar Zepeda
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León, Nicaragua
| | - Samantha May
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fredman Gonzalez
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León, Nicaragua
| | - Yaoska Reyes
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León, Nicaragua
| | - Benjamin D. McElvany
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - April M. Averill
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Michael L. Mallory
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Anna M. Montmayeur
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Verónica P. Costantini
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jan Vinjé
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Filemon Bucardo
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León, Nicaragua
| | - Lisa C. Lindesmith
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, United States
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
40
|
Sarli WM, Ricci S, Lodi L, Cavone F, Pacillo L, Giancotta C, Ubertini G, Baroncelli G, Cancrini C, Azzari C, Stagi S. Risk of thyroid neoplasms in patients with 22q11.2 deletion and DiGeorge-like syndromes: an insight for follow-up. Front Endocrinol (Lausanne) 2023; 14:1209577. [PMID: 37635986 PMCID: PMC10450035 DOI: 10.3389/fendo.2023.1209577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The chromosome 22q11.2 deletion syndrome comprises phenotypically similar diseases characterized by abnormal development of the third and fourth branchial arches, resulting in variable combinations of congenital heart defects, dysmorphisms, hypocalcemia, palatal dysfunction, developmental or neuropsychiatric disorders, and impairment of the immune system due to thymic dysfunction. Other genetic syndromes, often called DiGeorge-like, share clinical and immunological features with 22q11.2 deletion syndrome. This syndrome has been rarely associated with malignancies, mainly hematological but also hepatic, renal, and cerebral. Rarely, malignancies in the head and neck region have been described, although no aggregate of data on the development of thyroid neoplasms in patients with this clinical phenotype has been conducted so far. Materials and methods To characterize this possible association, a multicenter survey was made. Thus, we present a case series of five pediatric patients with 22q11.2 deletion syndrome or DiGeorge-like syndrome who were occasionally found with confirmed or highly suspected neoplasms of the thyroid gland during their follow-up. In three cases, malignancies were histologically confirmed, but their outcome was good due to an early recognition of suspicious nodules and precocious surgery. Conclusions This study underlines for clinicians the higher risk of neoplasms in the head and neck district for patients affected by these syndromes. It also emphasizes the importance of a prolonged clinical and ultrasound follow-up for patients with this clinical and immunological phenotype.
Collapse
Affiliation(s)
- Walter Maria Sarli
- Department of Health Sciences, University of Florence, Florence, Italy
- Paediatric Immunology Division, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Paediatric Immunology Division, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Paediatric Immunology Division, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Federica Cavone
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Pacillo
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Carmela Giancotta
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Graziamaria Ubertini
- Unit of Endocrinology and Diabetology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giampiero Baroncelli
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Caterina Cancrini
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
- Paediatric Immunology Division, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Auxoendocrinology Division, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
41
|
Braudeau C, Delbos L, Couec ML, Danic G, Chevreuil J, Lecuroux C, Grain A, Eveillard M, Rialland F, Sicre de Fontbrune F, Beriou G, Degauque N, Michonneau D, Josien R, de Latour RP, Thomas C, Martin JC. System-level immune monitoring reveals new pathophysiological features in hepatitis-associated aplastic anemia. Blood Adv 2023; 7:4039-4045. [PMID: 37267438 PMCID: PMC10410176 DOI: 10.1182/bloodadvances.2022008224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Affiliation(s)
- Cecile Braudeau
- Laboratoire d’Immunologie, CHU Nantes, Centre d’Immunomonitorage Nantes Atlantique, Nantes Université, Nantes, France
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - Laurence Delbos
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - Marie-Laure Couec
- CHU Nantes, Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Nantes Université, Nantes, France
| | - Gwenvael Danic
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - Justine Chevreuil
- Laboratoire d’Immunologie, CHU Nantes, Centre d’Immunomonitorage Nantes Atlantique, Nantes Université, Nantes, France
| | - Camille Lecuroux
- Laboratoire d’Immunologie, CHU Nantes, Centre d’Immunomonitorage Nantes Atlantique, Nantes Université, Nantes, France
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - Audrey Grain
- CHU Nantes, Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Nantes Université, Nantes, France
| | - Marion Eveillard
- Laboratoire d’Hematologie, CHU Nantes, Nantes Université, Nantes, France
| | - Fanny Rialland
- CHU Nantes, Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Nantes Université, Nantes, France
| | | | - Gaelle Beriou
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - Nicolas Degauque
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - David Michonneau
- Hematology Transplantation, Saint-Louis Hospital, Paris, France
- Université Paris Cité, INSERM U976, Paris, France
| | - Regis Josien
- Laboratoire d’Immunologie, CHU Nantes, Centre d’Immunomonitorage Nantes Atlantique, Nantes Université, Nantes, France
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| | - Régis Peffault de Latour
- Hematology Transplantation, Saint-Louis Hospital, Paris, France
- Université Paris Cité, INSERM U976, Paris, France
- Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint-Louis Hospital, Paris, France
| | - Caroline Thomas
- CHU Nantes, Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Nantes Université, Nantes, France
| | - Jerome C. Martin
- Laboratoire d’Immunologie, CHU Nantes, Centre d’Immunomonitorage Nantes Atlantique, Nantes Université, Nantes, France
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Institut de transplantation urologie-néphrologie, Nantes Université, Nantes, France
| |
Collapse
|
42
|
Hecker M, Fitzner B, Boxberger N, Putscher E, Engelmann R, Bergmann W, Müller M, Ludwig-Portugall I, Schwartz M, Meister S, Dudesek A, Winkelmann A, Koczan D, Zettl UK. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation 2023; 20:181. [PMID: 37533036 PMCID: PMC10394872 DOI: 10.1186/s12974-023-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS. OBJECTIVES The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., before B-cell depletion and after B-cell repopulation) to better understand the therapeutic effects and to identify biomarker candidates of the clinical response to therapy. METHODS B cells were obtained from blood samples of patients with relapsing-remitting MS (n = 50), patients with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B-cell subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined with regard to their functions and interactions. We also tested for differences in gene expression between patients with and without relapse following alemtuzumab administration. RESULTS Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differences did not pass the false discovery rate correction. CONCLUSIONS We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify their potential value as biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Robby Engelmann
- Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | | | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
43
|
Tomé C, Oliveira-Ramos F, Campanilho-Marques R, Mourão AF, Sousa S, Marques C, Melo AT, Teixeira RL, Martins AP, Moeda S, Costa-Reis P, Torres RP, Bandeira M, Fonseca H, Gonçalves M, Santos MJ, Graca L, Fonseca JE, Moura RA. Children with extended oligoarticular and polyarticular juvenile idiopathic arthritis have alterations in B and T follicular cell subsets in peripheral blood and a cytokine profile sustaining B cell activation. RMD Open 2023; 9:e002901. [PMID: 37652558 PMCID: PMC10476142 DOI: 10.1136/rmdopen-2022-002901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES The main goal of this study was to characterise the frequency and phenotype of B, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in peripheral blood and the cytokine environment present in circulation in children with extended oligoarticular juvenile idiopathic arthritis (extended oligo JIA) and polyarticular JIA (poly JIA) when compared with healthy controls, children with persistent oligoarticular JIA (persistent oligo JIA) and adult JIA patients. METHODS Blood samples were collected from 105 JIA patients (children and adults) and 50 age-matched healthy individuals. The frequency and phenotype of B, Tfh and Tfr cells were evaluated by flow cytometry. Serum levels of APRIL, BAFF, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, IL-21, IL-22, IFN-γ, PD-1, PD-L1, sCD40L, CXCL13 and TNF were measured by multiplex bead-based immunoassay and/or ELISA in all groups included. RESULTS The frequency of B, Tfh and Tfr cells was similar between JIA patients and controls. Children with extended oligo JIA and poly JIA, but not persistent oligo JIA, had significantly lower frequencies of plasmablasts, regulatory T cells and higher levels of Th17-like Tfh cells in circulation when compared with controls. Furthermore, APRIL, BAFF, IL-6 and IL-17A serum levels were significantly higher in paediatric extended oligo JIA and poly JIA patients when compared with controls. These immunological alterations were not found in adult JIA patients in comparison to controls. CONCLUSIONS Our results suggest a potential role and/or activation profile of B and Th17-like Tfh cells in the pathogenesis of extended oligo JIA and poly JIA, but not persistent oligo JIA.
Collapse
Affiliation(s)
- Catarina Tomé
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Filipa Oliveira-Ramos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Raquel Campanilho-Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana F Mourão
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Sandra Sousa
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Cláudia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana T Melo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rui L Teixeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana P Martins
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Sofia Moeda
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita P Torres
- Rheumatology Department, Hospital de São Francisco Xavier, Centro Hospitalar Lisboa Ocidental, EPE, Lisbon, Portugal
| | - Matilde Bandeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Helena Fonseca
- Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Miroslava Gonçalves
- Pediatric Surgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Lisbon, Portugal
| | - Maria J Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Reumatology Department, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, EPE, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
44
|
Grimsholm O. CD27 on human memory B cells-more than just a surface marker. Clin Exp Immunol 2023; 213:164-172. [PMID: 36508329 PMCID: PMC10361737 DOI: 10.1093/cei/uxac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 07/23/2023] Open
Abstract
Immunological memory protects the human body from re-infection with an earlier recognized pathogen. This memory comprises the durable serum antibody titres provided by long-lived plasma cells and the memory T and B cells with help from other cells. Memory B cells are the main precursor cells for new plasma cells during a secondary infection. Their formation starts very early in life, and they continue to form and undergo refinements throughout our lifetime. While the heterogeneity of the human memory B-cell pool is still poorly understood, specific cellular surface markers define most of the cell subpopulations. CD27 is one of the most commonly used markers to define human memory B cells. In addition, there are molecular markers, such as somatic mutations in the immunoglobulin heavy and light chains and isotype switching to, for example, IgG. Although not every memory B cell undergoes somatic hypermutation or isotype switching, most of them express these molecular traits in adulthood. In this review, I will focus on the most recent knowledge regarding CD27+ human memory B cells in health and disease, and describe how Ig sequencing can be used as a tool to decipher the evolutionary pathways of these cells.
Collapse
Affiliation(s)
- Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
45
|
Gordon-Lipkin EM, Banerjee P, Thompson E, Kruk S, Franco JLM, McGuire PJ. Epitope-level profiling in children with mitochondrial disease reveals limitations in the antibacterial antibody repertoire. Mol Genet Metab 2023; 139:107581. [PMID: 37104980 PMCID: PMC10330363 DOI: 10.1016/j.ymgme.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Immunometabolic studies in mice have suggested the importance of oxidative phosphorylation (OXPHOS) in humoral immunity. However, there are important distinctions between murine and human immunity. Furthermore, translational studies on the role of OXPHOS in humoral immunity are nearly absent from the biomedical literature. Children with primary OXPHOS deficiency (i.e., mitochondrial disease, MtD), are an important patient population for demonstrating the functional effects of this bioenergetic defect on humoral immunity. METHODS To define whether OXPHOS deficiency extended to human B cells, we performed extracellular flux analysis on lymphoblastoid B cell lines from children with MtD and controls (N = 4/group). To expand the immune phenotype of B cell OXPHOS deficiency, we conducted a cross-sectional multiplex serology study of the antibacterial antibody repertoire in children with MtD (N = 16) and controls (N = 16) using phage display and immunoprecipitation sequencing (PhIPseq). The PhIPseq library contained >3000 peptides (i.e., epitopes) covering >40 genera and > 150 species of bacteria that infect humans. RESULTS B cell lymphoblastoid cell lines from children with MtD displayed depressed baseline oxygen consumption, ATP production and reserve capacity, indicating that OXPHOS deficiency extended to these key cells in humoral immunity. Characterization of the bacterial exposome revealed comparable bacterial species between the two groups, mostly Streptococcus and Staphylococcus. The most common species of bacteria was S. pneumoniae. By interrogating the antibacterial antibody repertoire, we found that children with MtD had less robust antibody fold changes to common epitopes. Furthermore, we also found that children with MtD failed to show a direct relationship between the number of bacterial epitopes recognized and age, unlike controls. OXPHOS deficiency extends to B cells in children with MtD, leading to limitations in the antibacterial antibody repertoire. Furthermore, the timing of bacterial exposures was asynchronous, suggesting different periods of increased exposure or susceptibility. CONCLUSIONS Overall, the antibacterial humoral response is distinctive in children with MtD, suggesting an important role for OXPHOS in B cell function.
Collapse
Affiliation(s)
- Eliza M Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Payal Banerjee
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jose Luis Marin Franco
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
46
|
Bajwa S, Luebbe A, Vo NDN, Piskor EM, Kosan C, Wolf G, Loeffler I. RAGE is a critical factor of sex-based differences in age-induced kidney damage. Front Physiol 2023; 14:1154551. [PMID: 37064891 PMCID: PMC10090518 DOI: 10.3389/fphys.2023.1154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Advanced glycation end products (AGEs) are a heterogeneous group of molecules with potential pathophysiological effects on the kidneys. Fibrosis together with the accumulation of AGEs has been investigated for its contribution to age-related decline in renal function. AGEs mediate their effects in large parts through their interactions with the receptor for AGEs (RAGE). RAGE is a transmembrane protein that belongs to the immunoglobulin superfamily and has the ability to interact with multiple pro-inflammatory/pro-oxidative ligands. The role of RAGE in aging kidneys has not been fully characterized, especially for sex-based differences. Methods: Therefore, we analyzed constitutive RAGE knockout (KO) mice in an age- and sex-dependent manner. Paraffin-embedded kidney sections were used for histological analysis and protein expression of fibrosis and damage markers. RNA expression analysis from the kidney cortex was done by qPCR for AGE receptors, kidney damage, and early inflammation/fibrosis factors. FACS analysis was used for immune cell profiling of the kidneys. Results: Histological analysis revealed enhanced infiltration of immune cells (positive for B220) in aged (>70 weeks old) KO mice in both sexes. FACS analysis revealed a similar pattern of enhanced B-1a cells in aged KO mice. There was an age-based increase in pro-fibrotic and pro-inflammatory markers (IL-6, TNF, TGF-β1, and SNAIL1) in KO male mice that presumably contributed to renal fibrosis and renal damage (glomerular and tubular). In fact, in KO mice, there was an age-dependent increase in renal damage (assessed by NGAL and KIM1) that was accompanied by increased fibrosis (assessed by CTGF). This effect was more pronounced in male KO mice than in the female KO mice. In contrast to the KO animals, no significant increase in damage markers was detectable in wild-type animals at the age examined (>70 weeks old). Moreover, there is an age-based increase in AGEs and scavenger receptor MSR-A2 in the kidneys. Discussion: Our data suggest that the loss of the clearance receptor RAGE in male animals further accelerates age-dependent renal damage; this could be in part due to an increase in AGEs load during aging and the absence of protective female hormones. By contrast, in females, RAGE expression seems to play only a minor role when compared to tissue pathology.
Collapse
Affiliation(s)
- Seerat Bajwa
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Alexander Luebbe
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ngoc Dong Nhi Vo
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Eva-Maria Piskor
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| |
Collapse
|
47
|
Lin Z, Yu N, Cheng C, Jin B, Zhang Q, Zhuang H, Jiang X. Serum levels and significance of soluble B-cell maturation antigen in childhood-onset systemic lupus erythematosus with renal involvement. Lupus 2023; 32:680-687. [PMID: 36914971 DOI: 10.1177/09612033231164633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE The aim of this study was to investigate serum levels of soluble B-cell maturation antigen (sBCMA) in childhood-onset systemic lupus erythematous (cSLE) patients with renal involvement, and to elucidate their association with clinical characteristics. METHODS 116 cases of cSLE patients with renal involvement (84 females and 32 males; median age 11.6 (10.1, 12.9) years) hospitalized in Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University and 31 healthy controls (HCs) were enrolled. Serum concentrations of sBCMA were determined using enzyme-linked immunosorbent assay (ELISA). Clinical and laboratory information of cSLE patients were retrospectively analyzed. RESULTS Serum sBCMA levels were significantly increased in primary cSLE when compared with treated cSLE patients and HCs, whereas there was no significant difference between treated cSLE patients and HCs. Patients with high disease activity displayed higher serum sBCMA levels compared with those with no or mild to moderate disease activity. Positive correlation was observed between serum sBCMA levels and systemic lupus erythematosus disease activity index-2K (SLEDAI-2K), antinuclear antibody titers, anti-double-stranded DNA titers, erythrocyte sedimentation rate, and immunoglobulin G levels, while sBCMA levels were negatively correlated with blood white blood cell count, hemoglobin, platelet count, complement C3 and C4 levels. Serum sBCMA levels decreased as disease ameliorated after treatments among 11 cases with follow-up examinations. CONCLUSIONS In cSLE patients with renal involvement, serum sBCMA levels correlated significantly with disease activity, immunological, and hematological parameters, but not with renal parameters. Our results suggest the potential and significance of serum sBCMA as a biomarker in cSLE patients.
Collapse
Affiliation(s)
- Zhilang Lin
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Nannan Yu
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Cheng Cheng
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Bei Jin
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Qiufang Zhang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Hongjie Zhuang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
48
|
Block V, Sevdali E, Recher M, Abolhassani H, Hammarstrom L, Smulski CR, Baronio M, Plebani A, Proietti M, Speletas M, Warnatz K, Voll RE, Lougaris V, Schneider P, Eibel H. CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses. J Clin Immunol 2023; 43:391-405. [PMID: 36308663 PMCID: PMC9616699 DOI: 10.1007/s10875-022-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. METHODS In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. RESULTS Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. CONCLUSION Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID.
Collapse
Affiliation(s)
- Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mike Recher
- Immunodeficiency Clinic and Laboratory, Medical Outpatient Unit and Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cristian R Smulski
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Manuela Baronio
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vassilios Lougaris
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Bertrand Y, Sánchez-Montalvo A, Hox V, Froidure A, Pilette C. IgA-producing B cells in lung homeostasis and disease. Front Immunol 2023; 14:1117749. [PMID: 36936934 PMCID: PMC10014553 DOI: 10.3389/fimmu.2023.1117749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant Ig in mucosae where it plays key roles in host defense against pathogens and in mucosal immunoregulation. Whereas intense research has established the different roles of secretory IgA in the gut, its function has been much less studied in the lung. This review will first summarize the state-of-the-art knowledge on the distribution and phenotype of IgA+ B cells in the human lung in both homeostasis and disease. Second, it will analyze the studies looking at cellular and molecular mechanisms of homing and priming of IgA+ B cells in the lung, notably following immunization. Lastly, published data on observations related to IgA and IgA+ B cells in lung and airway disease such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, or chronic rhinosinusitis, will be discussed. Collectively it provides the state-of-the-art of our current understanding of the biology of IgA-producing cells in the airways and identifies gaps that future research should address in order to improve mucosal protection against lung infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Youri Bertrand
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
| | - Alba Sánchez-Montalvo
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke universiteit (KU) Leuven, Leuven, Belgium
| | - Valérie Hox
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Froidure
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Charles Pilette,
| |
Collapse
|
50
|
Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the pre-immune naïve B cell compartment in humans. Front Immunol 2023; 14:1096019. [PMID: 36776874 PMCID: PMC9908586 DOI: 10.3389/fimmu.2023.1096019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-β7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luisa Paul
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.,Department of Pediatrics I, University Hospital Essen, University of Duisburg Essen, Essen, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Henner Morbach
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|