1
|
Ruprecht NA, Singhal S, Schaefer K, Panda O, Sens D, Singhal SK. A Review: Multi-Omics Approach to Studying the Association between Ionizing Radiation Effects on Biological Aging. BIOLOGY 2024; 13:98. [PMID: 38392316 PMCID: PMC10886797 DOI: 10.3390/biology13020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Multi-omics studies have emerged as powerful tools for tailoring individualized responses to various conditions, capitalizing on genome sequencing technologies' increasing affordability and efficiency. This paper delves into the potential of multi-omics in deepening our understanding of biological age, examining the techniques available in light of evolving technology and computational models. The primary objective is to review the relationship between ionizing radiation and biological age, exploring a wide array of functional, physiological, and psychological parameters. This comprehensive review draws upon an extensive range of sources, including peer-reviewed journal articles, government documents, and reputable websites. The literature review spans from fundamental insights into radiation effects to the latest developments in aging research. Ionizing radiation exerts its influence through direct mechanisms, notably single- and double-strand DNA breaks and cross links, along with other critical cellular events. The cumulative impact of DNA damage forms the foundation for the intricate process of natural aging, intersecting with numerous diseases and pivotal biomarkers. Furthermore, there is a resurgence of interest in ionizing radiation research from various organizations and countries, reinvigorating its importance as a key contributor to the study of biological age. Biological age serves as a vital reference point for the monitoring and mitigation of the effects of various stressors, including ionizing radiation. Ionizing radiation emerges as a potent candidate for modeling the separation of biological age from chronological age, offering a promising avenue for tailoring protocols across diverse fields, including the rigorous demands of space exploration.
Collapse
Affiliation(s)
- Nathan A Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kalli Schaefer
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Om Panda
- Department of Public Health, University of California Irvine, Irvine, CA 92697, USA
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
2
|
Bruno JG, Sivils JC, Mohan S, Natarajan M. Alpha-thiol deoxynucleotide triphosphates (S-dNTPs) as radioprotective agents: A novel approach. Biochem Biophys Res Commun 2023; 660:6-12. [PMID: 37058844 DOI: 10.1016/j.bbrc.2023.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
In this study, the ability of a mixture of four different alpha-thiol deoxynucleotide triphosphates (S-dNTPs) each at a concentration of 10μM when incorporated into the genomic DNA of proliferating human HL-60 and Mono-Mac-6 (MM-6) cells in vitro to provide protection from 2, 5, and 10 Gy of gamma radiation was investigated. Incorporation of the four different S-dNTPs into nuclear DNA at 10 μM concentration for five days was validated by agarose gel electrophoretic band shift analysis. S-dNTP-treated genomic DNA reacted with BODIPY-iodoacetamide demonstrated a band shift to higher molecular weight to confirm the presence of sulfur moieties in the resultant phosphorothioate DNA backbones. No overt signs of toxicity or obvious morphologic cellular differentiation were noted in the presence of 10 μM S-dNTPs even after 8 days in culture. Significantly reduced radiation-induced persistent DNA damage measured at 24 and 48 h post-exposure by γ-H2AX histone phosphorylation using FACS analysis in S-dNTP incorporated HL-60 and MM6 cells indicated protection against radiation-induced direct and indirect DNA damage. Statistically significant protection by S-dNTPs was noted at the cellular level by CellEvent™ Caspase-3/7 assay, which assess the extent of apoptotic events, and by trypan blue dye exclusion to assed cell viability. The results appear to support an innocuous antioxidant thiol radioprotective effect built into genomic DNA backbones as the last line of defense against ionizing radiation and free radical-induced DNA damage.
Collapse
|
3
|
Li Y, Wu X, Pei Y, Wang Z, Wang C, Hua D. Recent advances on macromolecular medicinal materials for radioprotection. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Wang Y, Su P, Zhuo Z, Jin Y, Zeng R, Wu H, Huang H, Chen H, Li Z, Sha W. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2023; 643:111-120. [PMID: 36592584 DOI: 10.1016/j.bbrc.2022.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Radiation-induced intestinal injury (RIII) frequently occurs during radiotherapy; however, methods for treating RIII are limited. Ginsenoside Rk1 (RK1) is a substance that is derived from ginseng, and it has several biological activities, such as antiapoptotic, antioxidant and anticancer activities. The present study was designed to investigate the potential protective effect of Rk1 on RIII and the potential mechanisms. The results showed that RK1 treatment significantly improved the survival rate of the irradiated rats and markedly ameliorated the structural injury of the intestinal mucosa observed by histology. Treatment with RK1 significantly alleviated radiation-induced intestinal epithelial cell oxidative stress apoptosis. Moreover, RNA-Seq identified 388 differentially expressed genes (DEGs) and showed that the PI3K-AKT pathway might be a key signaling pathway by which RK1 exerts its therapeutic effects on RIII. The western blotting results showed that the p-PI3K, p-AKT and p-mTOR expression levels, which were increased by radiation, were markedly inhibited by Rk1, and these effects were reversed by IGF-1. The present study demonstrates that Rk1 can alleviate RIII and that the mechanism underlying the antiapoptotic effects of RK1 may involve the suppression of the PI3K/Akt/mTOR pathway. This study provides a promising therapeutic agent for RIII.
Collapse
Affiliation(s)
- Yilin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Peizhu Su
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yabin Jin
- Department of Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiwen Huang
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zhaotao Li
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China.
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Ehghaghi A, Zokaei E, Modarressi MH, Tavoosidana G, Ghafouri-Fard S, Khanali F, Motevaseli E, Noroozi Z. Antioxidant and anti-apoptotic effects of selenium nanoparticles and Lactobacillus casei on mice testis after X-ray. Andrologia 2022; 54:e14591. [PMID: 36266770 DOI: 10.1111/and.14591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Radiation can lead to various damages in the process of spermatogenesis that lead to a decrease in the number of sperm, an increase in spermatogenesis disorders, and defective sperm function. Radioprotectors are considered a good approach to reducing the damage caused by radiation. The goal of this work was to study how X-ray radiation affects testicular tissue and the process of spermatogenesis, as well as the radioprotective effects of selenium nanoparticles (SeNPs) and Lactobacillus casei (L. casei) as probiotic compounds, given alone or together. This study included 64 adult Syrian male mice weighing approximately 20 ± 5 g and aged 10 ± 1 weeks. Animals were randomly divided into eight groups: control group, SeNPs, probiotic, SeNPs and probiotic, X-ray radiation, SeNPs (X-ray), probiotic (X-ray), and SeNPs and probiotic (X-ray). Histology parameters and levels of oxidative stress biomarkers such as catalase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were examined. In addition, the level of apoptosis was measured in testicular cells that had been treated with SeNPs and L. casei as a probiotic. The results showed that the administration of SeNPs or probiotic diminished the effects of X-ray radiation. These compounds induced a significant decreased in malondialdehyde, caspase 3, and caspase 9 gene levels and a remarkable increased in catalase, superoxide dismutase, and Catsper gene expression. SeNPs and probiotic exhibited a potent antioxidant effect and elevated the mean number of spermatogonia cells, sperm cell count, spermatogenesis percentage, and sperm motility percentage. The prescribed compound exhibited an ideal radioprotective effect with the ability to reduce the side effects of ionizing radiation and to protect normal tissues. SeNPs and probiotic inhibit testicular injury and improve the antioxidant state in male mice.
Collapse
Affiliation(s)
- Alireza Ehghaghi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faeze Khanali
- Department of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Elmas O, Sahin HHK, Keskin E, Guven B, Uslu Erdemir R, ALMisned G, Zakaly HMH, Ene A, Tekin HO. Clinical comprehensive and experimental assessment of the radioprotective effect of Annona muricata leaf extract to prevent cellular damage in the ileum tissue. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
We report the radioprotective attitude of Annona muricata (AM) leaf extract as antioxidant material to prevent cellular damage in the ileum tissue. The protective effects of an ethyl acetate extract of AM leaves are comprehensively investigated against radiation-induced ileal damage in numerous rats. Thirty-two adult female rats were separated into 4 groups (3 intervention groups and 1 control) as follows: controls received 0.01 mL/kg distilled water, the AM group received 300 mg/kg AM leaf extract, the ionizing radiation (IR) group received a single dose of whole body radiation (8.3 Gy) after 0.01 mL/kg saline treatment, and the AM + IR group received 300 mg/kg AM leaf extract treatment and were subjected to whole body radiation (8.3 Gy) 1 h after the last gavage. All treatments are administered by oral gavage once a day for 9 days. At the end of the experiment, biochemical total oxidant status (TOS, interleukin-6, and caspase) and histological examinations are performed on blood samples as well as ileum tissue. TOS levels are found to be significantly high in rats, which received irradiation, and those in the AM group when compared to controls. These findings suggest that AM has radioprotective effects on ileum tissue, likely because of its antioxidative properties. The findings of this research may contribute to the minimizing of major side effects induced by excessive radiation exposure in patients undergoing radiotherapy and may serve as a significant impetus for further assessments. However, future studies are highly recommended to confirm safety and to determine extraction technique and dosage before human use can be considered.
Collapse
Affiliation(s)
- Ozlem Elmas
- Department of Radiation Oncology, Bulent Ecevit University Practice and Research Hospital , Zonguldak , Turkey
| | - Havva Hande Keser Sahin
- Department of Pathology, Hitit University Corum Training and Research Hospital , Corum , Turkey
| | - Emrah Keskin
- Department of Neurosurgery, Bulent Ecevit University Practice and Research Hospital , Zonguldak , Turkey
| | - Berrak Guven
- Department of Biochemistry, Bulent Ecevit University Practice and Research Hospital , Zonguldak , Turkey
| | - Rabiye Uslu Erdemir
- Department of Nuclear Medicine, Zonguldak Bülent Ecevit University, Faculty of Medicine , Zonguldak , Turkey
| | - Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University , 620002 Ekaterinburg , Russia
- Physics Department, Faculty of Science, Al-Azhar University , Assiut 71524 , Egypt
| | - Antoaneta Ene
- Department of Chemistry, INPOLDE Research Center, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati , 47 Domneasca Street , 800008 Galati , Romania
| | - Huseyin Ozan Tekin
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah , 27272 , Sharjah , United Arab Emirates
- Computer Engineering Department, Faculty of Engineering and Natural Sciences, Istinye University , Istanbul 34396 , Turkey
| |
Collapse
|
7
|
New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose. Antioxidants (Basel) 2022; 11:antiox11091833. [PMID: 36139907 PMCID: PMC9495689 DOI: 10.3390/antiox11091833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
We studied the effects of human lactoferrin (hLf), a multifunctional protein from the transferrin family, on integral (survival, lifespan during the experiment, body weight, behavior, subfractional compositions of blood serum) and systemic (hemoglobin level, leukocyte number, differential leukocyte count, histological structure of the liver and spleen) parameters of the body in mice after acute gamma irradiation in a sublethal dose. The experiments were performed on male C57BL/6 mice. The mice in the experimental groups were exposed to whole-body gamma radiation in a dose of 7.5 Gy from a 60Co source. Immediately after irradiation and 24 h after it, some animals received an intraperitoneal injection of hLf (4 mg/mouse). Single or repeated administration of hLf had a positive pleiotropic effect on irradiated animals: animal survival increased from 28% to 78%, and the mean life expectancy during the experiment (30 days) increased from 16 to 26 days. A compensatory effect of hLf on radiation-induced body weight loss, changes in homeostasis parameters, and a protective effect on the structural organization of the spleen were demonstrated. These data indicate that Lf has potential as a means of early therapy after radiation exposure.
Collapse
|
8
|
Hawash M, Jaradat N, Bawwab N, Salem K, Arafat H, Hajyousef Y, Shtayeh T, Sobuh S. Design, synthesis, and biological evaluation of phenyl-isoxazole-carboxamide derivatives as anticancer agents. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
The present study aimed to design and synthesize a series of phenyl-isoxazole-carboxamide derivatives and investigate their antitumor and antioxidant activities. The in vitro cytotoxic evaluation was conducted using the MTS assay against four cancer cell lines: hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), in addition to the normal cell line (Hek293T). Besides, the antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All obtained compounds were found to have potent to moderate activities against Hep3B and MCF-7 cancer cells lines, except compound 2e. It was found that compound 2a has potent activity against HeLa and Hep3B cancer cell lines with IC50 values of 0.91 and 8.02 µM, respectively. The IC50 dose range of the tested compounds against Hep3B was 5.96–28.62 µM, except for 2e, compared with doxorubicin, which has an IC50 value of 2.23 µM. Also, the IC50 value range of the compounds against Hek293T was 112.78–266.66 µM, compared with doxorubicin, which has an IC50 dose of 0.581 µM. The antioxidant activity of the synthesized compounds was weak, and compound 2d showed moderate activity against the DPPH enzyme with an IC50 value of 138.50 µM in comparison with Trolox, which has an IC50 dose of 37.23 µM.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
| | - Noor Bawwab
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
| | - Kamilah Salem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
| | - Hadeel Arafat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
| | - Yousef Hajyousef
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University , Lefkosa, TRNC, Via Mersin 10, 99258 , Turkey
| | - Tahrir Shtayeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus P.O. Box 7, 00970 , Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Physiology, Pharmacology & Toxicology Division, Faculty of Medicine and Health Sciences, An-Najah National University , Nablus , Palestine
| |
Collapse
|
9
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
10
|
Brackett CM, Greene KF, Aldrich AR, Trageser NH, Pal S, Molodtsov I, Kandar BM, Burdelya LG, Abrams SI, Gudkov AV. Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9. Cell Death Discov 2021; 7:266. [PMID: 34584068 PMCID: PMC8478872 DOI: 10.1038/s41420-021-00642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.
Collapse
Affiliation(s)
- Craig M Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Kellee F Greene
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Alyssa R Aldrich
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nicholas H Trageser
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ivan Molodtsov
- I.V. Davydovsky Clinical City Hospital, Moscow Department of Healthcare, Moscow, Russian Federation
| | - Bojidar M Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lyudmila G Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
11
|
Feng Y, Feng Y, Gu L, Liu P, Cao J, Zhang S. The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Front Oncol 2021; 11:720632. [PMID: 34513700 PMCID: PMC8429800 DOI: 10.3389/fonc.2021.720632] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation and radioactive materials have been widely used in industry, medicine, science and military. The efficacy of radiotherapy and adverse effects of normal tissues are closed related to cellular radiosensitivity. Molecular mechanisms underlying radiosensitivity are of significance to tumor cell radiosensitization as well as normal tissue radioprotection. 5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthases (NOS) and aromatic amino acid hydroxylases, and its biosynthesis involves de novo biosynthesis and a pterin salvage pathway. In this review we overview the role of BH4 metabolism in modulating radiosensitivity. BH4 homeostasis determines the role of NOS, affecting the production of nitric oxide (NO) and oxygen free radicals. Under conditions of oxidative stress, such as UV-radiation and ionizing radiation, BH4 availability is diminished due to its oxidation, which subsequently leads to NOS uncoupling and generation of highly oxidative free radicals. On the other hand, BH4/NOS axis facilitates vascular normalization, a process by which antiangiogenic therapy corrects structural and functional flaws of tumor blood vessels, which enhances radiotherapy efficacy. Therefore, BH4/NOS axis may serve as an angel or a devil in regulating cellular radiosensitivity. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the potential mechanisms. These advances have demonstrated that it is possible to modulate cellular radiosensitivity through BH4 metabolism.
Collapse
Affiliation(s)
- Yang Feng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Yahui Feng
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China
| | - Liming Gu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Pengfei Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Shuyu Zhang
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
In Vitro Biological Evaluation of Benzodioxol Derivatives as Antimicrobial and Antioxidant Agents. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Synthesis and Biological Evaluation of Novel Isoxazole-Amide Analogues as Anticancer and Antioxidant Agents. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6633297. [PMID: 33763478 PMCID: PMC7963892 DOI: 10.1155/2021/6633297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Cancer now is one of the leading causes of mortality in the world. There has been a lot of effort to discover new anticarcinogenic agents that allow treatment with fewer side effects. A series of isoxazole-carboxamide derivatives (2a–2g) were synthesised and evaluated for their cytotoxic activity against breast (MCF-7), cervical (HeLa), and liver (Hep3B) cancer cell lines and their antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The results showed that 2d and 2e were the most active compounds against Hep3B cells, with a half-maximal inhibitory concentration (IC50) of around 23 μg/ml; 2d showed the highest activity against HeLa cells, with an IC50 15.48 μg/ml. However, 2a had the lowest IC50 (39.80 μg/ml) against MCF-7 cells. By contrast, compound 2g was inactive against all cancer cell lines, with IC50 values >400 μg/ml. Both 2d and 2e reduced Hep3B secretion of alpha-fetoprotein (to 1829.33 ± 65.91 ng/ml and 1758.66 ± 54.04 ng/ml, respectively). Furthermore, in cell cycle analysis, 2d and 2e induced a delay in the G2/M phase of 18.07%, which is similar to the doxorubicin positive control. Moreover, 2d and 2e reduced the necrosis rate of Hep3B threefold and instead shifted the cells to apoptosis. Our results indicate that 2d and 2e have potent and promising anticancer activity. However, compound 2a was the most active as antioxidant agent (IC50 = 7.8 ± 1.21 μg/ml) compared with Trolox as a positive control (IC50 2.75 μg/ml).
Collapse
|
14
|
Khalil A, Al-Massarani G, Aljapawe A, Ekhtiar A, Bakir MA. Resveratrol Modulates the Inflammatory Profile of Immune Responses and Circulating Endothelial Cells' (CECs') Population During Acute Whole Body Gamma Irradiation. Front Pharmacol 2020; 11:528400. [PMID: 33013379 PMCID: PMC7500447 DOI: 10.3389/fphar.2020.528400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/20/2020] [Indexed: 11/15/2022] Open
Abstract
Wistar rats were whole body irradiated with a single dose of 2 Gy post administration with 10 or 100 mg/kg of resveratrol (RSV) intraperitoneally for 30 days. Rats’ livers were dissected and processed to analyze immune response profiles of Th1, Th2, Th9, Th17, and Th22 by flow cytometry. In addition, peripheral blood samples were collected and circulating endothelial cells (CECs) were counted as an indicator for endothelial damage. Results demonstrated that resveratrol at 100 mg/kg enhanced liver immunological response influenced by irradiation by inducing Th2 immune response that was revealed by an increase in IL-10 secretion to more than 5,000 pmol/ml post irradiation. Results also indicated that RSV, at a dose of 100 mg/kg, decreased levels of the main pro-inflammatory cytokines such as INF-γ, IL-22, IL-17A, and GM-CSF post irradiation. In addition, the same RSV was bound to upregulate the expression of IL-10 mRNA in isolated Kupffer cells (KCs) and their secretion of IL-10 post irradiation. The result demonstrated that KCs were the central source of this anti-inflammatory response mediated mainly by IL10. These results, proposed for the first time, clearly states that RSV promotes IL-10 mediated immune resolution by Kupffer cells and not by hepatocytes. This implies that KCs have a crucial role in radiotherapy. Additionally, this study showed that RSV had an anti-apoptotic effect through re-increasing the number of CECs, which is implicated in irradiation damage. Result of the current work discloses novel findings about the potential of RSV as a radio-protector agent of a natural origin and suggests novel roles of KCs as a pharmacological target during radiation exposure.
Collapse
Affiliation(s)
- Ayman Khalil
- Human Nutrition Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Ghassan Al-Massarani
- Biomarkers Laboratory, Radiation Medicine Department, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Abdulmunim Aljapawe
- Flow Cytometry Laboratory, Biotechnology and Molecular Biology Department, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Adnan Ekhtiar
- Flow Cytometry Laboratory, Biotechnology and Molecular Biology Department, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - M Adel Bakir
- Radiation Medicine Department, Atomic Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
15
|
Legeza VI, Grebenyuk AN, Drachev IS. Radiomitigators: Classification, Pharmacological Properties, and Application Prospects. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Antropova IG, Revina AA, Kurakina ES, Magomedbekov EP. Radiation Chemical Investigation of Antioxidant Activity of Biologically Important Compounds from Plant Materials. ACS OMEGA 2020; 5:5976-5983. [PMID: 32226878 PMCID: PMC7098002 DOI: 10.1021/acsomega.9b04335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 05/10/2023]
Abstract
Radiation chemical modeling of redox reactions of biologically active compounds from plant materials showed that coumarins possess strong antiradical properties. Data confirming the radioprotective properties of these compounds were obtained. Antioxidant activity has been shown for specific medicinal plant extracts-Melilotus officinalis and Ledum palustre cormus. The radiation chemical transformations of coumarins revealed that an unsubstituted coumarin has greater radioprotective activity.
Collapse
Affiliation(s)
- Irina G. Antropova
- Department
of High Energy Chemistry and Radioecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russian Federation
- E-mail: . Phone: +7(495)948-54-64. Fax: +7(495)944-19-87
| | - Aleksandra A. Revina
- Department
of High Energy Chemistry and Radioecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russian Federation
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninsky Prospect, 119071 Moscow, Russian Federation
| | - Elena S. Kurakina
- Department
of High Energy Chemistry and Radioecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russian Federation
- Dzhelepov
Laboratory of Nuclear Problems, Joint Institute
for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russian Federation
| | - Eldar P. Magomedbekov
- Department
of High Energy Chemistry and Radioecology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russian Federation
| |
Collapse
|
17
|
Pouri M, Shaghaghi Z, Ghasemi A, Hosseinimehr SJ. Radioprotective Effect of Gliclazide as an Anti-Hyperglycemic Agent Against Genotoxicity Induced by Ionizing Radiation on Human Lymphocytes. Cardiovasc Hematol Agents Med Chem 2019; 17:40-46. [PMID: 31124426 PMCID: PMC6865074 DOI: 10.2174/1871525717666190524092918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
Objectives: Gliclazide (GL) is widely used to reduce hyperglycemia in diabetic patients. The aim of this study was to investigate the protective effect of GL against chromosome damage induced by ionizing radiation in human blood lymphocytes. Methods: In this experimental study, peripheral blood samples were collected from human volunteers and treated with GL at various concentrations (5, 25, 50 or 100 μM) for three hours. Then samples were irradiated to X-ray (1.5 Gy). Blood samples were cultured with mitogenic stimulation. The frequencies of micronuclei in cytokinesis-blocked binucleated lymphocytes were determined in the different samples. The antioxidant activities of GL were assayed by two different methods as 1,1-diphenyl-2-picryl hydrazyl radical (DPPH) free radical scavenging and reducing antioxidant power assays. Results: GL significantly reduced the percentage of micronuclei in lymphocytes which were irradiated. The maximum radioprotection in the reduction of percentage of micronuclei in lymphocytes was observed at 100 μM of GL with 52% efficacy. GL exhibited excellent free radical scavenging activity and reducing power at concentration dependent activities. The IC50 values of GL were lower than ascorbic acid. Higher potencies were observed in the antioxidant activities for GL than ascorbic acid in both methods. Conclusion: This data exhibits that GL is a powerful radioprotective agent that could protect healthy cells against the chromosome damage induced by ionizing radiation through antioxidant activity. The radioprotective effect is new indication of GL for patients' protection against side effect induced by ionizing radiation.
Collapse
Affiliation(s)
- Maysa Pouri
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Asghari M, Shaghaghi Z, Farzipour S, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of olanzapine as an anti-psychotic drug against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Mol Biol Rep 2019; 46:5909-5917. [PMID: 31407246 DOI: 10.1007/s11033-019-05024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Olanzapine (OLA), is prescribed as an anti-psychotic medicine in schizophrenia patients. In this study, the protective effect of OLA against genotoxicity and apoptosis induced by ionizing radiation in human healthy lymphocytes was evaluated. At first, the antioxidant activities of OLA were assayed by two different methods as free radical scavenging with DPPH (2,2-diphenyl-1-picryl-hydrazyl) and ferric reducing power methods. In in vitro experiment, human blood samples were treated with OLA at various concentrations (0.25-20 μM) for 3 h and then were exposed to X-ray at a dose of 150 cGy. The genotoxicity was assessed in binucleated human lymphocytes with micronuclei assay. The apoptotic lymphocytes were assessed by flow cytometry in OLA treated and/or irradiated lymphocytes. OLA exhibited free radical scavenging and reducing power activities more than ascorbic acid. The results showed that the lymphocytes treated with OLA and later exposed to IR presented lower frequencies of micronuclei and apoptosis compared to the control sample which was irradiated and not treated to OLA. The maximum radioprotection was observed at 20 μM of OLA with 83% of efficacy. The present study suggested the protective role for OLA in protection radiation-induced genetic damage and apoptosis induced by ionizing irradiation in human normal cells.
Collapse
Affiliation(s)
- Mohammad Asghari
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Ghasemi
- Department of Radiology and Radiation Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
19
|
Arena C, Vitale E, Hay Mele B, Cataletto PR, Turano M, Simoniello P, De Micco V. Suitability of Solanum lycopersicum L. 'Microtom' for growth in Bioregenerative Life Support Systems: exploring the effect of high-LET ionising radiation on photosynthesis, leaf structure and fruit traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:615-626. [PMID: 30585676 DOI: 10.1111/plb.12952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/20/2018] [Indexed: 05/09/2023]
Abstract
The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self-sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. 'Microtom'. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed-to-seed cycle in 'Microtom', and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for 'Microtom' cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.
Collapse
Affiliation(s)
- C Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - E Vitale
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - B Hay Mele
- Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy
| | - P R Cataletto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Turano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - P Simoniello
- Department of Science and Technology, University of Naples Pathenope, Centro Direzionale Isola C4, Naples, Italy
| | - V De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy
| |
Collapse
|
20
|
Mercantepe F, Topcu A, Rakici S, Tumkaya L, Yilmaz A. The effects of N-acetylcysteine on radiotherapy-induced small intestinal damage in rats. Exp Biol Med (Maywood) 2019; 244:372-379. [PMID: 30786762 PMCID: PMC6488866 DOI: 10.1177/1535370219831225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Some six million cancer patients currently receive radiotherapy. Radiotherapy eliminates cancer cells by accelerating their death. However, radiotherapy is not selective, and it therefore harms healthy tissues around cancerous tissue. The latest studies have shown that the irradiation of biological materials causes a rapid increase in reactive oxygen species (ROS) in the tissue as a result of exposure of the target molecule to direct and indirect ionization. N-acetylcysteine (NAC) is an antioxidant that permits the elimination of free oxygen radicals and that contributes to glutathione synthesis. Our study, therefore, examined the effects of radiation resulting from radiotherapy on the small intestine at the molecular level, and prospectively considered the potential protective characteristics of NAC against gastrointestinal syndrome resulting from radiotherapy.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Internal Medicine, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Recep Tayyip Erdogan University,
Rize 53010, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip
Erdogan University, Rize 53010, Turkey
| |
Collapse
|
21
|
Sharapov MG, Novoselov VI, Gudkov SV. Radioprotective Role of Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E15. [PMID: 30621289 PMCID: PMC6356814 DOI: 10.3390/antiox8010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a member of an evolutionary ancient family of peroxidase enzymes with diverse functions in the cell. Prdx6 is an important enzymatic antioxidant. It reduces a wide range of peroxide substrates in the cell, thus playing a leading role in the maintenance of the redox homeostasis in mammalian cells. Beside peroxidase activity, Prdx6 has been shown to possess an activity of phospholipase A2, an enzyme playing an important role in membrane phospholipid metabolism. Moreover, Prdx6 takes part in intercellular and intracellular signal transduction due to its peroxidase and phospholipase activity, thus facilitating the initiation of regenerative processes in the cell, suppression of apoptosis, and activation of cell proliferation. Being an effective and important antioxidant enzyme, Prdx6 plays an essential role in neutralizing oxidative stress caused by various factors, including action of ionizing radiation. Endogenous Prdx6 has been shown to possess a significant radioprotective potential in cellular and animal models. Moreover, intravenous infusion of recombinant Prdx6 to animals before irradiation at lethal or sublethal doses has shown its high radioprotective effect. Exogenous Prdx6 effectively alleviates the severeness of radiation lesions, providing normalization of the functional state of radiosensitive organs and tissues, and leads to a significant elevation of the survival rate of animals. Prdx6 can be considered as a potent and promising radioprotective agent for reducing the pathological effect of ionizing radiation on mammalian organisms. The radioprotective properties and mechanisms of radioprotective action of Prdx6 are discussed in the current review.
Collapse
Affiliation(s)
- Mars G Sharapov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Vladimir I Novoselov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Sergey V Gudkov
- Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Department of Experimental Clinical Studies, Moscow Regional Research and Clinical Institute (MONIKI), 129110 Moscow, Russia.
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia.
| |
Collapse
|
22
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
23
|
Vukmirovic D, Seymour C, Rollo D, Mothersill C. Cytotoxic Profiling of Endogenous Metabolites Relevant to Chronic Fatigue Immune Dysfunction Syndrome (CFIDS) on p53 Variant Human Colon Carcinoma Cell Lines. Dose Response 2018; 16:1559325818790999. [PMID: 30116169 PMCID: PMC6088487 DOI: 10.1177/1559325818790999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022] Open
Abstract
Chemoprophylatic strategies against development of multifactorial diseases utilize compounds to block the multistep events in chronic inflammation and carcinogenesis. The successful chemopreventative candidate must therefore selectively inhibit growth of transformed cells and be administered frequently to confer maximal protection with minimal side effects. In addition to synthetic and exogenous natural compounds, endogenous metabolites represent another class of compounds that exhibit anticarcinogenic and anti-inflammatory properties contributing to proper cell function. To assess the effectiveness of these compounds warrants an understanding of their cytotoxic mode of action. In this study, p53 variant human colon carcinoma cell lines were chronically exposed to varying concentrations of the endogenous metabolites—phenyl acetate, ursodeoxycholate, and tauroursodeoxycholate—to determine the role of p53-induced cytotoxicity, with p53 mutant and deficient cell lines representing precancerous lesions. Cytotoxicity was assessed using clonogenic assays, and macroscopic colony counts were used to quantify cell survival. The results demonstrate that the bile acids, ursodeoxycholate and tauroursodeoxycholate, exhibit selective cytotoxicity toward nonfunctional p53 cell lines suggesting a p53-mediated role in inhibition of cell clonogenicity and potential chemopreventative properties. Although each compound displays this described effect, the tauroursodeoxycholate demonstrates high significance suggesting it might have practical uses in vivo.
Collapse
Affiliation(s)
- Dusan Vukmirovic
- Radiation Sciences Graduate Program, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Dave Rollo
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
24
|
Sharapov MG, Fesenko EE, Novoselov VI. The Role of Peroxiredoxins in Various Diseases Caused by Oxidative Stress and the Prospects of Using Exogenous Peroxiredoxins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Thekkekkara D, Basavan D, Chandna S, Nanjan MJ. A combination of resveratrol and 3,3'-diindolylmethane, a potent radioprotector. Int J Radiat Biol 2018; 94:558-568. [PMID: 29671693 DOI: 10.1080/09553002.2018.1467063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Exposure to ionizing radiation causes damage to the genomic integrity and stability of the cell. Though a large number of molecules have been studied for their radioprotective capability, no single agent is available today that meets all the requirements of a good radiprotector. In this study, we have investigated a combination of Resveratrol (RSV) and 3,3'-Diindolyl methane (DIM) for its efficacy for radioprotection. It is our hypothesis that this combination that possesses less toxicity than synthetic compounds, free radical scavenging potential, and the capacity to interfere with the several of the signaling cascades that trigger damage to cell by ionizing radiation may possess good radioprotective capability. MATERIALS AND METHODS Mice were pre-treated with a combination of RSV and DIM and the 30-day mortality assay, endogenous antioxidant levels in intestinal mucosa, metaphase chromosomal aberrations, and micronuclei formation were assessed after exposed to ionizing radiation. RESULTS The dose modifying factor (DRF) obtained for RSV, DIM, and the combination is 1.15, 1.17, and 1.3, respectively. Pre-treatment of mice with the combination results in significant (***p = .001) protection of the endogenous antioxidant levels, chromosomal aberrations, micronuclei formation, after exposure to ionizing radiation. CONCLUSIONS Our findings suggest that pre-treatment with the combination of RSV and DIM protects effectively from the ionizing radiation-induced damage at the molecular, cellular, and tissue levels by counteracting both the direct and indirect effects.
Collapse
Affiliation(s)
- Dithu Thekkekkara
- a Departement of Pharmacognosy and Phytopharmacy , J.S.S. College of Pharmacy (Off Campus, JSS University, Mysore) , Ootacamund , India
| | - Duraiswamy Basavan
- a Departement of Pharmacognosy and Phytopharmacy , J.S.S. College of Pharmacy (Off Campus, JSS University, Mysore) , Ootacamund , India
| | - Sudhir Chandna
- b Natural Radiation Response Mechanisums Group, Division of Radiation Biosciences , Institute of Nuclear Medicine & Allied Sciences (INMAS) , Delhi , India
| | - Moola Joghee Nanjan
- c TIFAC CORE HD, J.S.S. College of Pharmacy (Off Campus, JSS University, Mysore) , Ootacamund , India
| |
Collapse
|
26
|
El-Marakby SM, Selim NS, Desouky OS, Ashry HA, Sallam AM. Radio-mitigation effect of poly-MVA after exposure to an acute dose of gamma radiation. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Seham M. El-Marakby
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Nabila S. Selim
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Omar S. Desouky
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Hoda A. Ashry
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | | |
Collapse
|
27
|
Fernandes AMM, Vilela PGF, Valera MC, Bolay C, Hiller KA, Schweikl H, Schmalz G. Effect of bleaching agent extracts on murine macrophages. Clin Oral Investig 2017; 22:1771-1781. [PMID: 29196947 DOI: 10.1007/s00784-017-2273-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the cytotoxicity and the influence of bleaching agents on immunologically cell surface antigens of murine macrophages in vitro. MATERIALS AND METHODS RAW 264.7 cells were exposed to bleaching gel extracts (40% hydrogen peroxide or 20% carbamide peroxide) and different H2O2 concentrations after 1 and 24-h exposure periods and 1-h exposure and 23-h recovery. Tests were performed with and without N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO). Cell viability was determined by MTT assay. The expression of surface markers CD14, CD40, and CD54 with and without LPS stimulation was detected by flow cytometry, while the production of TNF-α was measured by ELISA. Statistical analysis was performed using the Mann-Whitney U test (α = 0.05). RESULTS Extracts of bleaching agents were cytotoxic for cells after a 1-h exposure; cells could not recover after 24 h. This effect can be mitigated by the antioxidant NAC and increased by BSO, an inhibitor of glutathione (GSH) synthesis. LPS stimulated expression of all surface markers and TNF-α production. Exposure to bleaching agent extracts and H2O2 leads to a reduction of TNF-α, CD14, and CD40 expression, while the expression of CD54 was upregulated at non-cytotoxic concentrations. Whereas NAC reduced this effect, it was increased in the presence of BSO. CONCLUSIONS Extracts of bleaching agents were irreversibly cytotoxic to macrophages after a 1-h exposure. Only the expression of CD54 was upregulated. The reactions are mediated by the non-enzymatic antioxidant GSH. CLINICAL RELEVANCE The addition of an antioxidant can downregulate unfavorable effects of dental bleaching.
Collapse
Affiliation(s)
- Aletéia M M Fernandes
- Department of Health Sciences, Endodontics Division, Nove de Julho University (UNINOVE), São Paulo, Brazil.,Department of Health Sciences, Anatomy and Pathology Division, Anhanguera University, Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-000, Brazil
| | - Polyana G F Vilela
- Department of Bioscience and Oral Diagnosis, Microbiology Division, São José dos Campos Dental School, State University of São Paulo, UNESP, Av. Eng. Francisco José Longo, 777-Jardim Sao Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Marcia C Valera
- Department of Restorative Dentistry, Endodontic Division, São José dos Campos Dental School, State University of São Paulo UNESP, Av. Eng. Francisco José Longo, 777-Jardim Sao Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Karl Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Department of Periodontology, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| |
Collapse
|
28
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
29
|
Hofer M, Hoferová Z, Falk M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? Int J Mol Sci 2017; 18:E1385. [PMID: 28657605 PMCID: PMC5535878 DOI: 10.3390/ijms18071385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023] Open
Abstract
In recent times, cytokines and hematopoietic growth factors have been at the center of attention for many researchers trying to establish pharmacological therapeutic procedures for the treatment of radiation accident victims. Two granulocyte colony-stimulating factor-based radiation countermeasures have been approved for the treatment of the hematopoietic acute radiation syndrome. However, at the same time, many different substances with varying effects have been tested in animal studies as potential radioprotectors and mitigators of radiation damage. A wide spectrum of these substances has been studied, comprising various immunomodulators, prostaglandins, inhibitors of prostaglandin synthesis, agonists of adenosine cell receptors, herbal extracts, flavonoids, vitamins, and others. These agents are often effective, relatively non-toxic, and cheap. This review summarizes the results of animal experiments, which show the potential for some of these untraditional or new radiation countermeasures to become a part of therapeutic procedures applicable in patients with the acute radiation syndrome. The authors consider β-glucan, 5-AED (5-androstenediol), meloxicam, γ-tocotrienol, genistein, IB-MECA (N⁶-(3-iodobezyl)adenosine-5'-N-methyluronamide), Ex-RAD (4-carboxystyryl-4-chlorobenzylsulfone), and entolimod the most promising agents, with regards to their contingent use in clinical practice.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Zuzana Hoferová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
30
|
Mistry D, Pithawala M. Protective effect of Alstonia scholaris Linn. R. Br. against Bleomycin induced chromosomal damage in cultured human lymphocytes, in vitro. Drug Chem Toxicol 2017; 41:162-168. [DOI: 10.1080/01480545.2017.1329316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dhruti Mistry
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal Vidyanagar, Bardoli Mahua Road, Tarsadi, Gujarat, India
| | - Meonis Pithawala
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Gopal Vidyanagar, Bardoli Mahua Road, Tarsadi, Gujarat, India
| |
Collapse
|
31
|
Hofer M, Hoferová Z, Depeš D, Falk M. Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome-A Concise Review. Molecules 2017; 22:molecules22050834. [PMID: 28534834 PMCID: PMC6154336 DOI: 10.3390/molecules22050834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/16/2022] Open
Abstract
The goal of combined pharmacological approaches in the treatment of the acute radiation syndrome (ARS) is to obtain an effective therapy producing a minimum of undesirable side effects. This review summarizes important data from studies evaluating the efficacy of combining radioprotective agents developed for administration prior to irradiation and therapeutic agents administered in a post-irradiation treatment regimen. Many of the evaluated results show additivity, or even synergism, of the combined treatments in comparison with the effects of the individual component administrations. It can be deduced from these findings that the research in which combined treatments with radioprotectors/radiomitigators are explored, tested, and evaluated is well-founded. The requirement for studies highly emphasizing the need to minimize undesirable side effects of the radioprotective/radiomitigating therapies is stressed.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Zuzana Hoferová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Daniel Depeš
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
32
|
Koohian F, Shanei A, Shahbazi-Gahrouei D, Hejazi SH, Moradi MT. The Radioprotective Effect of Resveratrol Against Genotoxicity Induced by γ-Irradiation in Mice Blood Lymphocytes. Dose Response 2017; 15:1559325817705699. [PMID: 28566983 PMCID: PMC5439647 DOI: 10.1177/1559325817705699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated whether the protective potential of resveratrol (RSV; 3,5,4'-trihydroxy-trans-stilbene) against γ-radiation caused damages in peripheral blood lymphocyte of mice. Resveratrol as a polyphenolic compound scavenges free radicals. Various doses of RSV were administered intraperitoneally 2 hours to adult male mice before a single dose of whole-body γ-irradiation (2 Gy). To assess the protective ability of RSV, the alkaline comet assay in blood lymphocyte of mice was performed and the total comet score was evaluated. The results of the alkaline comet assay showed that RSV significantly inhibited radiation-induced DNA damage. We observed that RSV protects blood lymphocyte against radiation-induced damage in mice.
Collapse
Affiliation(s)
- Farideh Koohian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
33
|
Chacko T, Menon A, Majeed T, Nair SV, John NS, Nair CKK. Mitigation of whole-body gamma radiation-induced damages by Clerodendron infortunatum in mammalian organisms. JOURNAL OF RADIATION RESEARCH 2017; 58:281-291. [PMID: 27864506 PMCID: PMC5440885 DOI: 10.1093/jrr/rrw093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/28/2015] [Indexed: 06/06/2023]
Abstract
Several phytoceuticals and extracts of medicinal plants are reported to mitigate deleterious effects of ionizing radiation. The potential of hydro-alcoholic extract of Clerodendron infortunatum (CIE) for providing protection to mice exposed to gamma radiation was investigated. Oral administration of CIE bestowed a survival advantage to mice exposed to lethal doses of gamma radiation. Radiation-induced depletion of the total blood count and bone marrow cellularity were prevented by treatment with CIE. Damage to the cellular DNA (as was evident from the comet assay and the micronucleus index) was also found to be decreased upon CIE administration. Radiation-induced damages to intestinal crypt cells was also reduced by CIE. Studies on gene expression in intestinal cells revealed that there was a marked increase in the Bax/Bcl-2 ratio in mice exposed to whole-body 4 Gy gamma radiation, and that administration of CIE resulted in significant lowering of this ratio, suggestive of reduction of radiation-induced apoptosis. Also, in the intestinal tissue of irradiated animals, following CIE treatment, levels of expression of the DNA repair gene Atm were found to be elevated, and there was reduction in the expression of the inflammatory Cox-2 gene. Thus, our results suggest a beneficial use of Clerodendron infortunatum for mitigating radiation toxicity.
Collapse
Affiliation(s)
- Tiju Chacko
- Mar Athanasious College for Advanced Studies, Tiruvalla 689101, Kerala, India
| | - Aditya Menon
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla 689101, Kerala, India
| | - Teeju Majeed
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla 689101, Kerala, India
| | - Sivaprabha V. Nair
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla 689101, Kerala, India
| | - Nithu Sara John
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Tiruvalla 689101, Kerala, India
| | - Cherupally Krishnan Krishnan Nair
- Mar Athanasious College for Advanced Studies, Tiruvalla 689101, Kerala, India
- St. Gregorios Dental College and Research Centre, Kothamangalam 686681, Kerala, India
| |
Collapse
|
34
|
Wang F, Gao P, Guo L, Meng P, Fan Y, Chen Y, Lin Y, Guo G, Ding G, Wang H. Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6- tetramethylpiperidin-1-oxyl in HUVEC cells. Environ Health Prev Med 2017; 22:14. [PMID: 29165102 PMCID: PMC5664570 DOI: 10.1186/s12199-017-0616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/04/2017] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES To search for more effective radiation protectors with minimal toxicity, a water-soluble nitroxides Acetamido-Tempol (AA-Tempol) was evaluated for potential radioprotective properties in HUVEC cells (Human Umbilical Vein Endothelial cell line). METHODS To study the anti-radiation effect of AA-Tempol in cell culture, the viability of irradiated HUVEC cells using a clonogenic survival assay was examined. The anti-apoptosis effects of AA-Tempol using Annexin V/propidium iodide staining in a flow cytometry assay was also evaluated. To elucidate the molecular mechanism of the anti-apoptosis effect of AA-Tempol against X-radiation induced HUVEC cell apoptosis, the expression of Bax, Bcl-2 and p53 and caspase-3 were examined. The changes in the level of malondialdehyde (MDA) and glutathione (GSH) in HUVEC cells after X-radiation were also investigated. RESULTS Pretreatment of the HUVEC cells colony with AA-Tempol 1 h before X-radiation significantly increased the colony survival (p < 0.05) compared with the cells without pretreatment. This demonstrates that AA-Tempol provides an effective radiation protection in the irradiated HUVEC cells, thus reducing apoptosis from 20.1 ± 1.3% in 8 Gy X-radiated cells to 12.2 ± 0.9% (1.0 mmol/L-1 AA-Tempol) in AA-Tempo pretreated HUVEC cells. This implies that 1.0 mM AA-Tempol treatment significantly block the increase of caspase-3 activity in radiated HUVEC cells (P < 0.01), causing down-regulation in expressions of Bax and P53 and up-regulation in the expression of Bcl-2. Pretreatment with AA-Tempol also decreased the MDA activities (P < 0.01) and increase the GSH level (P < 0.05) in HUVEC cells compared to the 8Gy X-radiated cells without pretreatment. CONCLUSIONS These observations indicate that AA-Tempol is a potential therapeutic agent against the radiation damage.
Collapse
Affiliation(s)
- Feng Wang
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Shanxi Province Corps Hospital, Chinese People's Armed Police Forces, Taiyuan, 030006, People's Republic of China
| | - Peng Gao
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ling Guo
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ping Meng
- Department of urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yuexing Fan
- Shanxi Province Corps Hospital, Chinese People's Armed Police Forces, Taiyuan, 030006, People's Republic of China
| | - Yongbin Chen
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanyun Lin
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guozhen Guo
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guirong Ding
- School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Haibo Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
35
|
Khan S, Adhikari JS, Rizvi MA, Chaudhury NK. Melatonin attenuates 60 Co γ-ray-induced hematopoietic, immunological and gastrointestinal injuries in C57BL/6 male mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:501-518. [PMID: 26948951 DOI: 10.1002/tox.22254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Protection of hematopoietic, immunological, and gastrointestinal injuries from deleterious effects of ionizing radiation is prime rational for developing radioprotector. The objective of this study, therefore, was to evaluate the radioprotective potential of melatonin against damaging effects of radiation-induced hematopoietic, immunological, and gastrointestinal injuries in mice. C57BL/6 male mice were intraperitoneally administered with melatonin (50-150 mg/kg) 30 min prior to whole-body radiation exposure of 5 and 7.5 Gy using 60 Co-teletherapy unit. Thirty-day survival against 7.5 Gy was monitored. Melatonin (100 mg/kg) pretreatment showed 100% survival against 7.5 Gy radiation dose. Melatonin pretreatment expanded femoral HPSCs, and inhibited spleenocyte DNA strands breaks and apoptosis in irradiated mice. At this time, it also protected radiation-induced loss of T cell sub-populations in spleen. In addition, melatonin pretreatment enhanced crypts regeneration and increased villi number and length in irradiated mice. Translocation of gut bacteria to spleen, liver and kidney were controlled in irradiated mice pretreated with melatonin. Radiation-induced gastrointestinal DNA strand breaks, lipid peroxidation, and expression of proapoptotic-p53, Bax, and antiapoptotic-Bcl-xL proteins were reversed in melatonin pretreated mice. This increase of Bcl-xL was associated with the decrease of Bax/Bcl-xL ratio. ABTS and DPPH radical assays revealed that melatonin treatment alleviated total antioxidant capacity in hematopoietic and gastrointestinal tissues. Present study demonstrated that melatonin pretreatment was able to prevent hematopoietic, immunological, and gastrointestinal radiation-induced injury, therefore, overcoming lethality in mice. These results suggest potential of melatonin in developing radioprotector for protection of bone marrow, spleen, and gastrointestine in planned radiation exposure scenarios including radiotherapy. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 501-518, 2017.
Collapse
Affiliation(s)
- Shahanshah Khan
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia-a Central University, Moulana Mohammad Ali Jauhar Marg, New Delhi, 110025, India
| | - Jawahar Singh Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Moshahid Alam Rizvi
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia-a Central University, Moulana Mohammad Ali Jauhar Marg, New Delhi, 110025, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig. S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| |
Collapse
|
36
|
Keramati Yazdi F, Shabestani Monfared A, Tashakkorian H, Mahmoudzadeh A, Borzoueisileh S. Radioprotective effect of Zamzam (alkaline) water: A cytogenetic study. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 167:166-169. [PMID: 27839844 DOI: 10.1016/j.jenvrad.2016.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Radioprotectors are useful compounds to reduce radiation toxicity of normal cells. Many natural radioprotectors have antioxidant power and display fewer toxicity and side effects than the chemical ones. Alkaline waters such as Zamzam have antioxidant power potentially. This study aimed to investigate the radioprotective effect of Zamzam water in mice bone marrow exposed to gamma radiation by micronuclei test. METHOD Five study groups including control group which was fed by ordinary water, the second group was fed by Zamzam water, and radiation groups were received 2Gy gamma with ordinary and Zamzam water for 10 days and another for 20 days. The frequency of micronuclei and polychromatic erythrocytes to normochromatic erythrocytes ratio were calculated by micronuclei test. RESULT In the absence of radiation, no significant difference was found between Zamzam group and control in the number of micronuclei in normochromatic erythrocytes, micronuclei in polychromatic erythrocytes, and the polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte ratio. But all of these indices were significantly different between irradiated and non-irradiated groups. The frequency of micronuclei in polychromatic erythrocytes was not significantly different between 10 and 20 days Zamzam irradiated groups, but the reduction in micronuclei in normochromatic erythrocytes and an increase in the polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte ratio compared to ordinary water were seen in 20 days Zamzam group. Dose reduction factor was 1.36 and 2 for Zamzam water groups of 10 days and 20 days, respectively. CONCLUSION The results demonstrated that Zamzam alkaline water could reduce clastogenic and cytotoxic effects of gamma irradiation.
Collapse
Affiliation(s)
- Fatemeh Keramati Yazdi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Hamed Tashakkorian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Aziz Mahmoudzadeh
- Laboratory of Cytogenetics, Novin Medical Radiation Institute, Tehran, Iran
| | - Sajad Borzoueisileh
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
37
|
Fardid R, Ghorbani Z, Haddadi G, Behzad-Behbahani A, Arabsolghar R, Kazemi E, Okhovat MA, Hosseinimehr SJ. Effects of Hesperidin as a Radio-protector on Apoptosis in Rat Peripheral Blood Lymphocytes after Gamma Radiation. J Biomed Phys Eng 2016; 6:217-228. [PMID: 28144590 PMCID: PMC5219572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Hesperidin (HES), as the most abundant flavonoid existing in the citrus, is widely used by human daily. The radio-protective effects of Hesperidin have been confirmed in various measurement systems. This study aimed to evaluate the effects of Hesperidin on the changes in the apoptosis level and expression of apoptotic genes target (bax, bcl-2 and ration of bax/bcl-2) in the peripheral blood lymphocytes of male rats after gamma radiation. MATERIALS AND METHODS 64 male rats were divided into eight groups: Control, HES (100 mg/kg b.w, orally, 7 days), whole body irradiation with 2 and 8Gy, pre-administrated with 50 and 100 mg/kg body weight of Hesperidin for 7 days before irradiation with 2 and 8 Gy. 24 hours after radiation, apoptotic lymphocytes were evaluated using PE Annexin V Apoptosis detection I kit and the levels of mRNA for bax and bcl-2 were evaluated by real time reverse transcription polymerase chain reaction. RESULTS A significant reduction in apoptosis of the lymphocytes was demonstrated in group animals receiving 8 Gy compared to the group which received 2 Gy irradiation (p<0.0001). However, apoptosis significantly increased in group of rats who received Hesp before irradiation (p<0.05). The increase of apoptosis by Hesperidin administration can be attributed to the decreased expression of bax and significantly reduced expression of bcl-2 and finally increasing the ration of bax/bcl-2. CONCLUSION The results suggest that administration of 50 and 100 mg/kg of Hesperidin induces apoptotic effects by changing expression level of bax, bcl-2 and also the ratio of bax/bcl2.
Collapse
Affiliation(s)
- R Fardid
- Assistant Professor of Medical Physics, Radiology Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zh Ghorbani
- MSc of Radiobiology & Radiation Protection, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gh Haddadi
- Associate Professor of Medical Physics, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Behzad-Behbahani
- Professor of Molecular Biology and Medical Virology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Arabsolghar
- Assistant Professor of Biochemistry, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - E Kazemi
- MSc of Radiobiology & Radiation Protection, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Okhovat
- Research assistant, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S J Hosseinimehr
- Assistant Professor of Pharmacy, Department of Medicinal Chemistry, Sari, Iran
| |
Collapse
|
38
|
Puspitasari IM, Yamazaki C, Abdulah R, Putri M, Kameo S, Nakano T, Koyama H. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells. Oncol Lett 2016; 13:449-454. [PMID: 28123581 DOI: 10.3892/ol.2016.5434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The administration of radioprotective compounds is one approach to preventing radiation damage in non-cancerous tissues. Therefore, radioprotective compounds are crucial in clinical radiotherapy. Selenium is a radioprotective compound that has been used in previous clinical studies of radiotherapy. However, evidence regarding the effectiveness of selenium in radiotherapy and the mechanisms underlying the selenium-induced reduction of the side effects of radiotherapy remains insufficient. To further investigate the effectiveness of selenium in radiotherapy, the present study examined the protective effects of sodium selenite supplementation administered prior to X-ray radiation treatment in CHEK-1 non-cancerous human esophageal cells. Sodium selenite supplementation increased glutathione peroxidase 1 (GPx-1) activity in a dose- and time-dependent manner. The sodium selenite dose that induced the highest GPx-1 activity was determined to be 50 nM for 72 h prior to radiotherapy. The half-maximal inhibitory concentration of sodium selenite in CHEK-1 cells was 3.6 µM. Sodium selenite supplementation increased the survival rate of the cells in a dose-dependent manner and enhanced the degree of cell viability at 72 h post-irradiation (P<0.05). Combined treatment with 50 nM sodium selenite and 2 gray (Gy) X-ray irradiation decreased the number of sub-G1 cells from 5.9 to 4.2% (P<0.05) and increased the proportion of G1 cells from 58.8 to 62.1%, compared with 2 Gy X-ray irradiation alone; however, this difference was not statistically significant (P=1.00). Western blot analysis revealed that treatment with 2 Gy X-ray irradiation significantly increased the expression levels of cleaved poly (ADP-ribose) polymerase (PARP; P<0.05). In addition, combined treatment with 50 nM sodium selenite and 2 Gy X-ray irradiation reduced the expression levels of cleaved PARP protein, compared with 2 Gy X-ray irradiation alone; however, this reduction was not statistically significant (P=0.423). These results suggest that 50 nM sodium selenite supplementation administered for 72 h prior to irradiation may protect CHEK-1 cells from irradiation-induced damage by inhibiting irradiation-induced apoptosis. Therefore, sodium selenite is a potential radioprotective compound for non-cancerous cells in clinical radiotherapy.
Collapse
Affiliation(s)
- Irma M Puspitasari
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Chiho Yamazaki
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Mirasari Putri
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Satomi Kameo
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Koyama
- Department of Public Health, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
39
|
Peana M, Medici S, Pangburn HA, Lamkin TJ, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA. Manganese binding to antioxidant peptides involved in extreme radiation resistance in Deinococcus radiodurans. J Inorg Biochem 2016; 164:49-58. [DOI: 10.1016/j.jinorgbio.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
40
|
Alexandrova VA, Domnina NS, Snigireva GP. Antimutagenic systems based on chitosan conjugates with plant antioxidants. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Vitorino MV, Fuchs Y, Dane T, Rodrigues MS, Rosenthal M, Panzarella A, Bernard P, Hignette O, Dupuy L, Burghammer M, Costa L. An in situ atomic force microscope for normal-incidence nanofocus X-ray experiments. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1110-1117. [PMID: 27577764 DOI: 10.1107/s1600577516011437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
A compact high-speed X-ray atomic force microscope has been developed for in situ use in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.
Collapse
Affiliation(s)
- M V Vitorino
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - Y Fuchs
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - T Dane
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - M S Rodrigues
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M Rosenthal
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - A Panzarella
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - P Bernard
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - O Hignette
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - L Dupuy
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - M Burghammer
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| | - L Costa
- ESRF - The European Synchrotron, 71 Avenue de Martyrs, 38000 Grenoble, France
| |
Collapse
|
42
|
Kemp FW, Portugal F, Akudugu JM, Neti PVSV, Ferraris RP, Howell RW. Vitamins A, C, and E May Reduce Intestinal 210Po Levels after Ingestion. HEALTH PHYSICS 2016; 111:52-57. [PMID: 27218295 PMCID: PMC4880437 DOI: 10.1097/hp.0000000000000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Damage to the gut mucosa is a probable contributory cause of death from ingested Po. Therefore, medical products are needed that can prevent, mitigate, and/or repair gastrointestinal (GI) damage caused by high-LET radiation emitted by Po. The present studies investigated the capacity of a diet highly enriched with vitamins A, C, and E (vitamin ACE) to protect against intestinal mucosal damage indicated by functional reductions in nutrient transport caused by orally ingested Po. Mice were gavaged with 0 or 18.5 kBq Po-citrate and fed a control or vitamin ACE-enriched diet (the latter beginning either 96 h before or immediately after gavage). Mouse intestines significantly retained Po on day 8 post-gavage. The concentration of Po in intestinal tissues was significantly (p<0.05) lower in all vitamin ACE groups compared to control. There were borderline significant Po-induced reductions in intestinal absorption of D-fructose. The combination of vitamins A, C, and E may reduce Po incorporation in the intestines when given before, or enhance decorporation when provided after, Po gavage.
Collapse
Affiliation(s)
- Francis W Kemp
- Department of Radiology, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
- Department of Preventive Medicine and Community Health, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Frank Portugal
- Department of Radiology, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - John M. Akudugu
- Department of Radiology, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
- Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences Stellenbosch University, Tygerberg, South Africa
| | - Prasad VSV Neti
- Department of Radiology, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Ronaldo P. Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Roger W. Howell
- Department of Radiology, New Jersey Medical School; Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
43
|
Xu W, Yang F, Zhang Y, Shen X. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice. JOURNAL OF RADIATION RESEARCH 2016; 57:356-62. [PMID: 27006381 PMCID: PMC4973645 DOI: 10.1093/jrr/rrw021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony-forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of (137)Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice.
Collapse
Affiliation(s)
- Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Yujie Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Xiu Shen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| |
Collapse
|
44
|
Laube M, Kniess T, Pietzsch J. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy-A Hypothesis-Driven Review. Antioxidants (Basel) 2016; 5:antiox5020014. [PMID: 27104573 PMCID: PMC4931535 DOI: 10.3390/antiox5020014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents.
Collapse
Affiliation(s)
- Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany.
| |
Collapse
|
45
|
Li J, Zhang G, Meng Z, Wang L, Liu H, Liu Q, Buren B. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3. Exp Ther Med 2016; 11:2385-2390. [PMID: 27313671 DOI: 10.3892/etm.2016.3215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/23/2016] [Indexed: 12/24/2022] Open
Abstract
Neuronal cell apoptosis is associated with various factors that induce neurological damage, including radiation exposure. When administered prior to exposure to radiation, a protective agent may prevent cellular and molecular injury. The present study aimed to investigate whether melatonin exerts a neuroprotective effect by inhibiting the caspase cell death pathway. Male Sprague-Dawley rats were administered melatonin (100 mg/kg body weight) 30 min prior to radiation exposure in red light during the evening. In order to elucidate whether melatonin has a neuroprotective role, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling, Nissl staining, reverse transcription-quantitative polymerase chain reaction, reactive oxygen species analysis and western blotting were performed. At 24 h post-melatonin treatment, caspase-3 mRNA and protein expression levels were significantly decreased. These results demonstrated that melatonin may protect hippocampal neurons via the inhibition of caspase-3 when exposed to irradiation. Therefore, caspase-3 inhibition serves a neuroprotective and antioxidant role in the interventional treatment of melatonin. The results of the present study suggested that melatonin may have a potential therapeutic effect against irradiation; however, further studies are required in order to elucidate the underlying antioxidant mechanisms.
Collapse
Affiliation(s)
- Jianguo Li
- Laboratory of Biomedicine, Department of Hemopathic Tumor of Mongolian Medicine, The Affiliated Hospital of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China; Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China; Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China
| | - Guowei Zhang
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China
| | - Zhuangzhi Meng
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China
| | - Lingzhan Wang
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China
| | - Haiying Liu
- Department of Human Anatomy, The School of Medicine of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Batu Buren
- Laboratory of Biomedicine, Department of Hemopathic Tumor of Mongolian Medicine, The Affiliated Hospital of Inner Mongolia University for The Nationalities, Neimenggu Tongliao, Inner Mongolia 028007, P.R. China
| |
Collapse
|
46
|
Zbikowska HM, Szejk M, Saluk J, Pawlaczyk-Graja I, Gancarz R, Olejnik AK. Polyphenolic-polysaccharide conjugates from plants of Rosaceae/Asteraceae family as potential radioprotectors. Int J Biol Macromol 2016; 86:329-37. [PMID: 26848834 DOI: 10.1016/j.ijbiomac.2016.01.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
Abstract
Polyphenolic-polysaccharide macromolecular, water-soluble glycoconjugates, isolated from the selected medicinal plants of Rosaceae/Asteraceae family: from leaves of Fragaria vesca L., Rubus plicatus Whe. et N. E., and from flowering parts of Sanguisorba officinalis L., and Erigeron canadensis L., were investigated for their ability to protect proteins and lipids of human plasma against γ-radiation-induced oxidative damage. Treatment of plasma with plant conjugates (6, 30, 150 μg/ml) prior exposure to 100 Gy radiation resulted in a significant inhibition of lipid peroxidation, evaluated by TBARS levels; conjugates isolated from E. canadensis and R. plicatus and a reference flavonoid quercetin showed similar high potential (approx. 70% inhibition, at 6 μg/ml). The conjugates prevented radiation-induced oxidation of protein thiols and significantly improved plasma total antioxidant capacity, estimated with Ellman's reagent and ABTS(.+) assay, respectively. The results demonstrate by the first time a significant radioprotective capability of the polyphenolic-polysaccharide conjugates isolated from E. canadensis, R. plicatus, S. officinalis and to the less extent from F. vesca. The abilities of these substances to inhibit radiation-induced lipid peroxidation and thiol oxidation in plasma seems to be mediated, but not limited to ROS scavenging activity.
Collapse
Affiliation(s)
- Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Magdalena Szejk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Izabela Pawlaczyk-Graja
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Roman Gancarz
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Alicja Klaudia Olejnik
- Chemistry Department, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
47
|
The potential use of biogas producing microorganisms in radiation protection. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015. [DOI: 10.1016/j.jmhi.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Canyilmaz E, Uslu GH, Bahat Z, Kandaz M, Mungan S, Haciislamoglu E, Mentese A, Yoney A. Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: Results of an experimental study. Biomed Rep 2015; 4:45-50. [PMID: 26870332 DOI: 10.3892/br.2015.547] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to compare the effects of melatonin and genistein on radiation-induced nephrotoxicity (RIN). A total of 70 Swiss Albino mice were divided into 7 groups. Five control groups were defined, which were sham irradiation (C, G1), radiation therapy only (RT, G2), melatonin (M, G3), genistein (G, G4) and polyethylene glycol-400 (G5), respectively. The co-treatment groups were the RT plus melatonin (RT+M, G6) and RT plus genistein (RT+G, G7) groups. Irradiation was applied using a cobalt-60 teletherapy machine (80-cm fixed source-to-surface distance, 2.5-cm depth). Melatonin was administered (100 mg/kg, intraperitoneal injection) 30 min before the single dose of irradiation, whereas genistein was administered (200 mg/kg, subcutaneous injection) 1 day before the single dose of irradiation. All the mice were sacrificed 6 months after irradiation. As an end point, the extent of renal tubular atrophy for each mouse was quantified with image analysis of histological sections of the kidney. Tissue malondialdehyde (MDA) levels were also measured in each animal. In the histopathological examination of the mouse kidneys, there was a statistically significant reduction (P<0.05) in the presence of tubular atrophy between the RT+M and RT+G groups and the RT group. There was a statistically significant increase in MDA levels in the irradiated versus sham groups (RT vs. C; P<0.05); however, MDA levels were significantly decreased by co-treatment with melatonin or genistein vs. RT alone (RT+M and RT+G vs. RT; P<0.05). In conclusion, the present experimental study showed that melatonin and genistein supplementation prior to irradiation-protected mice against RIN, which may have therapeutic implications for radiation-induced injuries.
Collapse
Affiliation(s)
- Emine Canyilmaz
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Gonca Hanedan Uslu
- Department of Radiation Oncology, Faculty of Medicine, Kanuni Research and Education Hospital, 60080 Trabzon, Turkey
| | - Zumrut Bahat
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Mustafa Kandaz
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Sevdegul Mungan
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Emel Haciislamoglu
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Adnan Yoney
- Department of Radiation Oncology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
49
|
Roche M, Neti PVSV, Kemp FW, Azzam EI, Ferraris RP, Howell RW. High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation. Radiat Res 2015; 184:470-481. [PMID: 26484399 PMCID: PMC4826760 DOI: 10.1667/rr14043.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays.
Collapse
Affiliation(s)
- Marjolaine Roche
- Department of Pharmacology and Physiology, New Jersey Medical School; The State University of New Jersey, Newark, New Jersey
| | - Prasad V. S. V. Neti
- Department of Radiology, New Jersey Medical School Cancer Center; The State University of New Jersey, Newark, New Jersey
| | - Francis W. Kemp
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School Cancer Center; The State University of New Jersey, Newark, New Jersey
| | - Ronaldo P. Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School; The State University of New Jersey, Newark, New Jersey
| | - Roger W. Howell
- Department of Radiology, New Jersey Medical School Cancer Center; The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
50
|
Nimesh H, Tiwari V, Yang C, Gundala SR, Chuttani K, Hazari PP, Mishra AK, Sharma A, Lal J, Katyal A, Aneja R, Tandon V. Preclinical Evaluation of DMA, a Bisbenzimidazole, as Radioprotector: Toxicity, Pharmacokinetics, and Biodistribution Studies in Balb/c Mice. Mol Pharmacol 2015; 88:768-78. [DOI: 10.1124/mol.115.098376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022] Open
|