1
|
Ippel H, Miller MC, Dings RPM, Ludwig AK, Gabius HJ, Mayo KH. Cysteine Oxidation in Human Galectin-1 Occurs Sequentially via a Folded Intermediate to a Fully Oxidized Unfolded Form. Int J Mol Sci 2024; 25:6956. [PMID: 39000066 PMCID: PMC11241627 DOI: 10.3390/ijms25136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.
Collapse
Affiliation(s)
- Hans Ippel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
- Department of Biochemistry, Cardiovascular Research Instutute Maastricht (CARIM), University of Maastricht, 6229 ER Maastricht, The Netherlands
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Anna-Kristin Ludwig
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Hans-Joachim Gabius
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Ramírez Hernández E, Hernández Zimbrón LF, Segura Pérez E, Sánchez Salgado JL, Pereyra Morales MA, Zenteno E. Galectin-9 and Tim-3 are upregulated in response to microglial activation induced by the peptide Amyloid-β (25-35). Neuropeptides 2024; 105:102426. [PMID: 38527407 DOI: 10.1016/j.npep.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Galectins are a group of β-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aβ plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aβ25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aβ25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aβ25-35 peptide (1 μg/μL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aβ25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aβ25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aβ25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aβ25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aβ25-35 peptide.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Emmanuel Segura Pérez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohamed Ali Pereyra Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Singh K, Agrawal L, Gupta R, Singh D, Kathpalia M, Kaur N. Lectins as a promising therapeutic agent for breast cancer: A review. Breast Dis 2024; 43:193-211. [PMID: 38905027 PMCID: PMC11307042 DOI: 10.3233/bd-230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Efficient treatment of cancer has been a subject of research by scientists for many years. Current treatments for cancer, such as radiotherapy, chemotherapy and surgery have been used in traditional combination therapy, but they have major setbacks like non-specificity, non-responsiveness in certain cancer types towards treatment, tumor recurrence, etc. Epidemiological data has shown that breast cancer accounts for 14% of cancer cases occurring in Indian women. In recent years, scientists have started to focus on the use of natural compounds like lectins obtained from various sources to counter the side effects of traditional therapy. Lectins like Sambucus nigra Agglutinin, Maackia amurensis lectin, Okra lectins, Haliclona caerulea lectin, Sclerotium rolfsii lectin, etc., have been discovered to have both diagnostic and therapeutic potential for breast cancer patients. Lectins have been found to have inhibitory effects on various cancer cell activities such as neo-angiogenesis, causing cell cycle arrest at the G1 phase, and inducing apoptosis. The major idea behind the use of lectins in cancer diagnostics and therapeutics is their capability to bind to glycosylated proteins that are expressed on the cell surface. This review focuses on an exploration of the roles of post-translational modification in cancer cells, especially glycosylation, and the potential of lectins in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Keerti Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Lokita Agrawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rhea Gupta
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Divyam Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meghavi Kathpalia
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Ji X, Jiang Z, Qiu Y, Yu J, Zhang Y, Wang J, Ye B, Huang Y, Gu W, Huang Y, Chen J, Bao Z. High blood galectin-3 level associated with risk of frailty in aging. Front Endocrinol (Lausanne) 2023; 14:1189192. [PMID: 37818088 PMCID: PMC10560881 DOI: 10.3389/fendo.2023.1189192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Background Frailty is one of the most problematic expressions of population aging, but its underlying mechanism has not been fully elucidated. Circulating galectin-3 (Gal-3) is involved in the pathogenesis of many age-related diseases. This study aims to explore the influence of circulating Gal-3 on the regulation of frailty and aging and to identify the potential mechanism further. Methods In this cross-sectional analysis, the Fried frailty phenotype (FP) was assessed among 149 community elderly residents in Shanghai. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-Paque density gradient method, and differentially expressed genes (DEGs) encoding transcription factors in frailty were detected by Illumina and bioinformatics analyzed with R software. Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to explore the functional roles of these DEGs and the target genes related to frailty phenotypes. The serum Gal-3 concentration was tested by enzyme-linked immunosorbent assay (ELISA). Mouse frailty phenotype was used to construct an in vivo model of frailty, after which the serum levels of circulating Gal-3 and its gene expression levels in mouse tissues were determined. Results Participants' mean age was 72.04 ± 7.05 years. In total, 21.48% were frail and 36.91% were pre-frail. The mean serum Gal-3 concentration was 46.34 ± 17.99 ng/mL in frail participants, 32.30 ± 8.14 ng/mL in pre-frail participants, and 26.00 ± 5.87 ng/mL in non-frail individuals (p < 0.001). Significant positive correlations between serum Gal-3 level and FP score, SARC-F score, C-reactive protein (CRP), interleukin-6, etc., were observed. In addition, the KEGG pathway and GO enrichment analyses showed that 265 DEGs in PBMCs of frail participants were mainly related to inflammatory response, translation, RNA binding, protein binding, ribosome, and primary immunodeficiency. LGALS3 was identified as the overlapping gene between frailty-related DEGs and aging-related DEGs. The elevated serum Gal-3 concentration in the in vivo model of frailty was consistent with the results in participants. Conclusion In both community-dwelling older adults and aged mice, serum Gal-3 concentration was positively correlated with frailty. This circulating mediator may be a promising indicator of frailty. Clinical trial registration Chinese Clinical Trial Registry identifier, ChiCTR2000036399.
Collapse
Affiliation(s)
- Xueying Ji
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Zhaoshun Jiang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yixuan Qiu
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong, China
| | - Jiaming Yu
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Yan Zhang
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Jiaofeng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Bo Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Yuxin Huang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Weidong Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yiqin Huang
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
| | - Jie Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
- Department of Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Shanghai, China
- Department of Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of National Clinical Research Center for Ageing and Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
5
|
Mayo KH. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Int J Mol Sci 2023; 24:14083. [PMID: 37762385 PMCID: PMC10531749 DOI: 10.3390/ijms241814083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Extra- and intra-cellular activity occurs under the direction of numerous inter-molecular interactions, and in any tissue or cell, molecules are densely packed, thus promoting those molecular interactions. Galectins and chemokines, the focus of this review, are small, protein effector molecules that mediate various cellular functions-in particular, cell adhesion and migration-as well as cell signaling/activation. In the past, researchers have reported that combinations of these (and other) effector molecules act separately, yet sometimes in concert, but nevertheless physically apart and via their individual cell receptors. This view that each effector molecule functions independently of the other limits our thinking about functional versatility and cooperation, and, in turn, ignores the prospect of physiologically important inter-molecular interactions, especially when both molecules are present or co-expressed in the same cellular environment. This review is focused on such protein-protein interactions with chemokines and galectins, the homo- and hetero-oligomeric structures that they can form, and the functional consequences of those paired interactions.
Collapse
Affiliation(s)
- Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Donato A, Fontana F, Venerando R, Di Stefano A, Brun P. The Anti-Inflammatory Effect of Lactose-Modified Hyaluronic Acid Molecules on Primary Bronchial Fibroblasts of Smokers. Polymers (Basel) 2023; 15:polym15071616. [PMID: 37050230 PMCID: PMC10096707 DOI: 10.3390/polym15071616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The progression of smoking-related diseases is characterized by macrophage-mediated inflammation, which is responsible for an increased expression of proinflammatory cytokines and galectins, molecules that bind specifically to β-galactoside sugars. This study aimed to assess the anti-inflammatory and antioxidant effects of a broad selection of differently lactose-modified hyaluronic acids (HA) named HYLACH®, which are able to bind proinflammatory galectins. The best HYLACH ligands for Gal-3 were selected in silico and their activities were tested in vitro on primary human bronchial fibroblasts obtained from smokers and inflamed with the conditioned medium of activated U937 monocytes. Changes in cell viability, ROS generation, proinflammatory mediators, and MMP expression, at both gene and protein levels, were analyzed. The in silico results show that HYLACH with a percentage of lactosylation of 10-40% are the best ligands for Gal-3. The in vitro study revealed that HYLACH compounds with 10, 20, and 40% lactosylation (HYLACH-1-2-3) administrated to inflamed cell cultures counteracted the oxidative damage and restored gene and protein expression for IL-1β, TNF-α, IL-6, Gal-1, Gal-3, and MMP-3 to near baseline values. The evidence that HYLACH attenuated macrophage-induced inflammation, inhibited MMP expression, and exhibited antioxidative effects provide an initial step toward the development of a therapeutic treatment suitable for smoking-related diseases.
Collapse
Affiliation(s)
- Alice Donato
- Histology Unit, Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Federico Fontana
- Center for Nanomedicine and Tissue Engineering, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy
| | - Rina Venerando
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, 28013 Gattico-Veruno, Italy
| | - Paola Brun
- Histology Unit, Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
7
|
Abstract
The galectin family consists of carbohydrate (glycan) binding proteins that are expressed by a wide variety of cells and bind to galactose-containing glycans. Galectins can be located in the nucleus or the cytoplasm, or can be secreted into the extracellular space. They can modulate innate and adaptive immune cells by binding to glycans on the surface of immune cells or intracellularly via carbohydrate-dependent or carbohydrate-independent interactions. Galectins expressed by immune cells can also participate in host responses to infection by directly binding to microorganisms or by modulating antimicrobial functions such as autophagy. Here we explore the diverse ways in which galectins have been shown to impact immunity and discuss the opportunities and challenges in the field.
Collapse
|
8
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
9
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
10
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
11
|
Fernandez A, Asbell P, Roy N. Emerging therapies targeting eosinophil-mediated inflammation in chronic allergic conjunctivitis. Ocul Surf 2022; 26:191-196. [PMID: 35970432 DOI: 10.1016/j.jtos.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Ocular allergy remains a significant burden to the population while the treatment for the severe, chronic forms of allergic conjunctivitis remains largely limited to non-specific immunosuppressants. Eosinophils are central to the pathophysiology and sustaining the immunologic response found in the chronic forms of ocular allergy such as vernal keratoconjunctivitis and atopic keratoconjunctivitis. Several mediators of eosinophil recruitment, chemotaxis, adhesion, activation, and survival have been identified that offer potential therapeutic targets for ocular allergy. Based on preclinical and clinical data available in both ocular and non-ocular allergy studies, these emerging therapies warrant further investigation in reducing the severity of disease in patients with chronic ocular allergy.
Collapse
Affiliation(s)
- Andrew Fernandez
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Penny Asbell
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Neeta Roy
- University of Tennessee Health Sciences Center, Memphis, TN, USA; Now Affiliated with Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
12
|
Ramírez Hernández E, Alanis Olvera B, Carmona González D, Guerrero Marín O, Pantoja Mercado D, Valencia Gil L, Hernández-Zimbrón LF, Sánchez Salgado JL, Limón ID, Zenteno E. Neuroinflammation and galectins: a key relationship in neurodegenerative diseases. Glycoconj J 2022; 39:685-699. [PMID: 35653015 DOI: 10.1007/s10719-022-10064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is a pathological condition that is associated with the loss of neuronal function and structure. In neurodegenerative diseases, mounting evidence indicates that neuroinflammation is a common factor that contributes to neuronal damage and neurodegeneration. Neuroinflammation is characterized by the activation of microglia, the neuroimmune cells of the central nervous system (CNS), which have been implicated as active contributors to neuronal damage. Glycan structure modification is defining the outcome of neuroinflammation and neuronal regeneration; moreover, the expression of galectins, a group of lectins that specifically recognize β-galactosides, has been proposed as a key factor in neuronal regeneration and modulation of the inflammatory response. Of the different galectins identified, galectin-1 stimulates the secretion of neurotrophic factors in astrocytes and promotes neuronal regeneration, whereas galectin-3 induces the proliferation of microglial cells and modulates cell apoptosis. Galectin-8 emerged as a neuroprotective factor, which, in addition to its immunosuppressive function, could generate a neuroprotective environment in the brain. This review describes the role of galectins in the activation and modulation of astrocytes and microglia and their anti- and proinflammatory functions within the context of neuroinflammation. Furthermore, it discusses the potential use of galectins as a therapeutic target for the inflammatory response and remodeling in damaged tissues in the central nervous system.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Beatriz Alanis Olvera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Carmona González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Guerrero Marín
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Denisse Pantoja Mercado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lucero Valencia Gil
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
13
|
Li H, Zhao X, Zheng L, Wang X, Lin S, Shen J, Ren H, Li Y, Qiu Q, Wang Z. Bruceine A protects against diabetic kidney disease via inhibiting galectin-1. Kidney Int 2022; 102:521-535. [DOI: 10.1016/j.kint.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
14
|
Bum-Erdene K, Collins PM, Hugo MW, Tarighat SS, Fei F, Kishor C, Leffler H, Nilsson UJ, Groffen J, Grice ID, Heisterkamp N, Blanchard H. Novel Selective Galectin-3 Antagonists Are Cytotoxic to Acute Lymphoblastic Leukemia. J Med Chem 2022; 65:5975-5989. [DOI: 10.1021/acs.jmedchem.1c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patrick M. Collins
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Matthew W. Hugo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Fei Fei
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Ulf. J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Nora Heisterkamp
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, California 90027, United States
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
15
|
Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, Oller J, Martinez-Lopez D, Nuñez E, Maller SM, Gutierrez-Muñoz C, Mendez-Barbero N, Escola-Gil JC, Michel JB, Mittelbrunn M, Vázquez J, Blanco-Colio LM, Rabinovich GA, Martin-Ventura JL. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. SCIENCE ADVANCES 2022; 8:eabm7322. [PMID: 35294231 PMCID: PMC8926342 DOI: 10.1126/sciadv.abm7322] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a β-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.
Collapse
Affiliation(s)
- Raquel Roldán-Montero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan M. Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Isabel Cerro-Pardo
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
| | - Jorge Oller
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sebastian M. Maller
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | | | - Nerea Mendez-Barbero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Maria Mittelbrunn
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis M. Blanco-Colio
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428AGE Buenos Aires, Argentina
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| | - Jose L. Martin-Ventura
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| |
Collapse
|
16
|
Regulatory T Cell Apoptosis during Preeclampsia May Be Prevented by Gal-2. Int J Mol Sci 2022; 23:ijms23031880. [PMID: 35163802 PMCID: PMC8836599 DOI: 10.3390/ijms23031880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
There are several open questions to be answered regarding the pathophysiology of the development of preeclampsia (PE). Numerous factors are involved in its genesis, such as defective placentation, vascular impairment, and an altered immune response. The activation of the adaptive and innate immune system represents an immunologic, particularity during PE. Proinflammatory cytokines are predominantly produced, whereas immune regulatory and immune suppressive factors are diminished in PE. In the present study, we focused on the recruitment of regulatory T cells (Tregs) which are key players in processes mediating immune tolerance. To identify Tregs in the decidua, an immunohistochemical staining of FoxP3 of 32 PE and 34 control placentas was performed. A clearly reduced number of FoxP3-positive cells in the decidua of preeclamptic women could be shown in our analysis (p = 0.036). Furthermore, CCL22, a well-known Treg chemoattractant, was immunohistochemically evaluated. Interestingly, CCL22 expression was increased at the maternal-fetal interface in PE-affected pregnancies (psyncytiotrophoblast = 0.035, pdecidua = 0.004). Therefore, the hypothesis that Tregs undergo apoptosis at the materno-fetal interface during PE was generated, and verified by FoxP3/TUNEL (TdT-mediated dUTP-biotin nick end labeling) staining. Galectin-2 (Gal-2), a member of the family of carbohydrate-binding proteins, which is known to be downregulated during PE, seems to play a pivotal role in T cell apoptosis. By performing a cell culture experiment with isolated Tregs, we could identify Gal-2 as a factor that seems to prevent the apoptosis of Tregs. Our findings point to a cascade of apoptosis of Tregs at the materno-fetal interface during PE. Gal-2 might be a potential therapeutic target in PE to regulate immune tolerance.
Collapse
|
17
|
Lujan AL, Croci DO, Rabinovich GA, Damiani MT. Galectins as potential therapeutic targets in STIs in the female genital tract. Nat Rev Urol 2022; 19:240-252. [PMID: 35105978 DOI: 10.1038/s41585-021-00562-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Every day, more than one million people worldwide acquire a sexually transmitted infection (STI). This public health problem has a direct effect on women's reproductive and sexual health as STIs can cause irreversible damage to fertility and can have negative consequences associated with discrimination and social exclusion. Infection with one sexually transmitted pathogen predisposes to co-infection with others, suggesting the existence of shared pathways that serve as molecular links between these diseases. Galectins, a family of β-galactoside-binding proteins, have emerged as endogenous mediators that facilitate cell-surface binding, internalization and cell invasion of many sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Candida albicans, HIV and herpes simplex virus. The ability of certain galectins to dimerize or form multimeric complexes confers the capacity to interact simultaneously with glycosylated ligands on both the pathogen and the cervico-vaginal tissue on these proteins. Galectins can act as a bridge by engaging glycans from the pathogen surface and glycosylated receptors from host cells, which is a mechanism that has been shown to be shared by several sexually transmitted pathogens. In the case of viruses and obligate intracellular bacteria, binding to the cell surface promotes pathogen internalization and cell invasion. Inflammatory responses that occur in cervico-vaginal tissue might trigger secretion of galectins, which in turn control the establishment, evolution and severity of STIs. Thus, galectin-targeted therapies could potentially prevent or decrease STIs caused by a diverse array of pathogenic microorganisms; furthermore, anti-galectin agents might reduce treatment costs of STIs and reach the most vulnerable populations.
Collapse
Affiliation(s)
- Agustin L Lujan
- Laboratorio de Bioquímica e Inmunidad, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego O Croci
- Laboratorio de Inmunopatología, Facultad de Ciencias Exactas y Naturales, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428AGE, Buenos Aires, Argentina.
| | - Maria T Damiani
- Laboratorio de Bioquímica e Inmunidad, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
18
|
Leppänen A, Arthur CM, Stowell SR, Cummings RD. Examination of Whole-Cell Galectin Binding by Solid Phase and Flow Cytometric Analysis. Methods Mol Biol 2022; 2442:187-203. [PMID: 35320527 DOI: 10.1007/978-1-0716-2055-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have utilized simple flow cytometric and fluorescence-based solid phase assays to study the interaction of glycan binding proteins (GBP) to cell surface glycoconjugates. These methods utilize commonly employed flow cytometry techniques and commercially available streptavidin-coated microplates to immobilize various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells. Using this approach, fluorescently labeled GBPs, in particular, members of the galectin family, can be interrogated for potential interactions with cell surface carbohydrates, including elucidation of the potential impact of alterations in glycosylation on carbohydrate recognition. Using these approaches, we present examples of flow cytometric and fluorescence-based solid phase assays to study galectin-carbohydrate interactions.
Collapse
Affiliation(s)
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
The marriage of chemokines and galectins as functional heterodimers. Cell Mol Life Sci 2021; 78:8073-8095. [PMID: 34767039 PMCID: PMC8629806 DOI: 10.1007/s00018-021-04010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Trafficking of leukocytes and their local activity profile are of pivotal importance for many (patho)physiological processes. Fittingly, microenvironments are complex by nature, with multiple mediators originating from diverse cell types and playing roles in an intimately regulated manner. To dissect aspects of this complexity, effectors are initially identified and structurally characterized, thus prompting familial classification and establishing foci of research activity. In this regard, chemokines present themselves as role models to illustrate the diversification and fine-tuning of inflammatory processes. This in turn discloses the interplay among chemokines, their cell receptors and cognate glycosaminoglycans, as well as their capacity to engage in new molecular interactions that form hetero-oligomers between themselves and other classes of effector molecules. The growing realization of versatility of adhesion/growth-regulatory galectins that bind to glycans and proteins and their presence at sites of inflammation led to testing the hypothesis that chemokines and galectins can interact with each other by protein-protein interactions. In this review, we present some background on chemokines and galectins, as well as experimental validation of this chemokine-galectin heterodimer concept exemplified with CXCL12 and galectin-3 as proof-of-principle, as well as sketch out some emerging perspectives in this arena.
Collapse
|
20
|
Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. Proc Natl Acad Sci U S A 2021; 118:2026246118. [PMID: 34301890 DOI: 10.1073/pnas.2026246118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytosolic lipopolysaccharides (LPSs) bind directly to caspase-4/5/11 through their lipid A moiety, inducing inflammatory caspase oligomerization and activation, which is identified as the noncanonical inflammasome pathway. Galectins, β-galactoside-binding proteins, bind to various gram-negative bacterial LPS, which display β-galactoside-containing polysaccharide chains. Galectins are mainly present intracellularly, but their interactions with cytosolic microbial glycans have not been investigated. We report that in cell-free systems, galectin-3 augments the LPS-induced assembly of caspase-4/11 oligomers, leading to increased caspase-4/11 activation. Its carboxyl-terminal carbohydrate-recognition domain is essential for this effect, and its N-terminal domain, which contributes to the self-association property of the protein, is also critical, suggesting that this promoting effect is dependent on the functional multivalency of galectin-3. Moreover, galectin-3 enhances intracellular LPS-induced caspase-4/11 oligomerization and activation, as well as gasdermin D cleavage in human embryonic kidney (HEK) 293T cells, and it additionally promotes interleukin-1β production and pyroptotic death in macrophages. Galectin-3 also promotes caspase-11 activation and gasdermin D cleavage in macrophages treated with outer membrane vesicles, which are known to be taken up by cells and release LPSs into the cytosol. Coimmunoprecipitation confirmed that galectin-3 associates with caspase-11 after intracellular delivery of LPSs. Immunofluorescence staining revealed colocalization of LPSs, galectin-3, and caspase-11 independent of host N-glycans. Thus, we conclude that galectin-3 amplifies caspase-4/11 oligomerization and activation through LPS glycan binding, resulting in more intense pyroptosis-a critical mechanism of host resistance against bacterial infection that may provide opportunities for new therapeutic interventions.
Collapse
|
21
|
Li H, Li J, Xiao W, Zhang Y, Lv Y, Yu X, Zheng J. The Therapeutic Potential of Galectin-3 in the Treatment of Intrahepatic Cholangiocarcinoma Patients and Those Compromised With COVID-19. Front Mol Biosci 2021; 8:666054. [PMID: 34109213 PMCID: PMC8180910 DOI: 10.3389/fmolb.2021.666054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The novel coronavirus pneumonia COVID-19 is characterized by all age susceptibility, which imposes a dramatic threat to the human species all over the world. According to current available data, the cytokine storm appears to be the most life-threatening symptom of severe COVID-19 cases accompanied with lung fibrosis. Galectin-3 (Gal-3), a member of soluble β-galactoside-binding lectin families, has been implicated as a key regulator in various inflammation conditions in addition to its well-documented roles in cancer. The pro-inflammatory activity of Gal-3 in the inflammatory response and lung fibrosis of COVID-19 has been proposed by emerging studies, which suggested that inhibition of Gal-3 may represent a novel treatment approach for COVID-19 patients. Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with poor prognosis. ICC accounts for 10-25% of primary liver cancers with limited therapeutic options, which has higher incidence in Asian countries, particularly in China. Cancer patients, including ICC patients, are highly vulnerable to COVID-19 due to their impaired immune system. It is thus undoubtedly a challenge for our oncology department to establish effective treatment strategies under the influence of the COVID-19 crisis. According to our management procedures in the COVID-19 era, emergency treatment will be applied to ICC patients who are under life-threatening conditions, despite the COVID-19 infection. To the best of our knowledge, the modulatory function of Gal-3 in ICC is still barely explored to date. In order to evaluate the therapeutic potential of Gal-3 for ICC patients or those comprised with COVID-19, we herein report our preliminary investigation into roles of Gal-3 in ICC. Our results exhibited that the expression of Gal-3 was significantly up-regulated in ICC tissues, and a significant correlation was observed between its overexpression and malignant progression of ICC cells. We further discussed the activity and possible molecular mechanisms of Gal-3 in ICC, which may pave the ways for further exploring the possibility of Gal-3 as a potential therapeutic target for treating ICC patients or those with COVID-19-related conditions.
Collapse
Affiliation(s)
- Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, the First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei Xiao
- Department of Medical Administration, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yujing Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yuan Lv
- The Key Laboratory of Molecular Epidemiology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jiao Zheng
- Department of Drug Clinical Trial, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
22
|
Niu Y, Lin J, Li C, Peng X, Jiang N, Xu Q, Yin M, Lin H, Gu L, Zhao G. Galectin-3 plays an important pro-inflammatory role in A. fumigatus keratitis by recruiting neutrophils and activating p38 in neutrophils. Int Immunopharmacol 2021; 97:107706. [PMID: 33933850 DOI: 10.1016/j.intimp.2021.107706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the role of galectin-3 (Gal-3) in cornea infected by Aspergillus fumigatus (A. fumigatus). METHODS Gal-3 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were pretreated with or without rmGal-3 or Gal-3 siRNA and infected with A. fumigatus. Recombinant mouse (rm) Gal-3 stimulated polymorphonuclear neutrophilic leukocytes (PMNs). PMNs were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of Gal-3 siRNA. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of Gal-3, interleukin (IL)-1β, IL-6, macrophage inflammatory protein 2 (MIP-2) and p-p38. PMNs infiltration was assessed by flow cytometry and myeloperoxidase (MPO) assay. RESULTS Gal-3 expression was significantly elevated by A. fumigatus in mice corneas. rmGal-3 treatment increased clinical scores, PMNs infiltration, and cytokines expression, which were decreased by Gal-3 siRNA treatment. In PMNs, Gal-3 expression was also significantly increased by A. fumigatus. The rmGal-3 treatment upregulated proinflammatory cytokines secretion and p-p38 expression, which was significantly inhibited by Gal-3 siRNA. CONCLUSION These data proved that A. fumigatus increased Gal-3 expression and elevated disease clinical scores, PMNs infiltration and cytokines expression through Gal-3. In PMNs, A. fumigatus upregulated IL-1β and IL-6 secretion through the Gal-3 / p38 pathway.
Collapse
Affiliation(s)
- Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
23
|
Galectin-1 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the inactivation of PI3K/Akt signaling pathway. Biosci Rep 2021; 40:225155. [PMID: 32495835 PMCID: PMC7295633 DOI: 10.1042/bsr20193899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Childhood asthma is one of the most common chronic childhood diseases. Platelet-derived growth factor BB (PDGF-BB) induced airway smooth muscle cell (ASMC) proliferation and migration are involved in the pathogenesis of asthma. Galectin-1 (Gal-1) is a glycan-binding protein that has been found to be involved in the progression of asthma. However, the mechanism remains unclear. In the current study, we aimed to evaluate the role of Gal-1 in regulating the phenotype switching of ASMCs, which is an important mechanism in the pathogenesis of asthma. Our results showed that Gal-1 was markedly down-regulated in the samples from asthma patients. In vitro study also proved that Gal-1 expression was decreased in PDGF-BB-stimulated ASMCs. In addition, Gal-1 overexpression significantly inhibited PDGF-BB-induced ASMCs proliferation and migration, while Gal-1 knockdown exhibits opposite effects of Gal-1 overexpression. The PDGF-BB-caused reductions in expressions of α-smooth muscle actin (α-SMA), specific muscle myosin heavy chain (SM-MHC), and calponin were elevated by Gal-1 overexpression, but were deteriorated by Gal-1 knockdown in ASMCs. Furthermore, overexpression of Gal-1 inhibited PDGF-BB-stimulated PI3K/Akt activation in ASMCs. Notably, treatment with IGF-1, an activator of PI3K, reversed the effects of Gal-1 on ASMCs proliferation, migration, and phenotype switching. In conclusion, these findings showed that Gal-1 exerted inhibitory effects on PDGF-BB-stimulated proliferation, migration, and phenotype switching of ASMCs via inhibiting the PI3K/Akt signaling pathway. Thus, Gal-1 might be a promising target for the treatment of asthma.
Collapse
|
24
|
Vasta GR, Wang JX. Galectin-mediated immune recognition: Opsonic roles with contrasting outcomes in selected shrimp and bivalve mollusk species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103721. [PMID: 32353466 DOI: 10.1016/j.dci.2020.103721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Galectins are a structurally conserved family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and of wide taxonomic distribution, from fungi to mammals. Their biological functions, initially described as key to embryogenesis and early development via recognition of endogenous ("self") carbohydrate moieties, are currently understood as also encompassing tissue repair, cancer metastasis, angiogenesis, adipogenesis, and regulation of immune homeostasis. More recently, however, numerous studies have contributed to establish a new paradigm by revealing that galectins can also bind to exogenous ("non-self") glycans on the surface of potentially pathogenic virus, bacteria, and eukaryotic parasites, and function both as pathogen recognition receptors (PRRs) and effector factors in innate immunity. Our studies on a galectin from the kuruma shrimp Marsupenaeus japonicus (MjGal), revealed that it functions as a typical PRR. Expression of MjGal is upregulated by infectious challenge, and can recognize both Gram (+) and Gram (-) bacteria. MjGal also recognizes carbohydrates on the shrimp hemocyte surface, and can cross-link microbial pathogens to the hemocytes, promoting their phagocytosis and clearance from circulation. Therefore, MjGal contributes to the shrimp's immune defense against infectious challenge both as a PRR and effector factor. Our studies on galectins from the bivalve mollusks, however, have shown that although they can function in immune defense as MjGal, protistan parasites take advantage of the recognition roles of the host galectins, for successful attachment and host infection. We identified in the eastern oyster Crassostrea virginica two galectins (CvGal1 and CvGal2) that not only recognize a large variety of bacterial species, but also the protozoan parasite Perkinsus marinus. Like the shrimp MjGal, both oyster galectins function as opsonins, and promote parasite adhesion and phagocytosis. However, P. marinus survives intrahemocytic oxidative killing and proliferates, eventually causing systemic infection and death of the oyster host. In the softshell clam Mya arenaria we identified a galectin (MaGal1) that displays carbohydrate specificity and recognition properties for sympatric Perkinsus species (P. marinus and P. chesapeaki), that are different from CvGal1 and CvGal2. Our results suggest that although galectins from bivalves can function as PRRs, Perkinsus parasites have co-evolved with their hosts to subvert the galectins' immune functions for host infection by acquisition of carbohydrate-based mimicry.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
25
|
Increased serum levels of galectin-9 in patients with chikungunya fever. Virus Res 2020; 286:198062. [PMID: 32565125 DOI: 10.1016/j.virusres.2020.198062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Chikungunya fever (CHIKF) is an arboviral disease that has caused an epidemic burst of chronic inflammatory joint disease in Latin America in the last few years. Efforts are being spent in understanding the mechanisms by which it may cause such articular damage and in determining possible biomarkers of the disease. Galectins (GAL) are a family of animal lectins with an affinity for beta-galactosides. They have multiple functions including working as receptors in innate immunity and as a control for inflammatory responses in both innate and adaptive immunity. They regulate functions of immune cells, such as lymphocytes and macrophages, which have a main role in the chikungunya inflammatory process. Galectins are also involved in chronification of viral diseases, participate in the immunopathogenesis of chronic joint diseases such as rheumatoid arthritis, and have a role in inflammation in other arboviral diseases, such as dengue. Thus, we intended to determine the serum levels of galectin-1, -3, -4, -7, and -9 in patients with subacute and chronic articular manifestations of CHIKF and to evaluate their associations with clinical manifestations. We evaluated 44 patients with clinical manifestations of CHIKF and serological confirmation with IgM and/or IgG chikungunya virus (CHIKV) antibodies. Forty-nine age- and gender-matched healthy individuals served as controls. Anti-CHIKV IgM and IgG antibodies and galectins serum levels were measured by ELISA. We found higher levels of GAL-9 (patients median 2192 [1500-2631] pg/mL, controls median 46.88 [46.88-46.88] pg/mL, p < 0.0001) and lower levels of GAL-3 (patients median 235.5 [175.5-351.8] pg/mL, controls median 2236.0 [1256.0-2236.0] pg/mL, p < 0.0001) in patients than in controls. There was no statistical difference in levels of GAL-1, -4 and -7 between patients and control groups. There was no difference in GAL-9 serum levels between patients with subacute or chronic symptoms (median 2148 [1500-2722] pg/mL x 2212 [1844-2500] pg/mL, p = 0.3626). A significant association of GAL-9 with joint stiffness, both in its duration and intensity, was found. These results may reflect the participation of GAL-9 in the immunopathogenesis of the inflammatory process in chikungunya fever, as morning stiffness may reflect the systemic inflammatory process.
Collapse
|
26
|
García Caballero G, Beckwith D, Shilova NV, Gabba A, Kutzner TJ, Ludwig AK, Manning JC, Kaltner H, Sinowatz F, Cudic M, Bovin NV, Murphy PV, Gabius HJ. Influence of protein (human galectin-3) design on aspects of lectin activity. Histochem Cell Biol 2020; 154:135-153. [PMID: 32335744 PMCID: PMC7429544 DOI: 10.1007/s00418-020-01859-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
Abstract
The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure–activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Donella Beckwith
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Laboratory of Carbohydrates, Moscow, Russia, 117997
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Adele Gabba
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Tanja J Kutzner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Anna-Kristin Ludwig
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Joachim C Manning
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Herbert Kaltner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Fred Sinowatz
- Institut für Anatomie, Histologie und Embryologie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Laboratory of Carbohydrates, Moscow, Russia, 117997.
- Centre for Kode Technology Innovation, School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand.
| | - Paul V Murphy
- School of Chemistry, National University of Ireland, Galway, Ireland.
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| |
Collapse
|
27
|
Ramírez Hernández E, Sánchez-Maldonado C, Mayoral Chávez MA, Hernández-Zimbrón LF, Patricio Martínez A, Zenteno E, Limón Pérez de León ID. The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert Rev Neurother 2020; 20:439-448. [PMID: 32303136 DOI: 10.1080/14737175.2020.1750955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuroinflammation has been proposed as a common factor and one of the main inducers of neuronal degeneration. Galectins are a group of β-galactoside-binding lectins, that play an important role in the immune response, adhesion, proliferation, differentiation, migration and cell growth. Up to 15 members of the galectin's family have been identified; however, the expression of galectin-1 and galectin-3 has been considered a key factor in neuronal regeneration and modulation of the inflammatory response. Galectin-1 is necessary to stimulate the secretion of neurotrophic factors in astrocytes and promoting neuronal regeneration. In contrast, galectin-3 fosters the proliferation of microglial cells and modulates cellular apoptosis, therefore these proteins are considered a useful alternative for the treatment of degenerative diseases.Areas covered: This review describes the roles of galectin-1 and galectin-3 in the modulation of neuroinflammation and their potential as therapeutic targets in the treatment for neurodegenerative diseases.Expert opinion: Although data in the literature vary, the effects of galectin-1 and galectin-3 on the activation and modulation of astrocytes and microglia has been described. Due to its anti-inflammatory effects, galectin-1 is proposed as a molecule with therapeutic potential, whereas the inhibition of galectin-3 could contribute to reduce the neuroinflammatory response in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Claudia Sánchez-Maldonado
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel A Mayoral Chávez
- Centro de Investigaciones Médicas UNAM-UABJO, Facultad de Medicina, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,Departamento de Investigación, Asociación Para Evitar la Ceguera en México, "Hospital Dr. Luis Sánchez Bulnes", Ciudad de México, México
| | - Aleidy Patricio Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - I Daniel Limón Pérez de León
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
28
|
Kanda A, Hirose I, Noda K, Murata M, Ishida S. Glucocorticoid-transactivated TSC22D3 attenuates hypoxia- and diabetes-induced Müller glial galectin-1 expression via HIF-1α destabilization. J Cell Mol Med 2020; 24:4589-4599. [PMID: 32150332 PMCID: PMC7176855 DOI: 10.1111/jcmm.15116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.
Collapse
Affiliation(s)
- Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuyo Hirose
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miyuki Murata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Eckardt V, Miller MC, Blanchet X, Duan R, Leberzammer J, Duchene J, Soehnlein O, Megens RT, Ludwig AK, Dregni A, Faussner A, Wichapong K, Ippel H, Dijkgraaf I, Kaltner H, Döring Y, Bidzhekov K, Hackeng TM, Weber C, Gabius HJ, von Hundelshausen P, Mayo KH. Chemokines and galectins form heterodimers to modulate inflammation. EMBO Rep 2020; 21:e47852. [PMID: 32080959 PMCID: PMC7132340 DOI: 10.15252/embr.201947852] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Chemokines and galectins are simultaneously upregulated and mediate leukocyte recruitment during inflammation. Until now, these effector molecules have been considered to function independently. Here, we tested the hypothesis that they form molecular hybrids. By systematically screening chemokines for their ability to bind galectin‐1 and galectin‐3, we identified several interacting pairs, such as CXCL12 and galectin‐3. Based on NMR and MD studies of the CXCL12/galectin‐3 heterodimer, we identified contact sites between CXCL12 β‐strand 1 and Gal‐3 F‐face residues. Mutagenesis of galectin‐3 residues involved in heterodimer formation resulted in reduced binding to CXCL12, enabling testing of functional activity comparatively. Galectin‐3, but not its mutants, inhibited CXCL12‐induced chemotaxis of leukocytes and their recruitment into the mouse peritoneum. Moreover, galectin‐3 attenuated CXCL12‐stimulated signaling via its receptor CXCR4 in a ternary complex with the chemokine and receptor, consistent with our structural model. This first report of heterodimerization between chemokines and galectins reveals a new type of interaction between inflammatory mediators that can underlie a novel immunoregulatory mechanism in inflammation. Thus, further exploration of the chemokine/galectin interactome is warranted.
Collapse
Affiliation(s)
- Veit Eckardt
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, USA
| | - Xavier Blanchet
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Rundan Duan
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Julian Leberzammer
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Johan Duchene
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Oliver Soehnlein
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Remco Ta Megens
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Anna-Kristin Ludwig
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Aurelio Dregni
- Department of Biochemistry, Molecular Biology & Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Faussner
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Herbert Kaltner
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Yvonne Döring
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Kiril Bidzhekov
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Tilman M Hackeng
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp von Hundelshausen
- Faculty of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Anti-inflammatory Property of Galectin-1 in a Murine Model of Allergic Airway Inflammation. J Immunol Res 2019; 2019:9705327. [PMID: 31214624 PMCID: PMC6535876 DOI: 10.1155/2019/9705327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 03/19/2019] [Indexed: 11/18/2022] Open
Abstract
Galectin-1 (Gal-1) has immunomodulatory activities in various allergic inflammatory disorders, but its potential anti-inflammatory properties on allergic airway diseases have not been confirmed. We explored the pharmacological effects of Gal-1 on the progression of allergic airway inflammation and investigated the underlying mechanism. Female C57BL/6 mice were sensitized on day 0 and challenged with ovalbumin (OVA) on days 14-17 to establish an allergic airway inflammation model. In the challenge phase, a subset of mice was treated intraperitoneally with recombinant Gal-1 (rGal-1) or dexamethasone (Dex). We found that rGal-1 inhibited pulmonary inflammatory cell recruitment, mucus secretion, bronchoalveolar lavage fluid (BALF) inflammatory cell infiltration, and cytokine production. The treatment also suppressed the infiltration of eosinophils into the allergic lung as indicated by decreased expression levels of eotaxin and eosinophil peroxidase (EPX). However, only the expression levels of IL-25, neither IL-33 nor TSLP, were significantly decreased in the lung by rGal-1 treatment. These immunomodulatory effects in the allergic lung were correlated with the activation of extracellular signal-regulated kinase (ERK) signaling pathway and downregulation of endogenous Gal-1. In addition, rGal-1 reduced the plasma concentrations of anti-OVA immunoglobulin E (IgE) and IL-17. Our findings suggest that rGal-1 is an effective therapy for allergic airway inflammation in a murine model and may be a potential pharmacological target for allergic airway inflammatory diseases.
Collapse
|
31
|
Ramírez E, Sánchez-Maldonado C, Mayoral MA, Mendieta L, Alatriste V, Patricio-Martínez A, Limón ID. Neuroinflammation induced by the peptide amyloid-β (25-35) increase the presence of galectin-3 in astrocytes and microglia and impairs spatial memory. Neuropeptides 2019; 74:11-23. [PMID: 30795916 DOI: 10.1016/j.npep.2019.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/05/2023]
Abstract
Galectins are animal lectins that bind to β-galactosides, such as lactose and N-acetyllactosamine, contained in glycoproteins or glycolipids. Galectin-1 (Gal-1) and Galectin-3 (Gal-3) are involved in pathologies associated with the inflammatory process, cell proliferation, adhesion, migration, and apoptosis. Recent evidence has shown that the administration of Amyloid-β 25-35 (Aβ25-35) into the hippocampus of rats increases the inflammatory response that is associated with memory impairment and neurodegeneration. Galectins could participate in the modulation of the neuroinflammation induced by the Aβ25-35. The aim of this study was to evaluate the presence of Gal-1 and Gal-3 in the neuroinflammation induced by administration of Aβ25-35 into the hippocampus and to examine spatial memory in the Morris water maze. After the administration of Aβ25-35, animals were tested for learning and spatial memory in the Morris water maze. Behavioral performance showed that Aβ25-35 didn't affect spatial learning but did impair memory, with animals taking longer to find the platform. On the day 32, hippocampus was examined for astrocytes (GFAP), microglia (Iba1), Gal-1 and Gal-3 via immunohistochemical analysis, and the cytokines IL-1β, TNF-α, IFN-γ by ELISA. This study's results showed a significant increase in the expression of Gal-3 in the microglia and astrocytes, while Gal-1 didn't increase in the dorsal hippocampus. The expression of galectins is associated with increased cytokines in the hippocampal formation of Aβ25-35 treated rats. These findings suggest that Gal-3 could participate in the inflammation induced by administration of Aβ25-35 and could be involved in the neurodegeneration progress and memory impairment.
Collapse
Affiliation(s)
- Eleazar Ramírez
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico
| | | | | | - Liliana Mendieta
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico
| | | | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico; Facultad de Ciencias Biológicas, BUAP, Puebla, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, 105 C-FCQ BUAP, Puebla, Mexico.
| |
Collapse
|
32
|
Ghosh A, Banerjee A, Amzel LM, Vasta GR, Bianchet MA. Structure of the zebrafish galectin-1-L2 and model of its interaction with the infectious hematopoietic necrosis virus (IHNV) envelope glycoprotein. Glycobiology 2019; 29:419-430. [PMID: 30834446 PMCID: PMC6476415 DOI: 10.1093/glycob/cwz015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Galectins, highly conserved β-galactoside-binding lectins, have diverse regulatory roles in development and immune homeostasis and can mediate protective functions during microbial infection. In recent years, the role of galectins in viral infection has generated considerable interest. Studies on highly pathogenic viruses have provided invaluable insight into the participation of galectins in various stages of viral infection, including attachment and entry. Detailed mechanistic and structural aspects of these processes remain undetermined. To address some of these gaps in knowledge, we used Zebrafish as a model system to examine the role of galectins in infection by infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that is responsible for significant losses in both farmed and wild salmonid fish. Like other rhabdoviruses, IHNV is characterized by an envelope consisting of trimers of a glycoprotein that display multiple N-linked oligosaccharides and play an integral role in viral infection by mediating the virus attachment and fusion. Zebrafish's proto-typical galectin Drgal1-L2 and the chimeric-type galectin Drgal3-L1 interact directly with the glycosylated envelope of IHNV, and significantly reduce viral attachment. In this study, we report the structure of the complex of Drgal1-L2 with N-acetyl-d-lactosamine at 2.0 Å resolution. To gain structural insight into the inhibitory effect of these galectins on IHNV attachment to the zebrafish epithelial cells, we modeled Drgal3-L1 based on human galectin-3, as well as, the ectodomain of the IHNV glycoprotein. These models suggest mechanisms for which the binding of these galectins to the IHNV glycoprotein hinders with different potencies the viral attachment required for infection.
Collapse
Affiliation(s)
- Anita Ghosh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Current address: Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W408C, Boston, MA, USA
| | - Aditi Banerjee
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA,Current address: Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Mario Amzel
- Structural Enzymology and Thermodynamics Group of the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Mario A Bianchet
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Structural Enzymology and Thermodynamics Group of the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA,To whom correspondence should be addressed: Tel: +1-410-614-8221; e-mail:
| |
Collapse
|
33
|
Escamilla-Rivera V, Solorio-Rodríguez A, Uribe-Ramírez M, Lozano O, Lucas S, Chagolla-López A, Winkler R, De Vizcaya-Ruiz A. Plasma protein adsorption on Fe 3O 4-PEG nanoparticles activates the complement system and induces an inflammatory response. Int J Nanomedicine 2019; 14:2055-2067. [PMID: 30988608 PMCID: PMC6438142 DOI: 10.2147/ijn.s192214] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Understanding of iron oxide nanoparticles (IONP) interaction with the body milieu is crucial to guarantee their efficiency and biocompatibility in nanomedicine. Polymer coating to IONP, with polyethyleneglycol (PEG) and polyvinylpyrrolidone (PVP), is an accepted strategy to prevent toxicity and excessive protein binding. AIM The aim of this study was to investigate the feature of IONP adsorption of complement proteins, their activation and consequent inflammatory response as a strategy to further elucidate their biocompatibility. METHODS Three types of IONP with different surface characteristics were used: bare (IONP-bare), coated with PVP (IONP-PVP) and PEG-coated (IONP-PEG). IONPs were incubated with human plasma and adsorbed proteins were identified. BALB/c mice were intravenously exposed to IONP to evaluate complement activation and proinflammatory response. RESULTS Protein corona fingerprinting showed that PEG surface around IONP promoted a selective adsorption of complement recognition molecules which would be responsible for the complement system activation. Furthermore, IONP-PEG activated in vitro, the complement system and induced a substantial increment of C3a and C4a anaphylatoxins while IONP-bare and IONP-PVP did not. In vivo IONP-PEG induced an increment in complement activation markers (C5a and C5b-9), and proinflammatory cytokines (IL-1β, IL-6, TNF-α). CONCLUSION The engineering of nanoparticles must incorporate the association between complement proteins and nanomedicines, which will regulate the immunostimulatory effects through a selective adsorption of plasma proteins and will enable a safer application of IONP in human therapy.
Collapse
Affiliation(s)
- V Escamilla-Rivera
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| | - A Solorio-Rodríguez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| | - M Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| | - O Lozano
- Namur Nanosafety Centre, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
- Research Centre for the Physics of Matter and Radiation, University of Namur, Namur, Belgium
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, México
| | - S Lucas
- Namur Nanosafety Centre, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
- Research Centre for the Physics of Matter and Radiation, University of Namur, Namur, Belgium
| | - A Chagolla-López
- Departmento de Biotecnología y Bioquímica, CINVESTAV-IPN, Unidad Irapuato, Irapuato, México
| | - R Winkler
- Departmento de Biotecnología y Bioquímica, CINVESTAV-IPN, Unidad Irapuato, Irapuato, México
- Max Planck Institute for Chemical Ecology, Mass Spectrometry Group, Beutenberg Campus, Jena, Germany
| | - A De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ciudad de México, México,
| |
Collapse
|
34
|
Wu NL, Liu FT. The expression and function of galectins in skin physiology and pathology. Exp Dermatol 2019; 27:217-226. [PMID: 29427464 DOI: 10.1111/exd.13512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 01/01/2023]
Abstract
The galectin family comprises β-galactoside-binding proteins widely expressed in many organisms. There are at least 16 family members, which can be classified into three groups based on their carbohydrate-recognition domains. Pleiotropic functions of different galectins in physiological and pathological processes through extracellular or intracellular actions have been revealed. In the skin, galectins are expressed in a variety of cells, including keratinocytes, melanocytes, fibroblasts, dendritic cells, lymphocytes, macrophages and endothelial cells. Expression of specific galectins is reported to affect cell status, such as activation or death, and regulate the interaction between different cell types or between cells and the extracellular matrix. In vitro cellular studies, in vivo animal studies and studies of human clinical material have revealed the pathophysiologic roles of galectins in the skin. The pathogenesis of diverse non-malignant skin disorders, such as atopic dermatitis, psoriasis, contact dermatitis and wound healing, as well as skin cancers, such as melanoma, squamous cell carcinoma, basal cell carcinoma and cutaneous haematologic malignancy can be regulated by different galectins. Revelation of biological roles of galectins in skin may pave the way to future development of galectin-based therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
35
|
Zhang LL, Hu XH, Wu SQ, Batool K, Chowdhury M, Lin Y, Zhang J, Gill SS, Guan X, Yu XQ. Aedes aegypti Galectin Competes with Cry11Aa for Binding to ALP1 To Modulate Cry Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13435-13443. [PMID: 30556692 DOI: 10.1021/acs.jafc.8b04665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The key step for the toxicity of Bacillus thuringiensis subsp. israelensis (Bti) is the interaction between toxins and putative receptors; thus, many studies focus on identification of new toxin receptors and engineering of toxins with higher affinity/specificity for receptors. In the larvae of Aedes aegypti, galectin-14 was one of the genes upregulated by Bti treatment. RNAi knockdown expression of galectin-14 and feeding recombinant galectin-14-thioredoxin fusion protein significantly affected survival of Ae. aegypti larvae treated with Bti toxins. Recombinant galectin-14 protein bound to brush border membrane vesicles (BBMVs) of Ae. aegypti larvae, ALP1 and APN2, and galectin-14 and Cry11Aa bound to BBMVs with a similarly high affinity. Competitive binding results showed that galectin-14 competed with Cry11Aa for binding to BBMVs and ALP1 to prevent effective binding of toxin to receptors. These novel findings demonstrated that midgut proteins other than receptors play an important role in modulating the toxicity of Cry toxins.
Collapse
Affiliation(s)
- Ling-Ling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and School of Life Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- Division of Cell Biology and Biophysics , University of Missouri - Kansas City , Kansas City , Missouri 64110 , United States
| | - Xiao-Hua Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and School of Life Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Song-Qing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and School of Life Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and School of Life Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Munmun Chowdhury
- Division of Cell Biology and Biophysics , University of Missouri - Kansas City , Kansas City , Missouri 64110 , United States
| | - Yi Lin
- Department of Bioengineering & Biotechnology, College of Chemical Engineering , Huaqiao University , Xiamen 361021 , China
| | - Jie Zhang
- Division of Cell Biology and Biophysics , University of Missouri - Kansas City , Kansas City , Missouri 64110 , United States
| | - Sarjeet S Gill
- Department of Molecular, Cell and Systems Biology , University of California , Riverside , California 92521 , United States
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and School of Life Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics , University of Missouri - Kansas City , Kansas City , Missouri 64110 , United States
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, and School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
36
|
Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S, Gabius HJ. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and -3. Cell Mol Life Sci 2018; 75:4187-4205. [PMID: 29934665 PMCID: PMC6182346 DOI: 10.1007/s00018-018-2856-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.
Collapse
Affiliation(s)
- Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Kenn
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katy Schmidt
- Center for Anatomy and Cell Biology, Department for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Sonja M Walzer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bernd Kubista
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schreiner
- Center for Medical Statistics, Informatics and Intelligent Systems, Institute of Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Ludwig Boltzmann Cluster for Arthritis and Rehabilitation, Vienna, Austria.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
37
|
Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT. Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 2018; 29:151-162. [DOI: 10.1093/glycob/cwy095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes. Notably, this aggregation is markedly reduced following the attenuation of host O-glycan processing. This indicates that H. pylori infection induces lysosomal damage, which in turn results in the accumulation of cytosolic galectin-8 around damaged lysosomes through the recognition of exposed vacuolar host O-glycans. H. pylori-induced galectin-8 aggregates also colocalize with autophagosomes, and galectin-8 ablation reduces the activation of autophagy by H. pylori. This suggests that galectin-8 aggregates may enhance autophagy activity in infected cells. We also observed that both autophagy and NDP52, an autophagy adapter, contribute to the augmentation of galectin-8 aggregation by H. pylori. Additionally, vacuolating cytotoxin A, a secreted H. pylori cytotoxin, may contribute to the increased galectin-8 aggregation and elevated autophagy response in infected cells. Collectively, these results suggest that H. pylori promotes intracellular galectin-8 aggregation, and that galectin-8 aggregation and autophagy may reciprocally regulate each other during infection.
Collapse
Affiliation(s)
- Fang-Yen Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
38
|
Ruvolo PP. Galectins as regulators of cell survival in the leukemia niche. Adv Biol Regul 2018; 71:41-54. [PMID: 30245264 DOI: 10.1016/j.jbior.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
The microenvironment within the bone marrow (BM) contains support cells that promote leukemia cell survival and suppress host anti-tumor defenses. Galectins are a family of beta-galactoside binding proteins that are critical components in the tumor microenvironment. Galectin 1 (LGALS1) and Galectin 3 (LGALS3) as regulators of RAS signaling intracellularly and as inhibitors of immune cells extracellularly are perhaps the best studied members for their role in leukemia biology. Interest in Galectin 9 (LGALS9) is growing as this galectin has been identified as an immune checkpoint molecule. LGALS9 also supports leukemia stem cells (LSCs) though a mechanism of action is not clear. LGALS1 and LGALS3 each participate in a diverse number of survival pathways that promote drug resistance by supporting pro-tumor molecules such BCL2, MCL-1, and MYC and blocking tumor suppressors like p53. Acute myeloid leukemia (AML) BM mesenchymal stromal cells (MSC) have protein signatures that differ from healthy donor MSC. Elevated LGALS3 protein in AML MSC is associated with refractory disease/relapse demonstrating that MSC derived galectin impacts patient survival. LGALS3 is a critical determining factor whether MSC differentiate into adipocytes or osteoblasts so the galectin influences the cellular composition of the leukemia niche. Both LGALS3 and LGALS1 when secreted can suppress immune function. Both galectins can induce apoptosis of T cells. LGALS3 also modulates T cell receptor endocytosis and impairs interferon mediated chemokine production by binding glycosylated interferon. LGALS3 as a TIM3 binding partner acts to suppress T cell function. Galectins also impact leukemia cell mobilization and may participate in homing mechanisms. LGALS3 participates in transport mechanism of integrins, receptors, and other molecules that control cell adhesion and cell:cell interactions. The diversity of these various functions demonstrate the importance of these galectins in the leukemia niche. This review will cover the role of LGALS1, LGALS3, and LGALS9 in the various processes that are critical for maintaining leukemia cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Carlos CP, Silva AA, Gil CD, Oliani SM. Pharmacological treatment with galectin-1 protects against renal ischaemia-reperfusion injury. Sci Rep 2018; 8:9568. [PMID: 29934646 PMCID: PMC6015078 DOI: 10.1038/s41598-018-27907-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Galectin-1 protein (GAL-1) has important anti-inflammatory properties, but related pharmacologic approaches to effectively treat or prevent renal ischaemia and reperfusion injury are highly limited. Here, we investigated the effect of GAL-1 in a renal ischaemia-reperfusion injury rat model and an in vitro hypoxia-reoxygenation model with a proximal renal tubular epithelial cell line. In vivo, pretreatment with GAL-1 attenuated the renal parameters changed by ischaemia-reperfusion/hypoxia-reoxygenation, with recovery of renal function, protecting against influx of leukocytes, cell death and oxidative stress. Ischaemia-reperfusion/hypoxia-reoxygenation was also associated with increased renal endogenous expression of GAL-1 and intercellular adhesion molecule 1 (ICAM-1) plus augmented levels of proinflammatory cytokines IL-1β, TNF-α and MCP-1 and decreased anti-inflammatory IL-10 in urine, all of which were abrogated by GAL-1 treatment. In vitro studies demonstrated renal tubular epithelial cells as an important source of GAL-1 during hypoxia-reoxygenation and confirmed the protective effects of exogenous GAL-1 through downregulation of proinflammatory cytokine release by proximal renal tubular epithelial cells. Collectively, our findings confirm the important anti-inflammatory role of GAL-1 in kidney ischaemia and reperfusion injury and indicate its promising use as a therapeutic approach.
Collapse
Affiliation(s)
- Carla P Carlos
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil.,Department of Medicine, FACERES School of Medicine, São José do Rio Preto, SP, Brazil
| | - Analice A Silva
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of Sao Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Sonia M Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil. .,Department of Morphology and Genetics, Federal University of Sao Paulo, UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Sci Rep 2018; 8:7152. [PMID: 29740087 PMCID: PMC5940811 DOI: 10.1038/s41598-018-25660-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/26/2018] [Indexed: 11/30/2022] Open
Abstract
The lactose operon (lacTEGF) from Lactobacillus casei strain BL23 has been previously studied. The lacT gene codes for a transcriptional antiterminator, lacE and lacF for the lactose-specific phosphoenolpyruvate: phosphotransferase system (PTSLac) EIICB and EIIA domains, respectively, and lacG for the phospho-β-galactosidase. In this work, we have shown that L. casei is able to metabolize N-acetyllactosamine (LacNAc), a disaccharide present at human milk and intestinal mucosa. The mutant strains BL153 (lacE) and BL155 (lacF) were defective in LacNAc utilization, indicating that the EIICB and EIIA of the PTSLac are involved in the uptake of LacNAc in addition to lactose. Inactivation of lacG abolishes the growth of L. casei in both disaccharides and analysis of LacG activity showed a high selectivity toward phosphorylated compounds, suggesting that LacG is necessary for the hydrolysis of the intracellular phosphorylated lactose and LacNAc. L. casei (lacAB) strain deficient in galactose-6P isomerase showed a growth rate in lactose (0.0293 ± 0.0014 h−1) and in LacNAc (0.0307 ± 0.0009 h−1) significantly lower than the wild-type (0.1010 ± 0.0006 h−1 and 0.0522 ± 0.0005 h−1, respectively), indicating that their galactose moiety is catabolized through the tagatose-6P pathway. Transcriptional analysis showed induction levels of the lac genes ranged from 130 to 320–fold in LacNAc and from 100 to 200–fold in lactose, compared to cells growing in glucose.
Collapse
|
41
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
42
|
Mammen MJ, Sands MF, Abou‐Jaoude E, Aalinkeel R, Reynolds JL, Parikh NU, Sharma U, Schwartz SA, Mahajan SD. Role of Galectin-3 in the pathophysiology underlying allergic lung inflammation in a tissue inhibitor of metalloproteinases 1 knockout model of murine asthma. Immunology 2018; 153:387-396. [PMID: 28992358 PMCID: PMC5795177 DOI: 10.1111/imm.12848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory respiratory disease characterized by airway inflammation, airway hyperresponsiveness and reversible airway obstruction. Understanding the mechanisms that underlie the various endotypes of asthma could lead to novel and more personalized therapies for individuals with asthma. Using a tissue inhibitor of metalloproteinases 1 (TIMP-1) knockout murine allergic asthma model, we previously showed that TIMP-1 deficiency results in an asthma phenotype, exhibiting airway hyperreactivity, enhanced eosinophilic inflammation and T helper type 2 cytokine gene and protein expression following sensitization with ovalbumin. In the current study, we compared the expression of Galectins and other key cytokines in a murine allergic asthma model using wild-type and TIMP-1 knockout mice. We also examined the effects of Galectin-3 (Gal-3) inhibition on a non-T helper type 2 cytokine interleukin-17 (IL-17) to evaluate the relationship between Gal-3 and the IL-17 axis in allergic asthma. Our results showed a significant increase in Gal-3, IL-17 and transforming growth factor-β1 gene expression in lung tissue isolated from an allergic asthma murine model using TIMP-1 knockout. Gal-3 gene and protein expression levels were also significantly higher in lung tissue from an allergic asthma murine model using TIMP-1 knockout. Our data show that Gal-3 may regulate the IL-17 axis and play a pivotal role in the modulation of inflammation during experimental allergic asthma.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Mark F. Sands
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
- WNY VA Healthcare SystemBuffaloNYUSA
| | - Elaine Abou‐Jaoude
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Ravikumar Aalinkeel
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Jessica L. Reynolds
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Neil U. Parikh
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Umesh Sharma
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Stanley A. Schwartz
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| | - Supriya D. Mahajan
- Department of MedicineUniversity at BuffaloState University of New YorkBuffaloNYUSA
| |
Collapse
|
43
|
Weng IC, Chen HL, Lo TH, Lin WH, Chen HY, Hsu DK, Liu FT. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology 2018; 28:392-405. [DOI: 10.1093/glycob/cwy017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/23/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
44
|
Vasta GR, Feng C, González-Montalbán N, Mancini J, Yang L, Abernathy K, Frost G, Palm C. Functions of galectins as 'self/non-self'-recognition and effector factors. Pathog Dis 2018; 75:3753447. [PMID: 28449072 DOI: 10.1093/femspd/ftx046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Lishi Yang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Graeme Frost
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Cheyenne Palm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
45
|
Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget 2018; 7:35478-89. [PMID: 27007155 PMCID: PMC5085245 DOI: 10.18632/oncotarget.8155] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a ‘hallmark of cancer’ but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
46
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Molecules of Damage-Associated Patterns in Bronchoalveolar Lavage Fluid and Serum in Chronic Obstructive Pulmonary Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1113:27-35. [PMID: 29429028 DOI: 10.1007/5584_2018_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic exposure to detrimental environmental factors may induce immunogenic cell death of structural airway cells in chronic obstructive pulmonary disease (COPD). Damage-associated molecular patterns (DAMPs) is a family of heterogeneous molecules released from injured or dead cells, which activate innate and adaptive immune responses on binding to the pattern recognition receptors on cells. This study seeks to define the content of DAMPs in the bronchoalveolar lavage fluid (BALF) and serum of COPD patients, and the possible association of these molecules with clinical disease features. Thirty COPD in advanced disease stages were enrolled into the study. Pulmonary function tests, arterial blood gas content, 6-minute walk test, and BODE index were assessed. The content of DAMPs was estimated using the commercial sandwich-ELISA kits. We found differential alterations in the content of various DAMP molecules. In the main, BALF DAMPs positively associated with age, forced expiratory volume in one second (FEV1), and residual volume (RV); and inversely with PaO2, residual volume/total lung capacity (RV/TLC) ratio, and the disease severity staging. In serum, DAMPS positively associated with the intensity of smoking and inversely with age, PaO2, and TLC. In conclusion, DAMPs are present in both BALF and serum of COPD patients, which points to enhanced both local in the lung environment as well as systemic pro-inflammatory vein in this disease. These molecules appear involved with the lung damage and clinical variables featuring COPD. However, since the involvement of various DAMPs in COPD is variable, the exact role they play is by far unsettled and is open to further exploration.
Collapse
|
48
|
Ruiz FM, Gilles U, Ludwig AK, Sehad C, Shiao TC, García Caballero G, Kaltner H, Lindner I, Roy R, Reusch D, Romero A, Gabius HJ. Chicken GRIFIN: Structural characterization in crystals and in solution. Biochimie 2017; 146:127-138. [PMID: 29248541 PMCID: PMC7115793 DOI: 10.1016/j.biochi.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Despite its natural abundance in lenses of vertebrates the physiological function(s) of the galectin-related inter-fiber protein (GRIFIN) is (are) still unclear. The same holds true for the significance of the unique interspecies (fish/birds vs mammals) variability in the capacity to bind lactose. In solution, ultracentrifugation and small angle X-ray scattering (at concentrations up to 9 mg/mL) characterize the protein as compact and stable homodimer without evidence for aggregation. The crystal structure of chicken (C-)GRIFIN at seven pH values from 4.2 to 8.5 is reported, revealing compelling stability. Binding of lactose despite the Arg71Val deviation from the sequence signature of galectins matched the otherwise canonical contact pattern with thermodynamics of an enthalpically driven process. Upon lactose accommodation, the side chain of Arg50 is shifted for hydrogen bonding to the 3-hydroxyl of glucose. No evidence for a further ligand-dependent structural alteration was obtained in solution by measuring hydrogen/deuterium exchange mass spectrometrically in peptic fingerprints. The introduction of the Asn48Lys mutation, characteristic for mammalian GRIFINs that have lost lectin activity, lets labeled C-GRIFIN maintain capacity to stain tissue sections. Binding is no longer inhibitable by lactose, as seen for the wild-type protein. These results establish the basis for detailed structure-activity considerations and are a step to complete the structural description of all seven members of the galectin network in chicken. First crystal structure of an eye lens GRIFIN defines differences to galectins. pH screening discloses high degree of structural stability in crystals. Hydrogen-deuterium exchange reveals unusually rigid structure in solution. Lectin histochemical assays identify critical sites for in situ ligand binding.
Collapse
Affiliation(s)
- Federico M Ruiz
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ulrich Gilles
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany
| | - Celia Sehad
- Pharmaqam and Nanoqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Tze Chieh Shiao
- Pharmaqam and Nanoqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - René Roy
- Pharmaqam and Nanoqam, Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
49
|
Laaf D, Steffens H, Pelantová H, Bojarová P, Křen V, Elling L. Chemo-Enzymatic Synthesis of BranchedN-Acetyllactosamine Glycan Oligomers for Galectin-3 Inhibition. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Hanna Steffens
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Helena Pelantová
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 14220 Prague Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 14220 Prague Czech Republic
| | - Vladimír Křen
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 14220 Prague Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| |
Collapse
|
50
|
Laaf D, Bojarová P, Pelantová H, Křen V, Elling L. Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands. Bioconjug Chem 2017; 28:2832-2840. [PMID: 28976746 DOI: 10.1021/acs.bioconjchem.7b00520] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Galectin-3 (Gal-3), a member of the β-galactoside-binding lectin family, is a tumor biomarker and involved in tumor angiogenesis and metastasis. Gal-3 is therefore considered as a promising target for early cancer diagnosis and anticancer therapy. We here present the synthesis of a library of tailored multivalent neo-glycoproteins and evaluate their Gal-3 binding properties. By the combinatorial use of glycosyltransferases and chemo-enzymatic reactions, we first synthesized a set of N-acetyllactosamine (Galβ1,4GlcNAc; LacNAc type 2)-based oligosaccharides featuring five different terminating glycosylation epitopes, respectively. Neo-glycosylation of bovine serum albumin (BSA) was accomplished by dialkyl squarate coupling to lysine residues resulting in a library of defined multivalent neo-glycoproteins. Solid-phase binding assays with immobilized neo-glycoproteins revealed distinct affinity and specificity of the multivalent glycan epitopes for Gal-3 binding. In particular, neo-glycoproteins decorated with N',N″-diacetyllactosamine (GalNAcβ1,4GlcNAc; LacdiNAc) epitopes showed high selectivity and were demonstrated to capture Gal-3 from human serum with high affinity. Furthermore, neo-glycoproteins with terminal biotinylated LacNAc glycan motif could be utilized as Gal-3 detection agents in a sandwich enzyme-linked immunosorbent assay format. We conclude that, in contrast to antibody-based capture steps, the presented neo-glycoproteins are highly useful to detect functionally intact Gal-3 with high selectivity and avidity. We further gain novel insights into the binding affinity of Gal-3 using tailored multivalent neo-glycoproteins, which have the potential for an application in the context of cancer-related biomedical research.
Collapse
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 20, 52074 Aachen, Germany
| |
Collapse
|