1
|
Pfendler S, Ciadamidaro L, Ozaki S, Bonin A, Taberlet P, Zappelini C, Maillard F, Blaudez D, Chalot M. Differential effects of tree species identity on rhizospheric bacterial and fungal community richness and composition across multiple trace element-contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168600. [PMID: 37981137 DOI: 10.1016/j.scitotenv.2023.168600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Soil microbial communities play a key role in plant nutrition and stress tolerance. This is particularly true in sites contaminated by trace metals, which often have low fertility and stressful conditions for woody plants in particular. However, we have limited knowledge of the abiotic and biotic factors affecting the richness and composition of microbial communities inhabiting the rhizosphere of plants in contaminated sites. Using high-throughput amplicon sequencing, we studied the rhizospheric bacterial and fungal community structures of 14 woody plant families planted in three contrasting sites contaminated by metals (Pb, Cd, Zn, Mn, Fe, S). The rhizospheric bacterial communities in the given sites showed no significant difference between the various woody species but did differ significantly between sites. The Proteobacteria phylum was dominant, accounting for over 25 % of the overall relative abundance, followed by Actinobacteria, Bacteroidetes and Gemmatimonadetes. Site was also the main driver of fungal community composition, yet unlike bacteria, tree species identity significantly affected fungal communities. The Betulaceae, Salicaceae and Fagaceae families had a high proportion of Basidiomycota, particularly ectomycorrhizal fungi, and the lowest diversity and richness. The other tree families and the unplanted soil harboured a greater abundance of Ascomycota and Mucoromycota. Consequently, for both bacteria and fungi, the site effect significantly impacted their community richness and composition, while the influence of plants on the richness and composition of rhizospheric microbial communities stayed consistent across sites and was dependent on the microbial kingdom. Finally, we highlighted the importance of considering this contrasting response of plant rhizospheric microbial communities in relation to their host identity, particularly to improve assisted revegetation efforts at contaminated sites.
Collapse
Affiliation(s)
- Stéphane Pfendler
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France.
| | - Lisa Ciadamidaro
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - Shinji Ozaki
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - Aurélie Bonin
- Université Grenoble Alpes, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France
| | - Pierre Taberlet
- Université Grenoble Alpes, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France; UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Cyril Zappelini
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - François Maillard
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Michel Chalot
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25200 Montbéliard, France; Université de Lorraine, Faculté des Sciences et Technologies, F-54000 Nancy, France
| |
Collapse
|
2
|
Li Y, Xie Y, Liu Z, Shi L, Liu X, Liang M, Yu S. Plant species identity and mycorrhizal type explain the root-associated fungal pathogen community assembly of seedlings based on functional traits in a subtropical forest. FRONTIERS IN PLANT SCIENCE 2023; 14:1251934. [PMID: 37965023 PMCID: PMC10641815 DOI: 10.3389/fpls.2023.1251934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Introduction As a crucial factor in determining ecosystem functioning, interaction between plants and soil-borne fungal pathogens deserves considerable attention. However, little attention has been paid into the determinants of root-associated fungal pathogens in subtropical seedlings, especially the influence of different mycorrhizal plants. Methods Using high-throughput sequencing techniques, we analyzed the root-associated fungal pathogen community for 19 subtropical forest species, including 10 ectomycorrhizal plants and 9 arbuscular mycorrhizal plants. We identified the roles of different factors in determining the root-associated fungal pathogen community. Further, we identified the community assembly process at species and mycorrhizal level and managed to reveal the drivers underlying the community assembly. Results We found that plant species identity, plant habitat, and plant mycorrhizal type accounted for the variations in fungal pathogen community composition, with species identity and mycorrhizal type showing dominant effects. The relative importance of different community assembly processes, mainly, homogeneous selection and drift, varied with plant species identity. Interestingly, functional traits associated with acquisitive resource-use strategy tended to promote the relative importance of homogeneous selection, while traits associated with conservative resource-use strategy showed converse effect. Drift showed the opposite relationships with functional traits compared with homogeneous selection. Notably, the relative importance of different community assembly processes was not structured by plant phylogeny. Drift was stronger in the pathogen community for ectomycorrhizal plants with more conservative traits, suggesting the predominant role of stochastic gain and loss in the community assembly. Discussion Our work demonstrates the determinants of root-associated fungal pathogens, addressing the important roles of plant species identity and plant mycorrhizal type. Furthermore, we explored the community assembly mechanisms of root-associated pathogens and stressed the determinant roles of functional traits, especially leaf phosphorus content (LP), root nitrogen content (RN) and root tissue density (RTD), at species and mycorrhizal type levels, offering new perspectives on the microbial dynamics underlying ecosystem functioning.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shixiao Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Feng Y, Wang J, Zhang J, Qi X, Long W, Ding Y, Liu L. Soil microbes support Janzen’s mountain passes hypothesis: The role of local-scale climate variability along a tropical montane gradient. Front Microbiol 2023; 14:1135116. [PMID: 36992924 PMCID: PMC10040759 DOI: 10.3389/fmicb.2023.1135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Tropical montane ecosystems are the centers of biodiversity, and Janzen proposed that mountain climate variability plays a key role in sustaining this biodiversity. We test this hypothesis for soil bacteria and fungi along a 265–1,400 m elevational gradient on Hainan Island of tropical China, representing diverse vegetation types from deciduous monsoon forest to cloud forest. We found that bacterial and fungal diversity declined as elevation increased, and the dissimilarity of both groups increased with increasing separation in elevation, although changes in bacteria were larger than in fungi. Seasonal alterations and the range of soil moisture in the growing season were found to be the dominant drivers of fungal richness and Shannon diversity, whereas soil pH was the major driver of bacterial diversity. Dissimilarities of bacterial and fungal communities were best predicted by climate, particularly seasonal changes in soil temperature, with weaker influences of soil physicochemistry and vegetation. The dominant effect of seasonality in soil temperature was further detected in cloud forests, which harbored a higher proportion of unique bacterial species and dissimilarity of bacterial and fungal communities. Our findings suggest that local-climate variability plays a crucial role in structuring the distribution of soil microbial communities along a tropical montane gradient, which generally supports Janzen’s hypothesis. Such a sensitivity to climatic variability suggests that soil microbial communities along tropical montane gradients may shift in response to future climate scenarios.
Collapse
Affiliation(s)
- Yifan Feng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Jianbin Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xuming Qi
- Administration Branch of Bawangling, Hainan Tropical Rain Forest National Park Service, Changjiang, China
| | - Wenxing Long
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Ecology and Environment of the National Forestry and Grassland Administration, Beijing, China
- Wenxing Long,
| | - Yi Ding
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Ecology and Environment of the National Forestry and Grassland Administration, Beijing, China
- Hainan Bawangling Forest Ecosystem Research Station, Changjiang, China
- Yi Ding,
| | - Lan Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
- *Correspondence: Lan Liu,
| |
Collapse
|
4
|
Historical biogeography and diversification of ringless Amanita (section Vaginatae) support an African origin and suggest niche conservatism in the Americas. Mol Phylogenet Evol 2023; 178:107644. [PMID: 36243328 DOI: 10.1016/j.ympev.2022.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Ectomycorrhizal fungi (ECM) sustain nutrient recycling in most terrestrial ecosystems, yet we know little about what major biogeographical events gave rise to present-day diversity and distribution patterns. Given the strict relationship between some ECM lineages and their hosts, geographically well-sampled phylogenies are central to understanding major evolutionary processes of fungal biodiversity patterns. Here, we focus on Amanita sect. Vaginatae to address global diversity and distribution patterns. Ancestral-state-reconstruction based on a 4-gene timetree with over 200 species supports an African origin between the late Paleocene and the early Eocene (ca. 56 Ma). Major biogeographic "out-of-Africa" events include multiple dispersal events to Southeast Asia (ca. 45-21 Ma), Madagascar (ca. 18 Ma), and the current Amazonian basin (ca. 45-36 Ma), the last two likely trans-oceanic. Later events originating in Southeast Asia involve Nearctic dispersal to North America (ca. 20-5 Ma), Oceania (Australia and New Zealand; ca. 15 Ma), and Europe (ca. 10-5 Ma). Subsequent dispersals were also inferred from Southeast Asia to East Asia (ca. 4 Ma); from North America to East Asia (ca. 11-8 Ma), Southeast Asia (ca. 19-2 Ma), Northern Andes (ca. 15 Ma), and Europe (ca. 15-2 Ma), respectively; and from the Amazon to the Caribbean region (ca. 25-20 Ma). Finally, we detected a significant increase in the net diversification rates in the branch leading to most northern temperate species in addition to higher state-dependent diversification rates in temperate lineages, consistent with previous findings. These results suggest that species of sect. Vaginatae likely have higher dispersal ability and higher adaptability to new environments, in particular compared to those of its sister clade, sect. Caesareae. Overall, the much wider distribution of A. sect. Vaginatae, from pan-tropical to pan-arctic, provides a unique window to understanding niche conservatism across a species-rich clade of ECM fungi.
Collapse
|
5
|
Phylogenetic Analyses of Hydnobolites and New Species from China. J Fungi (Basel) 2022; 8:jof8121302. [PMID: 36547635 PMCID: PMC9784535 DOI: 10.3390/jof8121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hydnobolites is an ectomycorrhizal fungal genus with hypogeous ascomata in the family Pezizaceae (Pezizales). Molecular analyses of Hydnobolites using both single (ITS) and concatenated gene datasets (ITS-nLSU) showed a total of 223 sequences, including 92 newly gained sequences from Chinese specimens. Phylogenetic results based on these two datasets revealed seven distinct phylogenetic clades. Among them, the ITS phylogenetic tree confirmed the presence of at least 42 phylogenetic species in Hydnobolites. Combined the morphological observations with molecular analyses, five new species of Hydnobolites translucidus sp. nov., H. subrufus sp. nov., H. lini sp. nov., H. sichuanensis sp. nov. and H. tenuiperidius sp. nov., and one new record species of H. cerebriformis Tul., were illustrated from Southwest China. Macro- and micro-morphological analyses of ascomata revealed a few, but diagnostic differences between the H. cerebriformis complex, while the similarities of the ITS sequences ranged from 94.4 to 97.2% resulting in well-supported clades.
Collapse
|
6
|
Wu Y, Brown A, Ricklefs RE. Host-specific soil microbes contribute to habitat restriction of closely related oaks ( Quercus spp.). Ecol Evol 2022; 12:e9614. [PMID: 36523531 PMCID: PMC9745265 DOI: 10.1002/ece3.9614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Habitat divergence among close relatives is a common phenomenon. Studying the mechanisms behind habitat divergence is fundamental to understanding niche partitioning, species diversification, and other evolutionary processes. Recent studies found that soil microbes regulate the abundance and diversity of plant species. However, it remains unclear whether soil microbes can affect the habitat distributions of plants and drive habitat divergence. To fill in this knowledge gap, we investigated whether soil microbes might restrict habitat distributions of closely related oaks (Quercus spp.) in eastern North America. We performed a soil inoculum experiment using two pairs of sister species (i.e., the most closely related species) that show habitat divergence: Quercus alba (local species) vs. Q. michauxii (foreign), and Q. shumardii (local) vs. Q. acerifolia (foreign). To test whether host-specific soil microbes are responsible for habitat restriction, we investigated the impact of local sister live soil (containing soil microbes associated with local sister species) on the survival and growth of local and foreign species. Second, to test whether habitat-specific soil microbes are responsible for habitat restriction, we examined the effect of local habitat live soil (containing soil microbes within local sister's habitats, but not directly associated with local sister species) on the seedlings of local and foreign species. We found that local sister live soil decreased the survival and biomass of foreign species' seedlings while increasing those of local species, suggesting that host-specific soil microbes could potentially mediate habitat exclusion. In contrast, local habitat live soil did not differentially affect the survival or biomass of the local vs. foreign species. Our study indicates that soil microbes associated with one sister species can suppress the recruitment of the other host species, contributing to the habitat partitioning of close relatives. Considering the complex interactions with soil microbes is essential for understanding the habitat distributions of closely related plants.
Collapse
Affiliation(s)
- Yingtong Wu
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Alicia Brown
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Robert E. Ricklefs
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| |
Collapse
|
7
|
Ding XX, Cui YY, Yang ZL. Two new species of Tricholoma sect. Genuina (Agaricales) from China based on molecular phylogenetic and morphological evidence. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Biketova AY, Gelardi M, Smith ME, Simonini G, Healy RA, Taneyama Y, Vasquez G, Kovács Á, Nagy LG, Wasser SP, Peintner U, Nevo E, Bunyard BA, Vizzini A. Reappraisal of the Genus Exsudoporus ( Boletaceae) Worldwide Based on Multi-Gene Phylogeny, Morphology and Biogeography, and Insights on Amoenoboletus. J Fungi (Basel) 2022; 8:101. [PMID: 35205856 PMCID: PMC8874676 DOI: 10.3390/jof8020101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
The boletoid genera Butyriboletus and Exsudoporus have recently been suggested by some researchers to constitute a single genus, and Exsudoporus was merged into Butyriboletus as a later synonym. However, no convincing arguments have yet provided significant evidence for this congeneric placement. In this study, we analyze material from Exsudoporus species and closely related taxa to assess taxonomic and phylogenetic boundaries between these genera and to clarify species delimitation within Exsudoporus. Outcomes from a multilocus phylogenetic analysis (ITS, nrLSU, tef1-α and rpb2) clearly resolve Exsudoporus as a monophyletic, homogenous and independent genus that is sister to Butyriboletus. An accurate morphological description, comprehensive sampling, type studies, line drawings and a historical overview on the nomenclatural issues of the type species E. permagnificus are provided. Furthermore, this species is documented for the first time from Israel in association with Quercus calliprinos. The previously described North American species Exsudoporus frostii and E. floridanus are molecularly confirmed as representatives of Exsudoporus, and E. floridanus is epitypified. The eastern Asian species Leccinum rubrum is assigned here to Exsudoporus based on molecular evidence, and a new combination is proposed. Sequence data from the original material of the Japanese Boletus kermesinus were generated, and its conspecificity with L. rubrum is inferred as formerly presumed based on morphology. Four additional cryptic species from North and Central America previously misdetermined as either B. frostii or B. floridanus are phylogenetically placed but remain undescribed due to the paucity of available material. Boletus weberi (syn. B. pseudofrostii) and Xerocomus cf. mcrobbii cluster outside of Exsudoporus and are herein assigned to the recently described genus Amoenoboletus. Biogeographic distribution patterns are elucidated, and a dichotomous key to all known species of Exsudoporus worldwide is presented.
Collapse
Affiliation(s)
- Alona Yu. Biketova
- Institute of Evolution, University of Haifa, Aba Khoushi Ave. 199, Mt. Carmel, Haifa 3498838, Israel; (S.P.W.); (E.N.)
- Institute of Biochemistry, Biological Research Center, Eötvös Lóránd Research Network, Temesvari Blvd. 62, H-6726 Szeged, Hungary; (Á.K.); (L.G.N.)
- Mycological Society of Israel, P.O. Box 164, Pardesiya 42815, Israel
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Matteo Gelardi
- Independent Researcher, Via dei Barattoli 3A, Anguillara Sabazia, I-00061 Rome, Italy;
| | - Matthew E. Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (M.E.S.); (R.A.H.)
| | | | - Rosanne A. Healy
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (M.E.S.); (R.A.H.)
| | - Yuichi Taneyama
- Independent Researcher, 392-3 Yashikida, Nagano 381-0055, Japan;
| | - Gianrico Vasquez
- Laboratorio di Isto-Cito-Patologia s.n.c., Via del Bosco 96, I-95125 Catania, Italy;
| | - Ádám Kovács
- Institute of Biochemistry, Biological Research Center, Eötvös Lóránd Research Network, Temesvari Blvd. 62, H-6726 Szeged, Hungary; (Á.K.); (L.G.N.)
| | - László G. Nagy
- Institute of Biochemistry, Biological Research Center, Eötvös Lóránd Research Network, Temesvari Blvd. 62, H-6726 Szeged, Hungary; (Á.K.); (L.G.N.)
| | - Solomon P. Wasser
- Institute of Evolution, University of Haifa, Aba Khoushi Ave. 199, Mt. Carmel, Haifa 3498838, Israel; (S.P.W.); (E.N.)
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereshchenkivska St. 2, 01601 Kiev, Ukraine
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria;
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Aba Khoushi Ave. 199, Mt. Carmel, Haifa 3498838, Israel; (S.P.W.); (E.N.)
| | | | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| |
Collapse
|
9
|
Li XC, Qian X, Gao C, Seitz S, Scholten T, Wang YL, Yao H, Gan HY, Guo LD. Plant identity strongly structures the root-associated fungal community in a diverse subtropical forest. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Leroy C, Maes AQ, Louisanna E, Schimann H, Séjalon-Delmas N. Taxonomic, phylogenetic and functional diversity of root-associated fungi in bromeliads: effects of host identity, life forms and nutritional modes. THE NEW PHYTOLOGIST 2021; 231:1195-1209. [PMID: 33605460 DOI: 10.1111/nph.17288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown. We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds. We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes. Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Céline Leroy
- AMAP, CIRAD, CNRS, INRAE, IRD, Univ Montpellier, Montpellier, 34000, France
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | | - Eliane Louisanna
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Heidy Schimann
- UMR EcoFoG, CNRS, CIRAD, AgroParisTech, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | | |
Collapse
|
11
|
Vera M, Adamčík S, Adamčíková K, Hampe F, Caboň M, Manz C, Ovrebo C, Piepenbring M, Corrales A. Morphological and genetic diversification of Russula floriformis, sp. nov., along the Isthmus of Panama. Mycologia 2021; 113:807-827. [PMID: 34043494 DOI: 10.1080/00275514.2021.1897377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Species of Russula are ubiquitous members of ectomycorrhizal fungal communities in tropical ecosystems. However, an important part of the total tropical diversity of this genus and its biogeographic patterns is unknown due to the lack of studies on Russula in tropical ecosystems. We combined molecular, morphological, ecological, and biogeographic data to elaborate concepts for two new subspecies of R. floriformis (subsection Substriatinae). Russula floriformis subsp. floriformis and R. floriformis subsp. symphoniae are described as new from montane forest dominated by Quercus and/or Oreomunnea (Fagales) from Colombia and Panama, respectively. Phylogenies were constructed using nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), D1-D2 domains of nuc 28S rDNA (28S), and partial regions of the second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-alpha (tef1). Similar environmental conditions, similar morphology, and an ITS sequence similarity higher than 99% with only three different positions indicate that these two subspecies are closely related. Detailed observations of microscopic structures and analyses of further DNA loci, however, revealed morphological and molecular characteristics that allow distinguishing the two subspecies of R. floriformis. Spatial distribution and phylogenetic proximity of the two Russula subspecies and their ectomycorrhizal hosts, i.e., species of Quercus, suggest that their diversification is a result of comigration, adaptation, and geographic isolation along the Isthmus of Panama during the Pliocene and Pleistocene.
Collapse
Affiliation(s)
- Michelle Vera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Slavomír Adamčík
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia
| | - Katarína Adamčíková
- Department of Plant Pathology and Mycology, Institute of Forest Ecology, Slovak Academy of Sciences Zvolen, Akademická 2, 949 01 Nitra, Slovakia
| | | | - Miroslav Caboň
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia
| | - Cathrin Manz
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Clark Ovrebo
- Department of Biology, University of Central Oklahoma, 100 N. University Drive, Edmond, Oklahoma 73034
| | - Meike Piepenbring
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
12
|
Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Rodríguez-Gutiérrez I, Garibay-Orijel R, Santiago-Morales B, Lindig-Cisneros R. Comparación entre las abundancias de esporomas y ectomicorrizas del género Laccaria en Ixtlán de Juárez, Oaxaca. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.3340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Trentini CP, Campanello PI, Villagra M, Ferreras J, Hartmann M. Thinning Partially Mitigates the Impact of Atlantic Forest Replacement by Pine Monocultures on the Soil Microbiome. Front Microbiol 2020; 11:1491. [PMID: 32719665 PMCID: PMC7350009 DOI: 10.3389/fmicb.2020.01491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022] Open
Abstract
Forest replacement by exotic plantations drive important changes at the level of the overstory, understory and forest floor. In the Atlantic Forest of northern Argentina, large areas have been replaced by loblolly pine (Pinus taeda L.) monocultures. Plant and litter transformation, together with harvesting operations, change microclimatic conditions and edaphic properties. Management practices such as thinning promote the development of native understory vegetation and could counterbalance negative effects of forest replacement on soil. Here, the effects of pine plantations and thinning on physical, chemical and microbiological soil properties were assessed. Bacterial, archaeal, and fungal community structure were analyzed using a metabarcoding approach targeting ribosomal markers. Forest replacement and, to a lesser extent, thinning practices in the pine plantations induced significant changes in soil physico-chemical properties and associated shifts in bacterial and fungal communities. Most measured physical and chemical properties were altered due to forest replacement, but a few of these properties reached values similar to natural forests under the thinning operation. Fungal alpha diversity decreased in pine plantations, whereas bacterial alpha diversity tended to increase but with little statistical support. Shifts in community composition were observed for both fungal and bacterial domains, and were mostly related to changes in plant understory composition, soil carbon, organic matter, water content, pH and bulk density. Among several other changes, highly abundant phyla such as Proteobacteria (driven by many genera) and Mortierellomycota (mainly driven by Mortierella) decreased in relative abundance in the plantations, whereas Acidobacteria (mainly driven by Acidothermus and Candidatus Koribacter) and Basidiomycota (mainly driven by the ectomycorrhiza Russula) showed the opposite response. Taken together, these results provide insights into the effects of forest replacement on belowground properties and elucidate the potentially beneficial effect of thinning practices in intensive plantation systems through promoting the understory development. Although thinning did not entirely counterbalance the effects of forest replacement on physical, chemical and biological soil properties, the strategy helped mitigating the effects and might promote resilience of these properties by the end of the rotation cycle, if subsequent management practices compatible with the development of a native understory vegetation are applied.
Collapse
Affiliation(s)
- Carolina Paola Trentini
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical, CONICET-UNaM, Puerto Iguazú, Misiones, Argentina
| | - Paula Inés Campanello
- Centro de Estudios Ambientales Integrados, Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, CONICET, Esquel, Argentina
| | - Mariana Villagra
- Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical, CONICET-UNaM, Puerto Iguazú, Misiones, Argentina
| | - Julian Ferreras
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, CONICET-UNaM, Posadas, Misiones, Argentina
| | - Martin Hartmann
- Sustainable Agroecosystems, Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
Koizumi T, Nara K. Ectomycorrhizal fungal communities in ice-age relict forests of Pinus pumila on nine mountains correspond to summer temperature. THE ISME JOURNAL 2020; 14:189-201. [PMID: 31611652 PMCID: PMC6908592 DOI: 10.1038/s41396-019-0524-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (ECM) fungi are critical symbionts of major forest trees, and their communities are affected by various environmental factors including temperature. However, previous knowledge concerning temperature effects does not exclude the effects of host species and coexisting plants, which usually change with temperature, and should be rigorously tested under the same vegetation type. Herein we examined ECM fungal communities in ice-age relict forests dominated by a single host species (Pinus pumila) distributed on nine mountains across >1000 km in Japan. Direct sequencing of rDNA ITS regions identified 154 ECM fungal species from 4134 ECM root-tip samples. Gradient analyses revealed a large contribution of temperature, especially summer temperature, to ECM fungal communities. Additionally, we explored global sequence records of each fungal species to infer its potential temperature niche, and used it to estimate the temperature of the observed communities. The estimated temperature was significantly correlated with the actual temperature of the research sites, especially in summer seasons, indicating inherent temperature niches of the fungal components could determine their distribution among the sites. These results indicate that temperature is still a significant determinant in structuring ECM fungal communities after excluding the effects of host species and coexisting plants. The results also imply that the rising temperature under global warming may have been affecting soil microbes unnoticeably, while such microbial community change may have been contributing to the resilience of the same vegetation.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan.
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
16
|
Montoya L, Caro A, Ramos A, Bandala VM. Two new species of Lactifluus (Fungi, Russulales) from tropical Quercus forest in eastern Mexico. MycoKeys 2019; 59:27-45. [PMID: 31662619 PMCID: PMC6811376 DOI: 10.3897/mycokeys.59.38359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/09/2019] [Indexed: 11/12/2022] Open
Abstract
Two new species of LactifluussubgenusLactifluus were discovered during a three-year monitoring of the ectomycorrhizal fungi in a tropical oak forest from central Veracruz, Mexico. Systematic sampling of basidiomes allowed recording of the morphological variation of fruit-bodies in different growth stages along with their fructification season. Both new species were distinguished, based on macro- and micromorphological features and on molecular data. A phylogenetic analysis of a concatenated nuc rDNA ITS, D1 and D2 domains of nuc 28S rDNA (LSU) and the 6–7 region of the second largest subunit of the RNA polymerase II (rpb2) sequence dataset of species of Lactifluus is provided. In the phylogeny inferred, one of the new species is sister to L.dissitus Van de Putte, K. Das & Verbeken and the other belongs to the group of species of L.piperatus (L.) Kuntze, sister to an unidentified species from U.S.A. The studied taxa grow under Quercusoleoides in the study site. The species are presented and illustrated here.
Collapse
Affiliation(s)
- Leticia Montoya
- Red Biodiversidad y Sistemática, Instituto de Ecología A.C., P.O. Box 63, Xalapa, Veracruz, 91000, México
| | - Abraham Caro
- Red Biodiversidad y Sistemática, Instituto de Ecología A.C., P.O. Box 63, Xalapa, Veracruz, 91000, México
| | - Antero Ramos
- Red Biodiversidad y Sistemática, Instituto de Ecología A.C., P.O. Box 63, Xalapa, Veracruz, 91000, México
| | - Victor M Bandala
- Red Biodiversidad y Sistemática, Instituto de Ecología A.C., P.O. Box 63, Xalapa, Veracruz, 91000, México
| |
Collapse
|
17
|
Pec GJ, Scott NM, Hupperts SF, Hankin SL, Landhäusser SM, Karst J. Restoration of belowground fungal communities in reclaimed landscapes of the Canadian boreal forest. Restor Ecol 2019. [DOI: 10.1111/rec.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory J. Pec
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Natalie M. Scott
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Stefan F. Hupperts
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Shanon L. Hankin
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Simon M. Landhäusser
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Justine Karst
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| |
Collapse
|
18
|
Corrales A, Henkel TW, Smith ME. Ectomycorrhizal associations in the tropics - biogeography, diversity patterns and ecosystem roles. THE NEW PHYTOLOGIST 2018; 220:1076-1091. [PMID: 29689121 DOI: 10.1111/nph.15151] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1076 I. Introduction 1076 II. Historical overview 1077 III. Identities and distributions of tropical ectomycorrhizal plants 1077 IV. Dominance of tropical forests by ECM trees 1078 V. Biogeography of tropical ECM fungi 1081 VI. Beta diversity patterns in tropical ECM fungal communities 1082 VII. Conclusions and future research 1086 Acknowledgements 1087 References 1087 SUMMARY: Ectomycorrhizal (ECM) associations were historically considered rare or absent from tropical ecosystems. Although most tropical forests are dominated by arbuscular mycorrhizal (AM) trees, ECM associations are widespread and found in all tropical regions. Here, we highlight emerging patterns of ECM biogeography, diversity and ecosystem functions, identify knowledge gaps, and offer direction for future research. At the continental and regional scales, tropical ECM systems are highly diverse and vary widely in ECM plant and fungal abundance, diversity, composition and phylogenetic affinities. We found strong regional differences among the dominant host plant families, suggesting that biogeographical factors strongly influence tropical ECM symbioses. Both ECM plants and fungi also exhibit strong turnover along altitudinal and soil fertility gradients, suggesting niche differentiation among taxa. Ectomycorrhizal fungi are often more abundant and diverse in sites with nutrient-poor soils, suggesting that ECM associations can optimize plant nutrition and may contribute to the maintenance of tropical monodominant forests. More research is needed to elucidate the diversity patterns of ECM fungi and plants in the tropics and to clarify the role of this symbiosis in nutrient and carbon cycling.
Collapse
Affiliation(s)
- Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
19
|
Herrera M, Montoya L, Bandala VM. Two Lactarius species (subgenus Plinthogalus) in ectomycorrhizal association with tropical Quercus trees in eastern Mexico. Mycologia 2018; 110:1033-1046. [PMID: 30481132 DOI: 10.1080/00275514.2018.1521685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two species of Lactarius are documented from fragments of tropical lowland oak forest in central Veracruz. Lactarius trichodermoides, described here as new, was found in association with Quercus sapotifolia and Lactarius subplinthogalus with Quercus glaucescens. Both Lactarius species were identified morphologically and supported by phylogenetic analyses of nuc rDNA internal transcribed spacers (ITS1-5.8S-ITS2) and D1-D2 domains of nuc 28S rDNA sequences. Confirmation of mycobionts in ectomycorrhizal (ECM) associations was verified by molecular identification of ECM root tips. Detailed macroscopic and microscopic descriptions and photographs and illustrations of basidiomes and ectomycorrhizas are presented. The new binomial Lactarius chiangmaiensis is proposed for L. subplinthogalus var. chiangmaiensis.
Collapse
Affiliation(s)
- Mariana Herrera
- a Red Biodiversidad y Sistemática, Instituto de Ecología A.C ., P.O. Box 63, Xalapa, Veracruz , 91000 , México
| | - Leticia Montoya
- a Red Biodiversidad y Sistemática, Instituto de Ecología A.C ., P.O. Box 63, Xalapa, Veracruz , 91000 , México
| | - Victor M Bandala
- a Red Biodiversidad y Sistemática, Instituto de Ecología A.C ., P.O. Box 63, Xalapa, Veracruz , 91000 , México
| |
Collapse
|
20
|
Reschke K, Popa F, Yang ZL, Kost G. Diversity and taxonomy of Tricholoma species from Yunnan, China, and notes on species from Europe and North America. Mycologia 2018; 110:1081-1109. [PMID: 30383484 DOI: 10.1080/00275514.2018.1512295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although taxonomic knowledge on Tricholoma (Agaricales, Basidiomycota) is fairly comprehensive in northwest Europe, knowledge of the global diversity and distribution of Tricholoma spp. is still sparse. In this study, the diversity and distribution of some Tricholoma spp. are analyzed by morphological and molecular methods based on 70 collections from Yunnan, China, 45 from central Europe, 32 from Colorado, USA, 9 from Japan, and 3 from Ukraine. A Holarctic distribution is suggested for several species, based on collections and nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) sequences. Six species new to science are formally described from Yunnan: five in existing sections, Tricholoma forteflavescens, T. olivaceoluteolum, T. melleum, T. olivaceum, and T. sinoportentosum, and one, T. muscarioides, in the newly described section Muscaria alongside several previously described species. Additional putatively new species cannot be formally described because they lack sufficient material. Tricholoma foliicola is recognized as a species of the genus Gerhardtia.
Collapse
Affiliation(s)
- Kai Reschke
- a Department for Systematic Botany and Mycology , Faculty of Biology, University of Marburg , Karl-von-Frisch-Straße 8, 35032 Marburg , Germany.,b Department of Mycology , Goethe University of Frankfurt am Main , Max-von-Laue Straße 13, 60439 Frankfurt am Main , Germany
| | - Flavius Popa
- a Department for Systematic Botany and Mycology , Faculty of Biology, University of Marburg , Karl-von-Frisch-Straße 8, 35032 Marburg , Germany.,c Department for Ecosystem Monitoring , Research & Wildlife Conservation , National Park Schwarzwald, Kniebisstraße 67, 72250 Freudenstadt Kniebis , Germany
| | - Zhu L Yang
- d Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences , 650201 Kunming , China
| | - Gerhard Kost
- a Department for Systematic Botany and Mycology , Faculty of Biology, University of Marburg , Karl-von-Frisch-Straße 8, 35032 Marburg , Germany
| |
Collapse
|
21
|
Wu BW, Gao C, Chen L, Buscot F, Goldmann K, Purahong W, Ji NN, Wang YL, Lü PP, Li XC, Guo LD. Host Phylogeny Is a Major Determinant of Fagaceae-Associated Ectomycorrhizal Fungal Community Assembly at a Regional Scale. Front Microbiol 2018; 9:2409. [PMID: 30364168 PMCID: PMC6191505 DOI: 10.3389/fmicb.2018.02409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/20/2018] [Indexed: 01/28/2023] Open
Abstract
Environmental filtering (niche process) and dispersal limitation (neutral process) are two of the primary forces driving community assembly in ecosystems, but how these processes affect the Fagaceae-associated ectomycorrhizal (EM) fungal community at regional scales is so far poorly documented. We examined the EM fungal communities of 61 plant species in six genera belonging to the Fagaceae distributed across Chinese forest ecosystems (geographic distance up to ∼3,757 km) using Illumina Miseq sequencing of ITS2 sequences. The relative effects of environmental filtering (e.g., host plant phylogeny, soil and climate) and dispersal limitation (e.g., spatial distance) on the EM fungal community were distinguished using multiple models. In total, 2,706 operational taxonomic units (OTUs) of EM fungi, corresponding to 54 fungal lineages, were recovered at a 97% sequence similarity level. The EM fungal OTU richness was significantly affected by soil pH and nutrients and by host phylogeny. The EM fungal community composition was significantly influenced by combinations of host phylogeny, spatial distance, soil and climate. Furthermore, host phylogeny had the greatest effect on EM fungal community. The study suggests that the assembly of the EM fungal community is governed by both environmental filtering and dispersal limitation, with host effect being the most important determinant at the regional scale.
Collapse
Affiliation(s)
- Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Rudawska M, Leski T, Wilgan R, Karliński L, Kujawska M, Janowski D. Mycorrhizal associations of the exotic hickory trees, Carya laciniosa and Carya cordiformis, grown in Kórnik Arboretum in Poland. MYCORRHIZA 2018; 28:549-560. [PMID: 29934745 PMCID: PMC6182374 DOI: 10.1007/s00572-018-0846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
We studied mycorrhizal associations of North American Carya laciniosa and Carya cordiformis trees, successfully acclimated to local habitat conditions of the historic Kórnik Arboretum in Poland, in order to better understand mycorrhizal host range extensions in new environments. The root systems of Carya seedlings (1-3 years old), regenerated under a canopy of mature hickory trees, were analyzed using microscopic, morphological, and molecular techniques. Our results, for the first time, indicate that C. laciniosa and C. cordiformis have both arbuscular and ectomycorrhizal associations. In the cleared and stained roots of both Carya species, typical structures of arbuscular mycorrhizae (vesicles, arbuscules, hyphal coils, and intercellular nonseptate hyphae) were detected. On the basis of ITS rDNA sequencing, 40 ectomycorrhizal fungal taxa were revealed, with 25 on C. laciniosa and 19 on C. cordiformis. Only four fungal species (Cenococcum geophilum sensu lato, Russula recondita, Xerocomellus cisalpinus, Humaria hemisphaerica) were shared by both Carya species. The high number of infrequent fungal taxa found, as well as the calculated richness estimator, indicates that the real ectomycorrhizal community of C. laciniosa and C. cordiformis is probably richer. The ability of the exotic Carya species to form arbuscular and ectomycorrhizal linkages with native fungi could be a factor in the successful establishment of these tree species under the conditions of Kórnik Arboretum.
Collapse
Affiliation(s)
- Maria Rudawska
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Tomasz Leski
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Robin Wilgan
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Leszek Karliński
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Marta Kujawska
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Daniel Janowski
- Laboratory of Symbiotic Associations, Institute of Dendrology Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
23
|
Botnen SS, Davey ML, Halvorsen R, Kauserud H. Sequence clustering threshold has little effect on the recovery of microbial community structure. Mol Ecol Resour 2018; 18:1064-1076. [PMID: 29673081 DOI: 10.1111/1755-0998.12894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
Abstract
Analysis of microbial community structure by multivariate ordination methods, using data obtained by high-throughput sequencing of amplified markers (i.e., DNA metabarcoding), often requires clustering of DNA sequences into operational taxonomic units (OTUs). Parameters for the clustering procedure tend not to be justified but are set by tradition rather than being based on explicit knowledge. In this study, we explore the extent to which ordination results are affected by variation in parameter settings for the clustering procedure. Amplicon sequence data from nine microbial community studies, representing different sampling designs, spatial scales and ecosystems, were subjected to clustering into OTUs at seven different similarity thresholds (clustering thresholds) ranging from 87% to 99% sequence similarity. The 63 data sets thus obtained were subjected to parallel DCA and GNMDS ordinations. The resulting community structures were highly similar across all clustering thresholds. We explain this pattern by the existence of strong ecological structuring gradients and phylogenetically diverse sets of abundant OTUs that are highly stable across clustering thresholds. Removing low-abundance, rare OTUs had negligible effects on community patterns. Our results indicate that microbial data sets with a clear gradient structure are highly robust to choice of sequence clustering threshold.
Collapse
Affiliation(s)
- Synnøve Smebye Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- The University Centre in Svalbard, Longyearbyen, Norway
| | - Marie Louise Davey
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rune Halvorsen
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
García-Guzmán OM, Garibay-Orijel R, Hernández E, Arellano-Torres E, Oyama K. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. MYCORRHIZA 2017; 27:811-822. [PMID: 28819747 DOI: 10.1007/s00572-017-0793-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Quercus is the most diverse genus of ectomycorrhizal (ECM) host plants; it is distributed in the Northern and Southern Hemispheres, from temperate to tropical regions. However, their ECM communities have been scarcely studied in comparison to those of conifers. The objectives of this study were to determine the richness of ECM fungi associated with oak forests in the Cuitzeo basin in southwestern Mexico; and to determine the level of richness, potential endemism and species similarity among ECM fungal communities associated with natural oak forests worldwide through a meta-analysis. The ITS DNA sequences of ECM root tips from 14 studies were included in the meta-analysis. In total, 1065 species of ECM fungi have been documented worldwide; however, 812 species have been only found at one site. Oak forests in Europe contain 416 species, Mexico 307, USA 285, and China 151. Species with wider distributions are Sebacinaceae sp. SH197130, Amanita subjunquillea, Cenococcum geophilum, Cortinarius decipiens, Russula hortensis, R. risigallina, R. subrubescens, Sebacinaceae sp. SH214607, Tomentella ferruginea, and T. lapida. The meta-analysis revealed (1) that Mexico is not only a hotspot for oak species but also for their ECM mycobionts. (2) There is a particularly high diversity of ECM Pezizales in oak seasonal forests from western USA to southwestern Mexico. (3) The oak forests in southwestern Mexico have the largest number of potential endemic species. (4) Globally, there is a high turnover of ECM fungal species associated with oaks, which indicates high levels of alpha and beta diversity in these communities.
Collapse
Affiliation(s)
- Olimpia Mariana García-Guzmán
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito s/n, Ciudad Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito s/n, Ciudad Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico.
| | - Edith Hernández
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Tercer Circuito s/n, Ciudad Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Elsa Arellano-Torres
- Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad. Universitaria. Delegación Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No. 8701, Expropiación Petrolera INDECO, Mexico City, Michoacán, Mexico
| |
Collapse
|
25
|
An ultrastructural study of spore wall development and septal pores in species of the Pachyphlodes (Pezizaceae, Pezizales) lineage, with a description of the new species Pachyphlodes annagardnerae. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Baeza-Guzmán Y, Medel-Ortiz R, Garibay-Orijel R. Caracterización morfológica y genética de los hongos ectomicorrízicos asociados a bosques de Pinus hartwegii en el Parque Nacional Cofre de Perote, Veracruz. REV MEX BIODIVERS 2017. [DOI: 10.1016/j.rmb.2017.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar LM, Arellano-Torres E. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. MYCORRHIZA 2017; 27:53-65. [PMID: 27562509 DOI: 10.1007/s00572-016-0724-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Abies religiosa is an endemic conifer of Mexico, where its monodominant forests are the winter refuge of the monarch butterfly. Due to climate change, it has been estimated that by 2090, A. religiosa populations will decline by 96.5 %. To achieve success, reforestation programs should consider its ectomycorrhizal (ECM) fungi. We used ITS nrDNA sequences to identify the ECM fungi associated with A. religiosa and, based on its abundance and frequency, determined the diversity and community structure in a pure A. religiosa forest near Mexico City. Using sequence metadata, we inferred the species geographic distribution and host preferences. We conducted phylogenetic analyses of the Clavulinaceae (the most important family). The ECM community held 83 species, among which the richest genera were Inocybe (21 species), Tomentella (10 species), and Russula (8 species). Besides its low species richness, the Clavulina-Membranomyces lineage was the most dominant family. Clavulina cf. cinerea and Membranomyces sp. exhibited the highest relative abundance and relative frequency values. Phylogenetic analyses placed the Clavulinaceae genotypes in three different clades: one within Membranomyces and two within Clavulina. A meta-analysis showed that the majority of the ECM fungi (45.78 %) associated with A. religiosa in Mexico have also been sequenced from North America and are shared by Pinaceae and Fagaceae. In contrast, because they have not been sequenced previously, 32.2 % of the species have a restricted distribution. Here, we highlight the emerging pattern that the Clavulina-Membranomyces lineage is dominant in several ECM communities in the Neotropics, including Aldinia and Dicymbe legume tropical forests in the Guyana Shield, the Alnus acuminata subtropical communities, and the A. religiosa temperate forests in Mexico.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio B, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Del. Coyoacan, DF, C.P. 04510, México
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México.
| | - Laura Margarita Márquez-Valdelamar
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México
| | - Elsa Arellano-Torres
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, DF, C.P. 04510, México
| |
Collapse
|
28
|
Kowallik V, Greig D. A systematic forest survey showing an association of Saccharomyces paradoxus with oak leaf litter. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:833-841. [PMID: 27481438 DOI: 10.1111/1758-2229.12446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Although we understand the genetics of the laboratory model yeast Saccharomyces cerevisiae very well, we know little about the natural ecology and environment that shaped its genome. Most isolates of Saccharomyces paradoxus, the wild relative of S. cerevisiae, come from oak trees, but it is not known whether this is because oak is their primary habitat. We surveyed leaf litter in a forest in Northern Germany and found a strong correlation between isolation success of wild Saccharomyces and the proximity of the nearest oak. We compared the four most common tree genera and found Saccharomyces most frequently in oak litter. Interestingly, we show that Saccharomyces is much more abundant in oak leaf litter than on oak bark, suggesting that it grows in litter or soil rather than on the surfaces of oaks themselves. The distribution and abundance of Saccharomyces over the course of a year shows that oak leaf litter provides a stable habitat for the yeast, although there was significant tree-to-tree variation. Taken together, our results suggest that leaf litter rather than tree surfaces provide the better habitat for wild Saccharomyces, with oak being the preferred tree genus. 99.5% of all strains (633/636) isolated were S. paradoxus.
Collapse
Affiliation(s)
- Vienna Kowallik
- Experimental Evolution Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Duncan Greig
- Experimental Evolution Group, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
29
|
Miyamoto Y, Nara K. Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient. MYCORRHIZA 2016; 26:189-197. [PMID: 26231215 DOI: 10.1007/s00572-015-0658-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm-temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.
Collapse
Affiliation(s)
- Yumiko Miyamoto
- Department of Natural Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Kazuhide Nara
- Department of Natural Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
30
|
Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. MYCORRHIZA 2016; 26:1-17. [PMID: 25940407 DOI: 10.1007/s00572-015-0641-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Neotropical montane forests are often dominated by ectomycorrhizal (EM) tree species, yet the diversity of their EM fungal communities remains poorly explored. In lower montane forests in western Panama, the EM tree species Oreomunnea mexicana (Juglandaceae) forms locally dense populations in forest otherwise characterized by trees that form arbuscular mycorrhizal (AM) associations. The objective of this study was to compare the composition of EM fungal communities associated with Oreomunnea adults, saplings, and seedlings across sites differing in soil fertility and the amount and seasonality of rainfall. Analysis of fungal nrITS DNA (nuclear ribosomal internal transcribed spacers) revealed 115 EM fungi taxa from 234 EM root tips collected from adults, saplings, and seedlings in four sites. EM fungal communities were equally species-rich and diverse across Oreomunnea developmental stages and sites, regardless of soil conditions or rainfall patterns. However, ordination analysis revealed high compositional turnover between low and high fertility/rainfall sites located ca. 6 km apart. The EM fungal community was dominated by Russula (ca. 36 taxa). Cortinarius, represented by 14 species and previously reported to extract nitrogen from organic sources under low nitrogen availability, was found only in low fertility/high rainfall sites. Phylogenetic diversity analyses of Russula revealed greater evolutionary distance among taxa found on sites with contrasting fertility and rainfall than was expected by chance, suggesting that environmental differences among sites may be important in structuring EM fungal communities. More research is needed to evaluate whether EM fungal taxa associated with Oreomunnea form mycorrhizal networks that might account for local dominance of this tree species in otherwise diverse forest communities.
Collapse
Affiliation(s)
- Adriana Corrales
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA.
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Republic of Panama
| |
Collapse
|
31
|
Roy‐Bolduc A, Laliberté E, Hijri M. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol Evol 2016; 6:349-62. [PMID: 26811798 PMCID: PMC4716518 DOI: 10.1002/ece3.1881] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023] Open
Abstract
Ectomycorrhizal (EM) fungi are ubiquitous in temperate and boreal forests, comprising over 20,000 species forming root symbiotic associations with Pinaceae and woody angiosperms. As much as 100 different EM fungal species can coexist and interact with the same tree species, forming complex multispecies networks in soils. The degree of host specificity and structural properties of these interaction networks (e.g., nestedness and modularity) may influence plant and fungal community assembly and species coexistence, yet their structure has been little studied in northern coniferous forests, where trees depend on EM fungi for nutrient acquisition. We used high-throughput sequencing to characterize the composition and diversity of bulk soil and root-associated fungal communities in four co-occurring Pinaceae in a relic foredune plain located at Îles de la Madeleine, Québec, Canada. We found high EM fungal richness across the four hosts, with a total of 200 EM operational taxonomic units (OTUs), mainly belonging to the Agaricomycetes. Network analysis revealed an antinested pattern in both bulk soil and roots EM fungal communities. However, there was no detectable modularity (i.e., subgroups of interacting species) in the interaction networks, indicating a low level of specificity in these EM associations. In addition, there were no differences in EM fungal OTU richness or community structure among the four tree species. Limited shared resources and competitive exclusion typically restrict the number of taxa coexisting within the same niche. As such, our finding of high EM fungal richness and low host specificity highlights the need for further studies to determine the mechanisms enabling such a large number of EM fungal species to coexist locally on the same hosts.
Collapse
Affiliation(s)
- Alice Roy‐Bolduc
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuébecCanadaH1X 2B2
| | - Etienne Laliberté
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuébecCanadaH1X 2B2
| | - Mohamed Hijri
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuébecCanadaH1X 2B2
| |
Collapse
|
32
|
Alvarez-Manjarrez J, Villegas-Ríos M, Garibay-Orijel R, Contreras-Pacheco M, Kõljalg U. Tomentella brunneoincrustata, the first described species of the Pisonieae-associated Neotropical Tomentella clade, and phylogenetic analysis of the genus in Mexico. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1152-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Kutszegi G, Siller I, Dima B, Takács K, Merényi Z, Varga T, Turcsányi G, Bidló A, Ódor P. Drivers of macrofungal species composition in temperate forests, West Hungary: functional groups compared. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Montoya L, Bandala VM, Garay-Serrano E. The ectomycorrhizas of Lactarius cuspidoaurantiacus and Lactarius herrerae associated with Alnus acuminata in Central Mexico. MYCORRHIZA 2015; 25:457-467. [PMID: 25619188 DOI: 10.1007/s00572-015-0625-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Two pure Alnus acuminata stands established in a montane forest in central Mexico (Puebla State) were monitored between 2010 and 2013 to confirm and recognize the ectomycorrhizal (EcM) systems of A. acuminata with Lactarius cuspidoaurantiacus and Lactarius herrerae, two recently described species. Through comparison of internal transcribed spacer (ITS) of nuclear ribosomal DNA sequences from basidiomes and ectomycorrhizas sampled in the forest stands, we confirmed their ectomycorrhizal association. The phytobiont was corroborated by comparing ITS sequences obtained from EcM root tips and leaves collected in the study site and from other sequences of A. acuminata available in Genbank. Detailed morphological and anatomical descriptions of the ectomycorrhizal systems are presented and complemented with photographs.
Collapse
Affiliation(s)
- Leticia Montoya
- Biodiversidad y Sistemática, Instituto de Ecología, A.C., P.O. Box 63, Xalapa, Veracruz, 91000, México,
| | | | | |
Collapse
|
35
|
Molina R, Horton TR. Mycorrhiza Specificity: Its Role in the Development and Function of Common Mycelial Networks. ECOLOGICAL STUDIES 2015. [DOI: 10.1007/978-94-017-7395-9_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Gao C, Zhang Y, Shi NN, Zheng Y, Chen L, Wubet T, Bruelheide H, Both S, Buscot F, Ding Q, Erfmeier A, Kühn P, Nadrowski K, Scholten T, Guo LD. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. THE NEW PHYTOLOGIST 2015; 205:771-85. [PMID: 25303438 DOI: 10.1111/nph.13068] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
Environmental selection and dispersal limitation are two of the primary processes structuring biotic communities in ecosystems, but little is known about these processes in shaping soil microbial communities during secondary forest succession. We examined the communities of ectomycorrhizal (EM) fungi in young, intermediate and old forests in a Chinese subtropical ecosystem, using 454 pyrosequencing. The EM fungal community consisted of 393 operational taxonomic units (OTUs), belonging to 21 EM fungal lineages, in which three EM fungal lineages and 11 EM fungal OTUs showed significantly biased occurrence among the young, intermediate and old forests. The EM fungal community was structured by environmental selection and dispersal limitation in old forest, but only by environmental selection in young, intermediate, and whole forests. Furthermore, the EM fungal community was affected by different factors in the different forest successional stages, and the importance of these factors in structuring EM fungal community dramatically decreased along the secondary forest succession series. This study suggests that different assembly mechanisms operate on the EM fungal community at different stages in secondary subtropical forest succession.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moyersoen B, Weiß M. New neotropical sebacinales species from a Pakaraimaea dipterocarpacea forest in the Guayana Region, Southern Venezuela: structural diversity and phylogeography. PLoS One 2014; 9:e103076. [PMID: 25072467 PMCID: PMC4114518 DOI: 10.1371/journal.pone.0103076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
Pakaraimaea dipterocarpacea, a member of the Dipterocarpaceae endemic in the Guayana region, is associated with a diverse community of ectomycorrhizal (ECM) fungi. Amongst the 41 ECM fungal species detected in a 400 m2 P. dipterocarpacea ssp. nitida plot in Southern Venezuela, three species belonged to the Sebacinales. We tested whether ECM anatomotype characterization can be used as a feasible element in an integrative taxonomy in this diverse fungal group, where the relevance of fruitbody morphology for species delimitation seems limited. Using a combination of ECM morpho-anatomical characterizations and phylogenetic analyses based on nuclear ITS and LSU sequences, we report three new species. The main distinguishing features of Sebacina guayanensis are the yellowish cell walls together with conspicuous undifferentiated, uniform compact (type B) rhizomorphs. Staghorn-like hyphae are characteristic of S. tomentosa. The combination of clusters of thick-walled emanating hyphae, including hyphae similar to awl-shaped cystidia with basal dichotomous or trichotomous ramifications, and the presence of type B rhizomorphs were characteristic of a third, yet unnamed species. The three species belong to three different, possibly specifically tropical clades in Sebacinales Group A. The geographic distribution of phylogenetically related strains was wide, including a Dicymbe forest in Guyana and an Ecuadorian rainforest with Coccoloba species. We show that ECM morpho-anatomy can be used, in combination with other analyses, to delineate species within Sebacinales Group A. In addition to phylogenetic information, type B rhizomorphs observed in different Sebacinales clades have important ecological implications for this fungal group. The phylogeography of Sebacinales suggests that dispersion and host jump are important radiation mechanisms that shaped P. dipterocarpacea ECM fungal community. This study emphasizes the need for more sequence data to evaluate the hypothesis that phylogeographic relationships between neo- and paleotropical ECM fungal species could be attributed to the vicariance of cross-continental hosts such as the Dipterocarpacae.
Collapse
Affiliation(s)
- Bernard Moyersoen
- School of Biological Sciences, Cruickshank Building, University of Aberdeen, Aberdeen, United Kingdom
| | - Michael Weiß
- Department of Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Huang J, Nara K, Zong K, Wang J, Xue S, Peng K, Shen Z, Lian C. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. FUNGAL ECOL 2014. [DOI: 10.1016/j.funeco.2014.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Lothamer K, Brown SP, Mattox JD, Jumpponen A. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape. MYCORRHIZA 2014; 24:267-280. [PMID: 24221903 DOI: 10.1007/s00572-013-0539-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/28/2013] [Indexed: 06/02/2023]
Abstract
Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.
Collapse
Affiliation(s)
- K Lothamer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | |
Collapse
|
40
|
Benucci GMN, Raggi L, Albertini E, Csorbai AG, Donnini D. Assessment of ectomycorrhizal biodiversity in Tuber macrosporum productive sites. MYCORRHIZA 2014; 24:281-292. [PMID: 24232503 DOI: 10.1007/s00572-013-0538-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/27/2013] [Indexed: 06/02/2023]
Abstract
Tuber macrosporum Vittad. is a truffle with superb organoleptic properties, whose cultivation is still in its infancy. For the first time we have aimed to provide information on ectomycorrhizal communities in natural and cultivated T. macrosporum sites. Ectomycorrhizal morphotypes were identified using ITS nrDNA sequencing and sorted into molecular operational taxonomic unit (MOTU). We detected 16 MOTUs in the T. macrosporum cultivated plantation. Ascomycota were the most abundant (86.4%) with Helvellaceae, Pyronemataceae and Pezizaceae the most common. Twenty-two MOTUs were collected in the natural T. macrosporum site. Basidiomycota morphotypes were plentiful (70.6%) and Thelephoraceae dominated. Each site had different taxa belowground with only T. macrosporum in common, being more abundant in the natural (18.2%) than in the cultivated (14.4%) site. Species richness, Simpson and Shannon diversity indices, taxonomic diversity, distinctness and variation of taxonomic distinctness were lower in the cultivated than in the natural site.
Collapse
|
41
|
Gao C, Shi NN, Liu YX, Peay KG, Zheng Y, Ding Q, Mi XC, Ma KP, Wubet T, Buscot F, Guo LD. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol Ecol 2014; 22:3403-14. [PMID: 24624421 DOI: 10.1111/mec.12297] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial diversity is generally far higher than plant diversity, but the relationship between microbial diversity and plant diversity remains enigmatic. To shed light on this problem, we examined the diversity of a key guild of root-associated microbes,that is, ectomycorrhizal (EM) fungi along a plant diversity gradient in a Chinese subtropical forest. The results indicated that EM fungal diversity was positively correlated with host plant diversity. Furthermore, this relationship was best predicted by host genus-level diversity, rather than species-level diversity or family-level diversity. The generality of this finding was extended beyond our study system through the analyses of 100 additional studies of EM fungal communities from tropical and temperate forests.Here as well, EM fungal lineage composition was significantly affected by EM plant diversity levels, and some EM fungal lineages were co-associated with some host plant genera. These results suggest a general diversity maintenance mechanism for host-specific microbes based on higher order host plant phylogenetic diversity.
Collapse
|
42
|
Botnen S, Vik U, Carlsen T, Eidesen PB, Davey ML, Kauserud H. Low host specificity of root-associated fungi at an Arctic site. Mol Ecol 2014; 23:975-85. [DOI: 10.1111/mec.12646] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/10/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Synnøve Botnen
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
- The University Centre in Svalbard; PO box 156 NO-9171 Longyearbyen Norway
| | - Unni Vik
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
| | - Tor Carlsen
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
| | | | - Marie L. Davey
- The University Centre in Svalbard; PO box 156 NO-9171 Longyearbyen Norway
| | - Håvard Kauserud
- Department of Biosciences; Section for Genetics and Evolutionary Biology (EVOGENE); University of Oslo; PO box 1066 Blindern NO-0316 Oslo Norway
| |
Collapse
|
43
|
|
44
|
Murata M, Kinoshita A, Nara K. Revisiting the host effect on ectomycorrhizal fungal communities: implications from host-fungal associations in relict Pseudotsuga japonica forests. MYCORRHIZA 2013; 23:641-653. [PMID: 23702643 DOI: 10.1007/s00572-013-0504-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
Host identity is among the most important factors in structuring ectomycorrhizal (ECM) fungal communities. Both host-fungal coevolution and host shifts can account for the observed host effect, but their relative significance in ECM fungal communities is not well understood. To investigate these two host-related mechanisms, we used relict forests of Pseudotsuga japonica, which is an endangered endemic species in Japan. As with other Asian Pseudotsuga species, P. japonica has been isolated from North American Pseudotsuga spp. since the Oligocene and has evolved independently as a warm-temperate species. We collected 100 soil samples from four major localities in which P. japonica was mixed with other conifers and broadleaf trees. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM fungi and host species. While 136 ECM fungal species were identified in total, their communities were significantly different between host groups, confirming the existence of the host effect on ECM fungal communities. None of the 68 ECM fungal species found on P. japonica belonged to Pseudotsuga-specific lineages (e.g., Rhizopogon and Suillus subgroups) that are common in North America. Most of ECM fungi on P. japonica were shared with other host fungi or phylogenetically close to known ECM fungi on other hosts in Asia. These results suggest that after migrating, Pseudotsuga-specific fungal lineages may have become extinct in small isolated populations in Japan. Instead, most of the ECM fungal symbionts on P. japonica likely originated from host shifts in the region.
Collapse
Affiliation(s)
- Masao Murata
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| | | | | |
Collapse
|
45
|
Nouhra E, Urcelay C, Longo S, Tedersoo L. Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. MYCORRHIZA 2013; 23:487-496. [PMID: 23475507 DOI: 10.1007/s00572-013-0490-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/14/2013] [Indexed: 06/01/2023]
Abstract
Ectomycorrhizal fungi constitute an important component of soil biota in Nothofagus forests in Patagonia. However, ectomycorrhizal fungal community is poorly known in this region. Here, we assess biodiversity and community compositions of ectomycorrhizal fungal species associated with Nothofagus dombeyi, N. obliqua and N. alpina. We selected three monospecific Nothofagus forest sites for each species within the boundaries of the Lanin National Park in Northern Patagonia. Ectomycorrhizal fungal species were identified based on morphotyping and rDNA (ITS and 28S rDNA) sequence analysis using both universal and taxon-specific primers. Contrary to previous studies on congeneric host trees, our results showed no significant differences among Nothofagus forest types in terms of fungal biodiversity and community composition. However, altitude had a strong effect on the structure of the ectomycorrhizal fungal community associated with Nothofagus spp.
Collapse
Affiliation(s)
- Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal CONICET, Av. Vélez Sarsfield 1611, c.c. 495, 5000 Córdoba, Argentina.
| | | | | | | |
Collapse
|
46
|
Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. THE NEW PHYTOLOGIST 2013; 198:1239-1249. [PMID: 23421531 DOI: 10.1111/nph.12170] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/22/2012] [Indexed: 05/04/2023]
Abstract
· Much of the macroecological information about microorganisms is confounded by the lack of standardized methodology, paucity of metadata and sampling effect of a particular substrate or interacting host taxa. · This study aims to disentangle the relative effects of biological, geographical and edaphic variables on the distribution of Alnus-associated ectomycorrhizal (ECM) fungi at the global scale by using comparable sampling and analysis methods. · Ribosomal DNA sequence analysis revealed 146 taxa of ECM fungi from 22 Alnus species across 96 sites worldwide. Use of spatial and phylogenetic eigenvectors along with environmental variables in model selection indicated that phylogenetic relations among host plants and geographical links explained 43 and 10%, respectively,in ECM fungal community composition, whereas soil calcium concentration positively influenced taxonomic richness. · Intrageneric phylogenetic relations among host plants and regional processes largely account for the global biogeographic distribution of Alnus-associated ECM fungi. The biogeography of ECM fungi is consistent with ancient host migration patterns from Eurasia to North America and from southern Europe to northern Europe after the last glacial maximum, indicating codispersal of hosts and their mycobionts.
Collapse
Affiliation(s)
- Sergei Põlme
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
- Natural History Museum of Tartu University, 46 Vanemuise Street, 51005, Tartu, Estonia
| | - Mohammad Bahram
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Takashi Yamanaka
- Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo, Chiba, 277-8653, Japan
| | - Yu Cheng Dai
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Tine Grebenc
- Slovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, Slovenia
| | - Hojka Kraigher
- Slovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, Slovenia
| | - Mika Toivonen
- Department of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Pi-Han Wang
- Department of Life Sciences, Tunghai University, 181 Taichung Kan Rd., Section 3, Taichung, 40704, Taiwan
| | - Yosuke Matsuda
- Laboratory of Forest Pathology and Mycology, Graduate School of Bioresources, Mie University, Kurimamachiya 1577, Tsu, Mie, 514-8507, Japan
| | - Triin Naadel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Peter G Kennedy
- Department of Biology, Lewis and Clark College, 0615 SW Palatine Hill Road, Portland, OR, 97219, USA
| | - Urmas Kõljalg
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
- Natural History Museum of Tartu University, 46 Vanemuise Street, 51005, Tartu, Estonia
| | - Leho Tedersoo
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
- Natural History Museum of Tartu University, 46 Vanemuise Street, 51005, Tartu, Estonia
| |
Collapse
|
47
|
The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 2013; 8:e55160. [PMID: 23383090 PMCID: PMC3561384 DOI: 10.1371/journal.pone.0055160] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree's range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. dipterocarpacea would harbor unique ECM fungi not found on the roots of D. jenmanii. Although statistical tests suggested that several ECM fungal species did exhibit host preferences for either P. dipterocarpacea or D. jenmanii, most of the ECM fungi were multi-host generalists. We also detected several ECM fungi that have never been found in long-term studies of nearby rainforests dominated by other Dicymbe species. One particular mushroom-forming fungus appears to be unique and may represent a new ECM lineage of Agaricales that is endemic to the Neotropics.
Collapse
|
48
|
Healy RA, Smith ME, Bonito GM, Pfister DH, Ge ZW, Guevara GG, Williams G, Stafford K, Kumar L, Lee T, Hobart C, Trappe J, Vilgalys R, McLaughlin DJ. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizalPezizales. Mol Ecol 2012. [DOI: 10.1111/mec.12135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. A. Healy
- Department of Plant Biology; University of Minnesota; St. Paul MN 55108 USA
| | - M. E. Smith
- Department of Plant Pathology; University of Florida; Gainesville FL 32611-0680 USA
| | - G. M. Bonito
- Department of Biology; Duke University; Durham NC 27708 USA
| | - D. H. Pfister
- Farlow Herbarium of Cryptogamic Botany; Harvard University; Cambridge MA 02143 USA
| | - Z. -W. Ge
- Department of Plant Pathology; University of Florida; Gainesville FL 32611-0680 USA
- Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650204 China
| | - G. G. Guevara
- Instituto Tecnológico de Cd. Victoria; Tamaulipas 87010 Mexico
| | - G. Williams
- Department of Biology; Duke University; Durham NC 27708 USA
| | - K. Stafford
- Department of Biology; Duke University; Durham NC 27708 USA
| | - L. Kumar
- Department of Plant Biology; University of Minnesota; St. Paul MN 55108 USA
| | - T. Lee
- Department of Plant Biology; University of Minnesota; St. Paul MN 55108 USA
| | - C. Hobart
- University of Sheffield; Sheffield UK
| | - J. Trappe
- Department of Forest Ecosystems and Society; Oregon State University; Corvalis 97331-2106 OR USA
| | - R. Vilgalys
- Department of Biology; Duke University; Durham NC 27708 USA
| | - D. J. McLaughlin
- Department of Plant Biology; University of Minnesota; St. Paul MN 55108 USA
| |
Collapse
|
49
|
Wang Q, He XH, Guo LD. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. MYCORRHIZA 2012; 22:461-470. [PMID: 22138969 DOI: 10.1007/s00572-011-0423-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
Ectomycorrhizal (ECM) fungal communities of Quercus liaotungensis of different ages (seedlings, young trees and mature trees) in the growing seasons (June and September) between 2007 and 2009 were studied in a temperate forest of northern China. A total of 66 ECM fungal taxa were identified based on ECM morphotyping, PCR-RFLP, and DNA sequence data. Of these fungal taxa, 51 were Basidiomycetes (77.3%) and 15 were Ascomycetes (22.7%). Cenococcum geophilum was the dominant species. Thelephoraceae (16 taxa), Sebacinaceae (12 taxa) and Russulaceae (seven taxa) were the most species-rich and abundant ECM fungi, accounting for 19.5%, 17.6% and 8.3% of the total ECM root tips, respectively. Results of multiple response permutation procedure (MRPP) analysis indicated that there were marginally significant effects of tree ages (A = 0.01801, P = 0.054) and growing seasons (A = 0.01908, P = 0.064) on the ECM fungal species composition of Q. liaotungensis in a temperate forest.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|
50
|
Bâ AM, Duponnois R, Moyersoen B, Diédhiou AG. Ectomycorrhizal symbiosis of tropical African trees. MYCORRHIZA 2012; 22:1-29. [PMID: 21989710 DOI: 10.1007/s00572-011-0415-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The diversity, ecology and function of ectomycorrhizal (EM) fungi and ectomycorrhizas (ECMs) on tropical African tree species are reviewed here. While ECMs are the most frequent mycorrhizal type in temperate and boreal forests, they concern an economically and ecologically important minority of plants in African tropical forests. In these African tropical forests, ECMs are found mainly on caesalpionioid legumes, Sarcolaenaceae, Dipterocarpaceae, Asterpeiaceae, Phyllantaceae, Sapotaceae, Papilionoideae, Gnetaceae and Proteaceae, and distributed in open, gallery and rainforests of the Guineo-Congolian basin, Zambezian Miombo woodlands of East and South-Central Africa and Sudanian savannah woodlands of the sub-sahara. Overall, EM status was confirmed in 93 (26%) among 354 tree species belonging to EM genera. In addition, 195 fungal taxa were identified using morphological descriptions and sequencing of the ML5/ML6 fragment of sporocarps and ECMs from West Africa. Analyses of the belowground EM fungal communities mostly based on fungal internal transcribed spacer sequences of ECMs from Continental Africa, Madagascar and the Seychelles also revealed more than 350 putative species of EM fungi belonging mainly to 18 phylogenetic lineages. As in temperate forests, the /russula-lactarius and /tomentella-thelephora lineages dominated EM fungal flora in tropical Africa. A low level of host preference and dominance of multi-host fungal taxa on different African adult tree species and their seedlings were revealed, suggesting a potential for the formation of common ectomycorrhizal networks. Moreover, the EM inoculum potential in terms of types and density of propagules (spores, sclerotia, EM root fragments and fragments of mycelia strands) in the soil allowed opportunistic root colonisation as well as long-term survival in the soil during the dry season. These are important characteristics when choosing an EM fungus for field application. In this respect, Thelephoroid fungal sp. XM002, an efficient and competitive broad host range EM fungus, possessed these characteristics and appeared to be a good candidate for artificial inoculation of Caesalps and Phyllanthaceae seedlings in nurseries. However, further efforts should be made to assess the genetic and functional diversity of African EM fungi as well as the EM status of unstudied plant species and to strengthen the use of efficient and competitive EM fungi to improve production of ecologically and economically important African multipurpose trees in plantations.
Collapse
Affiliation(s)
- Amadou M Bâ
- Laboratoire Commun de Microbiologie IRD/UCAD/ISRA, (LCM), Centre de Recherche de Bel Air, Dakar, Sénégal.
| | | | | | | |
Collapse
|