1
|
McEwen DP, Ray P, Nancarrow DJ, Wang Z, Kasturirangan S, Abdullah S, Balan A, Hoskeri R, Thomas D, Lawrence TS, Beer DG, Lagisetty KH, Ray D. ISG15/GRAIL1/CD3 axis influences survival of patients with esophageal adenocarcinoma. JCI Insight 2024; 9:e179315. [PMID: 38781019 PMCID: PMC11383178 DOI: 10.1172/jci.insight.179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Immunosuppression is a common feature of esophageal adenocarcinoma (EAC) and has been linked to poor overall survival (OS). We hypothesized that upstream factors might negatively influence CD3 levels and T cell activity, thus promoting immunosuppression and worse survival. We used clinical data and patient samples of those who progressed from Barrett's to dysplasia to EAC, investigated gene (RNA-Seq) and protein (tissue microarray) expression, and performed cell biology studies to delineate a pathway impacting CD3 protein stability that might influence EAC outcome. We showed that the loss of both CD3-ε expression and CD3+ T cell number correlated with worse OS in EAC. The gene related to anergy in lymphocytes isoform 1 (GRAIL1), which is the prominent isoform in EACs, degraded (ε, γ, δ) CD3s and inactivated T cells. In contrast, isoform 2 (GRAIL2), which is reduced in EACs, stabilized CD3s. Further, GRAIL1-mediated CD3 degradation was facilitated by interferon-stimulated gene 15 (ISG15), a ubiquitin-like protein. Consequently, the overexpression of a ligase-dead GRAIL1, ISG15 knockdown, or the overexpression of a conjugation-defective ISG15-leucine-arginine-glycine-glycine mutant could increase CD3 levels. Together, we identified an ISG15/GRAIL1/mutant p53 amplification loop negatively influencing CD3 levels and T cell activity, thus promoting immunosuppression in EAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David G Beer
- Department of Surgery, Section of Thoracic Surgery
| | | | | |
Collapse
|
2
|
James J, Coelho A, Lahore GF, Hernandez CM, Forster F, Malissen B, Holmdahl R. Redox Regulation of LAT Enhances T Cell-Mediated Inflammation. Antioxidants (Basel) 2024; 13:499. [PMID: 38671946 PMCID: PMC11047684 DOI: 10.3390/antiox13040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The positional cloning of single nucleotide polymorphisms (SNPs) of the neutrophil cytosolic factor 1 (Ncf1) gene, advocating that a low oxidative burst drives autoimmune disease, demands an understanding of the underlying molecular causes. A cellular target could be T cells, which have been shown to be regulated by reactive oxygen species (ROS). However, the pathways by which ROS mediate T cell signaling remain unclear. The adaptor molecule linker for activation of T cells (LAT) is essential for coupling T cell receptor-mediated antigen recognition to downstream responses, and it contains several cysteine residues that have previously been suggested to be involved in redox regulation. To address the possibility that ROS regulate T cell-dependent inflammation through LAT, we established a mouse strain with cysteine-to-serine mutations at positions 120 and 172 (LATSS). We found that redox regulation of LAT through C120 and C172 mediate its localization and phosphorylation. LATSS mice had reduced numbers of double-positive thymocytes and naïve peripheral T cells. Importantly, redox insensitivity of LAT enhanced T cell-dependent autoimmune inflammation in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). This effect was reversed on an NCF1-mutated (NCF1m1j), ROS-deficient, background. Overall, our data show that LAT is redox-regulated, acts to repress T cell activation, and is targeted by ROS induced by NCF1 in antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- Jaime James
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Ana Coelho
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Gonzalo Fernandez Lahore
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Clara M. Hernandez
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Florian Forster
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| | - Bernard Malissen
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, 13288 Marseille, France;
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; (J.J.); (A.C.); (G.F.L.); (C.M.H.); (F.F.)
| |
Collapse
|
3
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Chen H, Lu C, Tan Y, Weber-Boyvat M, Zheng J, Xu M, Xiao J, Liu S, Tang Z, Lai C, Li M, Olkkonen VM, Yan D, Zhong W. Oculocerebrorenal syndrome of Lowe (OCRL) controls leukemic T-cell survival by preventing excessive PI(4,5)P 2 hydrolysis in the plasma membrane. J Biol Chem 2023:104812. [PMID: 37172724 DOI: 10.1016/j.jbc.2023.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the deadliest and most aggressive hematological malignancies, but its pathological mechanism in controlling cell survival is not fully understood. Oculocerebrorenal syndrome (also called Lowe syndrome) is a rare X-linked recessive disorder characterized by cataracts, intellectual disability, and proteinuria. This disease has been shown to be caused by mutation of Oculocerebrorenal syndrome of Lowe 1 (OCRL1; OCRL), encoding a phosphatidylinositol 4,5-diphosphate [PI(4,5)P2] 5-phosphatase involved in regulating membrane trafficking, however, its function in cancer cells is unclear. Here, we uncovered that OCRL1 is overexpressed in T-ALL cells and knockdown of OCRL1 results in cell death, indicating the essential role of OCRL in controlling T-ALL cell survival. We show OCRL is primarily localized in the Golgi, and can translocate to plasma membrane (PM) upon ligand stimulation. We found OCRL interacts with OSBP-related protein 4L (ORP4L), which facilitates OCRL translocation from the Golgi to the PM upon cluster of differentiation 3 (CD3) stimulation. Thus, OCRL represses the activity of ORP4L to prevent excessive PI(4,5)P2 hydrolysis by phosphoinositide phospholipase C β3 (PLCβ3) and uncontrolled Ca2+ release from the endoplasmic reticulum (ER). We propose OCRL1 deletion leads to accumulation of PI(4,5)P2 in the PM, disrupting the normal Ca2+ oscillation pattern in the cytosol and leading to mitochondrial Ca2+ overloading, ultimately causing T-ALL cell mitochondrial dysfunction and cell death. These results highlight a critical role for OCRL in maintaining moderate PI(4,5)P2 availability in T-ALL cells. Our findings also raise the possibility of targeting OCRL1 to treat T-ALL disease.
Collapse
Affiliation(s)
- Huanzhao Chen
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Chen Lu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Yuhui Tan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland. Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jie Zheng
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Mengyang Xu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Jie Xiao
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Shuang Liu
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Zhiquan Tang
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Chaofeng Lai
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Mingchuan Li
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland. Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland
| | - Daoguang Yan
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Wenbin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Kargar M, Torabizadeh M, Purrahman D, Zayeri ZD, Saki N. Regulatory factors involved in Th17/Treg cell balance of immune thrombocytopenia. Curr Res Transl Med 2023; 71:103389. [PMID: 37062251 DOI: 10.1016/j.retram.2023.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Immune thrombocytopenia is a common heterogeneous autoimmune disease that is characterized by decreasing peripheral blood platelet counts and increasing risk of bleeding. Studies have shown that an imbalance between T helper 17 (Th17) and Regulatory T (Treg) cells differentiated from CD4+T-cells is a key factor influencing the development and pathogenesis of immune thrombocytopenia. Th17 cells promote the development of chronic inflammatory disorders and induce autoimmune diseases, whereas Treg cells regulate immune homeostasis and prevent autoimmune diseases. Several regulators affecting the production and maintenance of these cells are also essential for proper regulation of Th17/Treg balance; these regulatory factors include cell surface proteins, miRNAs, and cytokine signaling. In this review, we focus on the function and role of balance between Th17 and Treg cells in immune thrombocytopenia, the regulatory factors, and therapeutic goals of this balance in immune thrombocytopenia.
Collapse
Affiliation(s)
- Masoud Kargar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Application of Multiparametric Flow Cytometry Panels to Study Lymphocyte Subpopulations in Tuberculin-Positive Cattle. Vet Sci 2023; 10:vetsci10030197. [PMID: 36977236 PMCID: PMC10057637 DOI: 10.3390/vetsci10030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Flow cytometry (FC) is widely used in microbiology, immunology, hematology, and oncology. In the veterinary field, FC enabled the study of the immune response in cattle infected with different pathogens, as well as vaccine testing. However, few fluorochrome-conjugated antibodies recognize bovine antigens, limiting the possible benefits of FC and the implementation of multiparametric analysis for more complex studies. Two cytometry panels with five colors each were designed and implemented for the study and identification of populations and subpopulations of T cells derived from the peripheral blood mononuclear cells of dairy heifers. Both panels detected differences in T cell subpopulations between heifers positively and negatively tested for tuberculin; they detected overexpression of CD25+ and CD45RO+ in tuberculin-positive heifers after stimulation with a culture filtrate protein extract (CFPE) from Mycobacterium bovis (M. bovis). We identified subpopulations of T cells from peripheral blood mononuclear cells using two multicolor panels. These panels could be used to analyze total bovine blood in immunopathogenic studies and vaccine development. The same strategy could be implemented in other species of veterinary interest.
Collapse
|
7
|
Govendir MA, Kempe D, Sianati S, Cremasco J, Mazalo JK, Colakoglu F, Golo M, Poole K, Biro M. T cell cytoskeletal forces shape synapse topography for targeted lysis via membrane curvature bias of perforin. Dev Cell 2022; 57:2237-2247.e8. [PMID: 36113483 DOI: 10.1016/j.devcel.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) lyse target cells by delivering lytic granules that contain the pore former perforin to the cytotoxic immunological synapse. Here, we establish that opposing cytoskeletal forces drive lytic granule polarization and simultaneously shape T cell synapse topography to enhance target perforation. At the cell rear, actomyosin contractility drives the anterograde movement of lytic granules toward the nucleus. At the synapse, dynein-derived forces induce negatively curved membrane pockets to which granules are transported around the nucleus. These highly concave degranulation pockets are located directly opposite positively curved bulges on the target cell membrane. We identify a curvature bias in the action of perforin, which preferentially perforates positively curved tumor cell membrane. Together, these findings demonstrate murine and human T cell-mediated cytotoxicity to be a highly tuned mechano-biochemical system, in which the forces that polarize lytic granules locally bend the synaptic membrane to favor the unidirectional perforation of the target cell.
Collapse
Affiliation(s)
- Matt A Govendir
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Setareh Sianati
- Cellular and Systems Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - James Cremasco
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica K Mazalo
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feyza Colakoglu
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kate Poole
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Cellular and Systems Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Satoh T, Kayano H, Takahashi N, Tsukasaki K, Yasuda M. Diagnostic utility of the aberrant immunohistochemical expression of CD3 molecules for peripheral T-cell lymphomas. Ann Diagn Pathol 2022; 60:152013. [PMID: 35905535 DOI: 10.1016/j.anndiagpath.2022.152013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
The histological diagnosis of peripheral T-cell lymphomas (PTCLs) is often challenging. Flow cytometry (FCM) sometimes shows the loss of pan-T-cell markers for PTCLs, suggesting the neoplastic nature of these cells. Immunohistochemically, the total loss of pan-T-cell markers has been demonstrated in PTCLs. Furthermore, except for the total loss, the aberrant immunohistochemical expressions of pan-T-cell markers have also been empirically observed in PTCLs, but the details remain unexamined. Therefore, the present study semi-quantitatively evaluated the aberrant expression of cytoplasmic CD3ε (cCD3ε), the most common immunohistochemical pan-T-cell marker, in 91 PTCL cases. The expressions of the other CD3 molecules, CD3δ, CD3γ, and CD3ζ were also examined. Frequencies of the total immunohistochemical loss of CD3 molecules and loss of surface CD3ε (sCD3ε) in FCM were analyzed for comparison. The results showed atypical, aberrant expression patterns for immunohistochemical CD3 molecules: perinuclear, cytoplasmic, membranous, and partial negative. The frequency of each molecule was as follows: cCD3ε 40.7 %, CD3δ 26.4 %, CD3γ 53.8 %, and CD3ζ 54.9 %, especially the latter two showed high frequency in peripheral T-cell lymphoma, not otherwise specified, angioimmunoblastic T-cell lymphoma, and adult T-cell lymphoma/leukemia. Immunohistochemical total loss was less than aberrant expression in all CD3 molecules, with the frequency of cCD3ε being the lowest (6.6 %). The loss of sCD3ε in FCM was observed in 43.3 % of cases, with a similar frequency to the aberrant expression of cCD3ε. In conclusion, the aberrant immunohistochemical expression of cCD3ε was a useful finding as is sCD3ε loss in FCM, but CD3γ and CD3ζ were more useful, facilitating the diagnosis of PTCLs.
Collapse
Affiliation(s)
- Tsugumi Satoh
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan.
| | - Hidekazu Kayano
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan; Faculty of Health and Medical Care, School of Medical Technology, Saitama Medical University, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Naoki Takahashi
- Department of Hematopoietic Tumor, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Kunihiro Tsukasaki
- Department of Hematopoietic Tumor, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| |
Collapse
|
9
|
Lee MS, Tuohy PJ, Kim CY, Lichauco K, Parrish HL, Van Doorslaer K, Kuhns MS. Enhancing and inhibitory motifs regulate CD4 activity. eLife 2022; 11:e79508. [PMID: 35861317 PMCID: PMC9333989 DOI: 10.7554/elife.79508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Peter J Tuohy
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Caleb Y Kim
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Katrina Lichauco
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- School of Animal and Comparative Biomedical Sciences, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| |
Collapse
|
10
|
Nami M, Han P, Hanlon D, Tatsuno K, Wei B, Sobolev O, Pitruzzello M, Vassall A, Yosinski S, Edelson R, Reed M. Rapid Screen for Antiviral T-Cell Immunity with Nanowire Electrochemical Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109661. [PMID: 35165959 DOI: 10.1002/adma.202109661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The ability to rapidly assess and monitor patient immune responses is critical for clinical diagnostics, vaccine design, and fundamental investigations into the presence or generation of protective immunity against infectious diseases. Recently, findings on the limits of antibody-based protection provided by B-cells have highlighted the importance of engaging pathogen-specific T-cells for long-lasting and broad protection against viruses and their emergent variants such as in SARS-CoV-2. However, low-cost and point-of-care tools for detecting engagement of T-cell immunity in patients are conspicuously lacking in ongoing efforts to assess and control population-wide disease risk. Currently available tools for human T-cell analysis are time and resource-intensive. Using multichannel silicon-nanowire field-effect transistors compatible with complementary metal-oxide-semiconductor, a device designed for rapid and label-free detection of human T-cell immune responses is developed. The generalizability of this approach is demonstrated by measuring T-cell responses against melanoma antigen MART1, common and seasonal viruses CMV, EBV, flu, as well as emergent pandemic coronavirus, SARS-CoV-2. Further, this device provides a modular and translational platform for optimizing vaccine formulations and combinations, offering quick and quantitative readouts for acquisition and persistence of T-cell immunity against variant-driven pathogens such as flu and pandemic SARS-CoV-2.
Collapse
Affiliation(s)
- Mohsen Nami
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
- Department of Neurosurgery, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Patrick Han
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
- Department of Immunobiology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Kazuki Tatsuno
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Brian Wei
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Mary Pitruzzello
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Aaron Vassall
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Shari Yosinski
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
| | - Richard Edelson
- Department of Dermatology, School of Medicine, Yale University, 333 Cedar St, New Haven, CT, 06510, USA
| | - Mark Reed
- Department of Electrical Engineering, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
- Department of Applied Physics, School of Engineering and Applied Sciences, Yale University, 15 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
11
|
Histopathological, Immunohistochemical and Biochemical Studies of Murine Hepatosplenic Tissues Affected by Chronic Toxoplasmosis. J Parasitol Res 2022; 2022:2165205. [PMID: 35755604 PMCID: PMC9225867 DOI: 10.1155/2022/2165205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a serious health problem in humans and animals resulting from obligatory intracellular invasion of reticuloendothelial tissue by Toxoplasma gondii. The profound pathologic effect of toxoplasmosis is confined to nervous tissue, but many other organs, including the liver and spleen, are insulted. Many molecules like caspase-3, CD3, and CD138 are implicated in the tissue immune response in a trial to alleviate hazardous toxoplasmosis impact. This study aimed to investigate the effect of chronic toxoplasmosis on the liver and spleen tissues of mice using biochemical and histopathological techniques and to detect the activity and level of expression of caspase-3, CD3, and CD138 in these tissues using immunohistochemical labeling. Compared with normal control, altered normal histological features accompanied by inflammatory reaction were recorded in hepatosplenic reticuloendothelial tissues in chronically infected mice. The biochemical profile of the liver has been changed in the form of increased liver enzymes, and oxidative stress has been evidenced by elevated nitric oxide (NO) concentration in liver homogenate. The levels of caspase3, CD3, and CD138 were markedly expressed in the liver and spleen of infected mice. Our findings revealed the persistent effect of latent toxoplasmosis on the host's histological architecture, metabolic, and immunological profile, creating a continued challenging host-parasite relationship.
Collapse
|
12
|
Dysregulated protein kinase/phosphatase networks in SLE T cells. Clin Immunol 2022; 236:108952. [PMID: 35149196 DOI: 10.1016/j.clim.2022.108952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with multiple phenotypic and functional aberrations in T lymphocytes. Among these, altered expression and/or activity of several protein kinases and phosphatases has been consistently documented in T cells obtained from patients with SLE. In this review, we describe and contextualize some of the kinase and phosphatase defects reported in T cells from patients with SLE, highlighting their relevance and possible consequences. Additionally, we discuss the origin of the defects and its significance for disease development and expression.
Collapse
|
13
|
Müller ML, Peglau L, Moon LDF, Groß S, Schulze J, Ruhnau J, Vogelgesang A. Neurotrophin-3 attenuates human peripheral blood T cell and monocyte activation status and cytokine production post stroke. Exp Neurol 2021; 347:113901. [PMID: 34688600 DOI: 10.1016/j.expneurol.2021.113901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Stroke therapy still lacks successful measures to improve post stroke recovery. Neurotrophin-3 (NT-3) is one promising candidate which has proven therapeutic benefit in motor recovery in acute experimental stroke. Post stroke, the immune system has opposing pathophysiological roles: pro-inflammatory cascades and immune cell infiltration into the brain exacerbate cell death while the peripheral immune response has only limited capabilities to fight infections during the acute and subacute phase. With time, anti-inflammatory mechanisms are supposed to support recovery of the ischemic damage within the brain parenchyma. However, interestingly, NT-3 can improve recovery in chronic neurological injury when combined with the pro-inflammatory stimulus lipopolysaccharide (LPS). AIM We elucidated the impact of NT-3 on human monocyte and T cell activation as well as cytokine production ex vivo after stroke. In addition, we investigated the age-dependent availability of the high affinity NT-3 receptor TrkC upon LPS stimulation. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from acute stroke patients and controls and incubated with different dosages of NT-3 (10 and 100 ng/mL) and with or without LPS or anti-CD3/CD28 for 48 h. Total TrkC expression and cell activation (CD25, CD69 and HLA-DR) were assessed by FACS staining. IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21 and IL-22 were quantified by cytometric bead array. RESULTS Most monocytes and only a small proportion of T cells expressed TrkC in blood from humans without stroke. Activation of cells from young humans (without strokes) using anti-CD3/CD28 or LPS partially reduced the proportion of monocytes expressing TrkC whilst they increased the proportion of T cells expressing TrkC. In contrast, activation of cells from elderly humans (without strokes) did not affect the proportion of monocytes expressing TrkC and only anti-CD3/CD28 led to an increase in the proportion of CD4+ T cells expressing TrkC. In blood from stroke patients or controls, NT-3 treatment reduced the percentage of monocytes and CD4+ and CD8+ T cells that were activated and reduced all cytokines investigated besides IL-21. CONCLUSIONS NT-3 attenuated immune responses in cells from stroke patients and controls. The mechanism whereby human immune cells respond to NT-3 may be via TrkC receptors whose levels are regulated by stimulation. Further work is required to determine whether the induction of sensorimotor recovery in rodents by NT-3 after CNS injury is caused by this attenuation of the immune response.
Collapse
Affiliation(s)
| | - Lars Peglau
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Stefan Groß
- Department of Internal Medicine B, University Medicine, Greifswald, Germany
| | - Juliane Schulze
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Johanna Ruhnau
- Department of Neurology, University Medicine, Greifswald, Germany
| | | |
Collapse
|
14
|
Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu MLH, Pham A, Jiang X, Lindquist KC, Doonan PJ, Van Blarcom T, Yeung YA, Chaparro-Riggers J. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. MAbs 2021; 13:1871171. [PMID: 33557687 PMCID: PMC7889206 DOI: 10.1080/19420862.2020.1871171] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.
Collapse
Affiliation(s)
- Wei Chen
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | - Fan Yang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | - Carole Wang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | - Jatin Narula
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | | | - Irene Ni
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | - Sheng Ding
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Gilead Sciences, Biology Department , Foster City, CA, USA
| | - Xiaodi Deng
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Dren Bio, Biologics Department , San Carlos, CA, USA
| | - Matthew Ling-Hon Chu
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Tizona Therapeutics, Protein Sciences , Antibody Development & Technical Operations, South San Francisco, CA, USA
| | - Amber Pham
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Arcus Biosciences, Protein Sciences , Hayward, CA, USA
| | - Xiaoyue Jiang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Nektar Therapeutics, Biologics Analytical Development , San Francisco, CA, USA
| | | | - Patrick J Doonan
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Janssen BioTherapeutics, Janssen Research & Development, LLC , Spring House, PA, USA
| | - Tom Van Blarcom
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Allogene Therapeutics, Protein Engineering , South San Francisco, CA, USA
| | - Yik Andy Yeung
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | | |
Collapse
|
15
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guo J, Xue Z, Ma R, Yi W, Hui Z, Guo Y, Yao Y, Cao W, Wang J, Ju Z, Lu L, Wang L. The transcription factor Zfp281 sustains CD4 + T lymphocyte activation through directly repressing Ctla-4 transcription. Cell Mol Immunol 2020; 17:1222-1232. [PMID: 31511645 PMCID: PMC7784856 DOI: 10.1038/s41423-019-0289-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/25/2019] [Indexed: 01/14/2023] Open
Abstract
The expression of coinhibitory receptors, such as CTLA-4, on effector T cells is a key mechanism for the negative regulation of T-cell activation. However, the transcriptional regulation of CTLA-4 is not well understood. Zfp281, a C2H2 zinc finger protein, is a negative regulator of pluripotency maintenance of embryonic stem cells. Nevertheless, the function of Zfp281 in differentiated cells has not been studied. We generated Zfp281 conditional knockout mice in which the function of the Zfp281 gene was conditionally disrupted by the Cd4Cre transgene to study its impact on T cell function. Zfp281 had no effect on T-cell development, but CD4+ T cell activation and cytokine production were impaired due to diminished T-cell receptor signaling. Furthermore, Zfp281 deficiency inhibited in vivo T cell responses to Listeria monocytogenes infection. Using genome-wide expression profiling assays, we determined that Zfp281 repressed Ctla-4 expression by directly binding to GC-rich sites in its promoter, which inhibited the negative feedback of T cell activation. In line with this result, CTLA-4 blockade and shRNA knockdown partly rescued the reduced cytokine production caused by Zfp281 deficiency. These findings indicate that Zfp281 sustains CD4+ T lymphocyte activation by directly repressing Ctla-4 transcription.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhonghui Xue
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ruoyu Ma
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Weiwei Yi
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Zhaoyuan Hui
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yixin Guo
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yuxi Yao
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wenqiang Cao
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Laboraty Animal Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
18
|
Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, Canfield JM, Davis TR, Stiles RJ, Chen Z, McCluskey J, Burrows SR, Rossjohn J, Hebrink DM, Carmona EM, Limper AH, Kappes DJ, Wettstein PJ, Johnson AJ, Pease LR, Daniels MA, Neuhauser C, Gil D, Schrum AG. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol 2020; 4:4/32/eaal2201. [PMID: 30770409 DOI: 10.1126/sciimmunol.aal2201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
During αβ T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αβ T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αβ T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αβ T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.
Collapse
Affiliation(s)
- Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alejandro Ferrer
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katelynn M Wilton
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - April M H Kelcher
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jenna M Canfield
- Molecular Pathogenesis and Therapeutics PhD Graduate Program, University of Missouri, Columbia, MO, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert J Stiles
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter J Wettstein
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - Diana Gil
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Adam G Schrum
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Gharaie Fathabad S, Kurzhagen JT, Sadasivam M, Noel S, Bush E, Hamad ARA, Rabb H. T Lymphocytes in Acute Kidney Injury and Repair. Semin Nephrol 2020; 40:114-125. [PMID: 32303275 DOI: 10.1016/j.semnephrol.2020.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Innate and adaptive immune systems participate in the pathogenesis of acute kidney injury (AKI). Considerable data from different research teams have shown the importance of T lymphocytes in the pathophysiology of AKI and, more recently, prevention and repair. T cells can generate or resolve inflammation by secreting specific cytokines and growth factors as well as interact with other immune and stromal cells to induce kidney injury or promote tissue repair. There also are emerging data on the role of T cells in the progression of AKI to chronic kidney disease and organ cross-talk in AKI. These data set the stage for immunomodulatory therapies for AKI. This review focuses on the major populations of T lymphocytes and their roles as mediators for AKI and repair.
Collapse
Affiliation(s)
| | - Johanna T Kurzhagen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sanjeev Noel
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Errol Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abdel R A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
20
|
Biallelic Form of a Known CD3E Mutation in a Patient with Severe Combined Immunodeficiency. J Clin Immunol 2020; 40:539-542. [PMID: 32016651 DOI: 10.1007/s10875-020-00752-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
21
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Wipa P, Paensuwan P, Ngoenkam J, Woessner NM, Minguet S, Schamel WW, Pongcharoen S. Actin polymerization regulates recruitment of Nck to CD3ε upon T-cell receptor triggering. Immunology 2019; 159:298-308. [PMID: 31674657 DOI: 10.1111/imm.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Following T-cell antigen receptor (TCR) engagement, rearrangement of the actin cytoskeleton supports intracellular signal transduction and T-cell activation. The non-catalytic region of the tyrosine kinase (Nck) molecule is an adapter protein implicated in TCR-induced actin polymerization. Further, Nck is recruited to the CD3ε subunit of the TCR upon TCR triggering. Here we examine the role of actin polymerization in the recruitment of Nck to the TCR. To this end, Nck binding to CD3ε was quantified in Jurkat cells using the proximity ligation assay. We show that inhibition of actin polymerization using cytochalasin D delayed the recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3ε phosphorylation was also delayed. These findings suggest that actin polymerization promotes the recruitment of Nck to the TCR, enhancing downstream signaling, such as phosphorylation of CD3ε.
Collapse
Affiliation(s)
- Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nadine M Woessner
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency CCI, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency CCI, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.,Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Research Center for Academic Excellence in Petroleum, Petrochemical, and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
23
|
Andreotti AH, Joseph RE, Conley JM, Iwasa J, Berg LJ. Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annu Rev Immunol 2019; 36:549-578. [PMID: 29677469 DOI: 10.1146/annurev-immunol-042617-053344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.
Collapse
Affiliation(s)
- Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA;
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| |
Collapse
|
24
|
Marei HE, Althani A, Caceci T, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Roselli M, Caratelli S, Cenciarelli C, Sconocchia G. Recent perspective on CAR and Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochem Pharmacol 2019; 166:335-346. [PMID: 31176617 DOI: 10.1016/j.bcp.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt.
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Thomas Caceci
- Biomedical Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | | | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | | |
Collapse
|
25
|
Veenstra KA, Alnabulsi A, Tubbs L, Ben Arous J, Secombes CJ. Immunohistochemical examination of immune cells in adipose tissue of rainbow trout (Oncorhynchus mykiss) following intraperitoneal vaccination. FISH & SHELLFISH IMMUNOLOGY 2019; 87:559-564. [PMID: 30731214 DOI: 10.1016/j.fsi.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Mammalian perivisceral adipose has been shown to play an important role in the regulation of the peritoneal immune responses. Recently it has been demonstrated that peritoneal antigens are collected by leukocytes within the visceral adipose mass, and a broad range of immunomodulatory genes are differentially expressed in adipose tissue after intraperitoneal vaccination in rainbow trout. To assess the immune cell component in adipose, immunohistochemical analysis was used to examine B-cell, T-cell and antigen presenting cell (APC) numbers and distribution in rainbow trout adipose tissue 24 and 72 h post vaccination in comparison to control fish. The results of this study support previous work on mammals with omental milky spots in naïve fish found to contain APCs and T-cells which then increased in size, number and complexity following vaccination. It suggests that following peritoneal stimulation the visceral adipose mass in fish likely plays an important role in vaccine antigen uptake and presentation by APCs, as well as subsequent T-cell activation and differentiation.
Collapse
Affiliation(s)
- Kimberly A Veenstra
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Ayham Alnabulsi
- Vertebrate Antibodies Ltd., Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Lincoln Tubbs
- Elanco Animal Health, Food Animal Vaccines R&D, 2500 Innovation Way, Greenfield, IN, 46140, USA.
| | - Juliette Ben Arous
- Seppic, 50 Boulevard National, La Garenne-Colombes, Paris, 92250, France.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
26
|
Dominguez JL, Knapp B. How peptide/MHC presence affects the dynamics of the LC13 T-cell receptor. Sci Rep 2019; 9:2638. [PMID: 30804417 PMCID: PMC6389892 DOI: 10.1038/s41598-019-38788-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/19/2018] [Indexed: 12/04/2022] Open
Abstract
The interaction between T-cell receptors (TCRs) of T-cells and potentially immunogenic peptides presented by MHCs of antigen presenting cells is one of the most important mechanisms of the adaptive human immune system. A large number of structural simulations of the TCR/peptide/MHC system have been carried out. However, to date no study has investigated the differences of the dynamics between free TCRs and pMHC bound TCRs on a large scale. Here we present a study totalling 37 100 ns investigating the LC13 TCR in its free form as well as in complex with HLA-B*08:01 and different peptides. Our results show that the dynamics of the bound and unbound LC13 TCR differ significantly. This is reflected in (a) expected results such as an increased flexibility and increased solvent accessible surface of the CDRs of unbound TCR simulations but also in (b) less expected results such as lower CDR distances and compactness as well as alteration in the hydrogen bond network around CDR3α of unbound TCR simulations. Our study further emphasises the structural flexibility of TCRs and confirms the importance of the CDR3 loops for the adoption to MHC.
Collapse
Affiliation(s)
- Jose Luis Dominguez
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain
| | - Bernhard Knapp
- Department of Basic Sciences, International University of Catalonia, Barcelona, Spain.
- Department of Statistics, Protein Informatics Group, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
|
28
|
Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, Green S, Lu J, Morales JF, Barrett DM, Grupp SA, Chan VW, Liu H, Liu C. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov 2018; 4:62. [PMID: 30479831 PMCID: PMC6242878 DOI: 10.1038/s41421-018-0066-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
The clinical use of genetically modified T-cell therapies has led to unprecedented response rates in leukemia and lymphoma patients treated with anti-CD19 chimeric antigen receptor (CAR)-T. Despite this clinical success, FDA-approved T-cell therapies are currently limited to B-cell malignancies, and challenges remain with managing cytokine-related toxicities. We have designed a novel antibody-T-cell receptor (AbTCR) platform where we combined the Fab domain of an antibody with the γ and δ chains of the TCR as the effector domain. We demonstrate the ability of anti-CD19-AbTCR-T cells to trigger antigen-specific cytokine production, degranulation, and killing of CD19-positive cancer cells in vitro and in xenograft mouse models. By using the same anti-CD19 binding moiety on an AbTCR compared to a CAR platform, we demonstrate that AbTCR activates cytotoxic T-cell responses with a similar dose-response as CD28/CD3ζ CAR, yet does so with less cytokine release and results in T cells with a less exhausted phenotype. Moreover, in comparative studies with the clinically validated CD137 (4-1BB)-based CAR, CTL019, our anti-CD19-AbTCR shows less cytokine release and comparable tumor inhibition in a patient-derived xenograft leukemia model.
Collapse
Affiliation(s)
- Yiyang Xu
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | - Zhiyuan Yang
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | | | - Pengbo Zhang
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | - Lianxing Liu
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | | | - Shon Green
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | - Jingwei Lu
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | | | - David M. Barrett
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | - Hong Liu
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| | - Cheng Liu
- Eureka Therapeutics, Inc, Emeryville, CA 94608 USA
| |
Collapse
|
29
|
An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 2018; 7:21199-221. [PMID: 27028870 PMCID: PMC5008279 DOI: 10.18632/oncotarget.8385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells.
Collapse
|
30
|
Newell EW, Becht E. High-Dimensional Profiling of Tumor-Specific Immune Responses: Asking T Cells about What They “See” in Cancer. Cancer Immunol Res 2018; 6:2-9. [DOI: 10.1158/2326-6066.cir-17-0519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022]
|
31
|
Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires. mBio 2017; 8:mBio.01841-17. [PMID: 29208744 PMCID: PMC5717389 DOI: 10.1128/mbio.01841-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fifty years after the discovery of Epstein-Barr virus (EBV), it remains unclear how primary infection with this virus leads to massive CD8 T-cell expansion and acute infectious mononucleosis (AIM) in young adults. AIM can vary greatly in severity, from a mild transient influenza-like illness to a prolonged severe syndrome. We questioned whether expansion of a unique HLA-A2.01-restricted, cross-reactive CD8 T-cell response between influenza virus A-M158 (IAV-M1) and EBV BMLF1280 (EBV-BM) could modulate the immune response to EBV and play a role in determining the severity of AIM in 32 college students. Only ex vivo total IAV-M1 and IAV-M1+EBV-BM cross-reactive tetramer+ frequencies directly correlated with AIM severity and were predictive of severe disease. Expansion of specific cross-reactive memory IAV-M1 T-cell receptor (TCR) Vβ repertoires correlated with levels of disease severity. There were unique profiles of qualitatively different functional responses in the cross-reactive and EBV-specific CD8 T-cell responses in each of the three groups studied, severe-AIM patients, mild-AIM patients, and seropositive persistently EBV-infected healthy donors, that may result from differences in TCR repertoire use. IAV-M1 tetramer+ cells were functionally cross-reactive in short-term cultures, were associated with the highest disease severity in AIM, and displayed enhanced production of gamma interferon, a cytokine that greatly amplifies immune responses, thus frequently contributing to induction of immunopathology. Altogether, these data link heterologous immunity via CD8 T-cell cross-reactivity to CD8 T-cell repertoire selection, function, and resultant disease severity in a common and important human infection. In particular, it highlights for the first time a direct link between the TCR repertoire with pathogenesis and the diversity of outcomes upon pathogen encounter. The pathogenic impact of immune responses that by chance cross-react to unrelated viruses has not been established in human infections. Here, we demonstrate that the severity of acute infectious mononucleosis (AIM), an Epstein-Barr virus (EBV)-induced disease prevalent in young adults but not children, is associated with increased frequencies of T cells cross-reactive to EBV and the commonly acquired influenza A virus (IAV). The T-cell receptor (TCR) repertoire and functions of these cross-reactive T cells differed between mild- and severe-AIM patients, most likely because these two groups of patients had selected different memory TCR repertoires in response to IAV infections encountered earlier. This heterologous immunity may explain variability in disease outcome and why young adults with more-developed IAV-specific memory T-cell pools have more-severe disease than children, who have less-developed memory pools. This study provides a new framework for understanding the role of heterologous immunity in human health and disease and highlights an important developing field examining the role of T-cell repertoires in the mediation of immunopathology.
Collapse
|
32
|
Faeder JR, Morel PA. Reductionism Is Dead: Long Live Reductionism! Systems Modeling Needs Reductionist Experiments. Biophys J 2017; 110:1681-1683. [PMID: 27119628 DOI: 10.1016/j.bpj.2016.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- James R Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Penelope A Morel
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Pettinello R, Redmond AK, Secombes CJ, Macqueen DJ, Dooley H. Evolutionary history of the T cell receptor complex as revealed by small-spotted catshark (Scyliorhinus canicula). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:125-135. [PMID: 28433528 DOI: 10.1016/j.dci.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
In every jawed vertebrate species studied so far, the T cell receptor (TCR) complex is composed of two different TCR chains (α/β or γ/δ) and a number of CD3 subunits responsible for transmitting signals into the T cell. In this study, we characterised all of the TCR and CD3 genes of small-spotted catshark (Scyliorhinus canicula) and analysed their expression in a broad range of tissues. While the TCR complex is highly conserved across jawed vertebrates, we identified a number of differences in catshark, most notably the presence of two copies of both TCRβ and CD3γδ, and the absence of a functionally-important proline rich region from CD3ε. We also demonstrate that TCRβ has duplicated independently multiple times in jawed vertebrate evolution, bringing additional diversity to the TCR complex. This study reveals new insights about the evolutionary history of the TCR complex and raises new avenues for future exploration.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Christopher J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore MD21202, USA
| |
Collapse
|
34
|
Schamel WWA, Alarcon B, Höfer T, Minguet S. The Allostery Model of TCR Regulation. THE JOURNAL OF IMMUNOLOGY 2017; 198:47-52. [PMID: 27994168 DOI: 10.4049/jimmunol.1601661] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
The activity of the αβ TCR is controlled by conformational switches. In the resting conformation, the TCR is not phosphorylated and is inactive. Binding of multivalent peptide-MHC to the TCR stabilizes the active conformation, leading to TCR signaling. These two conformations allow the TCRs to be allosterically regulated. We review recent data on heterotropic allostery where peptide-MHC and membrane cholesterol serve opposing functions as positive and negative allosteric regulators, respectively. In resting T cells cholesterol keeps TCRs in the resting conformation that otherwise would become spontaneously active. This regulation is well described by the classical Monod-Wyman-Changeux model of allostery. Moreover, the observation that TCRs assemble into nanoclusters might allow for homotropic allostery, in which individual TCRs could positively cooperate and thus enhance the sensitivity of T cell activation. This new view of TCR regulation will contribute to a better understanding of TCR functioning.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany; .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany; and.,BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susana Minguet
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
35
|
Bettini ML, Chou PC, Guy CS, Lee T, Vignali KM, Vignali DAA. Cutting Edge: CD3 ITAM Diversity Is Required for Optimal TCR Signaling and Thymocyte Development. THE JOURNAL OF IMMUNOLOGY 2017; 199:1555-1560. [PMID: 28733484 DOI: 10.4049/jimmunol.1700069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
For the αβ or γδTCR chains to integrate extracellular stimuli into the appropriate intracellular cellular response, they must use the 10 ITAMs found within the CD3 subunits (CD3γε, CD3δε, and ζζ) of the TCR signaling complex. However, it remains unclear whether each specific ITAM sequence of the individual subunit (γεδζ) is required for thymocyte development or whether any particular CD3 ITAM motif is sufficient. In this article, we show that mice utilizing a single ITAM sequence (γ, ε, δ, ζa, ζb, or ζc) at each of the 10 ITAM locations exhibit a substantial reduction in thymic cellularity and limited CD4-CD8- (double-negative) to CD4+CD8+ (double-positive) maturation because of low TCR expression and signaling. Together, the data suggest that ITAM sequence diversity is required for optimal TCR signal transduction and subsequent T cell maturation.
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; .,Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Po-Chein Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Thomas Lee
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Kate M Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
36
|
Ionic CD3-Lck interaction regulates the initiation of T-cell receptor signaling. Proc Natl Acad Sci U S A 2017; 114:E5891-E5899. [PMID: 28659468 DOI: 10.1073/pnas.1701990114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Antigen-triggered T-cell receptor (TCR) phosphorylation is the first signaling event in T cells to elicit adaptive immunity against invading pathogens and tumor cells. Despite its physiological importance, the underlying mechanism of TCR phosphorylation remains elusive. Here, we report a key mechanism regulating the initiation of TCR phosphorylation. The major TCR kinase Lck shows high selectivity on the four CD3 signaling proteins of TCR. CD3ε is the only CD3 chain that can efficiently interact with Lck, mainly through the ionic interactions between CD3ε basic residue-rich sequence (BRS) and acidic residues in the Unique domain of Lck. We applied a TCR reconstitution system to explicitly study the initiation of TCR phosphorylation. The ionic CD3ε-Lck interaction controls the phosphorylation level of the whole TCR upon antigen stimulation. CD3ε BRS is sequestered in the membrane, and antigen stimulation can unlock this motif. Dynamic opening of CD3ε BRS and its subsequent recruitment of Lck thus can serve as an important switch of the initiation of TCR phosphorylation.
Collapse
|
37
|
Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat Commun 2017; 8:15260. [PMID: 28508865 PMCID: PMC5440810 DOI: 10.1038/ncomms15260] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanism through which the interaction of a clonotypic αβ T-cell receptor (TCR) with a peptide-loaded major histocompatibility complex (p/MHC) leads to T-cell activation is not yet fully understood. Here we exploit a high-affinity TCR (B4.2.3) to examine the structural changes that accompany binding to its p/MHC ligand (P18-I10/H2-Dd). In addition to conformational changes in complementarity-determining regions (CDRs) of the TCR seen in comparison of unliganded and bound X-ray structures, NMR characterization of the TCR β-chain dynamics reveals significant chemical shift effects in sites removed from the MHC-binding site. Remodelling of electrostatic interactions near the Cβ H3 helix at the membrane-proximal face of the TCR, a region implicated in interactions with the CD3 co-receptor, suggests a possible role for an allosteric mechanism in TCR signalling. The contribution of these TCR residues to signal transduction is supported by mutagenesis and T-cell functional assays.
Collapse
MESH Headings
- Allosteric Site/immunology
- Animals
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Major Histocompatibility Complex/immunology
- Mice
- Molecular Dynamics Simulation
- Mutagenesis
- Peptides/metabolism
- Protein Binding/immunology
- Protein Domains/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew C. McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mulualem E. Tilahun
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolaos G. Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
38
|
Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res 2017; 15:635-650. [PMID: 28356330 DOI: 10.1158/1541-7786.mcr-16-0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022]
Abstract
The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - John Maher
- Kings College London, CAR Mechanics Group, Guy's Hospital, London, United Kingdom
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
39
|
Ali Q, Mustafa IH, Elkamel A, Touboul E, Gruy F, Lambert C. Mathematical modelling of T-cells activation dynamics for CD3 molecules recycling process. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qasim Ali
- Department of Applied Mathematics; University of Western Ontario; London ON Canada
| | - Ibrahim H. Mustafa
- Biomedical Engineering Department; Helwan University; Cairo Egypt
- Department of Chemical Engineering; University of Waterloo; Waterloo ON Canada
| | - Ali Elkamel
- Department of Chemical Engineering; University of Waterloo; Waterloo ON Canada
| | - Eric Touboul
- Henry Fayol Institute; ENSM - Saint Étienne France
| | - Frederic Gruy
- Center for Biomedical and Healthcare Engineering; ENSM - Saint Étienne France
| | - Claude Lambert
- CHU - Saint Etienne, Immunology Lab; University Hospital; F 42055, Saint-Étienne France
| |
Collapse
|
40
|
Holmberg D, Ruikka K, Lindgren P, Eliasson M, Mayans S. Association of CD247 (CD3ζ) gene polymorphisms with T1D and AITD in the population of northern Sweden. BMC MEDICAL GENETICS 2016; 17:70. [PMID: 27716086 PMCID: PMC5050583 DOI: 10.1186/s12881-016-0333-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Abstract
Background T1D and AITD are autoimmune disorders commonly occurring in the same family and even in the same individual. The genetic contribution to these disorders is complex making uncovering of susceptibility genes very challenging. The general aim of this study was to identify loci and genes contributing to T1D/AITD susceptibility. Our strategy was to perform linkage and association studies in the relatively genetically homogenous population of northern Sweden. We performed a GWLS to find genomic regions linked to T1D/AITD in families from northern Sweden and we performed an association study in the families to test for association between T1D/AITD and variants in previously published candidate genes as well as a novel candidate gene, CD247. Methods DNA prepared from 459 individuals was used to perform a linkage and an association study. The ABI PRISM Linkage Mapping Set v2.5MD10 was employed for an initial 10-cM GWLS, and additional markers were added for fine mapping. Merlin was used for linkage calculations. For the association analysis, a GoldenGate Custom Panel from Illumina containing 79 SNPs of interest was used and FBAT was used for association calculations. Results Our study revealed linkage to two previously identified chromosomal regions, 4q25 and 6p22, as well as to a novel chromosomal region, 1q23. The association study replicated association to PTPN22, HLA-DRB1, INS, IFIH1, CTLA4 and C12orf30. Evidence in favor of association was also found for SNPs in the novel susceptibility gene CD247. Conclusions Several risk loci for T1D/AITD identified in published association studies were replicated in a family material, of modest size, from northern Sweden. This provides evidence that these loci confer disease susceptibility in this population and emphasizes that small to intermediate sized family studies in this population can be used in a cost-effective manner for the search of genes involved in complex diseases. The linkage study revealed a chromosomal region in which a novel T1D/AITD susceptibility gene, CD247, is located. The association study showed association between T1D/AITD and several variants in this gene. These results suggests that common susceptibility genes act in concert with variants of CD247 to generate genetic risk for T1D/AITD in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0333-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Holmberg
- Department of Medical Biosciences - Medical Genetics, Umeå University, SE-901 85, Umeå, Sweden.,EMV, Immunology, BMC, Lund University, SE-221 00, Lund, Sweden
| | - Karin Ruikka
- Department of Medicine, Sunderby Hospital, SE-971 80, Luleå, Sweden
| | - Petter Lindgren
- Department of Medical Biosciences - Medical Genetics, Umeå University, SE-901 85, Umeå, Sweden
| | - Mats Eliasson
- Department of Medicine, Sunderby Hospital, SE-971 80, Luleå, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, SE-901 85, Umeå, Sweden
| | - Sofia Mayans
- Department of Medical Biosciences - Medical Genetics, Umeå University, SE-901 85, Umeå, Sweden. .,Department of Clinical Microbiology, Division of Immunology, Umeå University, Building 6C, SE-90185, Umeå, Sweden.
| |
Collapse
|
41
|
Smith SEP, Neier SC, Reed BK, Davis TR, Sinnwell JP, Eckel-Passow JE, Sciallis GF, Wieland CN, Torgerson RR, Gil D, Neuhauser C, Schrum AG. Multiplex matrix network analysis of protein complexes in the human TCR signalosome. Sci Signal 2016; 9:rs7. [PMID: 27485017 DOI: 10.1126/scisignal.aad7279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiprotein complexes transduce cellular signals through extensive interaction networks, but the ability to analyze these networks in cells from small clinical biopsies is limited. To address this, we applied an adaptable multiplex matrix system to physiologically relevant signaling protein complexes isolated from a cell line or from human patient samples. Focusing on the proximal T cell receptor (TCR) signalosome, we assessed 210 pairs of PiSCES (proteins in shared complexes detected by exposed surface epitopes). Upon stimulation of Jurkat cells with superantigen-loaded antigen-presenting cells, this system produced high-dimensional data that enabled visualization of network activity. A comprehensive analysis platform generated PiSCES biosignatures by applying unsupervised hierarchical clustering, principal component analysis, an adaptive nonparametric with empirical cutoff analysis, and weighted correlation network analysis. We generated PiSCES biosignatures from 4-mm skin punch biopsies from control patients or patients with the autoimmune skin disease alopecia areata. This analysis distinguished disease patients from the controls, detected enhanced basal TCR signaling in the autoimmune patients, and identified a potential signaling network signature that may be indicative of disease. Thus, generation of PiSCES biosignatures represents an approach that can provide information about the activity of protein signaling networks in samples including low-abundance primary cells from clinical biopsies.
Collapse
Affiliation(s)
- Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Brendan K Reed
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jason P Sinnwell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Claudia Neuhauser
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Glassman CR, Parrish HL, Deshpande NR, Kuhns MS. The CD4 and CD3δε Cytosolic Juxtamembrane Regions Are Proximal within a Compact TCR-CD3-pMHC-CD4 Macrocomplex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4713-22. [PMID: 27183595 PMCID: PMC4875830 DOI: 10.4049/jimmunol.1502110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
TCRs relay information about peptides embedded within MHC molecules (pMHC) to the ITAMs of the associated CD3γε, CD3δε, and CD3ζζ signaling modules. CD4 then recruits the Src kinase p56(Lck) (Lck) to the TCR-CD3 complex to phosphorylate the ITAMs, initiate intracellular signaling, and drive CD4(+) T cell fate decisions. Whereas the six ITAMs of CD3ζζ are key determinants of T cell development, activation, and the execution of effector functions, multiple models predict that CD4 recruits Lck proximal to the four ITAMs of the CD3 heterodimers. We tested these models by placing FRET probes at the cytosolic juxtamembrane regions of CD4 and the CD3 subunits to evaluate their relationship upon pMHC engagement in mouse cell lines. The data are consistent with a compact assembly in which CD4 is proximal to CD3δε, CD3ζζ resides behind the TCR, and CD3γε is offset from CD3δε. These results advance our understanding of the architecture of the TCR-CD3-pMHC-CD4 macrocomplex and point to regions of high CD4-Lck + ITAM concentrations therein. The findings thus have implications for TCR signaling, as phosphorylation of the CD3 ITAMs by CD4-associated Lck is important for CD4(+) T cell fate decisions.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Neha R Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724; and
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724; and The BIO5 Institute, The University of Arizona College of Medicine, Tucson, AZ 85724
| |
Collapse
|
43
|
Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, Nassif N, Barbaro P, Bryant C, Hart D, Gibson J, Joshua D. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia 2016; 30:1716-24. [PMID: 27102208 DOI: 10.1038/leu.2016.84] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
Tumour-induced dysfunction of cytotoxic T cells in patients with multiple myeloma (MM) may contribute to immune escape and be responsible for the lack of therapeutic efficacy of immune checkpoint blockade. We therefore investigated dysfunctional clonal T cells in MM and demonstrated immunosenescence but not exhaustion as a predominant feature. T-cell clones were detected in 75% of MM patients and their prognostic significance was revalidated in a new post-immunomodulatory drug cohort. The cells exhibited a senescent secretory effector phenotype: KLRG-1+/CD57+/CD160+/CD28-. Normal-for-age telomere lengths indicate that senescence is telomere independent and potentially reversible. p38-mitogen-activated protein kinase, p16 and p21 signalling pathways known to induce senescence were not elevated. Telomerase activity was found to be elevated and this may explain how normal telomere lengths are maintained in senescent cells. T-cell receptor signalling checkpoints were normal but elevated SMAD levels associated with T-cell inactivation were detected and may provide a potential target for the reversal of clonal T-cell dysfunction in MM. Low programmed death 1 and cytotoxic T-lymphocyte-associated antigen 4 expression detected on T-cell clones infers that these cells are not exhausted but suggests that there would be a suboptimal response to immune checkpoint blockade in MM. Our data suggest that other immunostimulatory strategies are required in MM.
Collapse
Affiliation(s)
- H Suen
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - R Brown
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - S Yang
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - C Weatherburn
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - P J Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - N Woodland
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - N Nassif
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - P Barbaro
- Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - C Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia.,Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - D Hart
- Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia.,Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - J Gibson
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - D Joshua
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Structural biology of intrinsically disordered proteins: Revisiting unsolved mysteries. Biochimie 2016; 125:112-8. [PMID: 27004461 DOI: 10.1016/j.biochi.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 01/30/2023]
Abstract
The emergence of intrinsically disordered proteins (IDPs) has challenged the classical protein structure-function paradigm by introducing a new paradigm of "coupled binding and folding". This paradigm suggests that IDPs fold upon binding to their partners. Further studies, however, revealed a novel and previously unrecognized phenomenon of "uncoupled binding and folding" suggesting that IDPs do not necessarily fold upon interaction with their lipid and protein partners. The complex and often unusual biophysics of IDPs makes structural characterization of these proteins and their complexes not only challenging but often resulting in opposite conclusions. For this reason, some crucial questions in this field remain unsolved for well over a decade. Considering an important role of IDPs in cellular regulation, signaling and control in health and disease, more efforts are needed to solve these mysteries. Here, I focus on two long-standing contradictions in the literature concerning dimerization and membrane-binding activities of IDPs. Molecular explanation of these discrepancies is provided. I also demonstrate how resolution of these critical issues in the field of IDPs results in our expanded understanding of cell function and has multiple applications in biology and medicine.
Collapse
|
45
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. THE JOURNAL OF IMMUNOLOGY 2015; 196:448-58. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
46
|
Lee MS, Glassman CR, Deshpande NR, Badgandi HB, Parrish HL, Uttamapinant C, Stawski PS, Ting AY, Kuhns MS. A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3ζζ. Immunity 2015; 43:227-39. [PMID: 26231119 PMCID: PMC4545397 DOI: 10.1016/j.immuni.2015.06.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
The eight-subunit T cell receptor (TCR)-CD3 complex is the primary determinant for T cell fate decisions. Yet how it relays ligand-specific information across the cell membrane for conversion to chemical signals remains unresolved. We hypothesized that TCR engagement triggers a change in the spatial relationship between the associated CD3ζζ subunits at the junction where they emerge from the membrane into the cytoplasm. Using three in situ proximity assays based on ID-PRIME, FRET, and EPOR activity, we determined that the cytosolic juxtamembrane regions of the CD3ζζ subunits are spread apart upon assembly into the TCR-CD3 complex. TCR engagement then triggered their apposition. This mechanical switch resides upstream of the CD3ζζ intracellular motifs that initiate chemical signaling, as well as the polybasic stretches that regulate signal potentiation. These findings provide a framework from which to examine triggering events for activating immune receptors and other complex molecular machines.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Caleb R Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Neha R Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Hemant B Badgandi
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Chayasith Uttamapinant
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Philipp S Stawski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
47
|
Yan W, Wang L, Jiang J, Xu W, Gong Z, Duan Q, Li C, Song H, Che L, Shen Y, Zhou L. Differential expression of T cell-related genes in AMI and SA stages of coronary artery disease. Int J Clin Exp Med 2015; 8:10875-84. [PMID: 26379881 PMCID: PMC4565264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To identify differentially expressed T cells-related genes in peripheral blood mononuclear cells and compare their differences in T cell activation and subset functions in different stages of coronary atherosclerosis disease (CAD). METHODS 20 patients with acute myocardial infarction patients (AMI), 20 patients with stable angina pectoris (SA) and 20 healthy volunteers were recruited into the study. Whole human genome microarray analysis was used to detect the expression of T cell related genes among three groups. RESULTS mRNA expression of 68 genes involved in T cell was detected. 1) Antigen recognition: in the AMI patients 12 genes were down-regulated and 9 were significantly down-regulated among all 13 genes, compared with those of the SA and the control group, respectively. 2) Co-stimulators and regulators of T cell activation: among 16 genes in the AMI patients, 15 genes were lower and 8 were significantly lower than the other two groups. 3) T cell subsets, CTL: all 11 genes in the AMI patients were down-regulated, particularly GZMM and CASP8 were significantly down-regulated compared with the SA patients and controls. Th1/Th2: in the AMI patients, gene expressions including IL1 and IL18 were significantly higher, whereas GATA3 mRNA was significantly lower than those in other two groups. Th17/Treg: in the AMI group, RORC and CCR6 mRNAs were significantly down-regulated compared with the control group, while CD25 and CD127 expressions were significantly lower than SA group. There was no difference in T cell related genes between the SA patients and the controls. CONCLUSIONS In the AMI patients, the mRNA expression of T cell antigen recognition, activation and subset functions was imbalanced or decreased, indicating the dysfunction of cellular immunity in patients with AMI. Then improving T cell mediated cellular immunity may be considered as a potential target for medical interventions in the patients with AMI.
Collapse
Affiliation(s)
- Wenwen Yan
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Lemin Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Jinfa Jiang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Wenjun Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Zhu Gong
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Qianglin Duan
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Chuanrong Li
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Haoming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Lin Zhou
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| |
Collapse
|
48
|
Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol 2015; 34:460-85. [PMID: 25970132 DOI: 10.3109/08830185.2015.1027822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current treatments for autoimmune diseases are typically non-specific anti-inflammatory agents that affect not only the autoreactive cells but also the parts of the immune system that are required to maintain health. There is a need for the development of antigen-specific therapeutic agents that can effectively prevent the autoimmune attack while leaving the rest of the immune system functioning as normal. The simplest way to achieve this is using the autoantigen itself as a tolerizing agent; however, there is some risk involved with administering a potentially pathogenic antigen. In this review, we focus instead on the development and use of modified T cell receptor (TCR) ligands, in which the peptide ligand is modified to change the response by the T cell from a disease inducing to a protective response, and still retain the antigen-specificity necessary to target the autoreactive T cells. We review the use of modified TCR ligands as therapeutic agents in animal models of autoimmunity and in human autoimmune disease, and finally consider how they need to be improved in order to use them effectively in patients with autoimmune disease.
Collapse
Affiliation(s)
- Evan L Sauer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Nancy C Cloake
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Judith M Greer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
49
|
Hillen KM, Gather R, Enders A, Pircher H, Aichele P, Fisch P, Blumenthal B, Schamel WW, Straub T, Goodnow CC, Ehl S. T cell expansion is the limiting factor of virus control in mice with attenuated TCR signaling: implications for human immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2015; 194:2725-34. [PMID: 25672755 DOI: 10.4049/jimmunol.1400328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Defining the minimal thresholds for effective antiviral T cell immunity is important for clinical decisions in immunodeficient patients. TCR signaling is critical for T cell development, activation, and effector functions. In this article, we analyzed which of these TCR-mediated processes is limiting for antiviral immunity in a mouse strain with reduced expression of SLP-76 (twp mice). Despite severe T cell activation defects in vitro, twp mice generated a normal proportion of antiviral effector T cells postinfection with lymphocytic choriomeningitis virus (LCMV). Twp CD8(+) T cells showed impaired polyfunctional cytokine production, whereas cytotoxicity as the crucial antiviral effector function for LCMV control was normal. The main limiting factor in the antiviral response of twp mice was impaired T cell proliferation and survival, leading to a 5- to 10-fold reduction of antiviral T cells at the peak of the immune response. This was still sufficient to control infection with the LCMV Armstrong strain, but the more rapidly replicating LCMV-WE induced T cell exhaustion and viral persistence. Thus, under conditions of impaired TCR signaling, reduced T cell expansion was the limiting factor in antiviral immunity. These findings have implications for understanding antiviral immunity in patients with T cell deficiencies.
Collapse
Affiliation(s)
- Kristina M Hillen
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, 79106 Freiburg, Germany; Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ruth Gather
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, 79106 Freiburg, Germany; Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Anselm Enders
- Ramaciotti Immunization Genomics Laboratory, Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Acton 2601, Australian Capital Territory, Australia
| | - Hanspeter Pircher
- Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Aichele
- Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, 79104 Freiburg, Germany
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, 79106 Freiburg, Germany; and
| | - Britta Blumenthal
- Institute of Pathology, University Medical Center Freiburg, 79106 Freiburg, Germany; and
| | - Wolfgang W Schamel
- Institute of Pathology, University Medical Center Freiburg, 79106 Freiburg, Germany; and
| | - Tobias Straub
- Institute of Medical Microbiology and Hygiene, Department of Immunology, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Acton 2601, Australian Capital Territory, Australia
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
50
|
Dura B, Dougan SK, Barisa M, Hoehl MM, Lo CT, Ploegh HL, Voldman J. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat Commun 2015; 6:5940. [DOI: 10.1038/ncomms6940] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
|