1
|
Falck J, Zhang L, Raffington L, Mohn JJ, Triesch J, Heim C, Shing YL. Hippocampus and striatum show distinct contributions to longitudinal changes in value-based learning in middle childhood. eLife 2024; 12:RP89483. [PMID: 38953517 PMCID: PMC11219037 DOI: 10.7554/elife.89483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The hippocampal-dependent memory system and striatal-dependent memory system modulate reinforcement learning depending on feedback timing in adults, but their contributions during development remain unclear. In a 2-year longitudinal study, 6-to-7-year-old children performed a reinforcement learning task in which they received feedback immediately or with a short delay following their response. Children's learning was found to be sensitive to feedback timing modulations in their reaction time and inverse temperature parameter, which quantifies value-guided decision-making. They showed longitudinal improvements towards more optimal value-based learning, and their hippocampal volume showed protracted maturation. Better delayed model-derived learning covaried with larger hippocampal volume longitudinally, in line with the adult literature. In contrast, a larger striatal volume in children was associated with both better immediate and delayed model-derived learning longitudinally. These findings show, for the first time, an early hippocampal contribution to the dynamic development of reinforcement learning in middle childhood, with neurally less differentiated and more cooperative memory systems than in adults.
Collapse
Affiliation(s)
- Johannes Falck
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Institute for Mental Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Developmental Science, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Laurel Raffington
- Max Planck Research Group Biosocial, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Johannes Julius Mohn
- Charité – Universitätsmedizin Berlin, Institute of Medical PsychologyBerlinGermany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany
| | - Christine Heim
- Charité – Universitätsmedizin Berlin, Institute of Medical PsychologyBerlinGermany
- Center for Safe & Healthy Children, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Yee Lee Shing
- Department of Psychology, Goethe University FrankfurtFrankfurtGermany
| |
Collapse
|
2
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2024:00000539-990000000-00807. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, California
| | - Bradley S Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Takacs A, Toth-Faber E, Schubert L, Tárnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Resting network architecture of theta oscillations reflects hyper-learning of sensorimotor information in Gilles de la Tourette syndrome. Brain Commun 2024; 6:fcae092. [PMID: 38562308 PMCID: PMC10984574 DOI: 10.1093/braincomms/fcae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics. It is associated with enhanced processing of stimulus-response associations, including a higher propensity to learn probabilistic stimulus-response contingencies (i.e. statistical learning), the nature of which is still elusive. In this study, we investigated the hypothesis that resting-state theta network organization is a key for the understanding of superior statistical learning in these patients. We investigated the graph-theoretical network architecture of theta oscillations in adult patients with Gilles de la Tourette syndrome and healthy controls during a statistical learning task and in resting states both before and after learning. We found that patients with Gilles de la Tourette syndrome showed a higher statistical learning score than healthy controls, as well as a more optimal (small-world-like) theta network before the task. Thus, patients with Gilles de la Tourette syndrome had a superior facility to integrate and evaluate novel information as a trait-like characteristic. Additionally, the theta network architecture in Gilles de la Tourette syndrome adapted more to the statistical information during the task than in HC. We suggest that hyper-learning in patients with Gilles de la Tourette syndrome is likely a consequence of increased sensitivity to perceive and integrate sensorimotor information leveraged through theta oscillation-based resting-state dynamics. The study delineates the neural basis of a higher propensity in patients with Gilles de la Tourette syndrome to pick up statistical contingencies in their environment. Moreover, the study emphasizes pathophysiologically endowed abilities in patients with Gilles de la Tourette syndrome, which are often not taken into account in the perception of this common disorder but could play an important role in destigmatization.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Eszter Toth-Faber
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest 1064, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lina Schubert
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, Budapest 1021, Hungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron 69500, France
- NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1071, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria 35017, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| |
Collapse
|
4
|
Arutiunian V, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Reduced grey matter volume of amygdala and hippocampus is associated with the severity of autistic symptoms and language abilities in school-aged children with Autism Spectrum Disorder: an exploratory study. Brain Struct Funct 2023; 228:1573-1579. [PMID: 37302090 DOI: 10.1007/s00429-023-02660-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The core symptoms of Autism Spectrum Disorder (ASD) are impairments in social interaction/communication and the presence of stereotyped and repetitive behaviour. The amygdala and hippocampus are involved in core functions in the "social brain" and, thus, may be of particular interest in ASD. Previous studies demonstrated inconsistent results, revealing both increased and reduced volume of these brain structures in individuals with ASD. In this study, we investigated the grey and white matter volumes of amygdala and hippocampus in primary-school-aged children with and without ASD. Also, we assessed the relationships between the volume of brain structures and behavioural measures in children with ASD. A total of 36 children participated in the study: 18 children with ASD (13 boys, age range 8.01-14.01 years, mean age (Mage) = 10.02, standard deviation (SD) = 1.76) and 18 age- and sex-matched typically developing controls (13 boys, age range 7.06-12.03 years, Mage = 10.00, SD = 1.38). The whole-brain structural magnetic resonance imaging (MRI) was applied to acquire T1 images for each child. The results showed a bilateral reduction in grey matter volume of amygdala and hippocampus in children with ASD, but no difference was found in white matter volume. Importantly, pathological reduction in grey matter volume of amygdala was associated with lower language skills and more severe autistic traits; also, a reduced grey matter volume of the left hippocampus was related to lower language skills in the ASD group.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave., Seattle, WA, 98101, USA.
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Haskins Laboratories, New Haven, CT, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Scientific Research and Practical Center of Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Nissan N, Hertz U, Shahar N, Gabay Y. Distinct reinforcement learning profiles distinguish between language and attentional neurodevelopmental disorders. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:6. [PMID: 36941632 PMCID: PMC10029183 DOI: 10.1186/s12993-023-00207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/26/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Theoretical models posit abnormalities in cortico-striatal pathways in two of the most common neurodevelopmental disorders (Developmental dyslexia, DD, and Attention deficit hyperactive disorder, ADHD), but it is still unclear what distinct cortico-striatal dysfunction might distinguish language disorders from others that exhibit very different symptomatology. Although impairments in tasks that depend on the cortico-striatal network, including reinforcement learning (RL), have been implicated in both disorders, there has been little attempt to dissociate between different types of RL or to compare learning processes in these two types of disorders. The present study builds upon prior research indicating the existence of two learning manifestations of RL and evaluates whether these processes can be differentiated in language and attention deficit disorders. We used a two-step RL task shown to dissociate model-based from model-free learning in human learners. RESULTS Our results show that, relative to neurotypicals, DD individuals showed an impairment in model-free but not in model-based learning, whereas in ADHD the ability to use both model-free and model-based learning strategies was significantly compromised. CONCLUSIONS Thus, learning impairments in DD may be linked to a selective deficit in the ability to form action-outcome associations based on previous history, whereas in ADHD some learning deficits may be related to an incapacity to pursue rewards based on the tasks' structure. Our results indicate how different patterns of learning deficits may underlie different disorders, and how computation-minded experimental approaches can differentiate between them.
Collapse
Affiliation(s)
- Noyli Nissan
- Department of Special Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, 199 Abba Khoushy Ave, Haifa, Israel
| | - Uri Hertz
- Department of Cognitive Sciences, University of Haifa, Haifa, Israel
| | - Nitzan Shahar
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yafit Gabay
- Department of Special Education, University of Haifa, Haifa, Israel.
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, 199 Abba Khoushy Ave, Haifa, Israel.
| |
Collapse
|
6
|
Goodman J, Leong KC, Packard MG. NMDA receptor blockade in the dorsolateral striatum impairs consolidation but not retrieval of habit memory. Neurobiol Learn Mem 2023; 197:107709. [PMID: 36503101 DOI: 10.1016/j.nlm.2022.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
The present study investigated whether N-methyl-d-aspartate (NMDA) receptors in the dorsolateral striatum (DLS) mediate consolidation and retrieval of habit memory. Adult male Long-Evans rats were trained in a response learning version of a water plus-maze task in which rats were reinforced to make a habitual and consistent body-turn response at the maze choice point in order to mount a hidden escape platform. Prior research indicates that acquisition, consolidation, and retrieval in this task requires DLS function. The present study consisted of two experiments. In Experiment 1, rats received intra-DLS post-training injections of the NMDA receptor antagonist 2-amino-5- phosphonopentanoic acid (AP5; 2 µg/side) to examine the role of NMDA receptors in consolidation of habit memory. In Experiment 2, different groups of rats received a single pre-retrieval injection of AP5 in the DLS (AP5; 2 µg/side) during the last day of maze training to examine the potential role of NMDA receptors in retrieval of habit memory. Results indicated that post-training intra-DLS AP5 injections impaired memory consolidation. However, administration of AP5 at the same dose that impaired consolidation had no effect on memory retrieval. The findings are consistent with previous research indicating a role for NMDA receptors in the DLS in memory consolidation, and suggest that NMDA-dependent synaptic activity in the DLS may not be a critical component of habit memory retrieval.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| | - Kah-Chung Leong
- Department of Psychology, Trinity University, San Antonio, TX, United States
| | - Mark G Packard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Male DAT Val559 Mice Exhibit Compulsive Behavior under Devalued Reward Conditions Accompanied by Cellular and Pharmacological Changes. Cells 2022; 11:cells11244059. [PMID: 36552823 PMCID: PMC9777203 DOI: 10.3390/cells11244059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Identified across multiple psychiatric disorders, the dopamine (DA) transporter (DAT) Ala559Val substitution triggers non-vesicular, anomalous DA efflux (ADE), perturbing DA neurotransmission and behavior. We have shown that DAT Val559 mice display a waiting impulsivity and changes in cognitive performance associated with enhanced reward motivation. Here, utilizing a within-subject, lever-pressing paradigm designed to bias the formation of goal-directed or habitual behavior, we demonstrate that DAT Val559 mice modulate their nose poke behavior appropriately to match context, but demonstrate a perseverative checking behavior. Although DAT Val559 mice display no issues with the cognitive flexibility required to acquire and re-learn a visual pairwise discrimination task, devaluation of reward evoked habitual reward seeking in DAT Val559 mutants in operant tasks regardless of reinforcement schedule. The direct DA agonist apomorphine also elicits locomotor stereotypies in DAT Val559, but not WT mice. Our observation that dendritic spine density is increased in the dorsal medial striatum (DMS) of DAT Val559 mice speaks to an imbalance in striatal circuitry that might underlie the propensity of DAT Val559 mutants to exhibit compulsive behaviors when reward is devalued. Thus, DAT Val559 mice represent a model for dissection of how altered DA signaling perturbs circuits that normally balance habitual and goal-directed behaviors.
Collapse
|
8
|
A failure of sleep-dependent consolidation of visuoperceptual procedural learning in young adults with ADHD. Transl Psychiatry 2022; 12:499. [PMID: 36460644 PMCID: PMC9718731 DOI: 10.1038/s41398-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
ADHD has been associated with cortico-striatal dysfunction that may lead to procedural memory abnormalities. Sleep plays a critical role in consolidating procedural memories, and sleep problems are an integral part of the psychopathology of ADHD. This raises the possibility that altered sleep processes characterizing those with ADHD could contribute to their skill-learning impairments. On this basis, the present study tested the hypothesis that young adults with ADHD have altered sleep-dependent procedural memory consolidation. Participants with ADHD and neurotypicals were trained on a visual discrimination task that has been shown to benefit from sleep. Half of the participants were tested after a 12-h break that included nocturnal sleep (sleep condition), whereas the other half were tested after a 12-h daytime break that did not include sleep (wakefulness condition) to assess the specific contribution of sleep to improvement in task performance. Despite having a similar degree of initial learning, participants with ADHD did not improve in the visual discrimination task following a sleep interval compared to neurotypicals, while they were on par with neurotypicals during the wakefulness condition. These findings represent the first demonstration of a failure in sleep-dependent consolidation of procedural learning in young adults with ADHD. Such a failure is likely to disrupt automatic control routines that are normally provided by the non-declarative memory system, thereby increasing the load on attentional resources of individuals with ADHD.
Collapse
|
9
|
Gadberry TM, Goodman J, Packard MG. Chronic corticosterone administration in adolescence enhances dorsolateral striatum-dependent learning in adulthood. Front Behav Neurosci 2022; 16:970304. [PMID: 36035016 PMCID: PMC9413048 DOI: 10.3389/fnbeh.2022.970304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Previous evidence indicates a link between early life stress (ELS) in humans and a predisposition to psychopathologies that are characterized in part by maladaptive habitual behaviors. Stress and anxiety influence the relative use of mammalian memory systems implicated in these disorders. Specifically, cognitive memory functions of the hippocampus are typically impaired by stress/anxiety, whereas habit memory functions of the dorsolateral striatum (DLS) are enhanced. A stress/anxiety bias toward habit memory has largely been demonstrated in adult rodents and humans, and the effects of ELS on the later use of DLS-dependent habit memory in adult rodents have not been extensively examined. The present study addressed this question by chronically elevating corticosterone (CORT) during adolescence, and investigated the effects of this treatment on DLS-dependent habit learning in adulthood. In experiment 1, adolescent rats received a single daily injection of either CORT (5 mg/kg) or vehicle (cVEH) over 5 days and then matured undisturbed before training as adults in a DLS-dependent water plus-maze task. Rats administered CORT injections during adolescence displayed a strong trend toward enhanced learning during adulthood relative to vehicle-treated rats. Adolescent CORT administration also increased anxiety-like behavior in adulthood in an elevated plus-maze. In experiment 2, adolescent CORT administration enhanced task acquisition in adulthood, and this effect was blocked by concurrent administration of the glucocorticoid antagonist mifepristone (30 mg/kg). Taken together, these findings suggest that chronic elevation of glucocorticoids during adolescence are sufficient to facilitate habit learning in adulthood, and indicate that glucocorticoid function may be a potential underlying mechanism by which ELS influences subsequent habitual behaviors.
Collapse
Affiliation(s)
- Ty M. Gadberry
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| | - Mark G. Packard
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- *Correspondence: Mark G. Packard,
| |
Collapse
|
10
|
Farkas BC, Tóth-Fáber E, Janacsek K, Nemeth D. A Process-Oriented View of Procedural Memory Can Help Better Understand Tourette's Syndrome. Front Hum Neurosci 2021; 15:683885. [PMID: 34955784 PMCID: PMC8707288 DOI: 10.3389/fnhum.2021.683885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by repetitive movements and vocalizations, also known as tics. The phenomenology of tics and the underlying neurobiology of the disorder have suggested that the altered functioning of the procedural memory system might contribute to its etiology. However, contrary to the robust findings of impaired procedural memory in neurodevelopmental disorders of language, results from TS have been somewhat mixed. We review the previous studies in the field and note that they have reported normal, impaired, and even enhanced procedural performance. These mixed findings may be at least partially be explained by the diversity of the samples in both age and tic severity, the vast array of tasks used, the low sample sizes, and the possible confounding effects of other cognitive functions, such as executive functions, working memory or attention. However, we propose that another often overlooked factor could also contribute to the mixed findings, namely the multiprocess nature of the procedural system itself. We propose that a process-oriented view of procedural memory functions could serve as a theoretical framework to help integrate these varied findings. We discuss evidence suggesting heterogeneity in the neural regions and their functional contributions to procedural memory. Our process-oriented framework can help to deepen our understanding of the complex profile of procedural functioning in TS and atypical development in general.
Collapse
Affiliation(s)
- Bence Cs. Farkas
- LNC, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Abstract
Extremely preterm birth is associated with increased risk for a spectrum of neurodevelopmental problems. This review describes the nature of cognitive and academic outcomes of extremely preterm survivors across childhood and adolescence. Evidence across meta-analyses and large prospective birth cohorts indicate that early developmental difficulties in children born extremely preterm do not resolve with age and are not improving over time despite advancements in neonatal care. While extremely preterm birth confers increased risk of widespread cognitive difficulties, considerable heterogeneity in outcomes is evident across individuals. There is a continued need for high-quality longitudinal studies to understand the developmental progression of cognitive and academic skills following extremely preterm birth, and greater focus on understanding contributing factors that may help to explain the individual variability in cognitive and academic outcomes of extremely preterm survivors.
Collapse
Affiliation(s)
- Leona Pascoe
- Turner Institute for Brain and Mental Health, Monash University, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Alice C Burnett
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, Monash University, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
12
|
Tóth-Fáber E, Tárnok Z, Takács Á, Janacsek K, Németh D. Access to Procedural Memories After One Year: Evidence for Robust Memory Consolidation in Tourette Syndrome. Front Hum Neurosci 2021; 15:715254. [PMID: 34475817 PMCID: PMC8407083 DOI: 10.3389/fnhum.2021.715254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome is a childhood-onset neurodevelopmental disorder characterized by motor and vocal tics. On the neural level, tics are thought to be related to the disturbances of the cortico-basal ganglia-thalamo-cortical loops, which also play an important role in procedural learning. Several studies have investigated the acquisition of procedural information and the access to established procedural information in TS. Based on these, the notion of procedural hyperfunctioning, i.e., enhanced procedural learning, has been proposed. However, one neglected area is the retention of acquired procedural information, especially following a long-term offline period. Here, we investigated the 5-hour and 1-year consolidation of two aspects of procedural memory, namely serial-order and probability-based information. Nineteen children with TS between the ages of 10 and 15 as well as 19 typically developing gender- and age-matched controls were tested on a visuomotor four-choice reaction time task that enables the simultaneous assessment of the two aspects. They were retested on the same task 5 hours and 1 year later without any practice in the offline periods. Both groups successfully acquired and retained the probability-based information both when tested 5 hours and then 1 year later, with comparable performance between the TS and control groups. Children with TS did not acquire the serial-order information during the learning phase; hence, retention could not be reliably tested. Our study showed evidence for short-term and long-term retention of one aspect of procedural memory, namely probability-based information in TS, whereas learning of serial-order information might be impaired in this disorder.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital, Budapest, Hungary
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezső Németh
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université de Lyon, Lyon, France
| |
Collapse
|
13
|
Packard MG, Gadberry T, Goodman J. Neural systems and the emotion-memory link. Neurobiol Learn Mem 2021; 185:107503. [PMID: 34418544 DOI: 10.1016/j.nlm.2021.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
The present brief review for this Special Issue summarizes some of the original research on the emotional modulation of memory. The review begins by highlighting the pioneering research from James L. McGaugh and colleagues demonstrating modulatory effects of post-training drug administration on memory consolidation, in particular the stress hormone epinephrine. The subsequent discovery of a critical role for the basolateral amygdala in emotional modulation of memory is described. Within the context of a multiple systems approach to memory focusing on selective roles for the hippocampus and dorsolateral striatum in cognitive and habit memory, the original studies indicating that robust emotional arousal can bias animals and humans toward the predominant use of habit memory are reviewed. This effect of emotional arousal on the relative use of multiple memory systems depends on a modulatory role of the basolateral amygdala. Finally, we briefly consider how an emotion-induced enhancement of dorsolateral striatal-dependent memory may be relevant to understanding maladaptive habitual behaviors in certain human psychopathologies.
Collapse
Affiliation(s)
- Mark G Packard
- Department of Psychological and Brain Sciences, Texas A&M University, United States.
| | - Ty Gadberry
- Department of Psychological and Brain Sciences, Texas A&M University, United States
| | - Jarid Goodman
- Department of Psychology, Delaware State University, United States
| |
Collapse
|
14
|
Takacs A, Münchau A, Nemeth D, Roessner V, Beste C. Lower-level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. Eur J Neurosci 2021; 54:5143-5160. [PMID: 34155701 DOI: 10.1111/ejn.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Gilles de la Tourette syndrome (GTS) can be characterized by enhanced cognitive functions related to creating, modifying and maintaining connections between stimuli and responses (S-R links). Specifically, two areas, procedural sequence learning and, as a novel finding, also event file binding, show converging evidence of hyperfunctioning in GTS. In this review, we describe how these two enhanced functions can be considered as cognitive mechanisms behind habitual behaviour, such as tics in GTS. Moreover, the presence of both procedural sequence learning and event file binding hyperfunctioning in the same disorder can be treated as evidence for their functional connections, even beyond GTS. Importantly though, we argue that hyperfunctioning of event file binding and procedural learning are not interchangeable: they have different time scales, different sensitivities to potential impairment in action sequencing and distinguishable contributions to the cognitive profile of GTS. An integrated theoretical account of hyperbinding and hyperlearning in GTS allows to formulate predictions for the emergence, activation and long-term persistence of tics in GTS.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Dezso Nemeth
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
15
|
Song S, Qiu J, Lu W. Predicting disease severity in children with combined attention deficit hyperactivity disorder using quantitative features from structural MRI of amygdaloid and hippocampal subfields. J Neural Eng 2021; 18. [PMID: 33706290 DOI: 10.1088/1741-2552/abeddf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Volumetric changes in the amygdaloid and hippocampal subfields have been observed in children with combined attention deficit hyperactivity disorder (ADHD-C). The purpose of this study was to investigate whether volumetric changes in the amygdaloid and hippocampal subfields could be used to predict disease severity in children with ADHD-C. APPROACH The data used in this study was from ADHD-200 datasets, a total of 76 ADHD-C patients were included in this study. T1 structural MRI data were used and 64 structural features from the amygdala and hippocampus were extracted. Three ADHD rating scales were used as indicators of ADHD severity. Sequential backward elimination (SBE) algorithm was used for feature selection. A linear support vector regression (SVR) was configured to predict disease severity in children with ADHD-C. MAIN RESULTS The three ADHD rating scales could be accurately predicted with the use of SBE-SVR. SBE-SVR achieved the highest accuracy in predicting ADHD index with a correlation of 0.7164 (p < 0.001, tested with 1000-time permutation test). Mean squared error of the SVR was 43.6868, normalized mean squared error was 0.0086, mean absolute error was 3.2893. Several amygdaloid and hippocampal subregions were significantly related to ADHD severity, as revealed by the absolute weight from the SVR model. SIGNIFICANCE The proposed SBE-SVR could accurately predict the severity of patients with ADHD-C based on quantitative features extracted from the amygdaloid and hippocampal structures. The results also demonstrated that the two subcortical nuclei could be used as potential biomarkers in the progression and evaluation of ADHD.
Collapse
Affiliation(s)
- Shanghu Song
- Department of Radiology, Shandong First Medical University, No. 619 Changcheng Road, Taian, Shandong, 271016, CHINA
| | - Jianfeng Qiu
- Shandong Medical University, No. 6699 Qingdao Road, Jinan, 250100, CHINA
| | - Weizhao Lu
- Department of Radiology, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, Shandong, 250000, CHINA
| |
Collapse
|
16
|
Tóth-Fáber E, Tárnok Z, Janacsek K, Kóbor A, Nagy P, Farkas BC, Oláh S, Merkl D, Hegedűs O, Nemeth D, Takács Á. Dissociation between two aspects of procedural learning in Tourette syndrome: Enhanced statistical and impaired sequence learning. Child Neuropsychol 2021; 27:799-821. [DOI: 10.1080/09297049.2021.1894110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Nagy
- Vadaskert Child Psychiatry Hospital, Budapest, Hungary
- Bethesda Children's Hospital, Budapest, Hungary
| | - Bence Csaba Farkas
- Laboratoire de neurosciences Cognitives et computationnelles, Departement d’etudes Cognitives, École normale superieure, INSERM, PSL University, Paris, France
| | - Szabina Oláh
- Vadaskert Child Psychiatry Hospital, Budapest, Hungary
| | - Dóra Merkl
- Vadaskert Child Psychiatry Hospital, Budapest, Hungary
| | | | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université de Lyon 1, Lyon, France
| | - Ádám Takács
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Goodman J. Place vs. Response Learning: History, Controversy, and Neurobiology. Front Behav Neurosci 2021; 14:598570. [PMID: 33643005 PMCID: PMC7904695 DOI: 10.3389/fnbeh.2020.598570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023] Open
Abstract
The present article provides a historical review of the place and response learning plus-maze tasks with a focus on the behavioral and neurobiological findings. The article begins by reviewing the conflict between Edward C. Tolman's cognitive view and Clark L. Hull's stimulus-response (S-R) view of learning and how the place and response learning plus-maze tasks were designed to resolve this debate. Cognitive learning theorists predicted that place learning would be acquired faster than response learning, indicating the dominance of cognitive learning, whereas S-R learning theorists predicted that response learning would be acquired faster, indicating the dominance of S-R learning. Here, the evidence is reviewed demonstrating that either place or response learning may be dominant in a given learning situation and that the relative dominance of place and response learning depends on various parametric factors (i.e., amount of training, visual aspects of the learning environment, emotional arousal, et cetera). Next, the neurobiology underlying place and response learning is reviewed, providing strong evidence for the existence of multiple memory systems in the mammalian brain. Research has indicated that place learning is principally mediated by the hippocampus, whereas response learning is mediated by the dorsolateral striatum. Other brain regions implicated in place and response learning are also discussed in this section, including the dorsomedial striatum, amygdala, and medial prefrontal cortex. An exhaustive review of the neurotransmitter systems underlying place and response learning is subsequently provided, indicating important roles for glutamate, dopamine, acetylcholine, cannabinoids, and estrogen. Closing remarks are made emphasizing the historical importance of the place and response learning tasks in resolving problems in learning theory, as well as for examining the behavioral and neurobiological mechanisms of multiple memory systems. How the place and response learning tasks may be employed in the future for examining extinction, neural circuits of memory, and human psychopathology is also briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| |
Collapse
|
18
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
19
|
Eördegh G, Pertich Á, Tárnok Z, Nagy P, Bodosi B, Giricz Z, Hegedűs O, Merkl D, Nyujtó D, Oláh S, Őze A, Vidomusz R, Nagy A. Impairment of visually guided associative learning in children with Tourette syndrome. PLoS One 2020; 15:e0234724. [PMID: 32544176 PMCID: PMC7297359 DOI: 10.1371/journal.pone.0234724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
The major symptoms of Tourette syndrome are motor and vocal tics, but Tourette syndrome is occasionally associated with cognitive alterations as well. Although Tourette syndrome does not affect the majority of cognitive functions, some of them improve. There is scarce evidence on the impairment of learning functions in patients with Tourette syndrome. The core symptoms of Tourette syndrome are related to dysfunction of the basal ganglia and the frontostriatal loops. Acquired equivalence learning is a kind of associative learning that is related to the basal ganglia and the hippocampi. The modified Rutgers Acquired Equivalence Test was used in the present study to observe the associative learning function of patients with Tourette syndrome. The cognitive learning task can be divided into two main phases: the acquisition and test phases. The latter is further divided into two parts: retrieval and generalization. The acquisition phase of the associative learning test, which mainly depends on the function of the basal ganglia, was affected in the entire patient group, which included patients with Tourette syndrome with attention deficit hyperactivity disorder, obsessive compulsive disorder, autism spectrum disorder, or no comorbidities. Patients with Tourette syndrome performed worse in building associations. However, the retrieval and generalization parts of the test phase, which primarily depend on the function of the hippocampus, were not worsened by Tourette syndrome.
Collapse
Affiliation(s)
- Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Ákos Pertich
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Péter Nagy
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Balázs Bodosi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsófia Giricz
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Orsolya Hegedűs
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Dóra Merkl
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Diána Nyujtó
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szabina Oláh
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Attila Őze
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Réka Vidomusz
- Vadaskert Child and Adolescent Psychiatry, Budapest, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
20
|
Richards R, Greimel E, Kliemann D, Koerte IK, Schulte-Körne G, Reuter M, Wachinger C. Increased hippocampal shape asymmetry and volumetric ventricular asymmetry in autism spectrum disorder. NEUROIMAGE-CLINICAL 2020; 26:102207. [PMID: 32092683 PMCID: PMC7037573 DOI: 10.1016/j.nicl.2020.102207] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Found increased subcortical asymmetry associated with autism. Utilized a new measure of shape asymmetry for analysis of structural differences. Observed significantly increased shape asymmetry of the hippocampus. Observed significantly increased volumetric asymmetry in the lateral ventricles. Focalized abnormalities may result in detectable shape (but not volume) differences.
Autism spectrum disorder (ASD) is a prevalent and fast-growing pervasive neurodevelopmental disorder worldwide. Despite the increasing prevalence of ASD and the breadth of research conducted on the disorder, a conclusive etiology has yet to be established and controversy still exists surrounding the anatomical abnormalities in ASD. In particular, structural asymmetries have seldom been investigated in ASD, especially in subcortical regions. Additionally, the majority of studies for identifying structural biomarkers associated with ASD have focused on small sample sizes. Therefore, the present study utilizes a large-scale, multi-site database to investigate asymmetries in the amygdala, hippocampus, and lateral ventricles, given the potential involvement of these regions in ASD. Contrary to prior work, we are not only computing volumetric asymmetries, but also shape asymmetries, using a new measure of asymmetry based on spectral shape descriptors. This measure represents the magnitude of the asymmetry and therefore captures both directional and undirectional asymmetry. The asymmetry analysis is conducted on 437 individuals with ASD and 511 healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE) database. Results reveal significant asymmetries in the hippocampus and the ventricles, but not in the amygdala, in individuals with ASD. We observe a significant increase in shape asymmetry in the hippocampus, as well as increased volumetric asymmetry in the lateral ventricles in individuals with ASD. Asymmetries in these regions have not previously been reported, likely due to the different characterization of neuroanatomical asymmetry and smaller sample sizes used in previous studies. Given that these results were demonstrated in a large cohort, such asymmetries may be worthy of consideration in the development of neurodiagnostic classification tools for ASD.
Collapse
Affiliation(s)
- Rose Richards
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany.
| | - Ellen Greimel
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany
| | - Dorit Kliemann
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany
| | - Martin Reuter
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA; Image Analysis, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christian Wachinger
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, University Hospital, Ludwig-Maximilian-University, Nussbaumstr. 5a, 80336 Munich, Germany.
| |
Collapse
|
21
|
Staniloiu A, Kordon A, Markowitsch HJ. Quo vadis 'episodic memory'? - Past, present, and perspective. Neuropsychologia 2020; 141:107362. [PMID: 32014452 DOI: 10.1016/j.neuropsychologia.2020.107362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/01/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
The term 'episodic memory' was coined by Endel Tulving, who also created a classification in several memory systems. This classification is presented, and it is described which predecessors existed for the partition of memory into systems. The 'episodic memory system' is discussed as being in general equivalent with the 'episodic-autobiographical memory system'. It is seen as an emotionally colorized system. A special paragraph is devoted to the 'perceptual memory system', as this was not included in Tulving's previous schemes of memory systems. More recent sub-categorizations of the 'episodic memory system' are presented and a perspective on the future of the episodic memory system is developed.
Collapse
Affiliation(s)
- Angelica Staniloiu
- University of Bielefeld, Germany; University of Bucharest, Romania; Oberberg Clinic Hornberg, Germany
| | - Andreas Kordon
- Oberberg Clinic Hornberg, Germany; University of Freiburg, Germany
| | | |
Collapse
|
22
|
Goodman J, McClay M, Dunsmoor JE. Threat-induced modulation of hippocampal and striatal memory systems during navigation of a virtual environment. Neurobiol Learn Mem 2020; 168:107160. [PMID: 31918021 DOI: 10.1016/j.nlm.2020.107160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
The brain is composed of multiple memory systems that mediate distinct types of navigation. The hippocampus is important for encoding and retrieving allocentric spatial cognitive maps, while the dorsal striatum mediates procedural memories based on stimulus-response (S-R) associations. These memory systems are differentially affected by emotional arousal. In particular, rodent studies show that stress typically impairs hippocampal spatial memory while it spares or sometimes enhances striatal S-R memory. The influence of emotional arousal on these separate navigational memory systems has received less attention in human subjects. We investigated the effect of dynamic changes in anticipatory anxiety on hippocampal spatial and dorsal striatal S-R memory systems while participants attempted to solve a virtual eight-arm radial maze. In Experiment 1, participants completed a hippocampus-dependent spatial version of the eight-arm radial maze that required allocentric spatial memory to successfully navigate the environment. In Experiment 2, participants completed a dorsal striatal S-R version of the maze where no allocentric spatial cues were present, requiring the use of S-R navigation. Anticipatory anxiety was modulated via threat of receiving an unpleasant electrical shock to the wrist during memory retrieval. Results showed that threat of shock was associated with more errors and increased use of non-spatial navigational strategies in the hippocampal spatial task, but did not influence memory performance in the striatal S-R task. Findings indicate a dissociation regarding the influence of anticipatory anxiety on memory systems that has implications for understanding how fear and anxiety contribute to memory-related symptoms in human psychopathologies.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States; Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States.
| | - Mason McClay
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States
| | - Joseph E Dunsmoor
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States.
| |
Collapse
|
23
|
Pertich Á, Eördegh G, Németh L, Hegedüs O, Öri D, Puszta A, Nagy P, Kéri S, Nagy A. Maintained Visual-, Auditory-, and Multisensory-Guided Associative Learning Functions in Children With Obsessive-Compulsive Disorder. Front Psychiatry 2020; 11:571053. [PMID: 33324251 PMCID: PMC7726134 DOI: 10.3389/fpsyt.2020.571053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Sensory-guided acquired equivalence learning, a specific kind of non-verbal associative learning, is associated with the frontal cortex-basal ganglia loops and hippocampi, which seem to be involved in the pathogenesis of obsessive-compulsive disorder (OCD). In this study, we asked whether visual-, auditory-, and multisensory-guided associative acquired equivalence learning is affected in children with OCD. The first part of the applied learning paradigm investigated association building between two different sensory stimuli (where feedback was given about the correctness of the choices), a task that critically depends upon the basal ganglia. During the test phases, which primarily depended upon the hippocampi, the earlier learned and hitherto not shown but predictable associations were asked about without feedback. This study involved 31 children diagnosed with OCD according to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-V) criteria and 31 matched healthy control participants. The children suffering from OCD had the same performance as the control children in all phases of the applied visual-, auditory-, and multisensory-guided associative learning paradigms. Thus, both the acquisition and test phases were not negatively affected by OCD. The reaction times did not differ between the two groups, and the applied medication had no effect on the performances of the OCD patients. Our results support the findings that the structural changes of basal ganglia and hippocampi detected in adult OCD patients are not as pronounced in children, which could be the explanation of the maintained associative equivalence learning functions in children suffering from OCD.
Collapse
Affiliation(s)
- Ákos Pertich
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Laura Németh
- Vadaskert Child and Adolescent Psychiatric Clinic, Budapest, Hungary
| | - Orsolya Hegedüs
- Vadaskert Child and Adolescent Psychiatric Clinic, Budapest, Hungary
| | - Dorottya Öri
- Vadaskert Child and Adolescent Psychiatric Clinic, Budapest, Hungary
| | - András Puszta
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Nagy
- Vadaskert Child and Adolescent Psychiatric Clinic, Budapest, Hungary
| | - Szabolcs Kéri
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Weisner PA, Chen CY, Sun Y, Yoo J, Kao WC, Zhang H, Baltz ET, Troy JM, Stubbs L. A Mouse Mutation That Dysregulates Neighboring Galnt17 and Auts2 Genes Is Associated with Phenotypes Related to the Human AUTS2 Syndrome. G3 (BETHESDA, MD.) 2019; 9:3891-3906. [PMID: 31554716 PMCID: PMC6829118 DOI: 10.1534/g3.119.400723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/19/2019] [Indexed: 01/23/2023]
Abstract
AUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder, intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, sugg esting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest is the nearest downstream neighbor of AUTS2, GALNT17, which encodes a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with autism and other types of AUTS2-linked neurological disease. Analyzing mutant cerebellar and hippocampal transcriptomes to explain this pathology, we identified disturbances in pathways related to neuron and synapse maturation, neurotransmitter signaling, and cellular stress, suggesting possible cellular mechanisms. These pathways, coupled with the translocation's selective effects on Auts2 isoforms and coordinated dysregulation of Galnt17, suggest novel hypotheses regarding the etiology of the human "AUTS2 syndrome" and the wide array of neurodevelopmental disorders linked to variance in this genomic region.
Collapse
Affiliation(s)
- P Anne Weisner
- Carl R. Woese Institute for Genomic Biology
- Neuroscience Program
| | - Chih-Ying Chen
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | - Younguk Sun
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | | | | | | | | | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology,
- Neuroscience Program
- Department of Cell and Developmental Biology, and
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| |
Collapse
|
25
|
Gao M, Pusch R, Güntürkün O. Blocking NMDA-Receptors in the Pigeon’s Medial Striatum Impairs Extinction Acquisition and Induces a Motoric Disinhibition in an Appetitive Classical Conditioning Paradigm. Front Behav Neurosci 2019; 13:153. [PMID: 31354445 PMCID: PMC6630161 DOI: 10.3389/fnbeh.2019.00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
|
26
|
Goodman J, Packard MG. There Is More Than One Kind of Extinction Learning. Front Syst Neurosci 2019; 13:16. [PMID: 31133825 PMCID: PMC6514057 DOI: 10.3389/fnsys.2019.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 01/15/2023] Open
Abstract
The view that different kinds of memory are mediated by dissociable neural systems has received extensive experimental support. Dissociations between memory systems are usually observed during initial acquisition, consolidation, and retrieval of memory, however increasing evidence also indicates a role for multiple memory systems in extinction behavior. The present article reviews a recent series of maze learning experiments that provide evidence for a multiple memory systems approach to extinction learning and memory. Evidence is described indicating that: (1) the hippocampus and dorsolateral striatum (DLS) mediate different kinds of extinction learning; (2) the effectiveness of different extinction protocols depends on the kind of memory being extinguished; and (3) whether a neural system is involved in extinction is also determined by the extinction protocol and kind of memory undergoing extinction. Based on these findings, a novel hypothetical model regarding the role of multiple memory systems in extinction is presented. In addition, the relevance of this multiple memory systems approach to other learning paradigms involving extinction (i.e., extinction of conditioned fear) and for treating human psychopathologies characterized by maladaptive memories (e.g., drug addiction and relapse) is briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| | - Mark G. Packard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
27
|
Upregulation of the lactate transporter monocarboxylate transporter 1 at the blood-brain barrier in a rat model of attention-deficit/hyperactivity disorder suggests hyperactivity could be a form of self-treatment. Behav Brain Res 2019; 360:279-285. [DOI: 10.1016/j.bbr.2018.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
|
28
|
Medin T, Jensen V, Skare Ø, Storm-Mathisen J, Hvalby Ø, Bergersen LH. Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res 2018; 360:209-215. [PMID: 30552946 DOI: 10.1016/j.bbr.2018.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) carry the bulk of excitatory synaptic transmission. Their modulation plays key roles in synaptic plasticity, which underlies hippocampal learning and memory. A dysfunctional glutamatergic system may negatively affect learning abilities and underlie symptoms of attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to investigate whether the expression and function of AMPARs were altered in ADHD. We recorded AMPAR mediated synaptic transmission at hippocampal excitatory synapses and quantified immunogold labelling density of AMPAR subunits GluA1 and GluA2/3 in a rat model for ADHD; the spontaneously hypertensive rat (SHR). Electrophysiological recordings showed significantly reduced AMPAR mediated synaptic transmission at the CA3-to-CA1 pyramidal cell synapses in stratum radiatum and stratum oriens in SHRs compared to control rats. Electronmicroscopic immunogold quantifications did not show any statistically significant changes in labelling densities of the GluA1 subunit of the AMPAR on dendritic spines in stratum radiatum or in stratum oriens. However, there was a significant increase of the GluA2/3 subunit intracellularly in stratum oriens in SHR compared to control, interpreted as a compensatory effect. The proportion of synapses lacking AMPAR subunit labelling was the same in the two genotypes. In addition, electronmicroscopic examination of tissue morphology showed the density of this type of synapse (i.e., asymmetric synapses on spines), and the average size of the synaptic membranes, to be the same. AMPAR dysfunction, possibly involving molecular changes, in hippocampus may in part reflect altered learning in individuals with ADHD.
Collapse
Affiliation(s)
- Tirill Medin
- OsloMet - Oslo Metropolitan University, Faculty of Health Sciences, P.O. Box 4, St. Olavs Plass, 0130, Oslo, Norway; The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Synaptic Neurochemistry and Amino Acid Transporters Labs, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway.
| | - Vidar Jensen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB), University of Oslo, NO-0317, Oslo, Norway
| | - Øyvind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry and Amino Acid Transporters Labs, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway
| | - Øyvind Hvalby
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB), University of Oslo, NO-0317, Oslo, Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Synaptic Neurochemistry and Amino Acid Transporters Labs, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
29
|
Feedback Timing Modulates Probabilistic Learning in Adults with ADHD. Sci Rep 2018; 8:15524. [PMID: 30341358 PMCID: PMC6195519 DOI: 10.1038/s41598-018-33551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) has been associated primarily with executive function deficits. Emerging findings suggest, however, that procedural learning may be compromised as well. To this effect, we recently showed that feedback-based procedural learning is selectively impaired in ADHD, results that coincide with dopaminergic alterations associated with ADHD. Key questions, however, remain unresolved, among which are the learning conditions that may improve procedural learning in ADHD. Here we examined feedback-based probabilistic learning during conditions that engage procedural and declarative learning systems to different degrees, depending on feedback timing. ADHD and control participants carried out a probabilistic learning task in which they were required to learn to associate between cues and outcomes, where outcomes were presented either immediately or with a short/long delays. Whereas performance in probabilistic learning in ADHD participants was comparable to controls in delayed feedback conditions, during both learning and test phases, their performance diminished when feedback was immediate. Furthermore, ADHD symptom severity was negatively correlated with the ability to learn from immediate feedback. These results suggest that feedback-based probabilistic learning can be improved in ADHD, provided appropriate conditions. By shifting the load from midbrain/striatal systems to declarative memory mechanisms, behavioral performance in ADHD populations can be remediated.
Collapse
|
30
|
Effects of taurine on striatal dopamine transporter expression and dopamine uptake in SHR rats. Behav Brain Res 2018; 348:219-226. [PMID: 29694913 DOI: 10.1016/j.bbr.2018.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
Abstract
Dopaminergic deficits in the prefrontal cortex and striatum have been attributed to the pathogenesis of attention-deficit hyperactivity disorder (ADHD). Our recent study revealed that high-dose taurine improves hyperactive behavior and brain-functional signals in SHR rats. This study investigates the effect of taurine on the SHR striatum by detecting the spontaneous alternation, DA transporter (DAT) level, dopamine uptake and brain-derived neurotrophic factor (BDNF) expression. A significant increase in the total arm entries was detected in both WKY and SHR rats fed with low-dose taurine but not in those fed with high-dose taurine. Notably, significantly increased spontaneous alternation was observed in SHR rats fed with high-dose taurine. Significantly higher striatal DAT level was detected in WKY rats fed with low-dose taurine but not in SHR rats, whereas significantly reduced striatal DAT level was detected in SHR rats fed with high-dose taurine but not in WKY rats. Significantly increased dopamine uptake was detected in the striatal synaptosomes of both WKY and SHR rats fed with low-dose taurine. Conversely, significantly reduced dopamine uptake was detected in the striatal synaptosomes of SHR rats fed with high-dose taurine. Accordingly, a negative correlation was detected between striatal dopamine uptake and spontaneous alternation in SHR rats fed with low or high-dose taurine. Significantly increased BDNF was detected in the striatum of both WKY and SHR rats fed with low or high-dose taurine. These findings indicate that different dosages of taurine have opposite effects on striatal DAT expression and dopamine uptake, suggesting high-dose taurine as a possible candidate for ADHD treatment.
Collapse
|
31
|
Packard MG, Goodman J, Ressler RL. Emotional modulation of habit memory: neural mechanisms and implications for psychopathology. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
The metamorphosis of adolescent hormonal stress reactivity: A focus on animal models. Front Neuroendocrinol 2018; 49:43-51. [PMID: 29275000 PMCID: PMC5963973 DOI: 10.1016/j.yfrne.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
As adolescents transition from childhood to adulthood, many physiological and neurobehavioral changes occur. Shifts in neuroendocrine function are one such change, including the hormonal systems that respond to stressors. This review will focus on these hormonal changes, with a particular emphasis on the pubertal and adolescent maturation of the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, this review will concentrate on studies using animal models, as these model systems have contributed a great deal to our mechanistic understanding of how factors such as sex and experience with stressors shape hormonal reactivity during development. Continued study of the maturation of stress reactivity will undoubtedly shed much needed light on the stress-related vulnerabilities often associated with adolescence as well as providing us with possible strategies to mitigate these vulnerabilities. This area of research may lead to discoveries that enhance the well-being of adolescents, ultimately providing them with greater opportunities to mature into healthy adults.
Collapse
|
33
|
The role of the dorsal striatum in extinction: A memory systems perspective. Neurobiol Learn Mem 2018; 150:48-55. [DOI: 10.1016/j.nlm.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022]
|
34
|
Tomasino B, Nobile M, Re M, Bellina M, Garzitto M, Arrigoni F, Molteni M, Fabbro F, Brambilla P. The mental simulation of state/psychological verbs in the adolescent brain: An fMRI study. Brain Cogn 2018; 123:34-46. [PMID: 29505944 DOI: 10.1016/j.bandc.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/25/2022]
Abstract
This fMRI study investigated mental simulation of state/psychological and action verbs during adolescence. Sixteen healthy subjects silently read verbs describing a motor scene or not (STIMULUS: motor, state/psychological verbs) and they were explicitly asked to imagine the situation or they performed letter detection preventing them from using simulation (TASK: imagery vs. letter detection). A significant task by stimuli interaction showed that imagery of state/psychological verbs, as compared to action stimuli (controlled by the letter detection) selectively increased activation in the right supramarginal gyrus/rolandic operculum and in the right insula, and decreased activation in the right intraparietal sulcus. We compared these data to those from a group of older participants (Tomasino et al. 2014a). Activation in the left supramarginal gyrus decreased for the latter group (as compared to the present group) for imagery of state/psychological verbs. By contrast, activation in the right superior frontal gyrus decreased for the former group (as compared to the older group) for imagery of state/psychological verbs.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute IRCCS "E. Medea", Italy; Polo FVG, San Vito al Tagliamento, PN, Italy.
| | - Maria Nobile
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | - Marta Re
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | - Monica Bellina
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | | | - Filippo Arrigoni
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | - Massimo Molteni
- Scientific Institute IRCCS "E. Medea", Italy; Polo Bosisio Parini (Lc), Italy
| | | | - Paolo Brambilla
- Department of Neurosciences and Mental health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy; Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, USA.
| |
Collapse
|
35
|
Carnell S, Benson L, Chang KYV, Wang Z, Huo Y, Geliebter A, Peterson BS. Neural correlates of familial obesity risk and overweight in adolescence. Neuroimage 2017; 159:236-247. [PMID: 28754348 PMCID: PMC5671352 DOI: 10.1016/j.neuroimage.2017.07.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rates of adolescent obesity and overweight are high. The offspring of overweight parents are at increased risk of becoming obese later in life. Investigating neural correlates of familial obesity risk and current overweight status in adolescence could help identify biomarkers that predict future obesity and that may serve as novel targets for obesity interventions. OBJECTIVE Our primary aim was to use functional MRI to compare neural responses to words denoting high or low energy density (ED) foods and non-foods, in currently lean adolescents at higher compared with lower familial risk for obesity, and in overweight compared with lean adolescents. Secondary aims were to assess group differences in subjective appetite when viewing food and non-food words, and in objective ad libitum intake of high-ED foods in a laboratory setting. DESIGN We recruited 36 adolescents (14-19y), of whom 10 were (obese/overweight "overweight"), 16 lean with obese/overweight mothers (lean high-risk, "lean-HR"), and 10 lean with lean mothers (lean low-risk, "lean-LR"). All underwent fMRI scanning while they viewed words representing high-ED foods, low-ED foods, or non-foods, and provided appetitive ratings in response to each word stimulus. They then consumed a multi-item ad libitum buffet meal. RESULTS Food compared with non-food words activated a distributed emotion/reward system including insula and pregenual anterior cingulate cortex (ACC). Participants who were at increasing risk for obesity exhibited progressively weaker activation of an attentional/regulatory system including dorsolateral prefrontal cortex (PFC), dorsal ACC, and basal ganglia nuclei (activation was greatest in lean-LR, intermediate in lean-HR, and weakest in the overweight group). These group differences were most apparent for neural responses to high-compared with low-ED foods. Lean-HR (compared with lean-LR and overweight) adolescents reported greater desire for high-ED foods. Meal intake was greatest for the overweight, then lean-HR, then lean-LR groups. CONCLUSIONS Adolescents at higher obesity risk exhibited reduced neural responses to high-ED food cues in a neural system that subserves attention and self-regulation. They also reported heightened appetitive responses to high-ED cues. Interventions that promote the capacity for self-regulation could prevent youth who have a familial predisposition for obesity from translating risk into reality.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Leora Benson
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ku-Yu Virginia Chang
- Mt Sinai St. Luke's Hospital and Department of Psychiatry, Icahn School of Medicine at Mt Sinai New York, NY, USA
| | - Zhishun Wang
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Yuankai Huo
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Allan Geliebter
- Mt Sinai St. Luke's Hospital and Department of Psychiatry, Icahn School of Medicine at Mt Sinai New York, NY, USA; Department of Psychology, Touro College and University System, New York, NY, USA
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Keck School of Medicine, University of Southern California, LA, USA
| |
Collapse
|
36
|
Takács Á, Shilon Y, Janacsek K, Kóbor A, Tremblay A, Németh D, Ullman MT. Procedural learning in Tourette syndrome, ADHD, and comorbid Tourette-ADHD: Evidence from a probabilistic sequence learning task. Brain Cogn 2017; 117:33-40. [DOI: 10.1016/j.bandc.2017.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 11/26/2022]
|
37
|
Goodman J, McIntyre CK. Impaired Spatial Memory and Enhanced Habit Memory in a Rat Model of Post-traumatic Stress Disorder. Front Pharmacol 2017; 8:663. [PMID: 29018340 PMCID: PMC5614977 DOI: 10.3389/fphar.2017.00663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/06/2017] [Indexed: 01/25/2023] Open
Abstract
High levels of emotional arousal can impair spatial memory mediated by the hippocampus, and enhance stimulus-response (S-R) habit memory mediated by the dorsolateral striatum (DLS). The present study was conducted to determine whether these memory systems may be similarly affected in an animal model of post-traumatic stress disorder (PTSD). Sprague-Dawley rats were subjected to a “single-prolonged stress” (SPS) procedure and 1 week later received training in one of two distinct versions of the plus-maze: a hippocampus-dependent place learning task or a DLS-dependent response learning task. Results indicated that, relative to non-stressed control rats, SPS rats displayed slower acquisition in the place learning task and faster acquisition in the response learning task. In addition, extinction of place learning and response learning was impaired in rats exposed to SPS, relative to non-stressed controls. The influence of SPS on hippocampal spatial memory and DLS habit memory observed in the present study may be relevant to understanding some common features of PTSD, including hippocampal memory deficits, habit-like avoidance responses to trauma-related stimuli, and greater likelihood of developing drug addiction and alcoholism.
Collapse
Affiliation(s)
- Jarid Goodman
- School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| | - Christa K McIntyre
- School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| |
Collapse
|
38
|
Campus P, Canterini S, Orsini C, Fiorenza MT, Puglisi-Allegra S, Cabib S. Stress-Induced Reduction of Dorsal Striatal D2 Dopamine Receptors Prevents Retention of a Newly Acquired Adaptive Coping Strategy. Front Pharmacol 2017; 8:621. [PMID: 28955227 PMCID: PMC5601053 DOI: 10.3389/fphar.2017.00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/24/2017] [Indexed: 11/14/2022] Open
Abstract
The inability to learn an adaptive coping strategy in a novel stressful condition leads to dysfunctional stress coping, a marker of mental disturbances. This study tested the involvement of dorsal striatal dopamine receptors in the dysfunctional coping with the Forced Swim test fostered by a previous experience of reduced food availability. Adult male mice were submitted to a temporary (12 days) reduction of food availability [food-restricted (FR)] or continuously free-fed (FF). Different groups of FF and FR mice were used to evaluate: (1) dorsal striatal mRNA levels of the two isoforms of the dopamine D2 receptor (D2S, D2L). (2) Forced Swim-induced c-fos expression in the dorsal striatum; (3) acquisition and 24 h retention of passive coping with Forced Swim. Additional groups of FF mice were tested for 24 h retention of passive coping acquired during a first experience with Forced Swim immediately followed by intra-striatal infusion of vehicle or two doses of the dopamine D2/D3 receptors antagonist sulpiride or the D1/D5 receptors antagonist SCH23390. Previous restricted feeding selectively reduced mRNA levels of both D2 isoforms and abolished Forced Swim-induced c-fos expression in the left Dorsolateral Striatum and selectively prevented 24 h retention of the coping strategy acquired in a first experience of Forced Swim. Finally, temporary blockade of left Dorsolateral Striatum D2/D3 receptors immediately following the first Forced Swim experience selectively reproduced the behavioral effect of restricted feeding in FF mice. In conclusion, the present results demonstrate that mice previously exposed to a temporary reduction of food availability show low striatal D2 receptors, a known marker of addiction-associated aberrant neuroplasticity, as well as liability to relapse into maladaptive stress coping strategies. Moreover, they offer strong support to a causal relationship between reduction of D2 receptors in the left Dorsolateral Striatum and impaired consolidation of newly acquired adaptive coping.
Collapse
Affiliation(s)
- Paolo Campus
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Department of Psychiatry, University of Michigan, Ann ArborMI, United States
| | - Sonia Canterini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy
| | - Cristina Orsini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Simona Cabib
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
39
|
Is procedural memory enhanced in Tourette syndrome? Evidence from a sequence learning task. Cortex 2017; 100:84-94. [PMID: 28964503 DOI: 10.1016/j.cortex.2017.08.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/12/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022]
Abstract
Procedural memory, which is rooted in the basal ganglia, underlies the learning and processing of numerous automatized motor and cognitive skills, including in language. Not surprisingly, disorders with basal ganglia abnormalities have been found to show impairments of procedural memory. However, brain abnormalities could also lead to atypically enhanced function. Tourette syndrome (TS) is a candidate for enhanced procedural memory, given previous findings of enhanced TS processing of grammar, which likely depends on procedural memory. We comprehensively examined procedural learning, from memory formation to retention, in children with TS and typically developing (TD) children, who performed an implicit sequence learning task over two days. The children with TS showed sequence learning advantages on both days, despite a regression of sequence knowledge overnight to the level of the TD children. This is the first demonstration of procedural learning advantages in any disorder. The findings may further our understanding of procedural memory and its enhancement. The evidence presented here, together with previous findings suggesting enhanced grammar processing in TS, underscore the dependence of language on a system that also subserves visuomotor sequencing.
Collapse
|
40
|
Goodman J, Ressler RL, Packard MG. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum. Neuroscience 2017; 352:216-225. [DOI: 10.1016/j.neuroscience.2017.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023]
|
41
|
Snyder JS, Cahill SP, Frankland PW. Running promotes spatial bias independently of adult neurogenesis. Hippocampus 2017; 27:871-882. [DOI: 10.1002/hipo.22737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Jason S. Snyder
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - Shaina P. Cahill
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - Paul W. Frankland
- Hospital for Sick Children; Program in Neurosciences & Mental Health, Peter Gilgan Centre for Research and Learning; Toronto Ontario Canada
- Department of Psychology; University of Toronto; Ontario Canada
- Department of Physiology; University of Toronto; Ontario Canada
- Institute of Medical Sciences; University of Toronto; Ontario Canada
- Child & Brain Development Program; Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
42
|
The dorsolateral striatum selectively mediates extinction of habit memory. Neurobiol Learn Mem 2016; 136:54-62. [DOI: 10.1016/j.nlm.2016.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022]
|
43
|
Campus P, Maiolati M, Orsini C, Cabib S. Altered consolidation of extinction-like inhibitory learning in genotype-specific dysfunctional coping fostered by chronic stress in mice. Behav Brain Res 2016; 315:23-35. [PMID: 27506654 DOI: 10.1016/j.bbr.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 01/02/2023]
Abstract
Genetic and stress-related factors interact to foster mental disorders, possibly through dysfunctional learning. In a previous study we reported that a temporary experience of reduced food availability increases forced swim (FS)-induced helplessness tested 14days after a first experience in mice of the standard inbred C57BL/6(B6) strain but reduces it in mice of the genetically unrelated DBA/2J (D2) strain. Because persistence of FS-induced helplessness influences adaptive coping with stress challenge and involve learning processes the present study tested whether the behavioral effects of restricted feeding involved altered consolidation of FS-related learning. First, we demonstrated that restricted feeding does not influence behavior expressed on the first FS experience, supporting a specific effect on persistence rather then development of helplessness. Second, we found that FS-induced c-fos expression in the infralimbic cortex (IL) was selectively enhanced in food-restricted (FR) B6 mice and reduced in FR D2 mice, supporting opposite alterations of consolidation processes involving this brain area. Third, we demonstrated that immediate post-FS inactivation of IL prevents 24h retention of acquired helplessness by continuously free-fed mice of both strains, indicating the requirement of a functioning IL for consolidation of FS-related learning in either mouse strain. Finally, in line with the known role of IL in consolidation of extinction memories, we found that restricted feeding selectively facilitated 24h retention of an acquired extinction in B6 mice whereas impairing it in D2 mice. These findings support the conclusion that an experience of reduced food availability strain-specifically affects persistence of newly acquired passive coping strategies by altering consolidation of extinction-like inhibitory learning.
Collapse
MESH Headings
- Adaptation, Psychological/drug effects
- Adaptation, Psychological/physiology
- Analysis of Variance
- Animals
- Brain/drug effects
- Brain/metabolism
- Conditioning, Operant/drug effects
- Disease Models, Animal
- Escape Reaction/physiology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- GABA-A Receptor Agonists/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Muscimol/pharmacology
- Proto-Oncogene Proteins c-fos/metabolism
- Species Specificity
- Stress, Psychological/complications
- Stress, Psychological/pathology
- Swimming
Collapse
Affiliation(s)
- P Campus
- Department of Psychology, Center D. Bovet, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - M Maiolati
- Department of Psychology, Center D. Bovet, Sapienza University of Rome, Rome, Italy
| | - C Orsini
- Department of Psychology, Center D. Bovet, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - S Cabib
- Department of Psychology, Center D. Bovet, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
44
|
Genetically determined differences in noradrenergic function: The spontaneously hypertensive rat model. Brain Res 2016; 1641:291-305. [DOI: 10.1016/j.brainres.2015.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/01/2023]
|
45
|
Goodman J, Gabriele A, Packard MG. Hippocampus NMDA receptors selectively mediate latent extinction of place learning. Hippocampus 2016; 26:1115-23. [PMID: 27067827 DOI: 10.1002/hipo.22594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/26/2023]
Abstract
Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were effective at extinguishing memory in the place learning task. In addition, intra-hippocampal AP5 (7.5 µg) impaired latent extinction, but not response extinction, suggesting that hippocampal NMDA receptors are selectively involved in latent extinction. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Amanda Gabriele
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Mark G Packard
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
46
|
Enhancement of striatum-dependent memory by conditioned fear is mediated by beta-adrenergic receptors in the basolateral amygdala. Neurobiol Stress 2016; 3:74-82. [PMID: 27981180 PMCID: PMC5146203 DOI: 10.1016/j.ynstr.2016.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/02/2022] Open
Abstract
Emotional arousal can have a profound impact on various learning and memory processes. For example, unconditioned emotional stimuli (e.g., predator odor or anxiogenic drugs) enhance dorsolateral striatum (DLS)-dependent habit memory. These effects critically depend on a modulatory role of the basolateral complex of the amygdala (BLA). Recent work indicates that, like unconditioned emotional stimuli, exposure to an aversive conditioned stimulus (CS) (i.e., a tone previously paired with shock) can also enhance consolidation of DLS-dependent habit memory. The present experiments examined whether noradrenergic activity, particularly within the BLA, is required for a fear CS to enhance habit memory consolidation. First, rats underwent a fear conditioning procedure in which a tone CS was paired with an aversive unconditioned stimulus. Over the course of the next five days, rats received training in a DLS-dependent water plus-maze task, in which rats were reinforced to make a consistent body-turn response to reach a hidden escape platform. Immediately after training on days 1–3, rats received post-training systemic (Experiment 1) or intra-BLA (Experiment 2) administration of the β-adrenoreceptor antagonist, propranolol. Immediately after drug administration, half of the rats were re-exposed to the tone CS in the conditioning context (without shock). Post-training CS exposure enhanced consolidation of habit memory in vehicle-treated rats, and this effect was blocked by peripheral (Experiment 1) or intra-BLA (Experiment 2) propranolol administration. The present findings reveal that noradrenergic activity within the BLA is critical for the enhancement of DLS-dependent habit memory as a result of exposure to conditioned emotional stimuli.
Collapse
|
47
|
Memory Systems of the Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity. Neuroscience 2015; 311:1-8. [PMID: 26470808 DOI: 10.1016/j.neuroscience.2015.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022]
Abstract
Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system.
Collapse
|
49
|
Chronological age and its impact on associative learning proficiency and brain structure in middle adulthood. Behav Brain Res 2015; 297:329-37. [PMID: 26462573 DOI: 10.1016/j.bbr.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The rate of biological change in middle-adulthood is relatively under-studied. Here, we used behavioral testing in conjunction with structural magnetic resonance imaging to examine the effects of chronological age on associative learning proficiency and on brain regions that previous functional MRI studies have closely related to the domain of associative learning. METHODS Participants (n=66) completed a previously established associative learning paradigm, and consented to be scanned using structural magnetic resonance imaging. Age-related effects were investigated both across sub-groups in the sample (younger vs. older) and across the entire sample (using regression approaches). RESULTS Chronological age had substantial effects on learning proficiency (independent of IQ and Education Level), with older adults showing a decrement compared to younger adults. In addition, decreases in estimated gray matter volume were observed in multiple brain regions including the hippocampus and the dorsal prefrontal cortex, both of which are strongly implicated in associative learning. CONCLUSION The results suggest that middle adulthood may be a more dynamic period of life-span change than previously believed. The conjunctive application of narrowly focused tasks, with conjointly acquired structural MRI data may allow us to enrich the search for, and the interpretation of, age-related changes in cross-sectional samples.
Collapse
|
50
|
Nativio P, Zoratto F, Romano E, Lacivita E, Leopoldo M, Pascale E, Passarelli F, Laviola G, Adriani W. Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas. Synapse 2015; 69:533-42. [PMID: 26364910 DOI: 10.1002/syn.21846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 07/30/2015] [Indexed: 12/21/2022]
Abstract
Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex.
Collapse
Affiliation(s)
- Paola Nativio
- Departments of Molecular Medicine and of Medical Surgical Sciences and Biotechnology, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Zoratto
- Department of Cell Biology and Neurosciences, Istituto Superiore Di Sanità, Rome, Italy
| | - Emilia Romano
- Department of Cell Biology and Neurosciences, Istituto Superiore Di Sanità, Rome, Italy
| | - Enza Lacivita
- Department of Pharmacy, Università Degli Studi "a. Moro", Bari, Italy
| | - Marcello Leopoldo
- Department of Pharmacy, Università Degli Studi "a. Moro", Bari, Italy
| | - Esterina Pascale
- Departments of Molecular Medicine and of Medical Surgical Sciences and Biotechnology, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Passarelli
- Departments of Molecular Medicine and of Medical Surgical Sciences and Biotechnology, "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neurosciences, Istituto Superiore Di Sanità, Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neurosciences, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|