1
|
Asheri M, Farokhzad A, Naghavi MR, Ghasemzadeh R, Azadi P, Zargar M. Methyl jasmonate improves rubber production and quality in Lactuca Serriola. Sci Rep 2024; 14:26837. [PMID: 39501030 PMCID: PMC11538524 DOI: 10.1038/s41598-024-78065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The increase in demand for natural rubber has led to the search for alternative sources. Lactuca serriola is emerging as a promising candidate, as the quality of the natural rubber it produces is comparable to that of the Pará Rubber Plant, Hevea brasiliensis. This study examines the effect of methyl jasmonate (MeJA), a known elicitor, on the expression of key rubber biosynthesis pathway genes (HMGR1, HMGS1, CPT2, and SRPP1) in the latex of L. serriola plants. The expression levels of these genes increased significantly after the foliar application of 200 and 400 µM MeJA. The highest relative expression level for HMGR1, HMGS1, CPT2 and SRPP1 was 3.74, 18.56, 11.91and 16.59 fold respectively. Furthermore, the rubber content in L. serriola showed a significant rise post-treatment compared to the control with increasing the level of MeJA (6.19%, 7.24% and 7.85% which correspond to 0, 200 and 400 µM). Gel permeation chromatography revealed an augmentation in the molecular weight of extracted natural rubber from treated plants. Samples treated with 400 µM of MeJA had the highest molecular weight (1570 kg mol-1) compared to control (1186 kg mol-1). This study has demonstrated that MeJA, through the regulation of rubber biosynthesis genes, is capable of enhancing the quality and quantity of natural rubber extracted from alternative sources, such as L. serriola.
Collapse
Affiliation(s)
- Maisa Asheri
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, P.O. Box: 165, Urmia, Iran
| | - Alireza Farokhzad
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, P.O. Box: 165, Urmia, Iran.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Raheleh Ghasemzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| |
Collapse
|
2
|
Wu Y, Liu Y, Zhang Y, Dong G, Yan J, Zhang H. Functional analysis of TkWRKY33: A key regulator in drought-induced natural rubber synthesis in Taraxacum kok-saghyz. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109232. [PMID: 39467495 DOI: 10.1016/j.plaphy.2024.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
WRKY proteins, which form a transcription factor superfamily that responds to jasmonic acid (JA) signals, regulate various developmental processes and stress responses in plants, including Taraxacum kok-saghyz (TKS). TKS serves as an ideal model plant for studying rubber production and lays the foundation for a comprehensive understanding of JA-mediated regulation of natural rubber synthesis. In the present study, we screened and identified a valuable transcription factor, TkWRKY33, based on transcriptome data from TKS in response to JA. We investigated its role in the regulation of natural rubber synthesis within the JA signaling pathway and its function in response to drought stress. Through protein-protein interactions and transcriptional regulation analysis, we found that TkWRKY33 may regulate natural rubber synthesis through the JA-TkMPK3-TkWRKY33-(TkGGPS5/TkACAT8) cascade pathway, possibly by participating in JA-activated mitogen-activated protein kinase (MAPK) signaling. Overexpression of TkWRKY33 in tobacco, along with functional analysis of drought resistance and comparative analysis of natural rubber content after drought stress, revealed that TkWRKY33 not only enhances plant drought resistance by regulating the expression of genes related to reactive oxygen species (ROS) scavenging through the JA signaling pathway, but also has a close relationship with the signal transduction pathway mediated by the JA hormone in regulating natural rubber synthesis. The TkWRKY33 is recognized as a valuable transcription factor, which likely plays a role in regulating natural rubber biosynthesis through the JA-activated MAPK cascade signaling pathway JA-TkMPK3-TkWRKY33-(TkGGPS5/TkACAT8).
Collapse
Affiliation(s)
- Yulin Wu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yaxin Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yunchuan Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Hao Zhang
- Institute of Gardening and Greening, Xinjiang Academy of Forestry Sciences, Urumqi, 830000, China.
| |
Collapse
|
3
|
Wang L, He H, Wang J, Meng Z, Wang L, Jin X, Zhang J, Du P, Zhang L, Wang F, Li H, Xie Q. Genome-Wide Identification of the Geranylgeranyl Pyrophosphate Synthase (GGPS) Gene Family Associated with Natural Rubber Synthesis in Taraxacum kok-saghyz L. Rodin. PLANTS (BASEL, SWITZERLAND) 2024; 13:2788. [PMID: 39409658 PMCID: PMC11478434 DOI: 10.3390/plants13192788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Taraxacum kok-saghyz Rodin (TKS) is a recognized alternative source of natural rubber comparable to the rubber tree. The geranylgeranyl pyrophosphate synthase (GGPS) catalyzed the synthesis of geranylgeranyl pyrophosphate (GGPP), which is an important enzyme in the secondary metabolism pathway. In this study, we present the first analysis of the GGPS gene family in TKS, where a total of seven TkGGPS family members were identified. Their core motifs, conserved structural domains, gene structures, and cis-acting elements were described. In addition, two phylogenetic trees were constructed based on the Neighbor-Joining and Maximum-Likelihood methods, and the TkGGPSs were highly conserved and exhibited good collinearity with the other species. Transcriptome data showed that seven TkGGPS gene members were expressed in all the 12 tissues measured, and TkGGPS1, TkGGPS3, and TkGGPS6 were highly expressed in latex, suggesting that they may be associated with natural rubber synthesis. Meanwhile, quantitative real-time PCR (qRT-PCR) showed that the expression levels of the TkGGPS genes were regulated by the ethylene and methyl jasmonate (MeJA) pathways. Subcellular localization results indicated that all the TkGGPS proteins were also located in chloroplasts involved in photosynthesis in plants. This study will provide valuable insights into the selection of candidate genes for molecular breeding and natural rubber biosynthesis in TKS.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Huan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Jiayin Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Lei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China;
| | - Jianhang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Pingping Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Liyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (L.W.); (H.H.); (J.W.); (Z.M.); (L.W.); (J.Z.); (P.D.); (L.Z.)
| |
Collapse
|
4
|
Du P, He H, Wang J, Wang L, Meng Z, Jin X, Zhang L, Wang F, Li H, Xie Q. Genome-Wide Identification and Characterization of the HMGR Gene Family in Taraxacum kok-saghyz Provide Insights into Its Regulation in Response to Ethylene and Methyl Jsamonate Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2646. [PMID: 39339620 PMCID: PMC11435204 DOI: 10.3390/plants13182646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
HMGR (3-hydroxy-3-methylglutaryl-CoA reductase) plays a crucial role as the first rate-limiting enzyme in the mevalonate (MVA) pathway, which is the upstream pathway of natural rubber biosynthesis. In this study, we carried out whole-genome identification of Taraxacum kok-saghyz (TKS), a novel rubber-producing alternative plant, and obtained six members of the TkHMGR genes. Bioinformatic analyses were performed including gene structure, protein properties, chromosomal localization, evolutionary relationships, and cis-acting element analyses. The results showed that HMGR genes were highly conserved during evolution with a complete HMG-CoA reductase conserved domain and were closely related to Asteraceae plants during the evolutionary process. The α-helix is the most prominent feature of the secondary structure of the TkHMGR proteins. Collinearity analyses demonstrated that a whole-genome duplication (WGD) event and tandem duplication event play a key role in the expansion of this family and TkHMGR1 and TkHMGR6 have more homologous gene between other species. Cis-acting element analysis revealed that the TkHMGR gene family had a higher number of MYB-related, light-responsive, hormone-responsive elements. In addition, we investigated the expression patterns of family members induced by ethylene (ETH) and methyl jasmonate (MeJA), and their expression levels at different stages of T. kok-saghyz root development. Finally, subcellular localization results showed that six TkHMGR members were all located in the endoplasmic reticulum. In conclusion, the results of our study lay a certain theoretical basis for the subsequent improvement of rubber yield, molecular breeding of rubber-producing plants, and genetic improvement of T. kok-saghyz.
Collapse
Affiliation(s)
- Pingping Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Huan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiayin Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Lili Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Liyu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Wang Y, Yang Z, Yuan B, He L, Han Y, Wang J, Wang X. Genome-wide identification of oxidosqualene cyclase genes regulating natural rubber in Taraxacum kok-saghyz. PLANTA 2024; 260:88. [PMID: 39251530 DOI: 10.1007/s00425-024-04522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
MAIN CONCLUSION Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.
Collapse
Affiliation(s)
- Yongfei Wang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Zhanchao Yang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Boxuan Yuan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lixia He
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Yunyi Han
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Juanying Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xuchu Wang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
6
|
Freitas CDT, Demarco D, Oliveira JS, Ramos MV. Review: Laticifer as a plant defense mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112136. [PMID: 38810884 DOI: 10.1016/j.plantsci.2024.112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Laticifers have been utilized as paradigms to enhance comprehension of specific facets of plant ecology and evolution. From the beginning of seedling growth, autonomous laticifer networks are formed throughout the plant structure, extending across all tissues and organs. The vast majority of identified products resulting from laticifer chemistry and metabolism are linked to plant defense. The latex, which is the fluid contained within laticifers, is maintained under pressure and has evolved to serve as a defense mechanism against both aggressors and invaders, irrespective of their capabilities or tactics. Remarkably, the latex composition varies among different species. The current goal is to understand the specific functions of various latex components in combating plant enemies. Therefore, the study of latex's chemical composition and proteome plays a critical role in advancing our understanding about plant defense mechanisms. Here, we will discuss some of these aspects.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego Demarco
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson S Oliveira
- Federal University of Delta of Parnaíba, Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
7
|
Wu Y, Dong G, Luo F, Xie H, Li X, Yan J. TkJAZs-TkMYC2-TkSRPP/REF Regulates the Biosynthesis of Natural Rubber in Taraxacum kok-saghyz. PLANTS (BASEL, SWITZERLAND) 2024; 13:2034. [PMID: 39124151 PMCID: PMC11314035 DOI: 10.3390/plants13152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Taraxacum kok-saghyz (TKS) is a natural rubber (NR)-producing plant and a model plant for studying the biosynthesis of NR. Analyzing and studying the biosynthetic mechanism of NR is an important way to cultivate high-yield rubber TKS varieties. JAZ proteins, which belong to the Jasmonate ZIM domain family, function as negative regulators in the jasmonic acid (JA) signal transduction pathway. MYC2 is typically regarded as a regulatory factor for the target genes of JAZ proteins; JAZ proteins indirectly influence the gene expression regulated by MYC2 by modulating its activity. Theoretically, JAZ is expected to participate in growth, development, and responses to environmental cues related to rubber and biomass accumulation in TKS, all of which rely on the interaction between JAZ and MYC2. In this study, we identified 11 TkJAZs through homology searching of the TKS genomes and bioinformatics analyses. Subcellular localization, Y2H, and BiFC analysis demonstrate that TkJAZs and TkMYC2 are localized in the nucleus, with all TkJAZs and TkMYC2 showing nuclear colocalization interactions. Overexpression of TkMYC2 in TKS inhibited leaf development, promoted root growth, and simultaneously increased NR production. RNA-seq and qRT-PCR analysis revealed that the TkSRPP/REF genes exhibit varying degrees of upregulation compared to the wild type, upregulating the TkREF1 gene by 3.7-fold, suggesting that TkMYC2 regulates the synthesis of NR by modulating the TkSRPP/REF genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.W.); (G.D.); (F.L.); (H.X.); (X.L.)
| |
Collapse
|
8
|
He H, Wang J, Meng Z, Dijkwel PP, Du P, Shi S, Dong Y, Li H, Xie Q. Genome-Wide Analysis of the SRPP/ REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments. Int J Mol Sci 2024; 25:6864. [PMID: 38999970 PMCID: PMC11241686 DOI: 10.3390/ijms25136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiayin Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Paul P Dijkwel
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Pingping Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yuxuan Dong
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
Umar AW, Ahmad N, Xu M. Reviving Natural Rubber Synthesis via Native/Large Nanodiscs. Polymers (Basel) 2024; 16:1468. [PMID: 38891415 PMCID: PMC11174458 DOI: 10.3390/polym16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Natural rubber (NR) is utilized in more than 40,000 products, and the demand for NR is projected to reach $68.5 billion by 2026. The primary commercial source of NR is the latex of Hevea brasiliensis. NR is produced by the sequential cis-condensation of isopentenyl diphosphate (IPP) through a complex known as the rubber transferase (RTase) complex. This complex is associated with rubber particles, specialized organelles for NR synthesis. Despite numerous attempts to isolate, characterize, and study the RTase complex, definitive results have not yet been achieved. This review proposes an innovative approach to overcome this longstanding challenge. The suggested method involves isolating the RTase complex without using detergents, instead utilizing the native membrane lipids, referred to as "natural nanodiscs", and subsequently reconstituting the complex on liposomes. Additionally, we recommend the adaptation of large nanodiscs for the incorporation and reconstitution of the RTase complex, whether it is in vitro transcribed or present within the natural nanodiscs. These techniques show promise as a viable solution to the current obstacles. Based on our experimental experience and insights from published literature, we believe these refined methodologies can significantly enhance our understanding of the RTase complex and its role in in vitro NR synthesis.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China
| |
Collapse
|
10
|
Ponciano G, Dong N, Dong C, Breksa A, Vilches A, Abutokaikah MT, McMahan C, Holguin FO. Overexpression of tocopherol biosynthesis genes in guayule (Parthenium argentatum) reduces rubber, resin and argentatins content in stem and leaf tissues. PHYTOCHEMISTRY 2024; 222:114060. [PMID: 38522560 DOI: 10.1016/j.phytochem.2024.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Natural rubber produced in stems of the guayule plant (Parthenium argentatum) is susceptible to post-harvest degradation from microbial or thermo-oxidative processes, especially once stems are chipped. As a result, the time from harvest to extraction must be minimized to recover high quality rubber, especially in warm summer months. Tocopherols are natural antioxidants produced in plants through the shikimate and methyl-erythtiol-4-phosphate (MEP) pathways. We hypothesized that increased in vivo guayule tocopherol content might protect rubber from post-harvest degradation, and/or allow reduced use of chemical antioxidants during the extraction process. With the objective of enhancing tocopherol content in guayule, we overexpressed four Arabidopsis thaliana tocopherol pathway genes in AZ-2 guayule via Agrobacterium-mediated transformation. Tocopherol content was increased in leaf and stem tissues of most transgenic lines, and some improvement in thermo-oxidative stability was observed. Overexpression of the four tocopherol biosynthesis enzymes, however, altered other isoprenoid pathways resulting in reduced rubber, resin and argentatins content in guayule stems. The latter molecules are mainly synthesized from precursors derived from the mevalonate (MVA) pathway. Our results suggest the existence of crosstalk between the MEP and MVA pathways in guayule and the possibility that carbon metabolism through the MEP pathway impacts rubber biosynthesis.
Collapse
Affiliation(s)
- Grisel Ponciano
- United States Department of Agriculture-Agricultural Research Service-Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA.
| | - Niu Dong
- United States Department of Agriculture-Agricultural Research Service-Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Chen Dong
- United States Department of Agriculture-Agricultural Research Service-Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Andrew Breksa
- United States Department of Agriculture-Agricultural Research Service-Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Ana Vilches
- United States Department of Agriculture-Agricultural Research Service-Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Maha T Abutokaikah
- Research Cores Program, New Mexico State University, P.O. Box 30001, Las Cruces, NM, 88003, USA
| | - Colleen McMahan
- United States Department of Agriculture-Agricultural Research Service-Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - F Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, P.O. Box 30001, Las Cruces, NM, 88003, USA
| |
Collapse
|
11
|
Luo X, Zhang Y, Zhou M, Liu K, Zhang S, Ye D, Tang C, Cao J. Overexpression of HbGRF4 or HbGRF4-HbGIF1 Chimera Improves the Efficiency of Somatic Embryogenesis in Hevea brasiliensis. Int J Mol Sci 2024; 25:2921. [PMID: 38474173 DOI: 10.3390/ijms25052921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Transgenic technology is a crucial tool for gene functional analysis and targeted genetic modification in the para rubber tree (Hevea brasiliensis). However, low efficiency of plant regeneration via somatic embryogenesis remains a bottleneck of successful genetic transformation in H. brasiliensis. Enhancing expression of GROWTH-REGULATING FACTOR 4 (GRF4)-GRF-INTERACTING FACTOR 1 (GIF1) has been reported to significantly improve shoot and embryo regeneration in multiple crops. Here, we identified endogenous HbGRF4 and HbGIF1 from the rubber clone Reyan7-33-97, the expressions of which dramatically increased along with somatic embryo (SE) production. Intriguingly, overexpression of HbGRF4 or HbGRF4-HbGIF1 markedly enhanced the efficiency of embryogenesis in two H. brasiliensis callus lines with contrasting rates of SE production. Transcriptional profiling revealed that the genes involved in jasmonic acid response were up-regulated, whereas those in ethylene biosynthesis and response as well as the S-adenosylmethionine-dependent methyltransferase activity were down-regulated in HbGRF4- and HbGRF4-HbGIF1-overexpressing H. brasiliensis embryos. These findings open up a new avenue for improving SE production in rubber tree, and help to unravel the underlying mechanisms of HbGRF4-enhanced somatic embryogenesis.
Collapse
Affiliation(s)
- Xiaomei Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yi Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Miaomiao Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Kaiye Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Shengmin Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - De Ye
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Chaorong Tang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| | - Jie Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Puskas JE, Cornish K, Kenzhe-Karim B, Mutalkhanov M, Kaszas G, Molnar K. Natural rubber - Increasing diversity of an irreplaceable renewable resource. Heliyon 2024; 10:e25123. [PMID: 38327396 PMCID: PMC10847858 DOI: 10.1016/j.heliyon.2024.e25123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
This paper discusses the importance of introducing domestic natural rubber production and presents the rediscovery of a rubber-producing species, Scorzonera tau-saghyz or "mountain gum", originally discovered in 1929 on the Karatau mountains in Kazakhstan. This plant could potentially also be cultivated in the U.S. In this exploratory work, roots (2-5 years old) were harvested on June 16, 2021 from wild strands in the Karatau mountains, Kumantas ridge, and Saraba, Kazakhstan, and processed at the Ohio State University. The rubber extraction method was based on an indigenous method in Kazakhstan to make natural chewing gum. Water extraction followed by purification yielded 16.2 wt% rubber from the dry roots, in comparison with 4-8 wt% from most rubber dandelion (Taraxacum kok-saghyz) plants, also a potential domestic rubber producing plant. High-resolution size exclusion chromatography was used to analyze rubber samples. The molecular weights and gel and oligomer contents were very similar to the rubber from Hevea brasiliensis, the current commercial source of natural rubber. More detailed investigations of this very interesting rubber-producing plant are in progress.
Collapse
Affiliation(s)
- Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Katrina Cornish
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Boguspaev Kenzhe-Karim
- Al-Farabi Kazakh National University, Department of Biotechnology, 71 al-Farabi Ave., Almaty, Kazakhstan
| | - Meirambek Mutalkhanov
- Department of Horticulture and Crop Science, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
- Al-Farabi Kazakh National University, Department of Biotechnology, 71 al-Farabi Ave., Almaty, Kazakhstan
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad ter 4. Budapest, 1089, Hungary
| |
Collapse
|
13
|
Hu B, Yang N, Zhou Z, Shi X, Qin Y, Fang Y, Long X. Transcriptome analysis reveals the molecular mechanisms of rubber biosynthesis and laticifer differentiation during rubber seed germination. FRONTIERS IN PLANT SCIENCE 2024; 15:1337451. [PMID: 38328702 PMCID: PMC10847244 DOI: 10.3389/fpls.2024.1337451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
The molecular mechanisms underlying the initiation of natural rubber synthesis and laticifer differentiation have not been fully elucidated. In this study, we conducted a time-series transcriptome analysis of five rubber tree tissues at four stages of seed germination. A total of 161,199 DEGs were identified between the two groups, including most 16,673 DEGs (A3 vs B3 and A3 vs C3) and lest 1,210 DEGs (C2 vs D2). We found that the maturation of the seed is accompanied by the formation of laticifer cells in cotyledon. Meanwhile, the analysis of hormones related genes expression may provide effective clues for us to promote the differentiation of laticifer cells in seeds by hormones in the future. In this study, hormone-related gene enrichment analyses revealed that IAA, GA, and CTK were activated in laticifer containing tissues. Similarly, GO and GEGG analysis showed that hormone pathways, especially the auxin pathway, are enriched. Gene expression clustering was analyzed using the short time-series expression miner (STEM), and the analysis revealed four distinct trends in the gene expression profiles. Moreover, we enriched transcription factor (TF) enrichment in cotyledon and embryonic axis tissues, and the MYB type exhibited the most significant difference. Furthermore, our findings revealed that genes related to rubber synthesis exhibited tissue-specific expression patterns during seed germination. Notably, key genes associated with rubber biosynthesis, specifically small rubber particle protein (SRPP) and cis-prenyltransferase (CPT), exhibited significant changes in expression in cotyledon and embryonic axis tissues, suggesting synchronous rubber synthesis with seed germination. Our staining results reveled that laticifer cells were exits in the cotyledon before seed imbibition stage. In conclusion, these results lay the foundation for exploring the molecular mechanisms underlying laticifer differentiation and rubber synthesis during seed germination, deepening our understanding of the initiation stages of rubber biosynthesis and laticifer differentiation.
Collapse
Affiliation(s)
- Bin Hu
- National Key Laboratory for Tropical Crop Breeding, Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Na Yang
- National Key Laboratory for Tropical Crop Breeding, Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xiangyu Shi
- Danxin College, Hainan University, Danzhou, China
| | - Yunxia Qin
- National Key Laboratory for Tropical Crop Breeding, Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yongjun Fang
- National Key Laboratory for Tropical Crop Breeding, Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiangyu Long
- National Key Laboratory for Tropical Crop Breeding, Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Mofidi SSH, Naghavi MR, Sabokdast M, Jariani P, Zargar M, Cornish K. Effect of drought stress on natural rubber biosynthesis and quality in Taraxacum kok-saghyz roots. PLoS One 2024; 19:e0295694. [PMID: 38252676 PMCID: PMC10802950 DOI: 10.1371/journal.pone.0295694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Taraxacum kok-saghyz (TKS) is a potential source of natural rubber (NR) that can be grown in temperate regions with limited water availability. However, the effect of drought stress on NR production and properties in TKS isn't well studied. This study examined how different levels of drought stress (30, 60 and 90%) influenced the NR content, molecular weight (Mw), glass transition temperature (Tg), gene expression, and biochemical parameters in TKS roots. The results showed that drought stress didn't significantly change the NR content, but increased the Mw and the expression of CPT and SRPP genes, which are involved in NR biosynthesis. The NR from TKS roots (TNR) had a high Mw of 994,000 g/mol and a low Tg of below -60°C under normal irrigation, indicating its suitability for industrial applications. Drought stress also triggered the accumulation of proline, H2O2, MDA, and antioxidant enzymes (CAT, APX, GPX) in TKS roots significantly, indicating a drought tolerance mechanism. These findings suggest that TKS can produce high-quality NR under drought stress conditions and provide a sustainable alternative to conventional NR sources.
Collapse
Affiliation(s)
- Seyed Shahab Hedayat Mofidi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia
| | - Manijeh Sabokdast
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia
| | - Katrina Cornish
- Departments of Horticulture and Crop Science, and Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States of America
| |
Collapse
|
15
|
Liu H, Yuan K, Hu Y, Wang S, He Q, Feng C, Liu J, Wang Z. Construction and analysis of the tapping panel dryness-related lncRNA/circRNA-miRNA-mRNA ceRNA network in latex of Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108156. [PMID: 37979576 DOI: 10.1016/j.plaphy.2023.108156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
Tapping panel dryness (TPD) results in a severe reduction in latex yield in Hevea brasiliensis. However, the molecular regulatory mechanisms of TPD occurrence are still largely unclear. In this study, whole-transcriptome sequencing was carried out on latex from TPD and healthy trees. In total, 7078 long noncoding RNAs (lncRNAs), 3077 circular RNAs (circRNAs), 4956 miRNAs, and 25041 mRNAs were identified in latex, among which 435 lncRNAs, 68 circRNAs, 320 miRNAs, and 1574 mRNAs were differentially expressed in the latex of TPD trees. GO and KEGG analyses indicated that plant hormone signal transduction, MAPK signaling pathway, and ubiquitin-mediated proteolysis were the key pathways associated with TPD onset. Phytohormone profiling revealed significant changes in the contents of 28 hormonal compounds, among which ACC, ABA, IAA, GA, and JA contents were increased, while SA content was reduced in TPD latex, suggesting that hormone homeostasis is disrupted in TPD trees. Furthermore, we constructed a TPD-related competitive endogenous RNA (ceRNA) regulatory network of lncRNA/circRNA-miRNA-mRNA with 561 edges and 434 nodes (188 lncRNAs, 5 circRNAs, 191 miRNAs, and 50 mRNAs) and identified two hub lncRNAs (MSTRG.11908.1 and MSTRG.8791.1) and four hub miRNAs (hbr-miR156, miR156-x, miRf10477-y, and novel-m0452-3p). Notably, the lncRNA-miR156/157-SPL module containing three hubs probably plays a crucial role in TPD onset. The expression of network hubs and the lncRNA-miR156/157-SPL module were further validated by qRT-PCR. Our results reveal the TPD-associated ceRNA regulatory network of lncRNA/circRNA-miRNA-mRNA in latex and lay a foundation for further investigation of molecular regulatory mechanisms for TPD onset in H. brasiliensis.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Kun Yuan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yiyu Hu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuai Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Qiguang He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chengtian Feng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jinping Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Zhenhui Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
16
|
Tan Y, Cao J, Tang C, Liu K. Advances in Genome Sequencing and Natural Rubber Biosynthesis in Rubber-Producing Plants. Curr Issues Mol Biol 2023; 45:9342-9353. [PMID: 38132431 PMCID: PMC10741621 DOI: 10.3390/cimb45120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Natural rubber (cis-1,4-polyisoprene, NR) is an important raw material utilized widely in the manufacturing of medical, agricultural, and industrial products. Rubber tree (Hevea brasiliensis) and several alternative rubber-producing plants (Taraxacum kok-saghyz, Lactuca sativa, and Parthenium argentatum) have the capability to produce high-quality NR. With the progress of genome sequencing, similar rubber biosynthesis pathways have been discovered among different rubber-producing plant species. NR is synthesized and stored in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The rubber transferase complex is considered to be the pivotal enzyme involved in catalyzing NR biosynthesis. However, the exact compositions of the RT complex in rubber-producing plants remain elusive and poorly understood. Here, we review the progress of genome sequencing, natural rubber biosynthesis, and the components of the RT complex in rubber-producing plants. We emphasize that identifying the detailed components of the RT complex holds great significance for exploring the mechanism of NR biosynthesis and accelerating molecular breeding in rubber-producing plants.
Collapse
Affiliation(s)
- Yingchao Tan
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
| | - Jie Cao
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
| | - Chaorong Tang
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
- Yunnan Institute of Tropical Crops, Xishuangbanna 666100, China
| | - Kaiye Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Chao J, Wu S, Shi M, Xu X, Gao Q, Du H, Gao B, Guo D, Yang S, Zhang S, Li Y, Fan X, Hai C, Kou L, Zhang J, Wang Z, Li Y, Xue W, Xu J, Deng X, Huang X, Gao X, Zhang X, Hu Y, Zeng X, Li W, Zhang L, Peng S, Wu J, Hao B, Wang X, Yu H, Li J, Liang C, Tian WM. Genomic insight into domestication of rubber tree. Nat Commun 2023; 14:4651. [PMID: 37532727 PMCID: PMC10397287 DOI: 10.1038/s41467-023-40304-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Understanding the genetic basis of rubber tree (Hevea brasiliensis) domestication is crucial for further improving natural rubber production to meet its increasing demand worldwide. Here we provide a high-quality H. brasiliensis genome assembly (1.58 Gb, contig N50 of 11.21 megabases), present a map of genome variations by resequencing 335 accessions and reveal domestication-related molecular signals and a major domestication trait, the higher number of laticifer rings. We further show that HbPSK5, encoding the small-peptide hormone phytosulfokine (PSK), is a key domestication gene and closely correlated with the major domestication trait. The transcriptional activation of HbPSK5 by myelocytomatosis (MYC) members links PSK signaling to jasmonates in regulating the laticifer differentiation in rubber tree. Heterologous overexpression of HbPSK5 in Russian dandelion (Taraxacum kok-saghyz) can increase rubber content by promoting laticifer formation. Our results provide an insight into target genes for improving rubber tree and accelerating the domestication of other rubber-producing plants.
Collapse
Affiliation(s)
- Jinquan Chao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shaohua Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Minjing Shi
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Qi Biodesign, Life Science Park, Beijing, 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuguang Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shixin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yan Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiuli Fan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhiwei Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wenbo Xue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaomin Deng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiao Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xinsheng Gao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiaofei Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yanshi Hu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xia Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Weiguo Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiqing Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jilin Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Bingzhong Hao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xuchu Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei-Min Tian
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
18
|
Kwon M, Hodgins CL, Salama EM, Dias KR, Parikh A, Mackey AV, Catenza KF, Vederas JC, Ro DK. New insights into natural rubber biosynthesis from rubber-deficient lettuce mutants expressing goldenrod or guayule cis-prenyltransferase. THE NEW PHYTOLOGIST 2023; 239:1098-1111. [PMID: 37247337 DOI: 10.1111/nph.18994] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023]
Abstract
Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.
Collapse
Affiliation(s)
- Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Connor L Hodgins
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Eman M Salama
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Kayla R Dias
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Aalap Parikh
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ashlyn V Mackey
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Karizza F Catenza
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
19
|
Chen X, Du Y, Luo S, Qu Y, Jin W, Liu S, Wang Z, Liu X, Feng Z, Qin B, Zhou L. Physiological and Transcriptomic Analyses Reveal the Effects of Carbon-Ion Beam on Taraxacum kok-saghyz Rodin Adventitious Buds. Int J Mol Sci 2023; 24:ijms24119287. [PMID: 37298239 DOI: 10.3390/ijms24119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Taraxacum kok-saghyz Rodin (TKS) has great potential as an alternative natural-rubber (NR)-producing crop. The germplasm innovation of TKS still faces great challenges due to its self-incompatibility. Carbon-ion beam (CIB) irradiation is a powerful and non-species-specific physical method for mutation creation. Thus far, the CIB has not been utilized in TKS. To better inform future mutation breeding for TKS by the CIB and provide a basis for dose-selection, adventitious buds, which not only can avoid high levels of heterozygosity, but also further improve breeding efficiency, were irradiated here, and the dynamic changes of the growth and physiologic parameters, as well as gene expression pattern were profiled, comprehensively. The results showed that the CIB (5-40 Gy) caused significant biological effects on TKS, exhibiting inhibitory effects on the fresh weight and the number of regenerated buds and roots. Then,15 Gy was chosen for further study after comprehensive consideration. CIB-15 Gy resulted in significant oxidative damages (hydroxyl radical (OH•) generation activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and malondialdehyde (MDA) content) and activated the antioxidant system (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) of TKS. Based on RNA-seq analysis, the number of differentially expressed genes (DEGs) peaked at 2 h after CIB irradiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DNA-replication-/repair- (mainly up-regulated), cell-death- (mainly up-regulated), plant-hormone- (auxin and cytokinin, which are related to plant morphogenesis, were mainly down-regulated), and photosynthesis- (mainly down-regulated) related pathways were involved in the response to the CIB. Furthermore, CIB irradiation can also up-regulate the genes involved in NR metabolism, which provides an alternative strategy to elevate the NR production in TKS in the future. These findings are helpful to understand the radiation response mechanism and further guide the future mutation breeding for TKS by the CIB.
Collapse
Affiliation(s)
- Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanwei Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ying Qu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Jin
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shizhong Liu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Zhuanzi Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liu
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Kuluev B, Uteulin K, Bari G, Baimukhametova E, Musin K, Chemeris A. Molecular Genetic Research and Genetic Engineering of Taraxacum kok-saghyz L.E. Rodin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1621. [PMID: 37111845 PMCID: PMC10144037 DOI: 10.3390/plants12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Natural rubber (NR) remains an indispensable raw material with unique properties that is used in the manufacture of a large number of products and the global demand for it is growing every year. The only industrially important source of NR is the tropical tree Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg., thus alternative sources of rubber are required. For the temperate zone, the most suitable source of high quality rubber is the Russian (Kazakh) dandelion Taraxacum kok-saghyz L.E. Rodin (TKS). An obstacle to the widespread industrial cultivation of TKS is its high heterozygosity, poor growth energy, and low competitiveness in the field, as well as inbreeding depression. Rapid cultivation of TKS requires the use of modern technologies of marker-assisted and genomic selection, as well as approaches of genetic engineering and genome editing. This review is devoted to describing the progress in the field of molecular genetics, genomics, and genetic engineering of TKS. Sequencing and annotation of the entire TKS genome made it possible to identify a large number of SNPs, which were subsequently used in genotyping. To date, a total of 90 functional genes have been identified that control the rubber synthesis pathway in TKS. The most important of these proteins are part of the rubber transferase complex and are encoded by eight genes for cis-prenyltransferases (TkCPT), two genes for cis-prenyltransferase-like proteins (TkCPTL), one gene for rubber elongation factor (TkREF), and nine genes for small rubber particle proteins (TkSRPP). In TKS, genes for enzymes of inulin metabolism have also been identified and genome-wide studies of other gene families are also underway. Comparative transcriptomic and proteomic studies of TKS lines with different accumulations of NR are also being carried out, which help to identify genes and proteins involved in the synthesis, regulation, and accumulation of this natural polymer. A number of authors already use the knowledge gained in the genetic engineering of TKS and the main goal of these works is the rapid transformation of the TKS into an economically viable rubber crop. There are no great successes in this area so far, therefore work on genetic transformation and genome editing of TKS should be continued, considering the recent results of genome-wide studies.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Kairat Uteulin
- Institute of Plant Biology and Biotechnology, St. Timiryazev 45, 050040 Almaty, Kazakhstan
| | - Gabit Bari
- Laboratory of Microclonal Propagation of Plants, Kazakh National Agrarian Research University, St. Valikhanov 137, 050000 Almaty, Kazakhstan
| | - Elvina Baimukhametova
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Khalit Musin
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Alexey Chemeris
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| |
Collapse
|
21
|
Guo M, Zhang M, Gao S, Wang L, Zhang J, Huang Z, Dong Y. Quantitative Detection of Natural Rubber Content in Eucommia ulmoides by Portable Pyrolysis-Membrane Inlet Mass Spectrometry. Molecules 2023; 28:molecules28083330. [PMID: 37110564 PMCID: PMC10142753 DOI: 10.3390/molecules28083330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Eucommia ulmoides gum (EUG) is a natural polymer predominantly consisting of trans-1,4-polyisoprene. Due to its excellent crystallization efficiency and rubber-plastic duality, EUG finds applications in various fields, including medical equipment, national defense, and civil industry. Here, we devised a portable pyrolysis-membrane inlet mass spectrometry (PY-MIMS) approach to rapidly, accurately, and quantitatively identify rubber content in Eucommia ulmoides (EU). EUG is first introduced into the pyrolyzer and pyrolyzed into tiny molecules, which are then dissolved and diffusively transported via the polydimethylsiloxane (PDMS) membrane before entering the quadrupole mass spectrometer for quantitative analysis. The results indicate that the limit of detection (LOD) for EUG is 1.36 μg/mg, and the recovery rate ranges from 95.04% to 104.96%. Compared to the result of pyrolysis-gas chromatography (PY-GC), the average relative error is 1.153%, and the detection time was reduced to less than 5 min, demonstrating that the procedure was reliable, accurate, and efficient. The method has the potential to be employed to precisely identify the rubber content of natural rubber-producing plants such as Eucommia ulmoides, Taraxacum kok-saghyz (TKS), Guayule, and Thorn lettuce.
Collapse
Affiliation(s)
- Minmin Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingjian Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shunkai Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jichuan Zhang
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials and Engineering, Beijing University of Chemical and Technology, Beijing 100029, China
| | - Zejian Huang
- Center for Advanced Measurement Science, National Institute of Metrology, Technology Innovation Center of Mass Spectrum for State Market Regulation, Beijing 100029, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Rubber Plant Research Center, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Dong G, Wang H, Qi J, Leng Y, Huang J, Zhang H, Yan J. Transcriptome analysis of Taraxacum kok-saghyz reveals the role of exogenous methyl jasmonate in regulating rubber biosynthesis and drought tolerance. Gene 2023; 867:147346. [PMID: 36898514 DOI: 10.1016/j.gene.2023.147346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Taraxacum kok-saghyz has been identified as one of the most promising alternative rubber crops, with laticifer cells that produce high-quality rubber. To uncover the underlying molecular mechanisms regulating natural rubber biosynthesis under MeJA induction, a reference transcriptome was constructed from nine samples of T. kok-saghyz. MeJA treatment was applied for 0 h (control), 6 h, and 24 h. A total of 7452 differentially expressed genes (DEGs) were identified in response to MeJA stress, relative to the control. Functional enrichment showed that these DEGs were primarily related to hormone signaling, defensive responses, and secondary metabolism. Combined analysis of the DEGs induced by MeJA and high-expression genes in laticifer cells further identified seven DEGs related to natural rubber biosynthesis that were upregulated in latex tissue, suggesting that these candidate genes could prove valuable in studying the mechanism of MeJA-mediated natural rubber biosynthesis. In addition, 415 MeJA-responsive DEGs were from several transcription factor families associated with drought resistance. This study helps to elucidate the mechanism of natural rubber biosynthesis in T. kok-saghyz in response to MeJA stress and identifies key candidate MeJA-induced DEGs in laticifer tissue, as well as a candidate drought-response target gene, whose knowledge will promote the breeding of T. kok-saghyz in the aspect of rubber yields and quality, and drought tolerance.
Collapse
Affiliation(s)
- Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hainan Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yadong Leng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jun Huang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hao Zhang
- Institute of gardening and greening, Xinjiang Academy of Forestry Sciences, Urumqi, 830000, China.
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
23
|
3,4-Enhanced Polymerization of Isoprene Catalyzed by Side-Arm Tridentate Iminopyridine Iron Complex with High Activity: Optimization via Response Surface Methodology. Polymers (Basel) 2023; 15:polym15051231. [PMID: 36904470 PMCID: PMC10007258 DOI: 10.3390/polym15051231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
3,4-Enhanced polymerization of isoprene catalyzed by late transition metal with high activity remains one of the great challenges in synthetic rubber chemistry. Herein, a library of [N, N, X] tridentate iminopyridine iron chloride pre-catalysts (Fe 1-4) with the side arm were synthesized and confirmed by the element analysis and HRMS. All the iron compounds served as highly efficient pre-catalysts for 3,4-enhanced (up to 62%) isoprene polymerization when 500 equivalent MAOs were utilized as co-catalysts, delivering the corresponding high-performance polyisoprenes. Furthermore, optimization via single factor and response surface method, it was observed that the highest activity was obtained by complex Fe 2 with 4.0889 × 107 g·mol(Fe)-1·h-1 under the following conditions: Al/Fe = 683; IP/Fe = 7095; t = 0.52 min.
Collapse
|
24
|
Supanakorn G, Taokaew S, Phisalaphong M. Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:521. [PMID: 36770481 PMCID: PMC9921950 DOI: 10.3390/nano13030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Composite films of natural rubber/cellulose fiber/silver nanoparticle were synthesized in a green route via the latex solution process. Hybrid cellulose filler containing carboxymethyl cellulose and cellulose microfibers was used to facilitate facile and fast preparation and to improve mechanical strength to the composites, respectively. All the composites possessed a high tensile strength of ~120 MPa, a high heat resistance of nearly 300 °C, and more than 20% biodegradability in soil in two weeks. Chemical resistance and antibacterial activity of the composite was enhanced depending on sizes and concentrations of silver nanoparticles (AgNPs). The composites containing 0.033-0.1% w/w AgNPs retarded toluene uptake to less than 12% throughout 8 h, whereas the composite containing 0.067-0.1% w/w AgNPs exhibited excellent antibacterial activities against Escherichia coli and Staphylococcus aureus. In comparison, 50 nm-AgNPs presented higher antibacterial activities than 100 nm-AgNPs. In vitro cytotoxicity test assessed after incubation for 24 h and 48 h revealed that almost all AgNPs-composite films exhibited non/weak and moderate cytotoxicity, respectively, to HaCaT keratinocyte cells.
Collapse
Affiliation(s)
- Goragot Supanakorn
- Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Taokaew
- Department of Materials Science and Biotechnology, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Muenduen Phisalaphong
- Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Yang Y, Qin B, Chen Q, Nie Q, Zhang J, Zhang L, Liu S. Construction of the first high-density SNP genetic map and identification of QTLs for the natural rubber content in Taraxacum kok-saghyz Rodin. BMC Genomics 2023; 24:13. [PMID: 36627555 PMCID: PMC9830913 DOI: 10.1186/s12864-022-09105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Taraxacum kok-saghyz Rodin (TKS) is a promising commercial alternative natural rubber (NR) yielding plant. Cultivating TKS with a high NR content is an important breeding target, and developing molecular markers related to NR content can effectively accelerate the breeding process of TKS. RESULTS To construct a high-density SNP genetic map and uncover genomic regions related to the NR content in TKS, an F1 mapping population of TKS was constructed by crossing two parents (l66 and X51) with significant differences in NR contents. The NR content of the F1 plants ranged from 0.30 to 15.14% and was distributed normally with a coefficient of variation of 47.61%, indicating quantitative trait inheritance. Then, employing whole-genome resequencing (WGR), a TKS genetic linkage map of 12,680 bin markers comprising 322,439 SNPs was generated. Based on the genetic map and NR content of the F1 population, six quantitative trait loci (QTLs) for NR content with LOD > 4.0 were identified on LG01/Chr01 and LG06/Chr06. Of them, the 2.17 Mb genomic region between qHRC-C6-1 and qHRC-C6-2 on ChrA06, with 65.62% PVE in total, was the major QTL region. In addition, the six QTLs have significant additive genetic effects on NR content and could be used to develop markers for marker-assisted selection (MAS) in TKS with a high NR content. CONCLUSION This work constructed the first high-density TKS genetic map and identified the QTLs and genomic regions controlling the NR content, which provides useful information for fine mapping, map-based cloning, and MAS in TKS.
Collapse
Affiliation(s)
- Yushuang Yang
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| | - Bi Qin
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| | - Qiuhui Chen
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| | - Qiuhai Nie
- Beijing Linglong Dandelion Technology and Development Ltd, 101102 Beijing, China
| | - Jichuan Zhang
- grid.48166.3d0000 0000 9931 8406College of Materials and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Liqun Zhang
- grid.48166.3d0000 0000 9931 8406College of Materials and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Shizhong Liu
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| |
Collapse
|
26
|
Guo Y, Bao K, Han D, Wu X, Li S, Dong Y, Zhang J. Study on in vitro NR biosynthesis by rapid quantitative determination of substrate depletion. J Biotechnol 2023; 361:80-88. [PMID: 36435303 DOI: 10.1016/j.jbiotec.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
A convenient and nonradioactive method for quantifying in vitro NR biosynthesis is presented that is based upon the quantitation of substrate depletion by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). NR oligomers could be in vitro biosynthesized with the enzyme source from Hevea brasiliensis (Hevea) or Taraxacum kok-saghyz (TKS) by exogenous monomers (IPP) and initiators (FPP). The IPP incorporation rate and FPP consumption rate were 62.24% and 51.14% respectively when the washed rubber particles (WRP) of Hevea was the enzyme source. The IPP incorporation rate and the FPP consumption rate were 74.49% and 95.90% respectively when the sediment bottom fraction (BF) of Hevea was the enzyme source. The in vitro NR biosynthesis can be divided into two stages:(1) the initiation reaction of FPP, which occurs more in BF, and (2) the growth reaction of IPP, which occurs more in WRP. In addition, the IPP incorporation and FPP consumption rates were 59.39% and 34.15% respectively when the BF of TKS was selected as an enzyme source.
Collapse
Affiliation(s)
- Yuwen Guo
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Kexu Bao
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Dongli Han
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Energy Conservation and Resource Utilization Engineering Research Center of Elastomer Materials, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaohui Wu
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Energy Conservation and Resource Utilization Engineering Research Center of Elastomer Materials, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, PR China; Center of Advanced Elastomer Engineering Research, Beijing, Beijing University of Chemical Technology, 100029, PR China
| | - Shuangbing Li
- Zibo Nevc Advanced Vehicle Materials Technology Innovation Center, Shandong, 255000, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jichuan Zhang
- Center of Advanced Elastomer Materials, College of Material Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Energy Conservation and Resource Utilization Engineering Research Center of Elastomer Materials, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, PR China; Center of Advanced Elastomer Engineering Research, Beijing, Beijing University of Chemical Technology, 100029, PR China.
| |
Collapse
|
27
|
Dong G, Fan M, Wang H, Leng Y, Sun J, Huang J, Zhang H, Yan J. Functional Characterization of TkSRPP Promoter in Response to Hormones and Wounding Stress in Transgenic Tobacco. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020252. [PMID: 36678964 PMCID: PMC9866153 DOI: 10.3390/plants12020252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 05/14/2023]
Abstract
Taraxacum kok-saghyz is a model species for studying natural rubber biosynthesis because its root can produce high-quality rubber. Small rubber particle protein (SRPP), a stress-related gene to multiple stress responses, involves in natural rubber biosynthesis. To investigate the transcriptional regulation of the TkSRPP promoter, the full-length promoter PR0 (2188 bp) and its four deletion derivatives, PR1 (1592 bp), PR2 (1274 bp), PR3 (934 bp), and PR4 (450 bp), were fused to β-glucuronidase (GUS) reporter gene and transformed into tobacco. The GUS tissue staining showed that the five promoters distinctly regulated GUS expression utilizing transient transformation of tobacco. The GUS activity driven by a PR0 promoter was detected in transgenic tobacco leaves, stem and roots, suggesting that the TkSRPP promoter was not tissue-specific. Deletion analyses in transgenic tobacco have demonstrated that the PR3 from -934 bp to -450 bp core region responded strongly to the hormones, methyl jasmonate (MeJA), abscisic acid (ABA), and salicylic acid (SA), and also to injury induction. The TkSRPP gene was highly expressed under hormones and wound-induced conditions. This study reveals the regulation pattern of the SRPP promoter, and provides valuable information for studying natural rubber biosynthesis under hormones and wounding stress.
Collapse
Affiliation(s)
- Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengwei Fan
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hainan Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yadong Leng
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Junting Sun
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jun Huang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hao Zhang
- Institute of Gardening and Greening, Xinjiang Academy of Forestry Sciences, Urumqi 830000, China
- Correspondence: (H.Z.); (J.Y.)
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence: (H.Z.); (J.Y.)
| |
Collapse
|
28
|
Sui J, Xiao X, Yang J, Fan Y, Zhu S, Zhu J, Zhou B, Yu F, Tang C. The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111510. [PMID: 36341879 DOI: 10.1016/j.plantsci.2022.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
RAPID ALKALINIZATION FACTORs (RALFs), which are secreted peptides serving as extracellular signals transduced to the inside of the cell, interact with the receptor-like kinase FERONIA (FER) and participates in various biological pathways. Here, we identified 23 RALF and 2 FER genes in Hevea brasiliensis (para rubber tree), and characterized their expression patterns in different tissues, across the process of leaf development, and in response to the rubber yield-stimulating treatments of tapping and ethylene. Four Hevea latex (the cytoplasm of rubber-producing laticifers)-abundant RALF isoforms, HbRALF19, HbRALF3, HbRALF22, and HbRALF16 were listed with descending expression levels. Of the four HbRALFs, expressions of HbRALF3 were markedly regulated in an opposite way by the treatments of tapping (depression) and ethylene (stimulation). All of the four latex-abundant RALFs specifically interacted with the extracellular domain of HbFER1. Transgenic Arabidopsis plants overexpressing these HbRALFs displayed phenotypes similar to those reported for AtRALFs, such as shorter roots, smaller plant architecture, and delayed flowering. The application of HbRALF3 and HbRALF19 recombinant proteins significantly reduced the pH of Hevea latex, an important factor regulating latex metabolism. An in vitro rubber biosynthesis assay in a mixture of latex cytosol (C-serum) revealed a positive role of HbFER1 in rubber biosynthesis. Taken together, these data provide evidence for the participation of the HbRALF-FER module in rubber production.
Collapse
Affiliation(s)
- Jinlei Sui
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Scientific Research Centre, Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yujie Fan
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Sirui Zhu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Jinheng Zhu
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Binhui Zhou
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, Haikou 570228, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China.
| | - Chaorong Tang
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, Haikou 570228, China.
| |
Collapse
|
29
|
In Silico Genome-Wide Mining and Analysis of Terpene Synthase Gene Family in Hevea Brasiliensis. Biochem Genet 2022; 61:1185-1209. [DOI: 10.1007/s10528-022-10311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
|
30
|
Cao X, Xie H, Song M, Lu J, Ma P, Huang B, Wang M, Tian Y, Chen F, Peng J, Lang Z, Li G, Zhu JK. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation (N Y) 2022; 4:100345. [PMID: 36387605 PMCID: PMC9661722 DOI: 10.1016/j.xinn.2022.100345] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
Of the more than 370 000 species of higher plants in nature, fewer than 0.1% can be genetically modified due to limitations of the current gene delivery systems. Even for those that can be genetically modified, the modification involves a tedious and costly tissue culture process. Here, we describe an extremely simple cut-dip-budding (CDB) delivery system, which uses Agrobacterium rhizogene to inoculate explants, generating transformed roots that produce transformed buds due to root suckering. We have successfully used CDB to achieve the heritable transformation of plant species in multiple plant families, including two herbaceous plants (Taraxacum kok-saghyz and Coronilla varia), a tuberous root plant (sweet potato), and three woody plant species (Ailanthus altissima, Aralia elata, and Clerodendrum chinense). These plants have previously been difficult or impossible to transform, but the CDB method enabled efficient transformation or gene editing in them using a very simple explant dipping protocol, under non-sterile conditions and without the need for tissue culture. Our work suggests that large numbers of plants could be amenable to genetic modifications using the CDB method.
Collapse
Affiliation(s)
- Xuesong Cao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Xie
- Shandong Shunfeng Biotechnology Co., Ltd., Jinan 250000, China
| | - Minglei Song
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghua Lu
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Ping Ma
- Shandong Shunfeng Biotechnology Co., Ltd., Jinan 250000, China
| | - Boyu Huang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mugui Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yifu Tian
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Fan Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jun Peng
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guofu Li
- Shandong Shunfeng Biotechnology Co., Ltd., Jinan 250000, China
- Corresponding author
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Corresponding author
| |
Collapse
|
31
|
Hernandez-Tenorio F, Arroyave-Miranda H, Miranda AM, González SM, Rodríguez CA, Sáez AA. Improving Deproteinization in Colombian Latex from Hevea brasiliensis: A Bibliometric Approximation. Polymers (Basel) 2022; 14:polym14194248. [PMID: 36236196 PMCID: PMC9573318 DOI: 10.3390/polym14194248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/30/2023] Open
Abstract
Natural Rubber Field Latex (NRFL) allergens restrict its use in some markets due to health-threatening allergic reactions. These molecules are proteins that are related to asymptomatic sensitization and hypersensitivity mediated by immunoglobulin E (IgE). Although NRFL allergens have been investigated since the 1980s, there are still gaps in knowledge regarding the development of deproteinized natural rubber (DPNR). Therefore, in this study, the deproteinization of NRFL from the lower basin of the Cauca River, Antioquia-Colombia was evaluated using eight systems. The highest removal value was 84.4% and was obtained from the treatment containing SDS (Sodium dodecyl sulfate), Urea, and Ethanol. It was also possible to determine that at high concentrations of SDS, removal percentages higher than 70% are reached. On the other hand, all deproteinizing systems decreased NRFL Zeta potentials without self-coagulation, suggesting enhanced colloidal stability in DPNR latex. On the other hand, the bibliometric analysis presented technological advances in DPRN through different parameters and bibliometric networks. The analysis presented makes an important contribution from the bibliometric approach that could be positive for the development of research on DPNR.
Collapse
Affiliation(s)
| | | | - Alejandra M. Miranda
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Sandra M. González
- School of Applied Sciences and Engineering, Universidad EAFIT, Medellín 050022, Colombia
| | - Carlos A. Rodríguez
- Engineering, Energy, Exergy and Sustainability Group (IEXS), School of Applied Sciences and Engineering, Universidad EAFIT, Medellín 050022, Colombia
| | - Alex A. Sáez
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
- Correspondence:
| |
Collapse
|
32
|
Gutensohn M, Hartzell E, Dudareva N. Another level of complex-ity: The role of metabolic channeling and metabolons in plant terpenoid metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:954083. [PMID: 36035727 PMCID: PMC9399743 DOI: 10.3389/fpls.2022.954083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Terpenoids constitute one of the largest and most diverse classes of plant metabolites. While some terpenoids are involved in essential plant processes such as photosynthesis, respiration, growth, and development, others are specialized metabolites playing roles in the interaction of plants with their biotic and abiotic environment. Due to the distinct functions and properties of specific terpenoid compounds, there is a growing interest to introduce or modify their production in plants by metabolic engineering for agricultural, pharmaceutical, or industrial applications. The MVA and MEP pathways and the prenyltransferases providing the general precursors for terpenoid formation, as well as the enzymes of the various downstream metabolic pathways leading to the formation of different groups of terpenoid compounds have been characterized in detail in plants. In contrast, the molecular mechanisms directing the metabolic flux of precursors specifically toward one of several potentially competing terpenoid biosynthetic pathways are still not well understood. The formation of metabolons, multi-protein complexes composed of enzymes catalyzing sequential reactions of a metabolic pathway, provides a promising concept to explain the metabolic channeling that appears to occur in the complex terpenoid biosynthetic network of plants. Here we provide an overview about examples of potential metabolons involved in plant terpenoid metabolism that have been recently characterized and the first attempts to utilize metabolic channeling in terpenoid metabolic engineering. In addition, we discuss the gaps in our current knowledge and in consequence the need for future basic and applied research.
Collapse
Affiliation(s)
- Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Erin Hartzell
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
33
|
Biopolymer production in microbiology by application of metabolic engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Whole genome re-sequencing reveals the genetic diversity and evolutionary patterns of Eucommia ulmoides. Mol Genet Genomics 2022; 297:485-494. [PMID: 35146538 DOI: 10.1007/s00438-022-01864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Eucommia ulmoides (E. ulmoides) is a deciduous perennial tree belonging to the order Garryales, and is known as "living fossil" plant, along with ginkgo (Ginkgo biloba), metaspaca (Metasequoia glyptostroboides) and dove tree (Davidia involucrata Baill). However, the genetic diversity and population structure of E. ulmoides are still ambiguous nowdays. In this study, we re-sequenced the genomes of 12 E. ulmoides accessions from different major climatic geography regions in China to elucidate the genetic diversity, population structure and evolutionary pattern. By integration of phylogenetic analysis, principal component analysis and population structure analysis based on a number of high-quality SNPs, a total of 12 E. ulmoides accessions were clustered into four different groups. This result is consistent with their geographical location except for group samples from Shanghai and Hunan province. E. ulmoides accessions from Hunan province exhibited a closer genetic relationship with E. ulmoides accessions from Shanghai in China compared with other regions, which is also supported by the result of population structure analyses. Genetic diversity analysis further revealed that E. ulmoides samples in Shanghai and Hunan province were with higher genetic diversity than those in other regions in this study. In addition, we treated the E. ulmoides materials from Shanghai and Hunan province as group A, and the other materials from other places as group B, and then analyzed the evolutionary pattern of E. ulmoides. The result showed the significant differentiation (Fst = 0.1545) between group A and group B. Some candidate highly divergent genome regions were identified in group A by selective sweep analyses, and the function analysis of candidate genes in these regions showed that biological regulation processes could be correlated with the Eu-rubber biosynthesis. Notably, nine genes were identified from selective sweep regions. They were involved in the Eu-rubber biosynthesis and expressed in rubber containing tissues. The genetic diversity research and evolution model of E. ulmoides were preliminarily explored in this study, which laid the foundation for the protection of germplasm resources and the development and utilization of multipurpose germplasm resources in the future.
Collapse
|
35
|
Li HL, Wang Y, Guo D, Zhu JH, Peng SQ. Differential Expression of lncRNAs and miRNAs Between Self-Rooting Juvenile and Donor Clones Unveils Novel Insight Into the Molecular Regulation of Rubber Biosynthesis in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2022; 12:740597. [PMID: 35069613 PMCID: PMC8767119 DOI: 10.3389/fpls.2021.740597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
The rubber tree (Hevea brasiliensis Muell. Arg.) is a tropical tree species that produce natural rubber. Self-rooted juvenile clones (SRJCs) are novel rubber tree planting materials developed through primary somatic embryogenesis. SRJCs have a higher rubber yield compared with donor clones (DCs). The molecular basis underlying increased rubber yield in SRJCs remains largely unknown. Here, the latex from SRJCs and DCs were collected for strand-specific and small RNA-seq methods. A total of 196 differentially expressed long noncoding RNAs (DELs), and 11 differentially expressed microRNAs were identified in latex between SRJCs and DCs. Targeted genes of DELs were markedly enriched for various biological pathways related to plant hormone signal transduction, photosynthesis, glutathione metabolism, and amino acids biosynthesis. DELs probably acted as cis-acting regulation was calculated, and these DELs relevant to potentially regulate rubber biosynthesis, reactive oxygen species metabolism, and epigenetic modification. Furthermore, the DELs acting as microRNA targets were studied. The interaction of microRNA and DELs might involve in the regulation of natural rubber biosynthesis.
Collapse
|
36
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Sci Rep 2021; 11:21610. [PMID: 34732788 PMCID: PMC8566568 DOI: 10.1038/s41598-021-01026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The drought-adapted shrub guayule (Parthenium argentatum) produces rubber, a natural product of major commercial importance, and two co-products with potential industrial use: terpene resin and the carbohydrate fructan. The rubber content of guayule plants subjected to water stress is higher compared to that of well-irrigated plants, a fact consistently reported in guayule field evaluations. To better understand how drought influences rubber biosynthesis at the molecular level, a comprehensive transcriptome database was built from drought-stressed guayule stem tissues using de novo RNA-seq and genome-guided assembly, followed by annotation and expression analysis. Despite having higher rubber content, most rubber biosynthesis related genes were down-regulated in drought-stressed guayule, compared to well-irrigated plants, suggesting post-transcriptional effects may regulate drought-induced rubber accumulation. On the other hand, terpene resin biosynthesis genes were unevenly affected by water stress, implying unique environmental influences over transcriptional control of different terpene compounds or classes. Finally, drought induced expression of fructan catabolism genes in guayule and significantly suppressed these fructan biosynthesis genes. It appears then, that in guayule cultivation, irrigation levels might be calibrated in such a regime to enable tunable accumulation of rubber, resin and fructan.
Collapse
|
38
|
Gimenez-Dejoz J, Tsunoda K, Fukushima Y, Numata K. Computational study of the interaction between natural rubber α-terminal groups and l-quebrachitol, one of the major components of natural rubber. Polym J 2021. [DOI: 10.1038/s41428-021-00569-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractNatural rubber is a biomaterial with unique physical and chemical features that are indispensable for many industrial applications. It is widely accepted that the α-terminal groups of its biopolymer molecules play a critical role in its exceptional characteristics. Herein, we used molecular dynamics to model recently structurally defined α-terminal groups and their interaction with l-quebrachitol, which is the second most common compound found in natural rubber particles.
Collapse
|
39
|
Wichaita W, Promlok D, Sudjaipraparat N, Sripraphot S, Suteewong T, Tangboriboonrat P. A concise review on design and control of structured natural rubber latex particles as engineering nanocomposites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Bacillus pumilus induced tolerance of Maize (Zea mays L.) against Cadmium (Cd) stress. Sci Rep 2021; 11:17196. [PMID: 34433897 PMCID: PMC8387377 DOI: 10.1038/s41598-021-96786-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metals contaminate the soil that alters the properties of soil and negatively affect plants growth. Using microorganism and plant can remove these pollutants from soil. The present investigation was designed to evaluate the induced effect of Bacillus pumilus on maize plant in Cadmium (Cd) contaminated soil. Three different concentrations of Cd (i.e. 0.25, 0.50 and 0.75 mg kg-1) were applied in soil under which maize plants were grown. The germination percentage, shoot length, leaf length, number of leaves, root length, fresh weight and nutrient uptake by maize plant were determined. The experiment was conducted by using complete randomized design (CRD) with three replicates. The result indicated that germination percentage, Shoot length, leaf length, root length, number of leaves, and plant fresh weight were reduced by 37, 39, 39, 32 and 59% respectively at 0.75 mg kg-1 of CdSO4 concentration but when maize seeds inoculated with Bacillus pumilus significantly increased the germination percentage, shoot length, leaf length, number of leaves, plant fresh weight at different concentrations of CdSO4. Moreover, the plant protein were significantly increased by 60% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed) and Peroxidase dismutase (POD) was also significantly higher by 346% in T6 (0.25 mg kg-1 of CdSO4 + inoculated seed), however, the Superoxide dismutase (SOD) was significantly higher in T5 (0.75 mg kg-1 of CdSO4 + uninoculated seed) and was 769% higher as compared to control. The Cd contents in Bacillus pumilus inoculated maize roots and shoots were decreased. The present investigations indicated that the inoculation of maize plant with Bacillus pumilus can help maize plants to withstand Cd stress but higher concentration of Cd can harm the plant. The Bacillus pumilus has good potential to remediate Cd from soil, and also have potential to reduce the phyto availability and toxicity of Cd.
Collapse
|
41
|
Fais A, Delogu GL, Floris S, Era B, Medda R, Pintus F. Euphorbia characias: Phytochemistry and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1468. [PMID: 34371671 PMCID: PMC8309316 DOI: 10.3390/plants10071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research.
Collapse
Affiliation(s)
| | | | | | | | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (A.F.); (G.L.D.); (S.F.); (B.E.); (F.P.)
| | | |
Collapse
|
42
|
Zhang Y, Ren H, Zhang X, Wang L, Gao Q, Abudurezike A, Yan Q, Lu Z, Wang Y, Nie Q, Xu L, Zhang Z. Genetic diversity and evolutionary patterns of Taraxacum kok-saghyz Rodin. Ecol Evol 2021; 11:7917-7926. [PMID: 34188861 PMCID: PMC8216896 DOI: 10.1002/ece3.7622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Taraxacum kok-saghyz Rodin (TKS) is an important potential alternative source of natural inulin and rubber production, which has great significance for the production of industrial products. In this study, we sequenced 58 wild TKS individuals collected from four different geography regions worldwide to elucidate the population structure, genetic diversity, and the patterns of evolution. Also, the first flowering time, crown diameter, morphological characteristics of leaf, and scape of all TKS individuals were measured and evaluated statistically. Phylogenetic analysis based on SNPs and cluster analysis based on agronomic traits showed that all 58 TKS individuals could be roughly divided into three distinct groups: (a) Zhaosu County in Xinjiang (population AB, including a few individuals from population C and D); (b) Tekes County in Xinjiang (population C); and (c) Tuzkol lake in Kazakhstan (population D). Population D exhibited a closer genetic relationship with population C compared with population AB. Genetic diversity analysis further revealed that population expansion from C and D to AB occurred, as well as gene flow between them. Additionally, some natural selection regions were identified in AB population. Function annotation of candidate genes identified in these regions revealed that they mainly participated in biological regulation processes, such as transporter activity, structural molecule activity, and molecular function regulator. We speculated that the genes identified in selective sweep regions may contribute to TKS adaptation to the Yili River Valley of Xinjiang. In general, this study provides new insights in clarifying population structure and genetic diversity analysis of TKS using SNP molecular markers and agronomic traits.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Crop Germplasm ResourcesXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Hailong Ren
- Guangzhou Academy of Agricultural SciencesGuangzhouChina
| | - Xuechao Zhang
- Institute of Agricultural Sciences of the Yili PrefectureYiningChina
| | - Li Wang
- Institute of Crop Germplasm ResourcesXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Qiang Gao
- Sanya Crop Breeding Test CenterXinjiang Academy of Agricultural SciencesSanyaChina
| | | | - Qingqing Yan
- Institute of Crop Germplasm ResourcesXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Zifeng Lu
- Institute of Crop Germplasm ResourcesXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Yonggang Wang
- Institute of Crop Germplasm ResourcesXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Qiuhai Nie
- Linglong Beijing Dandelion Technology& Development Co., Ltd.BeijingChina
| | - Lin Xu
- Institute of Crop Germplasm ResourcesXinjiang Academy of Agricultural SciencesUrumqiChina
| | - Zhibin Zhang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
43
|
Xin S, Hua Y, Li J, Dai X, Yang X, Udayabhanu J, Huang H, Huang T. Comparative analysis of latex transcriptomes reveals the potential mechanisms underlying rubber molecular weight variations between the Hevea brasiliensis clones RRIM600 and Reyan7-33-97. BMC PLANT BIOLOGY 2021; 21:244. [PMID: 34051757 PMCID: PMC8164328 DOI: 10.1186/s12870-021-03022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The processabilities and mechanical properties of natural rubber depend greatly on its molecular weight (MW) and molecular weight distribution (MWD). However, the mechanisms underlying the regulation of molecular weight during rubber biosynthesis remain unclear. RESULTS In the present study, we determined the MW and particle size of latex from 1-year-old virgin trees and 30-year-old regularly tapped trees of the Hevea clones Reyan7-33-97 and RRIM600. The results showed that both the MW and the particle size of latex varied between these two clones and increased with tree age. Latex from RRIM600 trees had a smaller average particle size than that from Reyan7-33-97 trees of the same age. In 1-year-old trees, the Reyan7-33-97 latex displayed a slightly higher MW than that of RRIM600, whereas in 30-year-old trees, the RRIM600 latex had a significantly higher MW than the Reyan7-33-97 latex. Comparative analysis of the transcriptome profiles indicated that the average rubber particle size is negatively correlated with the expression levels of rubber particle associated proteins, and that the high-MW traits of latex are closely correlated with the enhanced expression of isopentenyl pyrophosphate (IPP) monomer-generating pathway genes and downstream allylic diphosphate (APP) initiator-consuming non-rubber pathways. By bioinformatics analysis, we further identified a group of transcription factors that potentially regulate the biosynthesis of IPP. CONCLUSIONS Altogether, our results revealed the potential regulatory mechanisms involving gene expression variations in IPP-generating pathways and the non-rubber isoprenoid pathways, which affect the ratios and contents of IPP and APP initiators, resulting in significant rubber MW variations among same-aged trees of the Hevea clones Reyan7-33-97 and RRIM600. Our findings provide a better understanding of rubber biosynthesis and lay the foundation for genetic improvement of rubber quality in H. brasiliensis.
Collapse
Affiliation(s)
- Shichao Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Yuwei Hua
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Ji Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xuemei Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Xianfeng Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Jinu Udayabhanu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Huasun Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| | - Tiandai Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China.
| |
Collapse
|
44
|
Araujo-Morera J, Verdejo R, López-Manchado MA, Hernández Santana M. Sustainable mobility: The route of tires through the circular economy model. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:309-322. [PMID: 33794443 DOI: 10.1016/j.wasman.2021.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Until nowadays, the concept of the 3Rs (Reduce, Reuse, Recycle) has tried to develop responsible consumption habits. Nonetheless, the rise of ecological thinking has generated the appearance of four new Rs in addition to these basic 3Rs; the currently 7Rs (Reduce, Reuse, Recycle, Redesign, Renew, Repair and Recover) which refer to the actions necessary to achieve the change towards a circular economy (CE) model. This model aims at extending the lifetime of the resources through their rational and efficient use to generate value repeatedly, reducing costs and waste. In this review, we examine the route followed by tires from the CE perspective, analyzing end-of-life strategies that aim to improve the circular flow of tire rubber materials. We discuss the most relevant studies on the "7Rs" concepts applied to tires, comparing different scientific approaches, as well as their industrial and commercial implementation. We also illustrate the drawbacks and feasibility of each of the R-hierarchy strategies. From the early stages of production to the post-consumption step, the path that tires trail within this CE model evidences the commitment and efforts towards the development of effective management schemes for achieving a real sustainable mobility.
Collapse
Affiliation(s)
- Javier Araujo-Morera
- Institute of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Raquel Verdejo
- Institute of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain.
| | | | | |
Collapse
|
45
|
Ninjan R, Thongnuanchan B, Lopattananon N, Thitithammawong A, Nakason C. Rubber-to-steel adhesives based on natural rubber grafted with poly(acetoacetoxyethyl methacrylate). JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The present study aimed to develop adhesives for bonding natural rubber (NR) to steel based on modified NR bearing grafted poly(acetoacetoxyethyl methacrylate), NR-g-PAAEM. Graft copolymers of NR-g-PAAEMs were prepared by emulsion polymerization at 50 °C. A significant increase in the polar component of NR from 1.62 to 6.84 mN/m was observed after grafting modification, indicating an increase in its hydrophilicity. After that, both one-coat and two-coat adhesives (or adhesive/cover-coat system) were then prepared, using polyisocyanate (poly‐HDI) as a bonding agent. The NR/steel joints were made by vulcanization bonding, using the NR-g-PAAEM adhesive in the presence or absence of cover-coat layer. The results reveal that the NR/steel joint bonded using the two-coat system exhibited higher peel strength than that bonded using the one-coat system. For the two-coat system, the peel strength of 874 N/m was attained when the NR-g-PAAEM adhesive was used in combination with the NR cover-coat. The replacement of the NR cover-coat by the NR-g-PAAEM20 cover-coat led to 49% increase in peel strength of the NR/steel joint. Moreover, the X-ray photoelectron spectroscopy analysis also indicated the formation of urethane-like bonding in this adhesive system, as a result of the reaction between the poly‐HDI and metal oxides on the steel surface.
Collapse
Affiliation(s)
- Rattanawadee Ninjan
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology , Prince of Songkla University , Pattani 94000 , Thailand
| | - Bencha Thongnuanchan
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology , Prince of Songkla University , Pattani 94000 , Thailand
| | - Natinee Lopattananon
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology , Prince of Songkla University , Pattani 94000 , Thailand
| | - Anoma Thitithammawong
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology , Prince of Songkla University , Pattani 94000 , Thailand
| | - Charoen Nakason
- Faculty of Science and Industrial Technology , Prince of Songkla University , Surat Thani 84000 , Thailand
| |
Collapse
|
46
|
Qi X, Zhao X, Li Y, Zhang J, Zhang L, Yue D. A high toughness elastomer based on natural
Eucommia ulmoides
gum. J Appl Polym Sci 2021. [DOI: 10.1002/app.50007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xin Qi
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Xin Zhao
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yongxin Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Jichuan Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| | - Dongmei Yue
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
47
|
Tian Z, Wang JW, Li J, Han B. Designing future crops: challenges and strategies for sustainable agriculture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1165-1178. [PMID: 33258137 DOI: 10.1111/tpj.15107] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 05/26/2023]
Abstract
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.
Collapse
Affiliation(s)
- Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
| | - Jiayang Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- ShanghaiTech University, Shanghai, 200031, China
- National Center for Gene Research, Shanghai, 200233, China
| |
Collapse
|
48
|
Li HL, Guo D, Wang Y, Zhu JH, Qu L, Peng SQ. Tobacco rattle virus-induced gene silencing in Hevea brasiliensis. Biosci Biotechnol Biochem 2021; 85:562-567. [PMID: 33590039 DOI: 10.1093/bbb/zbaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Virus-induced gene silencing (VIGS) is a powerful gene-silencing tool that has been intensively applied in plants. To data, the application of VIGS in rubber tree has not yet been reported. In this study, we described the efficient gene silencing in rubber tree by VIGS. The gene encoding Hevea brasiliensis phytoene desaturase (HbPDS) was identified in rubber tree genome. Small interfering RNAs from HbPDS and the silencing gene fragment were predicted and a length of 399 bp was selected to be tested. We showed that the tobacco rattle virus (TRV)-VIGS could induce effective HbPDS silencing in rubber tree. This study was the first to report VIGS in rubber tree. The present TRV-VIGS method could be used to perform reverse genetic approaches to identify unknown gene functions and might be further applied to produce gene silenced rubber tree plants, to advance functional gene of rubber tree.
Collapse
Affiliation(s)
- Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jia-Hong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Long Qu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| |
Collapse
|
49
|
Yuan B, Ding G, Ma J, Wang L, Yu L, Ruan X, Zhang X, Zhang W, Wang X, Xie Q. Comparison of Morphological Characteristics and Determination of Different Patterns for Rubber Particles in Dandelion and Different Rubber Grass Varieties. PLANTS 2020; 9:plants9111561. [PMID: 33202722 PMCID: PMC7696596 DOI: 10.3390/plants9111561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
Russian dandelion Taraxacum kok-saghyz (TKS) is one promising alternative crop for natural rubber production. However, it is easily confused with other dandelions. In this study, we performed a systematical comparison of the morphological characteristics for different TKS varieties and common dandelion Taraxacum officinale (TO). Our results demonstrated that several obvious differences in morphology can be found between TKS and TO. TO leaf is a pinnate shape, its margin is heavily jagged and its base is cuneate, but TKS leaf is more cuneate and its leaf margin is nearly smooth and round. There are obvious differences for the outer bracts of TO and TKS flower buds. TKS bracts are oblanceolate, apex obtuse, margin smooth and sinuate, and its outer layer of flower buds and faceplate involucre sepal is buckled inward to form a certain angle. TKS is self-incompatible, and its seeds are spindle-shaped achene and show upright plumpness. A large amount of laticifer cells and rubber particles can be detected from many TKS tissues, and dry roots of TKS contain high contents of natural rubber. Laticifer cells and rubber particles can only be examined in the vein, stem, and roots of TKS. Our statical results also revealed that the numbers of laticifer cells and rubber particles have a positive relationship with the rubber content in TKS roots. These morphological features can help us to easily distinguish TKS from common dandelion and approximately estimate the rubber content in the roots of different TKS varieties for TKS breeding in future.
Collapse
Affiliation(s)
- Boxuan Yuan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Guohua Ding
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Junjun Ma
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Lingling Wang
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Li Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Xueyu Ruan
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Xueyan Zhang
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agricultural College, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China;
| | - Xuchu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
- Correspondence: (X.W.); (Q.X.); Tel.: +86-898-65891065 (Q.X.)
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China; (B.Y.); (L.Y.)
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (G.D.); (J.M.); (L.W.); (X.R.); (X.Z.)
- The Key Laboratory of Oasis Eco-Agriculture, Agricultural College, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China;
- Correspondence: (X.W.); (Q.X.); Tel.: +86-898-65891065 (Q.X.)
| |
Collapse
|
50
|
Lipid Composition of Latex and Rubber Particles in Hevea brasiliensis and Taraxacum kok-saghyz. Molecules 2020; 25:molecules25215110. [PMID: 33153210 PMCID: PMC7662343 DOI: 10.3390/molecules25215110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants are poorly known, the present study reports detailed compound lipid composition, focusing on phospholipids and galactolipids in the latex and rubber particles of the plants. In the fresh latex and rubber particles of both plants, phospholipids were much more dominant (85-99%) compared to galactolipids. Among the nine classes of phospholipids, phosphatidylcholines (PCs) were most abundant, at ~80%, in both plants. Among PCs, PC (36:4) and PC (34:2) were most abundant in the rubber tree and rubber dandelion, respectively. Two classes of galactolipids, monogalactosyl diacylglycerol and digalactosyl diacylglycerol, were detected as 12% and 1%, respectively, of total compound lipids in rubber tree, whereas their percentages in the rubber dandelion were negligible (< 1%). Overall, the compound lipid composition differed only slightly between the fresh latex and the rubber particles of both rubber plants. These results provide fundamental data on the lipid composition of rubber particles in two rubber-producing plants, which can serve as a basis for artificial rubber particle production in the future.
Collapse
|