1
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
2
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
3
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
4
|
Wright CS, Robling AG, Farach-Carson MC, Thompson WR. Skeletal Functions of Voltage Sensitive Calcium Channels. Curr Osteoporos Rep 2021; 19:206-221. [PMID: 33721180 PMCID: PMC8216424 DOI: 10.1007/s11914-020-00647-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel's subunits and tissue location. The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading. RECENT FINDINGS: While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes. PURPOSE OF REVIEW: This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Papa A, Kushner J, Hennessey JA, Katchman AN, Zakharov SI, Chen BX, Yang L, Lu R, Leong S, Diaz J, Liu G, Roybal D, Liao X, del Rivero Morfin PJ, Colecraft HM, Pitt GS, Clarke O, Topkara V, Ben-Johny M, Marx SO. Adrenergic Ca V1.2 Activation via Rad Phosphorylation Converges at α 1C I-II Loop. Circ Res 2021; 128:76-88. [PMID: 33086983 PMCID: PMC7790865 DOI: 10.1161/circresaha.120.317839] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during β-adrenergic stimulation, and in heart failure. METHODS AND RESULTS We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and β-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVβ to α1C I-II loop and eliminated β-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to β-adrenergic agonists when reconstituted heterologously with β2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS Ca2+ channel activity is dynamically modulated under basal conditions, during β-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVβ binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the β-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by β-adrenergic agonists/PKA also requires this rigid linker and β-binding to α1C.
Collapse
Affiliation(s)
- Arianne Papa
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
- Department of Physiology and Cellular Biophysics
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Jessica A. Hennessey
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Alexander N. Katchman
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Sergey I. Zakharov
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Ree Lu
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Stephen Leong
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics
| | - Guoxia Liu
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Daniel Roybal
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons
| | - Xianghai Liao
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | | | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College
| | | | - Veli Topkara
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
| | | | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY 10032
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons
| |
Collapse
|
6
|
Yang L, Katchman A, Kushner J, Kushnir A, Zakharov SI, Chen BX, Shuja Z, Subramanyam P, Liu G, Papa A, Roybal D, Pitt GS, Colecraft HM, Marx SO. Cardiac CaV1.2 channels require β subunits for β-adrenergic-mediated modulation but not trafficking. J Clin Invest 2019; 129:647-658. [PMID: 30422117 DOI: 10.1172/jci123878] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023] Open
Abstract
Ca2+ channel β-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVβ can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these β-less Ca2+ channels cannot be stimulated by β-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a β-subunit-sequestering peptide sharply curtailed β-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate β-adrenergic regulation of cardiac contractility. Our data demonstrate that β subunits are required for β-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.
Collapse
Affiliation(s)
- Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University
| | | | - Jared Kushner
- Division of Cardiology, Department of Medicine, Columbia University
| | | | | | - Bi-Xing Chen
- Division of Cardiology, Department of Medicine, Columbia University
| | - Zunaira Shuja
- Department of Physiology and Cellular Biophysics, and
| | | | - Guoxia Liu
- Division of Cardiology, Department of Medicine, Columbia University
| | - Arianne Papa
- Department of Physiology and Cellular Biophysics, and
| | - Daniel Roybal
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, and.,Department of Pharmacology, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Columbia University.,Department of Pharmacology, Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
7
|
Ahern BM, Satin J. The L-type calcium channel current modulation mechanism: the plot thickens and fogs. J Clin Invest 2019; 129:496-498. [PMID: 30614816 DOI: 10.1172/jci125958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stressful situations provoke the fight-or-flight response, incurring rapid elevation of cardiac output via activation of protein kinase A (PKA). In this issue of the JCI, Yang et al. focus on the L-type calcium channel complex (LTCC), and their findings require reexamination of dogmatic principles. LTCC phosphorylation sites identified and studied to date are dispensable for PKA modulation of LTCC; however, a CaVβ2-CaV1.2 calcium channel interaction is now shown to be required. Yang et al. suggest a new hypothesis that LTCC modulation involves rearrangement of auxiliary proteins within the LTCC. However, we still do not know the targets of PKA that mediate LTCC modulation.
Collapse
|
8
|
Unravelling the complexities of vascular smooth muscle ion channels: Fine tuning of activity by ancillary subunits. Pharmacol Ther 2017; 178:57-66. [PMID: 28336473 DOI: 10.1016/j.pharmthera.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Which ion channel is the most important for regulating vascular tone? Which one is responsible for controlling the resting membrane potential or repolarization? Which channels are recruited by different intracellular signalling pathways or change in certain vascular diseases? Many different ion channels have been identified in the vasculature over the years and claimed as future therapeutic targets. Unfortunately, several of these ion channels are not just found in the vasculature, with many of them also found to have prominent functional roles in different organs of the body, which then leads to off-target effects. As cardiovascular diseases are expected to increase worldwide to epidemic proportions, ion channel research and the hunt for the next major therapeutic target to treat different vascular diseases has never been more important. However, I believe that the question we should now be asking is: which ancillary subunits are involved in regulating specific ion channels in the vasculature and do they have the potential to be new therapeutic targets?
Collapse
|
9
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 728] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
10
|
Liu F, Zhou Q, Zhou J, Sun H, Wang Y, Zou X, Feng L, Hou Z, Zhou A, Zhou Y, Li Y. 14-3-3τ promotes surface expression of Cav2.2 (α1B) Ca2+ channels. J Biol Chem 2014; 290:2689-98. [PMID: 25516596 DOI: 10.1074/jbc.m114.567800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Surface expression of voltage-gated Ca(2+) (Cav) channels is important for their function in calcium homeostasis in the physiology of excitable cells, but whether or not and how the α1 pore-forming subunits of Cav channels are trafficked to plasma membrane in the absence of the known Cav auxiliary subunits, β and α2δ, remains mysterious. Here we showed that 14-3-3 proteins promoted functional surface expression of the Cav2.2 α1B channel in transfected tsA-201 cells in the absence of any known Cav auxiliary subunit. Both the surface to total ratio of the expressed α1B protein and the current density of voltage step-evoked Ba(2+) current were markedly suppressed by the coexpression of a 14-3-3 antagonist construct, pSCM138, but not its inactive control, pSCM174, as determined by immunofluorescence assay and whole cell voltage clamp recording, respectively. By contrast, coexpression with 14-3-3τ significantly enhanced the surface expression and current density of the Cav2.2 α1B channel. Importantly, we found that between the two previously identified 14-3-3 binding regions at the α1B C terminus, only the proximal region (amino acids 1706-1940), closer to the end of the last transmembrane domain, was retained by the endoplasmic reticulum and facilitated by 14-3-3 to traffic to plasma membrane. Additionally, we showed that the 14-3-3/Cav β subunit coregulated the surface expression of Cav2.2 channels in transfected tsA-201 cells and neurons. Altogether, our findings reveal a previously unidentified regulatory function of 14-3-3 proteins in promoting the surface expression of Cav2.2 α1B channels.
Collapse
Affiliation(s)
- Feng Liu
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Qin Zhou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Jie Zhou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Hao Sun
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Yan Wang
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Xiuqun Zou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Lingling Feng
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Zhaoyuan Hou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Aiwu Zhou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Yi Zhou
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Yong Li
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| |
Collapse
|
11
|
Béguin P, Nagashima K, Mahalakshmi RN, Vigot R, Matsunaga A, Miki T, Ng MY, Ng YJA, Lim CH, Tay HS, Hwang LA, Firsov D, Tang BL, Inagaki N, Mori Y, Seino S, Launey T, Hunziker W. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis. ACTA ACUST UNITED AC 2014; 205:233-49. [PMID: 24751537 PMCID: PMC4003244 DOI: 10.1083/jcb.201304101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory and 2 Monoclonal Antibody Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dallas ML, Deuchars SA, Deuchars J. Immunopharmacology: utilizing antibodies as ion channel modulators. Expert Rev Clin Pharmacol 2014; 3:281-9. [DOI: 10.1586/ecp.10.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Kharade SV, Sonkusare SK, Srivastava AK, Thakali KM, Fletcher TW, Rhee SW, Rusch NJ. The β3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II-infused C57BL/6 mice. Hypertension 2012; 61:137-42. [PMID: 23129698 DOI: 10.1161/hypertensionaha.112.197863] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Voltage-gated L-type Ca(2+) (Ca(v)1.2) channels in vascular smooth muscle cells are a predominant Ca(2+) influx pathway that mediates arterial tone. Channel biogenesis is accomplished when the pore-forming α(1C) subunit coassembles with regulatory Ca(v)β subunits intracellularly, and the multiprotein Ca(v)1.2 channel complex translocates to the plasma membrane to form functional Ca(2+) channels. We hypothesized that the main Ca(v)β isoform in vascular smooth muscle cells, Ca(v)β3, is required for the upregulation of arterial Ca(v)1.2 channels during the development of hypertension, an event associated with abnormal Ca(2+)-dependent tone. Ca(v)1.2 channel expression and function were compared between second-order mesenteric arteries of C57BL/6 wild-type (WT) and Ca(v)β3(-/-) mice infused with saline (control) or angiotensin II (Ang II) for 2 weeks to induce hypertension. The mesenteric arteries of Ang II-infused WT mice showed increased Ca(v)1.2 channel expression and accentuated Ca(2+)-mediated contractions compared with saline-infused WT mice. In contrast, Ca(v)1.2 channels failed to upregulate in mesenteric arteries of Ang II-infused Ca(v)β3(-/-) mice, and Ca(2+)-dependent reactivity was normal in these arteries. Basal systolic blood pressure was not significantly different between WT and Ca(v)β3(-/-) mice (98 ± 2 and 102 ± 3 mm Hg, respectively), but the Ca(v)β3(-/-) mice showed a blunted pressor response to Ang II infusion. Two weeks after the start of Ang II administration, the systolic blood pressure of Ca(v)β3(-/-) mice averaged 149 ± 4 mm Hg compared with 180 ± 5 mm Hg in WT mice. Thus, the Ca(v)β3 subunit is a critical regulatory protein required to upregulate arterial Ca(v)1.2 channels and fully develop Ang II-dependent hypertension in C57BL/6 mice.
Collapse
Affiliation(s)
- Sujay V Kharade
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Yang T, Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1644-54. [PMID: 23063948 DOI: 10.1016/j.bbamem.2012.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/28/2022]
Abstract
RGK proteins belong to the Ras superfamily of monomeric G-proteins, and currently include four members - Rad, Rem, Rem2, and Gem/Kir. RGK proteins are broadly expressed, and are the most potent known intracellular inhibitors of high-voltage-activated Ca²⁺ (Ca(V)1 and Ca(V)2) channels. Here, we review and discuss the evidence in the literature regarding the functional mechanisms, structural determinants, physiological role, and potential practical applications of RGK-mediated inhibition of Ca(V)1/Ca(V)2 channels. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Kadurin I, Alvarez-Laviada A, Ng SFJ, Walker-Gray R, D'Arco M, Fadel MG, Pratt WS, Dolphin AC. Calcium currents are enhanced by α2δ-1 lacking its membrane anchor. J Biol Chem 2012; 287:33554-66. [PMID: 22869375 PMCID: PMC3460456 DOI: 10.1074/jbc.m112.378554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The accessory α(2)δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α(2) and δ. All α(2)δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α(2)δ subunits, we have now examined the properties of α(2)δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α(2)δ-1ΔC-term). We find that the majority of α(2)δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α(2)δ-1ΔC-term with Ca(V)2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α(2)δ-1. These results call into question the role of membrane anchoring of α(2)δ subunits for calcium current enhancement.
Collapse
Affiliation(s)
- Ivan Kadurin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ferrándiz-Huertas C, Gil-Mínguez M, Luján R. Regional expression and subcellular localization of the voltage-gated calcium channel β subunits in the developing mouse brain. J Neurochem 2012; 122:1095-107. [PMID: 22737983 DOI: 10.1111/j.1471-4159.2012.07853.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) channel β subunits determine the maturation, biophysical properties and cell surface expression of high voltage-activated channels. Thus, we have analysed the expression, regional distribution and subcellular localization of the Ca(v) β subunit family in mice from birth to adulthood. In the hippocampus and cerebellum, Ca(v) β(1), Ca(v) β(3) and Ca(v) β(4) protein levels increased with age, although there were marked region- and developmental stage-specific differences in their expression. Ca(v) β(1) was predominantly expressed in the strata oriens and radiatum of the hippocampus, and only weakly in the cerebellum. The Ca(v) β(3) subunit was mainly expressed in the strata radiatum and lucidum of the hippocampus and in the molecular layer of the cerebellum. During development, Ca(v) β(3) protein expression in the cerebellum peaked at postnatal days (P) 15 and 21, and had diminished drastically by P60, and in the hippocampus increased with age throughout all subfields. Ca(v) β(4) protein was detected throughout the cerebellum, particularly in the molecular layer, and in contrast to the other subunits, Ca(v) β(4) was mainly detected in the molecular layer and the hilus of the hippocampus. At the subcellular level, Ca(v) β(1) and Ca(v) β(3) were predominantly located post-synaptically in hippocampal pyramidal cells and cerebellar Purkinje cells. Ca(v) β(4) subunits were detected in the pre-synaptic and post-synaptic compartments of both regions, albeit more strongly at post-synaptic sites. These results shed new light on the developmental regulation and subcellular localization of Ca(v) β subunits, and their possible role in pre- and post-synaptic transmission.
Collapse
Affiliation(s)
- Clotilde Ferrándiz-Huertas
- Dept. Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
17
|
Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci 2012; 13:542-55. [PMID: 22805911 DOI: 10.1038/nrn3311] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The voltage-gated calcium channel α(2)δ and β subunits are traditionally considered to be auxiliary subunits that enhance channel trafficking, increase the expression of functional calcium channels at the plasma membrane and influence the channels' biophysical properties. Accumulating evidence indicates that these subunits may also have roles in the nervous system that are not directly linked to calcium channel function. For example, β subunits may act as transcriptional regulators, and certain α(2)δ subunits may function in synaptogenesis. The aim of this Review is to examine both the classic and novel roles for these auxiliary subunits in voltage-gated calcium channel function and beyond.
Collapse
|
18
|
Waithe D, Ferron L, Dolphin AC. Stargazin-related protein γ₇ is associated with signalling endosomes in superior cervical ganglion neurons and modulates neurite outgrowth. J Cell Sci 2011; 124:2049-57. [PMID: 21610096 DOI: 10.1242/jcs.084988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role(s) of the newly discovered stargazin-like γ-subunit proteins remains unclear; although they are now widely accepted to be transmembrane AMPA receptor regulatory proteins (TARPs), rather than Ca²⁺ channel subunits, it is possible that they have more general roles in trafficking within neurons. We previously found that γ₇ subunit is associated with vesicles when it is expressed in neurons and other cells. Here, we show that γ₇ is present mainly in retrogradely transported organelles in sympathetic neurons, where it colocalises with TrkA-YFP, and with the early endosome marker EEA1, suggesting that γ₇ localises to signalling endosomes. It was not found to colocalise with markers of the endoplasmic reticulum, mitochondria, lysosomes or late endosomes. Furthermore, knockdown of endogenous γ₇ by short hairpin RNA transfection into sympathetic neurons reduced neurite outgrowth. The same was true in the PC12 neuronal cell line, where neurite outgrowth was restored by overexpression of human γ₇. These findings open the possibility that γ₇ has an essential trafficking role in relation to neurite outgrowth as a component of endosomes involved in neurite extension and growth cone remodelling.
Collapse
Affiliation(s)
- Dominic Waithe
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
19
|
Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC. Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. J Biol Chem 2011; 286:9598-611. [PMID: 21233207 PMCID: PMC3059031 DOI: 10.1074/jbc.m110.195909] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/22/2010] [Indexed: 02/03/2023] Open
Abstract
The β-subunits of voltage-gated calcium channels regulate their functional expression and properties. Two mechanisms have been proposed for this, an effect on gating and an enhancement of expression. With respect to the effect on expression, β-subunits have been suggested to enhance trafficking by masking an unidentified endoplasmic reticulum (ER) retention signal. Here we have investigated whether, and how, β-subunits affect the level of Ca(V)2.2 channels within somata and neurites of cultured sympathetic neurons. We have used YFP-Ca(V)2.2 containing a mutation (W391A), that prevents binding of β-subunits to its I-II linker and found that expression of this channel was much reduced compared with WT CFP-Ca(V)2.2 when both were expressed in the same neuron. This effect was particularly evident in neurites and growth cones. The difference between the levels of YFP-Ca(V)2.2(W391A) and CFP-Ca(V)2.2(WT) was lost in the absence of co-expressed β-subunits. Furthermore, the relative reduction of expression of Ca(V)2.2(W391A) compared with the WT channel was reversed by exposure to two proteasome inhibitors, MG132 and lactacystin, particularly in the somata. In further experiments in tsA-201 cells, we found that proteasome inhibition did not augment the cell surface Ca(V)2.2(W391A) level but resulted in the observation of increased ubiquitination, particularly of mutant channels. In contrast, we found no evidence for selective retention of Ca(V)2.2(W391A) in the ER, in either the soma or growth cones. In conclusion, there is a marked effect of β-subunits on Ca(V)2.2 expression, particularly in neurites, but our results point to protection from proteasomal degradation rather than masking of an ER retention signal.
Collapse
Affiliation(s)
- Dominic Waithe
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Laurent Ferron
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Karen M. Page
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Kanchan Chaggar
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Annette C. Dolphin
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St., London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
21
|
The stargazin-related protein gamma 7 interacts with the mRNA-binding protein heterogeneous nuclear ribonucleoprotein A2 and regulates the stability of specific mRNAs, including CaV2.2. J Neurosci 2008; 28:10604-17. [PMID: 18923037 DOI: 10.1523/jneurosci.2709-08.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role(s) of the novel stargazin-like gamma-subunit proteins remain controversial. We have shown previously that the neuron-specific gamma7 suppresses the expression of certain calcium channels, particularly Ca(V)2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of gamma7 on Ca(V)2.2 expression is via an increase in the degradation rate of Ca(V)2.2 mRNA and hence a reduction of Ca(V)2.2 protein level. Furthermore, exogenous expression of gamma7 in PC12 cells also decreased the endogenous Ca(V)2.2 mRNA level. Conversely, knockdown of endogenous gamma7 with short-hairpin RNAs produced a reciprocal enhancement of Ca(V)2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed gamma7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C terminus of gamma7 is essential for all its effects, and we show that gamma7 binds directly via its C terminus to a heterogeneous nuclear ribonucleoprotein (hnRNP A2), which also binds to a motif in Ca(V)2.2 mRNA, and is associated with native Ca(V)2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances Ca(V)2.2 I(Ba), and this enhancement is prevented by a concentration of gamma7 that alone has no effect on I(Ba). The effect of gamma7 is selective for certain mRNAs because it had no effect on alpha2delta-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride cotransporter, KCC1, which contains a similar hnRNP A2 binding motif to that in Ca(V)2.2 mRNA. Our results indicate that gamma7 plays a role in stabilizing Ca(V)2.2 mRNA.
Collapse
|
22
|
Ebert AM, McAnelly CA, Handschy AV, Mueller RL, Horne WA, Garrity DM. Genomic organization, expression, and phylogenetic analysis of Ca2+ channel beta4 genes in 13 vertebrate species. Physiol Genomics 2008; 35:133-44. [PMID: 18682574 DOI: 10.1152/physiolgenomics.90264.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+) channel beta-subunits, encoded by CACNB genes 1-4, are membrane-associated guanylate kinase (MAGUK) proteins. As auxiliary subunits of voltage-gated Ca(2+) channels, the beta-subunits facilitate membrane trafficking of the pore-forming alpha1 subunits and regulate voltage-dependent channel gating. In this report, we investigate whether two zebrafish beta4 genes, beta4.1 and beta4.2, have diverged in structure and function over time. Comparative expression analyses indicated that beta4.1 and beta4.2 were expressed in separable domains within the developing brain and other tissues. Alternative splicing in both genes was subject to differential temporal and spatial regulation, with some organs expressing different subsets of beta4.1 and beta4.2 transcript variants. We used several genomic tools to identify and compare predicted cDNAs for eight teleost and five tetrapod beta4 genes. Teleost species had either one or two beta4 paralogs, whereas each tetrapod species contained only one. Teleost beta4.1 and beta4.2 genes had regions of sequence divergence, but compared with tetrapod beta4s, they exhibited similar exon/intron structure, strong conservation of residues involved in alpha1 subunit binding, and similar 5' alternative splicing. Phylogenetic results are consistent with the duplicate teleost beta4 genes resulting from the teleost whole genome duplication. Following duplication, the beta4.1 genes have evolved faster than beta4.2 genes. We identified disproportionately large second and third introns in several beta4 genes, which we propose may provide regulatory elements contributing to their differential tissue expression. In sum, both mRNA expression data and phylogenetic analysis support the evolutionary divergence of beta4.1 and beta4.2 subunit function.
Collapse
Affiliation(s)
- Alicia M Ebert
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
23
|
Dresviannikov AV, Page KM, Leroy J, Pratt WS, Dolphin AC. Determinants of the voltage dependence of G protein modulation within calcium channel beta subunits. Pflugers Arch 2008; 457:743-56. [PMID: 18651169 PMCID: PMC2686087 DOI: 10.1007/s00424-008-0549-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/17/2008] [Indexed: 11/21/2022]
Abstract
CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone.
Collapse
Affiliation(s)
- Andriy V Dresviannikov
- Laboratory of Cellular and Molecular Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
24
|
Salvador-Recatalà V, Schneider T, Greenberg RM. Atypical properties of a conventional calcium channel beta subunit from the platyhelminth Schistosoma mansoni. BMC PHYSIOLOGY 2008; 8:6. [PMID: 18366784 PMCID: PMC2311325 DOI: 10.1186/1472-6793-8-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/26/2008] [Indexed: 11/13/2022]
Abstract
Background The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory β subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the α1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two β subunit subtypes: a structurally conventional β subunit and a variant β subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavβ subunit. Here, we focus on the modulatory phenotype of the conventional Cavβ subunit (SmCavβ) using the human Cav2.3 channel as the substrate for SmCavβ and the whole-cell patch-clamp technique. Results The conventional Schistosoma mansoni Cavβ subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavβ run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavβ lends the Cav2.3/SmCavβ complex sensitivity to Na+ ions. A mutant version of the Cavβ subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. Conclusion The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavβ subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and perhaps other organisms modulate Ca2+ currents in excitable cells.
Collapse
|
25
|
Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A 2008; 105:3628-33. [PMID: 18299583 DOI: 10.1073/pnas.0708930105] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the alpha(2)delta-1 and alpha(2)delta-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We formulated the hypothesis that GBP impairs the ability of alpha(2)delta subunits to enhance voltage-gated Ca(2+)channel plasma membrane density by means of an effect on trafficking. Our results conclusively demonstrate that GBP inhibits calcium currents, mimicking a lack of alpha(2)delta only when applied chronically, but not acutely, both in heterologous expression systems and in dorsal root-ganglion neurons. GBP acts primarily at an intracellular location, requiring uptake, because the effect of chronically applied GBP is blocked by an inhibitor of the system-L neutral amino acid transporters and enhanced by coexpression of a transporter. However, it is mediated by alpha(2)delta subunits, being prevented by mutations in either alpha(2)delta-1 or alpha(2)delta-2 that abolish GBP binding, and is not observed for alpha(2)delta-3, which does not bind GBP. Furthermore, the trafficking of alpha(2)delta-2 and Ca(V)2 channels is disrupted both by GBP and by the mutation in alpha(2)delta-2, which prevents GBP binding, and we find that GBP reduces cell-surface expression of alpha(2)delta-2 and Ca(V)2.1 subunits. Our evidence indicates that GBP may act chronically by displacing an endogenous ligand that is normally a positive modulator of alpha(2)delta subunit function, thereby impairing the trafficking function of the alpha(2)delta subunits to which it binds.
Collapse
|
26
|
Zou S, Jha S, Kim EY, Dryer SE. The β1 Subunit of L-Type Voltage-Gated Ca2+ Channels Independently Binds to and Inhibits the Gating of Large-Conductance Ca2+-Activated K+ Channels. Mol Pharmacol 2007; 73:369-78. [DOI: 10.1124/mol.107.040733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Laszlo R, Winkler C, Wöhrl S, Wessel RE, Laszlo S, Busch MC, Schreieck J, Bosch RF. Effect of verapamil on tachycardia-induced early cellular electrical remodeling in rabbit atrium. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:231-40. [PMID: 17874072 DOI: 10.1007/s00210-007-0188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
We investigated the effects of a 7-day verapamil pretreatment (VPT, 7.5 mg/kg bodyweight subcutaneously every 12 h) on ionic currents and molecular mechanisms underlying tachycardia-induced early electrical remodeling after 24-h rapid atrial pacing (RAP, 600 bpm) in rabbit atrium. Animals were divided into four groups (n = 6 each group): control (not paced, no verapamil), paced only, verapamil only and verapamil and paced, respectively. VPT doubled ICa,L [7.0 +/- 0.7 pA/pF (control) vs 14.2 +/- 0.6 pA/pF (verapamil only)]. RAP reduced ICa,L by 48% to 3.6 +/- 0.7 pA/pF (paced only). RAP did not affect ICa,L in verapamil-treated animals and averaged 15.3 +/- 0.2 pA/pF (paced and verapamil). RAP resulted in a significant decrease of the expression of the alpha1c subunit (-24.7%) and the beta2A subunit (-13.3%), respectively. VPT led to a similar alteration of subunit expression as RAP ["control" vs "verapamil only", decrease of alpha1c subunit (-25.4%), but no significant change in beta2A subunit expression]. However, after VPT, further diminishment of alpha1c and beta2A subunit expression after rapid atrial pacing was absent. ("verapamil" vs "verapamil and paced", n = 6 both groups). RAP decreased Ito [-45%, 51.5 +/- 3.9 pA/pF (control) vs 26.8 +/- 1.5 pA/pF (paced only)] and was not influenceable by VPT. IK1 was neither affected by RAP nor verapamil pretreatment. Downregulation of alpha1c and beta2A subunit expression and the resulting decay of ICa,L current densities were prevented by verapamil. However, these effects are abolished by multiple other adverse effects of verapamil on atrial electrophysiology.
Collapse
Affiliation(s)
- Roman Laszlo
- Department of Cardiology, University of Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fan W, Li C, Wang X, Gong N, Xie L, Zhang R. Cloning, characterization and expression analysis of calcium channel β subunit from pearl oyster (Pinctada fucata). J Biosci Bioeng 2007; 104:47-54. [PMID: 17697983 DOI: 10.1263/jbb.104.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 04/16/2007] [Indexed: 11/17/2022]
Abstract
The absorption, transport and localization of calcium underlie the basis of biomineralization, and Ca(2+) entry into epithelial cell is the primary step in shell formation. However, the related mechanism of Ca(2+) transport is poorly documented at the gene or protein level. L-type voltage-dependent calcium channels may be involved in calcium transport for biomineralization in some marine invertebrates. In this study, a full-length cDNA of a voltage-dependent calcium channel beta subunit from Pinctada fucata (PCabeta) was cloned, and its amino acid sequence was deduced. PCabeta shared 51%-67% apparently sequence identity with voltage-dependent calcium channel beta subunits from other species. However, PCabeta was much shorter than other voltage-dependent calcium channel beta subunits particularly at the carboxyl terminus, indicating that it is likely a truncated beta subunit isoform. Semi-quantitative RT-PCR analysis showed that PCabeta was expressed in all the tested tissues and that it had a higher expression level in the gill tissue and hemolymph than in other tissues, suggesting that L-type voltage-dependent calcium channels are responsible for Ca(2+) absorption in the gill and Ca(2+) entry into hemocytes. In the mantle, PCabeta mRNA was predominantly expressed in the inner and middle folds of the mantle epithelium, suggesting that L-type voltage-dependent calcium channels are involved in Ca(2+) absorption from the ambient medium in the mantle. All these results suggest that voltage-dependent calcium channels are involved in Ca(2+) uptake and transport during oyster biomineralization.
Collapse
Affiliation(s)
- Weimin Fan
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
29
|
Luin E, Ruzzier F. The role of L- and T-type Ca2+ currents during the in vitro aging of murine myogenic (i28) cells in culture. Cell Calcium 2007; 41:479-89. [PMID: 17064763 DOI: 10.1016/j.ceca.2006.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 07/28/2006] [Accepted: 09/10/2006] [Indexed: 01/29/2023]
Abstract
The age-related decline in skeletal muscle strength could, in part, result from alterations in the mechanism of excitation-contraction coupling, responsible for muscle contraction. In the present work, we used the in vitro aging of murine myogenic (i28) cells as a model, to investigate whether the inefficiency of aged satellite cells to generate functional skeletal muscle fibres could be partly due to defective voltage-dependent Ca2+ currents. The whole-cell patch clamp technique was employed to measure L- and T-type Ca2+ currents in myotubes derived from the differentiation and fusion of these cells reaching replicative senescence. Our data showed that the expression and the amplitude of these currents decreased significantly during in vitro aging. Moreover, the analysis of the L-type current evoked in young and old cells by positive voltage steps, revealed no differences in the kinetics of activation, but significant alterations in the rate of inactivation. These effects of in vitro aging on voltage-dependent Ca2+ currents could also be related to their inability to fuse into myotubes. Taken together, our data support the hypothesis that age-related effects on voltage-dependent L- and T-type currents could be one of the causes of the failure of satellite cells to efficiently counteract the impairment in muscle force.
Collapse
Affiliation(s)
- Elisa Luin
- Department of Physiology and Pathology and Centre for Neuroscience BRAIN, University of Trieste, Via A. Fleming 22, I-34127 Trieste, Italy.
| | | |
Collapse
|
30
|
Schroder E, Magyar J, Burgess D, Andres D, Satin J. Chronic verapamil treatment remodelsICa,Lin mouse ventricle. Am J Physiol Heart Circ Physiol 2007; 292:H1906-16. [PMID: 17158651 DOI: 10.1152/ajpheart.00793.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we tested the hypothesis that ventricular homeostasis of L-type Ca2+current ( ICa,L) minimally involves regulation of the main pore-forming α-subunit (CaV1.2) and auxiliary proteins that serve as positive or negative regulators of ICa,L. We treated animals for 24 h with verapamil (Ver, 3.6 mg·kg−1·day−1), isoproterenol (Iso, 30 mg·kg−1·day−1), or Iso + Ver via osmotic minipumps. To test for alterations of Ca2+channel complex components we performed real-time PCR and Western blot analysis on ventricle. In addition, cardiac myocytes (CMs) were dispersed and current was recorded in the whole cell configuration to evaluate ICa,L. Surprisingly, 24- to 48-h Ver increased CaV1.2 mRNA and protein and ICa,Lcurrent (Ver 11 ± 1pA/pF vs. control 7 ± 0.5pA/pF; P < 0.01). ICa,Lfrom CMs in Ver mice showed no change in whole cell capacitance. To examine the in vivo effects of a physiologically relevant Ca2+channel agonist, we treated mice with Iso. Twenty-four-hour Iso infusion increased heart rate; CaV1.2- and CaVβ2mRNA levels were constant, but the Ca2+channel subunit mRNA Rem was increased twofold. Cells isolated from 24-h Iso hearts showed no change in basal ICa,Ldensity and diminished responsiveness to acute 1 μM Iso. To further examine the homeostatic regulation of the Ca2+channel, we treated animals for 24 h with Iso + Ver. The influence of Iso + Ver was similar that of to Iso alone on Ca2+channel mRNAs and ICa,L, with the exception that it prevented the increase in Rem seen with Iso treatment. Long-term Ca2+channel blockade induces an increase of CaV1.2 mRNA and protein and significantly increases ICa,L.
Collapse
Affiliation(s)
- Elizabeth Schroder
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | |
Collapse
|
31
|
Bernstein GM, Jones OT. Kinetics of internalization and degradation of N-type voltage-gated calcium channels: Role of the α2/δ subunit. Cell Calcium 2007; 41:27-40. [PMID: 16759698 DOI: 10.1016/j.ceca.2006.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/22/2006] [Accepted: 04/24/2006] [Indexed: 11/27/2022]
Abstract
The contribution of voltage-gated calcium channels to excitable cell function depends, critically, upon the mechanisms that control their expression at the cell surface. While co-assembly of the pore forming alpha(1) and auxiliary beta subunits enhances channel surface expression, the levels are still only 30-40% of those seen with the core alpha(1B)/beta(1b)/alpha(2)delta calcium channel complex. To rationalize this observation, it has been suggested that the alpha(2)/delta subunit might stabilize calcium channel expression at the cell surface. To test this notion, we have resolved the effect of the alpha(2)/delta subunit on the rates of binding, internalization and degradation of defined N-type calcium channel surface complexes expressed in HEK293 cells, through pulse-labeling with the selective, cell impermeable, radioligand [(125)I]-omega-CgTx. Through detailed kinetic and sensitivity analysis we show that alpha(1B)/beta(1b)/alpha(2)delta complexes are internalized slowly (k(int) 0.4/h), whereupon, most become degraded (k(deg) 0.02/h). In contrast, alpha(1B)/beta(1b) complexes are internalized more rapidly (k(int) 0.8/h), following which they are either quickly degraded (k(deg) 0.1/h) or are sequestered slowly (k(tra) 0.1/h) to a pool that is metabolically stable within the time-frame of our experiments (24h). In neither case did we find evidence for recycling via the cell surface. Thus, our data argue for a novel mechanism where complexes lacking an alpha(2)/delta subunit are cleared from the cell surface and are rapidly degraded or stored, possibly for further attempts at complexation as new alpha(2)/delta subunits become available. The slower rate of internalization of complexes containing the alpha(2)/delta subunit rationalizes the stabilizing effect this subunit has upon calcium channel surface expression and suggests a mechanism by which alpha(2)delta mutations may cause severe neurological deficits.
Collapse
Affiliation(s)
- Geula M Bernstein
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network. 399 Bathurst Street, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Raike RS, Kordasiewicz HB, Thompson RM, Gomez CM. Dominant-negative suppression of Cav2.1 currents by alpha(1)2.1 truncations requires the conserved interaction domain for beta subunits. Mol Cell Neurosci 2006; 34:168-77. [PMID: 17161621 PMCID: PMC3236250 DOI: 10.1016/j.mcn.2006.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/11/2006] [Accepted: 10/19/2006] [Indexed: 11/20/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant disorder arising from CACNA1A mutations, which commonly predict heterozygous expression of Ca(v)2.1 calcium channels with truncated alpha(1)2.1 pore subunits. We hypothesized that alpha(1)2.1 truncations in EA2 exert dominant-negative effects on the function of wild-type subunits. Wild-type and truncated alpha(1)2.1 subunits with fluorescent protein tags were transiently co-expressed in cells stably expressing Ca(v) auxiliary beta subunits, which facilitate alpha1 subunit functional expression through high-affinity interactions with the alpha interaction domain (AID). Co-expression of wild-type subunits with truncations often resulted in severely reduced whole-cell currents compared to expression of wild-type subunits alone. Cellular image analyses revealed that current suppression was not due to reduced wild-type expression levels. Instead, the current suppression depended on truncations terminating distal to the AID. Moreover, only AID-bearing alpha(1)2.1 proteins co-immunoprecipitated with Ca(v) beta subunits. These results indicate that Ca(v) beta subunits may play a prominent role in EA2 disease pathogenesis.
Collapse
Affiliation(s)
- Robert S. Raike
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Holly B. Kordasiewicz
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Randall M. Thompson
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Christopher M. Gomez
- Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
33
|
Kanevsky N, Dascal N. Regulation of maximal open probability is a separable function of Ca(v)beta subunit in L-type Ca2+ channel, dependent on NH2 terminus of alpha1C (Ca(v)1.2alpha). ACTA ACUST UNITED AC 2006; 128:15-36. [PMID: 16801381 PMCID: PMC2151559 DOI: 10.1085/jgp.200609485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
β subunits (Cavβ) increase macroscopic currents of voltage-dependent Ca2+ channels (VDCC) by increasing surface expression and modulating their gating, causing a leftward shift in conductance–voltage (G-V) curve and increasing the maximal open probability, Po,max. In L-type Cav1.2 channels, the Cavβ-induced increase in macroscopic current crucially depends on the initial segment of the cytosolic NH2 terminus (NT) of the Cav1.2α (α1C) subunit. This segment, which we term the “NT inhibitory (NTI) module,” potently inhibits long-NT (cardiac) isoform of α1C that features an initial segment of 46 amino acid residues (aa); removal of NTI module greatly increases macroscopic currents. It is not known whether an NTI module exists in the short-NT (smooth muscle/brain type) α1C isoform with a 16-aa initial segment. We addressed this question, and the molecular mechanism of NTI module action, by expressing subunits of Cav1.2 in Xenopus oocytes. NT deletions and chimeras identified aa 1–20 of the long-NT as necessary and sufficient to perform NTI module functions. Coexpression of β2b subunit reproducibly modulated function and surface expression of α1C, despite the presence of measurable amounts of an endogenous Cavβ in Xenopus oocytes. Coexpressed β2b increased surface expression of α1C approximately twofold (as demonstrated by two independent immunohistochemical methods), shifted the G-V curve by ∼14 mV, and increased Po,max 2.8–3.8-fold. Neither the surface expression of the channel without Cavβ nor β2b-induced increase in surface expression or the shift in G-V curve depended on the presence of the NTI module. In contrast, the increase in Po,max was completely absent in the short-NT isoform and in mutants of long-NT α1C lacking the NTI module. We conclude that regulation of Po,max is a discrete, separable function of Cavβ. In Cav1.2, this action of Cavβ depends on NT of α1C and is α1C isoform specific.
Collapse
Affiliation(s)
- Nataly Kanevsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
34
|
Jurkat-Rott K, Fauler M, Lehmann-Horn F. Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 2006; 27:275-90. [PMID: 16933023 DOI: 10.1007/s10974-006-9088-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
This review focuses on the electrical properties of the transverse (T) tubular membrane of skeletal muscle, with reference to the contribution of the T-tubular system (TTS) to the surface action potential, the radial spread of excitation and its role in excitation-contraction coupling. Particularly, the most important ion channels and ion transporters that enable proper depolarization and repolarization of the T-tubular membrane are described. Since propagation of excitation along the TTS into the depth of the fibers is a delicate balance between excitatory and inhibitory currents, the composition of channels and transporters is specific to the TTS and different from the surface membrane. The TTS normally enables the radial spread of excitation and the signal transfer to the sarcoplasmic reticulum to release calcium that activates the contractile apparatus. However, due to its structure, even slight shifts of ions may alter its volume, Nernstian potentials, ion permeabilities, and consequently T-tubular membrane potential and excitability.
Collapse
|
35
|
Crump SM, Correll RN, Schroder EA, Lester WC, Finlin BS, Andres DA, Satin J. L-type calcium channel alpha-subunit and protein kinase inhibitors modulate Rem-mediated regulation of current. Am J Physiol Heart Circ Physiol 2006; 291:H1959-71. [PMID: 16648185 DOI: 10.1152/ajpheart.00956.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subunit (Ca(V)1.2) to Ca(V)beta2-Rem inhibition of Ca channel current. Specifically, we addressed whether protein kinase A (PKA) modulation of the Ca channel modifies Ca(V)beta2-Rem inhibition of Ca channel current. We first tested the effect of Rem on Ca(V)1.2 in human embryonic kidney 293 (HEK-293) cells using the whole cell patch-clamp configuration. Rem coexpression with Ca(V)1.2 reduces Ba current expression under basal conditions, and Ca(V)beta2a coexpression enhances Rem block of Ca(V)1.2 current. Surprisingly, PKA inhibition by 133 nM H-89 or 50 microM Rp-cAMP-S partially relieved the Rem-mediated inhibition of current activity both with and without Ca(V)beta2a. To test whether the H-89 action was a consequence of the phosphorylation status of Ca(V)1.2, we examined Rem regulation of the PKA-insensitive Ca(V)1.2 serine 1928 (S1928) to alanine mutation (Ca(V)1.2-S1928A). Ca(V)1.2-S1928A current was not inhibited by Rem and when coexpression with Ca(V)beta2a was not completely blocked by Rem coexpression, suggesting that the phosphorylation of S1928 contributes to Rem-mediated Ca channel modulation. As a model for native Ca channel complexes, we tested the ability of Rem overexpression in HIT-T15 cells and embryonic ventricular myocytes to interfere with native current. We find that native current is also sensitive to Rem block and that H-89 pretreatment relieves the ability of Rem to regulate Ca current. We conclude that Rem is capable of regulating L-type current, that release of Rem block is modulated by cellular kinase pathways, and that the Ca(V)1.2 COOH terminus contributes to Rem-dependent channel inhibition.
Collapse
Affiliation(s)
- Shawn M Crump
- Dept. of Physiology, MS-508, Univ. of Kentucky College of Medicine, 800 Rose St. Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Sonkusare S, Palade PT, Marsh JD, Telemaque S, Pesic A, Rusch NJ. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Vascul Pharmacol 2006; 44:131-42. [PMID: 16427812 PMCID: PMC4917380 DOI: 10.1016/j.vph.2005.10.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Long-lasting Ca(2+) (Ca(L)) channels of the Ca(v)1.2 gene family are heteromultimeric structures that are minimally composed of a pore-forming alpha(1C) subunit and regulatory beta and alpha(2)delta subunits in vascular smooth muscle cells. The Ca(L) channels are the primary pathways for voltage-gated Ca(2+) influx that trigger excitation-contraction coupling in small resistance vessels. Notably, vascular smooth muscle cells of hypertensive rats show an increased expression of Ca(L) channel alpha(1C) subunits, which is associated with elevated Ca(2+) influx and the development of abnormal arterial tone. Indeed, blood pressure per se appears to promote Ca(L) channel expression in small arteries, and even short-term rises in pressure may alter channel expression. Membrane depolarization has been shown to be one stimulus associated with elevated blood pressure that promotes Ca(L) channel expression at the plasma membrane. Future studies to define the molecular processes that regulate Ca(L) channel expression in vascular smooth muscle cells will provide a rational basis for designing antihypertensive therapies to normalize Ca(L) channel expression and the development of anomalous vascular tone in hypertensive pathologies.
Collapse
Affiliation(s)
- Swapnil Sonkusare
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
| | - James D. Marsh
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205-7199, United States
| | - Sabine Telemaque
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205-7199, United States
| | - Aleksandra Pesic
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
| | - Nancy J. Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611 Little Rock, AR 72205-7199, United States
- Corresponding author. Tel.: +1 501 686 8038; fax: +1 501 686 5521. (N.J. Rusch)
| |
Collapse
|
37
|
Takahashi SX, Miriyala J, Tay LH, Yue DT, Colecraft HM. A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. ACTA ACUST UNITED AC 2005; 126:365-77. [PMID: 16186563 PMCID: PMC2266626 DOI: 10.1085/jgp.200509354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.
Collapse
Affiliation(s)
- Shoji X Takahashi
- Calcium Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
38
|
Dallas M, Deuchars SA, Deuchars J. Immunopharmacology--antibodies for specific modulation of proteins involved in neuronal function. J Neurosci Methods 2005; 146:133-48. [PMID: 16045997 DOI: 10.1016/j.jneumeth.2005.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/19/2005] [Accepted: 04/22/2005] [Indexed: 11/28/2022]
Abstract
The application of antibodies to living neurones has the potential to modulate function of specific proteins by virtue of their high specificity. This specificity has proven effective in determining the involvement of many proteins in neuronal function where specific agonists and antagonists do not exist, e.g. ion channel subunits. We discuss studies where antibodies modulate functions of voltage gated sodium, voltage gated potassium, voltage gated calcium hyperpolarisation activated cyclic nucleotide (HCN gated) and transient receptor potential (TRP) channels. Ligand gated channels studied in this way include nicotinic acetylcholine receptors, purinoceptors and GABA receptors. Antibodies have also helped reveal the involvement of different intracellular proteins in neuronal functions including G-proteins as well as other proteins involved in trafficking, phosphoinositide signalling and neurotransmitter release. Some suggestions for control experiments are made to help validate the method. We conclude that antibodies can be extremely valuable in determining the functions of specific proteins in living neurones in neuroscience research.
Collapse
Affiliation(s)
- Mark Dallas
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
39
|
Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, Karimzadegan S, Kealey C, Bredt DS, Nicoll RA. TARP γ-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 2005; 8:1525-33. [PMID: 16222232 DOI: 10.1038/nn1551] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/29/2005] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity involves activity-dependent trafficking of AMPA-type glutamate receptors. Numerous cytoplasmic scaffolding proteins are postulated to control AMPA receptor trafficking, but the detailed mechanisms remain unclear. Here, we show that the transmembrane AMPA receptor regulatory protein (TARP) gamma-8, which is preferentially expressed in the mouse hippocampus, is important for AMPA receptor protein levels and extrasynaptic surface expression. By controlling the number of AMPA receptors, gamma-8 is also important in long-term potentiation, but not long-term depression. This study establishes gamma-8 as a critical protein for basal AMPA receptor expression and localization at extrasynaptic sites in the hippocampus and raises the possibility that TARP-dependent control of AMPA receptors during synapse development and plasticity may be widespread.
Collapse
Affiliation(s)
- Nathalie Rouach
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dalton S, Takahashi SX, Miriyala J, Colecraft HM. A single CaVbeta can reconstitute both trafficking and macroscopic conductance of voltage-dependent calcium channels. J Physiol 2005; 567:757-69. [PMID: 16020456 PMCID: PMC1474221 DOI: 10.1113/jphysiol.2005.093195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-dependent calcium-channel beta subunits (Ca(V)beta) strongly modulate pore-forming alpha(1) subunits by trafficking channel complexes to the plasma membrane and enhancing channel open probability (P(o)). Despite their central role, it is unclear whether binding of a single Ca(V)beta, or multiple Ca(V)betas, to an alpha(1) subunit governs the two distinct functions. Conventional experiments utilizing coexpression of alpha(1) and Ca(V)beta subunits have been unable to resolve the ambiguity due to difficulties in establishing their stoichiometry in functional channels. Here, we unambiguously establish a 1: 1 stoichiometry by covalently linking Ca(V)beta(2b) to the carboxyl terminus of alpha(1C) (Ca(V)1.2), creating alpha(1C).beta(2b). Recombinant L-type channels reconstituted in HEK 293 cells with alpha(1C).beta(2b) supported whole-cell currents to the same extent as channels reconstituted via coexpression of the individual subunits. Analysis of gating charge showed alpha(1C).beta(2b) fully restored channel trafficking to the plasma membrane. Co-transfecting Ca(V)beta(2a) with alpha(1C).beta(2b) had little further impact on function. To rule out the possibility that fused Ca(V)beta(2b) was interacting in trans with neighbouring alpha(1) molecules, alpha(1C).beta(2b) was cotransfected with alpha(1B) (Ca(V)2.2), and pharmacological block with nimodipine showed an absence of alpha(1B) trafficking. These results establish that association of a single Ca(V)beta with a pore-forming alpha(1) subunit captures the functional essence of HVA calcium channels, and introduce alpha(1)-Ca(V)beta fusion proteins as a powerful new tool to probe structure-function mechanisms.
Collapse
Affiliation(s)
- Stanislava Dalton
- Calcium Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
41
|
Luvisetto S, Fellin T, Spagnolo M, Hivert B, Brust PF, Harpold MM, Stauderman KA, Williams ME, Pietrobon D. Modal gating of human CaV2.1 (P/Q-type) calcium channels: I. The slow and the fast gating modes and their modulation by beta subunits. ACTA ACUST UNITED AC 2005; 124:445-61. [PMID: 15504896 PMCID: PMC2234000 DOI: 10.1085/jgp.200409034] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels and their modulation by the auxiliary β1b, β2e, β3a, and β4a subunits were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing human CaV2.1 channels. These calcium channels showed a complex modal gating, which is described in this and the following paper (Fellin, T., S. Luvisetto, M. Spagnolo, and D. Pietrobon. 2004. J. Gen. Physiol. 124:463–474). Here, we report the characterization of two modes of gating of human CaV2.1 channels, the slow mode and the fast mode. A channel in the two gating modes differs in mean closed times and latency to first opening (both longer in the slow mode), in voltage dependence of the open probability (larger depolarizations are necessary to open the channel in the slow mode), in kinetics of inactivation (slower in the slow mode), and voltage dependence of steady-state inactivation (occurring at less negative voltages in the slow mode). CaV2.1 channels containing any of the four β subtypes can gate in either the slow or the fast mode, with only minor differences in the rate constants of the transitions between closed and open states within each mode. In both modes, CaV2.1 channels display different rates of inactivation and different steady-state inactivation depending on the β subtype. The type of β subunit also modulates the relative occurrence of the slow and the fast gating mode of CaV2.1 channels; β3a promotes the fast mode, whereas β4a promotes the slow mode. The prevailing mode of gating of CaV2.1 channels lacking a β subunit is a gating mode in which the channel shows shorter mean open times, longer mean closed times, longer first latency, a much larger fraction of nulls, and activates at more positive voltages than in either the fast or slow mode.
Collapse
Affiliation(s)
- Siro Luvisetto
- Dept. of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kochegarov AA. Therapeutical application of voltage-gated calcium channel modulators. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.2.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Brette F, Leroy J, Le Guennec JY, Sallé L. Ca2+ currents in cardiac myocytes: Old story, new insights. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:1-82. [PMID: 16503439 DOI: 10.1016/j.pbiomolbio.2005.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium is a ubiquitous second messenger which plays key roles in numerous physiological functions. In cardiac myocytes, Ca2+ crosses the plasma membrane via specialized voltage-gated Ca2+ channels which have two main functions: (i) carrying depolarizing current by allowing positively charged Ca2+ ions to move into the cell; (ii) triggering Ca2+ release from the sarcoplasmic reticulum. Recently, it has been suggested than Ca2+ channels also participate in excitation-transcription coupling. The purpose of this review is to discuss the physiological roles of Ca2+ currents in cardiac myocytes. Next, we describe local regulation of Ca2+ channels by cyclic nucleotides. We also provide an overview of recent studies investigating the structure-function relationship of Ca2+ channels in cardiac myocytes using heterologous system expression and transgenic mice, with descriptions of the recently discovered Ca2+ channels alpha(1D) and alpha(1E). We finally discuss the potential involvement of Ca2+ currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac remodeling.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Worsley Building Leeds, LS2 9NQ, UK.
| | | | | | | |
Collapse
|
44
|
Richards MW, Butcher AJ, Dolphin AC. Ca2+ channel beta-subunits: structural insights AID our understanding. Trends Pharmacol Sci 2005; 25:626-32. [PMID: 15530640 DOI: 10.1016/j.tips.2004.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has taken 17 years from the first identification of a voltage-gated Ca2+ channel (CaV) beta-subunit as a band on a gel following purification of skeletal muscle dihydropyridine (DHP) receptors in 1987 to the publication of key information on the structures of Ca2+ channel beta-subunits. Three recent X-ray crystallographic studies have now solved the structures of the core domains of three Ca2+ channel beta-subunits. In this article, the properties of these cytoplasmic auxiliary subunits will first be summarized. Then the CaVbeta structures and the information they provide regarding how these proteins interact with the CaValpha1 subunit will be discussed and the possible implications of these new data for G-protein modulation of Ca2+ channels will be examined.
Collapse
Affiliation(s)
- Mark W Richards
- Laboratory of Cellular and Molecular Neuroscience, Department of Pharmacology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
45
|
Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L. The C-terminal Residues in the Alpha-interacting Domain (AID) Helix Anchor CaVβ Subunit Interaction and Modulation of CaV2.3 Channels. J Biol Chem 2005; 280:494-505. [PMID: 15507442 DOI: 10.1074/jbc.m410859200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-interacting domain (AID) in the I-II linker of high voltage-activated (HVA) Ca(2+) channel alpha1 subunits binds with high affinity to Ca(V)beta auxiliary subunits. The recently solved crystal structures of the AID-Ca(V)beta complex in Ca(V)1.1/1.2 have revealed that this interaction occurs through a set of six mostly invariant residues Glu/Asp(6), Leu(7), Gly(9), Tyr(10), Trp(13), and Ile(14) (where the superscript refers to the position of the residue starting with the QQ signature doublet) distributed among three alpha-helical turns in the proximal section of the I-II linker. We show herein that alanine mutations of N-terminal AID residues Gln(1), Gln(2), Ile(3), Glu(4), Glu(6), Leu(7), and Gly(9) in Ca(V)2.3 did not abolish [(35)S]Ca(V)beta 1b or [(35)S]Ca(V)beta 3 subunit overlay binding to fusion proteins nor did they prevent the typical modulation of whole cell currents by Ca(V)beta 3. Mutations of the invariant Tyr(10) with either hydrophobic (Ala), aromatic (Phe), or positively charged (Arg, Lys) residues yielded Ca(V)beta 3-responsive whole cell currents, whereas mutations with negatively charged residues (Asp, Glu) disrupted Ca(V)beta 3 binding and modulation. In contrast, modulation and binding by Ca(V)beta 3 was significantly weakened in I14A (neutral and hydrophobic) and I14S (neutral and polar) mutants and eradicated in negatively charged I14D and I14E or positively charged I14R and I14K mutants. Ca(V)beta 3-induced modulation was only preserved with the conserved I14L mutation. Molecular replacement analyses carried out using a three-dimensional homology model of the AID helix from Ca(V)2.3 suggests that a high degree of hydrophobicity and a restrained binding pocket could account for the strict structural specificity of the interaction site found at position Ile(14). Altogether these results indicate that the C-terminal residues Trp(13) (1) and Ile(14) anchor Ca(V)beta subunit functional modulation of HVA Ca(2+) channels.
Collapse
Affiliation(s)
- Laurent Berrou
- Département de Physiologie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Herlitze S, Xie M, Han J, Hümmer A, Melnik-Martinez KV, Moreno RL, Mark MD. Targeting mechanisms of high voltage-activated Ca2+ channels. J Bioenerg Biomembr 2004; 35:621-37. [PMID: 15000523 DOI: 10.1023/b:jobb.0000008027.19384.c0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Functional voltage-dependent Ca2+ channel complexes are assembled by three to four subunits: alpha1, beta, alpha2delta subunits (C. Leveque et al., 1994, J. Biol Chem. 269, 6306-6312; M. W. McEnery et al., 1991, Proc. Natl. Acad. Sci. U.S.A. 88, 11095-11099) and at least in muscle cells also y subunits (B. M. Curtis and W. A. Catterall, 1984, Biochemistry 23, 2113-2118). Ca2+ channels mediate the voltage-dependent Ca2+ influx in subcellular compartments, triggering such diverse processes as neurotransmitter release, dendritic action potentials, excitation-contraction, and excitation-transcription coupling. The targeting of biophysically defined Ca2+ channel complexes to the correct subcellular structures is, thus, critical to proper cell and physiological functioning. Despite their importance, surprisingly little is known about the targeting mechanisms by which Ca2+ channel complexes are transported to their site of function. Here we summarize what we know about the targeting of Ca2+ channel complexes through the cell to the plasma membrane and subcellular structures.
Collapse
Affiliation(s)
- Stefan Herlitze
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Room E604, 10900 Euclid Avenue, Cleveland, Ohio 44106-4975, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Viard P, Butcher AJ, Halet G, Davies A, Nürnberg B, Heblich F, Dolphin AC. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 2004; 7:939-46. [PMID: 15311280 DOI: 10.1038/nn1300] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 07/07/2004] [Indexed: 01/01/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been shown to enhance native voltage-dependent calcium channel (Ca(v)) currents both in myocytes and in neurons; however, the mechanism(s) responsible for this regulation were not known. Here we show that PI3K promotes the translocation of GFP-tagged Ca(v) channels to the plasma membrane in both COS-7 cells and neurons. We show that the effect of PI3K is mediated by Akt/PKB and specifically requires Ca(v)beta(2) subunits. The mutations S574A and S574E in Ca(v)beta(2a) prevented and mimicked, respectively, the effect of PI3K/Akt-PKB, indicating that phosphorylation of Ser574 on Ca(v)beta(2a) is necessary and sufficient to promote Ca(v) channel trafficking.
Collapse
Affiliation(s)
- Patricia Viard
- Department of Pharmacology, University College London, London WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang MC, Collins RF, Ford RC, Berrow NS, Dolphin AC, Kitmitto A. The Three-dimensional Structure of the Cardiac L-type Voltage-gated Calcium Channel. J Biol Chem 2004; 279:7159-68. [PMID: 14634003 DOI: 10.1074/jbc.m308057200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here the first three-dimensional structure of the cardiac L-type voltage-gated calcium channel (VGCC) purified from bovine heart. The structure was determined by electron microscopy and single particle analysis of negatively stained complexes, using the angular reconstitution method. The cardiac VGCC can be isolated as a stable dimer, as reported previously for the skeletal muscle VGCC, with a central aqueous chamber formed by the two halves of the complex. Moreover, we demonstrate that the dimeric cardiac VGCC binds the dihydropyridine [3H]azidopine with a Kd approximately 310 pM. We have compared the cardiac VGCC structure with the skeletal muscle form, determined using the same reconstructive methodology, allowing us to identify common and distinct features of the complexes. By using antibody and lectin-gold labeling, we have localized the intracellular beta polypeptides and the extracellular glycosylation sites of the skeletal muscle VGCC, which can be correlated to the cardiac three-dimensional structure. From the data presented here the assignment of the orientation of the VGCC complexes with respect to the lipid bilayer is now possible. A difference between the cardiac and skeletal muscle ion channels is apparent in the putative transmembrane region, which would be consistent with the absence of the gamma subunit in the cardiac VGCC assembly.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK
| | | | | | | | | | | |
Collapse
|
49
|
Murakami M, Aoyama M, Suzuki T, Sasano H, Nakayama S, Iijima T. Genetic characterization of a new splice variant of the beta2 subunit of the voltage-dependent calcium channel. Mol Cell Biochem 2003; 254:217-25. [PMID: 14674701 DOI: 10.1023/a:1027316017156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study reports a novel splice variant form of the voltage-dependent calcium channel beta2 subunit (beta2g). This variant is composed of the conserved amino-terminal sequences of the beta2a subunit, but lacks the beta-subunit interaction domain (BID), which is thought essential for interactions with the alpha1 subunit. Gene structure analysis revealed that this gene was composed of 13 translated exons spread over 107 kb of the genome. The gene structure of the beta2 subunit was similar in exon-intron organization to the murine beta3 and human beta4 subunits. Electrophysiological evaluation revealed that beta2a and 2g affected channel properties in different ways. The beta2a subunit increased the peak amplitude, but failed to increase channel inactivation, while beta2g had no significant effects on either the peak current amplitude or channel inactivation. Other beta3 subunits, such as beta3 and beta4, significantly increased the peak current and accelerated current inactivation.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Calcium influx into any cell requires fine tuning to guarantee the correct balance between activation of calcium-dependent processes, such as muscle contraction and neurotransmitter release, and calcium-induced cell damage. G protein-coupled receptors play a critical role in negative feedback to modulate the activity of the CaV2 subfamily of the voltage-dependent calcium channels, which are largely situated on neuronal and neuro-endocrine cells. The basis for the specificity of the relationships among membrane receptors, G proteins, and effector calcium channels will be discussed, as well as the mechanism by which G protein-mediated inhibition is thought to occur. The inhibition requires free G beta gamma dimers, and the cytoplasmic linker between domains I and II of the CaV2 alpha 1 subunits binds G beta gamma dimers, whereas the intracellular N terminus of CaV2 alpha 1 subunits provides essential determinants for G protein modulation. Evidence suggests a key role for the beta subunits of calcium channels in the process of G protein modulation, and the role of a class of proteins termed "regulators of G protein signaling" will also be described.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|