1
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li W, Nealson KH, Liu Z, Song H. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403067. [PMID: 39234800 PMCID: PMC11538702 DOI: 10.1002/advs.202403067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Liang Shi
- Department of Biological Sciences and TechnologySchool of Environmental StudiesChina University of Geoscience in WuhanWuhanHubei430074China
| | - Wen‐Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science & Technology of ChinaHefei230026China
| | - Kenneth H. Nealson
- Departments of Earth Science & Biological SciencesUniversity of Southern California4953 Harriman Ave.South PasadenaCA91030USA
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industryand School of Chemical EngineeringInner Mongolia University of TechnologyInner MongoliaHohhot010051China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
3
|
Garavaglia M, McGregor C, Bommareddy RR, Irorere V, Arenas C, Robazza A, Minton NP, Kovacs K. Stable Platform for Mevalonate Bioproduction from CO 2. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13486-13499. [PMID: 39268049 PMCID: PMC11388446 DOI: 10.1021/acssuschemeng.4c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Stable production of value-added products using a microbial chassis is pivotal for determining the industrial suitability of the engineered biocatalyst. Microbial cells often lose the multicopy expression plasmids during long-term cultivations. Owing to the advantages related to titers, yields, and productivities when using a multicopy expression system compared with genomic integrations, plasmid stability is essential for industrially relevant biobased processes. Cupriavidus necator H16, a facultative chemolithoautotrophic bacterium, has been successfully engineered to convert inorganic carbon obtained from CO2 fixation into value-added products. The application of this unique capability in the biotech industry has been hindered by C. necator H16 inability to stably maintain multicopy plasmids. In this study, we designed and tested plasmid addiction systems based on the complementation of essential genes. Among these, implementation of a plasmid addiction tool based on the complementation of mutants lacking RubisCO, which is essential for CO2 fixation, successfully stabilized a multicopy plasmid. Expressing the mevalonate pathway operon (MvaES) using this addiction system resulted in the production of ∼10 g/L mevalonate with carbon yields of ∼25%. The mevalonate titers and yields obtained here using CO2 are the highest achieved to date for the production of C6 compounds from C1 feedstocks.
Collapse
Affiliation(s)
- Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Callum McGregor
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, U.K
| | - Victor Irorere
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- DSM-Firmenich, 250 Plainsboro Road, Plainsboro, New Jersey 08536, United States
| | - Christian Arenas
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Alberto Robazza
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Karlsruhe Institute of Technology (KIT), PO Box 6980, Karlsruhe 76049, Germany
| | - Nigel Peter Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Katalin Kovacs
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- School of Pharmacy, University Park, The University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
4
|
Chen X, Wang M, Luo L, Liu X, An L, Nie Y, Wu XL. The evolution of autonomy from two cooperative specialists in fluctuating environments. Proc Natl Acad Sci U S A 2024; 121:e2317182121. [PMID: 39172793 PMCID: PMC11363282 DOI: 10.1073/pnas.2317182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
From microbes to humans, organisms perform numerous tasks for their survival, including food acquisition, migration, and reproduction. A complex biological task can be performed by either an autonomous organism or by cooperation among several specialized organisms. However, it remains unclear how autonomy and cooperation evolutionarily switch. Specifically, it remains unclear whether and how cooperative specialists can repair deleted genes through direct genetic exchange, thereby regaining metabolic autonomy. Here, we address this question by experimentally evolving a mutualistic microbial consortium composed of two specialists that cooperatively degrade naphthalene. We observed that autonomous genotypes capable of performing the entire naphthalene degradation pathway evolved from two cooperative specialists and dominated the community. This evolutionary transition was driven by the horizontal gene transfer (HGT) between the two specialists. However, this evolution was exclusively observed in the fluctuating environment alternately supplied with naphthalene and pyruvate, where mutualism and competition between the two specialists alternated. The naphthalene-supplied environment exerted selective pressure that favors the expansion of autonomous genotypes. The pyruvate-supplied environment promoted the coexistence and cell density of the cooperative specialists, thereby increasing the likelihood of HGT. Using a mathematical model, we quantitatively demonstrate that environmental fluctuations facilitate the evolution of autonomy through HGT when the relative growth rate and carrying capacity of the cooperative specialists allow enhanced coexistence and higher cell density in the competitive environment. Together, our results demonstrate that cooperative specialists can repair deleted genes through a direct genetic exchange under specific conditions, thereby regaining metabolic autonomy.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Engineering, Peking University, Beijing100871, China
- Institute of Ocean Research, Peking University, Beijing100871, China
| | - Miaoxiao Wang
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Laipeng Luo
- College of Engineering, Peking University, Beijing100871, China
| | - Xiaonan Liu
- College of Engineering, Peking University, Beijing100871, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu610000, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing100871, China
- Institute of Ocean Research, Peking University, Beijing100871, China
- Institute of Ecology, Peking University, Beijing100871, China
| |
Collapse
|
5
|
Landwehr GM, Vogeli B, Tian C, Singal B, Gupta A, Lion R, Sargent EH, Karim AS, Jewett MC. A synthetic cell-free pathway for biocatalytic upgrading of one-carbon substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607227. [PMID: 39149402 PMCID: PMC11326285 DOI: 10.1101/2024.08.08.607227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Biotechnological processes hold tremendous potential for the efficient and sustainable conversion of one-carbon (C1) substrates into complex multi-carbon products. However, the development of robust and versatile biocatalytic systems for this purpose remains a significant challenge. In this study, we report a hybrid electrochemical-biochemical cell-free system for the conversion of C1 substrates into the universal biological building block acetyl-CoA. The synthetic reductive formate pathway (ReForm) consists of five core enzymes catalyzing non-natural reactions that were established through a cell-free enzyme engineering platform. We demonstrate that ReForm works in a plug-and-play manner to accept diverse C1 substrates including CO2 equivalents. We anticipate that ReForm will facilitate efforts to build and improve synthetic C1 utilization pathways for a formate-based bioeconomy.
Collapse
Affiliation(s)
- Grant M. Landwehr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vogeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Cong Tian
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Bharti Singal
- Stanford SLAC CryoEM Initiative, Stanford University; Stanford, CA 94305, USA
| | - Anika Gupta
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Rebeca Lion
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H. Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
6
|
Moon BC, Kim S, Jo YY, Park JH, Ko JK, Lee DK. Biocompatible Cu/NiMo Composite Electrocatalyst for Hydrogen Evolution Reaction in Microbial Electrosynthesis; Unveiling the Self-Detoxification Effect of Cu. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309775. [PMID: 38552158 PMCID: PMC11165482 DOI: 10.1002/advs.202309775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 06/12/2024]
Abstract
H2-driven microbial electrosynthesis (MES) is an emerging bioelectrochemical technology that enables the production of complex compounds from CO2. Although the performance of microbial fermentation in the MES system is closely related to the H2 production rate, high-performing metallic H2-evolving catalysts (HEC) generate cytotoxic H2O2 and metal cations from undesirable side reactions, severely damaging microorganisms. Herein, a novel design for self-detoxifying metallic HEC, resulting in biologically benign H2 production, is reported. Cu/NiMo composite HEC suppresses H2O2 evolution by altering the O2 reduction kinetics to a four-electron pathway and subsequently decomposes the inevitably generated H2O2 in sequential catalytic and electrochemical pathways. Furthermore, in situ generated Cu-rich layer at the surface prevents NiMo from corroding and releasing cytotoxic Ni cations. Consequently, the Cu/NiMo composite HEC in the MES system registers a 50% increase in the performance of lithoautotrophic bacterium Cupriavidus necator H16, for the conversion of CO2 to a biopolymer, poly(3-hydroxybutyrate). This work successfully demonstrates the concept of self-detoxification in designing biocompatible materials for bioelectrochemical applications as well as MES systems.
Collapse
Affiliation(s)
- Byeong Cheul Moon
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Center for Water Cycle ResearchKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Soyoung Kim
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Young Yoon Jo
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular EngineeringYonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Energy and Environment TechnologyKIST SchoolUniversity of Science and TechnologySeoul02792Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Chemical and Biomolecular EngineeringYonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
- Graduate School of Energy and EnvironmentKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
7
|
Pu Y, Wang Y, Wu G, Wu X, Lu Y, Yu Y, Chu N, He X, Li D, Zeng RJ, Jiang Y. Tandem Acidic CO 2 Electrolysis Coupled with Syngas Fermentation: A Two-Stage Process for Producing Medium-Chain Fatty Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7445-7456. [PMID: 38622030 DOI: 10.1021/acs.est.3c09291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The tandem application of CO2 electrolysis with syngas fermentation holds promise for achieving heightened production rates and improved product quality. However, the significant impact of syngas composition on mixed culture-based microbial chain elongation remains unclear. Additionally, effective methods for generating syngas with an adjustable composition from acidic CO2 electrolysis are currently lacking. This study successfully demonstrated the production of medium-chain fatty acids from CO2 through tandem acidic electrolysis with syngas fermentation. CO could serve as the sole energy source or as the electron donor (when cofed with acetate) for caproate generation. Furthermore, the results of gas diffusion electrode structure engineering highlighted that the use of carbon black, either alone or in combination with graphite, enabled consistent syngas generation with an adjustable composition from acidic CO2 electrolysis (pH 1). The carbon black layer significantly improved the CO selectivity, increasing from 0% to 43.5% (0.05 M K+) and further to 92.4% (0.5 M K+). This enhancement in performance was attributed to the promotion of K+ accumulation, stabilizing catalytically active sites, rather than creating a localized alkaline environment for CO2-to-CO conversion. This research contributes to the advancement of hybrid technology for sustainable CO2 reduction and chemical production.
Collapse
Affiliation(s)
- Ying Pu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoying Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaobing Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilin Lu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Yangyang Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Wang Z, Pan H, Ni S, Li Z, Lian J. Establishing CRISPRi for Programmable Gene Repression and Genome Evolution in Cupriavidus necator. ACS Synth Biol 2024; 13:851-861. [PMID: 38350870 DOI: 10.1021/acssynbio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Cupriavidus necator H16 is a "Knallgas" bacterium with the ability to utilize various carbon sources and has been employed as a versatile microbial cell factory to produce a wide range of value-added compounds. However, limited genome engineering, especially gene regulation methods, has constrained its full potential as a microbial production platform. The advent of CRISPR/Cas9 technology has shown promise in addressing this limitation. Here, we developed an optimized CRISPR interference (CRISPRi) system for gene repression in C. necator by expressing a codon-optimized deactivated Cas9 (dCas9) and appropriate single guide RNAs (sgRNAs). CRISPRi was proven to be a programmable and controllable tool and could successfully repress both exogenous and endogenous genes. As a case study, we decreased the accumulation of polyhydroxyalkanoate (PHB) via CRISPRi and rewired the carbon fluxes to the synthesis of lycopene. Additionally, by disturbing the expression of DNA mismatch repair gene mutS with CRISPRi, we established CRISPRi-Mutator for genome evolution, rapidly generating mutant strains with enhanced hydrogen peroxide tolerance and robustness in microbial electrosynthesis (MES) system. Our work provides an efficient CRISPRi toolkit for advanced genetic manipulation and optimization of C. necator cell factories for diverse biotechnology applications.
Collapse
Affiliation(s)
- Zhijiao Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Sulin Ni
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
9
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
10
|
Ben Nissan R, Milshtein E, Pahl V, de Pins B, Jona G, Levi D, Yung H, Nir N, Ezra D, Gleizer S, Link H, Noor E, Milo R. Autotrophic growth of Escherichia coli is achieved by a small number of genetic changes. eLife 2024; 12:RP88793. [PMID: 38381041 PMCID: PMC10942610 DOI: 10.7554/elife.88793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO2. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for Escherichia coli to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (pgi), central-carbon regulation (crp), and RNA transcription (rpoB). The pgi mutation reduces the enzyme's activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module (rpiB) and the energy module (fdoGH), as well as an increased ratio of NADH/NAD+ - the cycle's electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.
Collapse
Affiliation(s)
- Roee Ben Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Eliya Milshtein
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Vanessa Pahl
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of TübingenTübingenGermany
| | - Benoit de Pins
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dikla Levi
- Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Hadas Yung
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Noga Nir
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Dolev Ezra
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of TübingenTübingenGermany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
11
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Chen W, Lin H, Yu W, Huang Y, Lv F, Bai H, Wang S. Organic Semiconducting Polymers for Augmenting Biosynthesis and Bioconversion. JACS AU 2024; 4:3-19. [PMID: 38274265 PMCID: PMC10806880 DOI: 10.1021/jacsau.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 01/27/2024]
Abstract
Solar-driven biosynthesis and bioconversion are essential for achieving sustainable resources and renewable energy. These processes harness solar energy to produce biomass, chemicals, and fuels. While they offer promising avenues, some challenges and limitations should be investigated and addressed for their improvement and widespread adoption. These include the low utilization of light energy, the inadequate selectivity of products, and the limited utilization of inorganic carbon/nitrogen sources. Organic semiconducting polymers offer a promising solution to these challenges by collaborating with natural microorganisms and developing artificial photosynthetic biohybrid systems. In this Perspective, we highlight the latest advancements in the use of appropriate organic semiconducting polymers to construct artificial photosynthetic biohybrid systems. We focus on how these systems can enhance the natural photosynthetic efficiency of photosynthetic organisms, create artificial photosynthesis capability of nonphotosynthetic organisms, and customize the value-added chemicals of photosynthetic synthesis. By examining the structure-activity relationships and emphasizing the mechanism of electron transfer based on organic semiconducting polymers in artificial photosynthetic biohybrid systems, we aim to shed light on the potential of this novel strategy for artificial photosynthetic biohybrid systems. Notably, these coupling strategies between organic semiconducting polymers and organisms during artificial photosynthetic biohybrid systems will pave the way for a more sustainable future with solar fuels and chemicals.
Collapse
Affiliation(s)
- Weijian Chen
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wen Yu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
13
|
Mishra S, Perkovich PM, Mitchell WP, Venkataraman M, Pfleger BF. Expanding the synthetic biology toolbox of Cupriavidus necator for establishing fatty acid production. J Ind Microbiol Biotechnol 2024; 51:kuae008. [PMID: 38366943 PMCID: PMC10926325 DOI: 10.1093/jimb/kuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The Gram-negative betaproteobacterium Cupriavidus necator is a chemolithotroph that can convert carbon dioxide into biomass. Cupriavidus necator has been engineered to produce a variety of high-value chemicals in the past. However, there is still a lack of a well-characterized toolbox for gene expression and genome engineering. Development and optimization of biosynthetic pathways in metabolically engineered microorganisms necessitates control of gene expression via functional genetic elements such as promoters, ribosome binding sites (RBSs), and codon optimization. In this work, a set of inducible and constitutive promoters were validated and characterized in C. necator, and a library of RBSs was designed and tested to show a 50-fold range of expression for green fluorescent protein (gfp). The effect of codon optimization on gene expression in C. necator was studied by expressing gfp and mCherry genes with varied codon-adaptation indices and was validated by expressing codon-optimized variants of a C12-specific fatty acid thioesterase to produce dodecanoic acid. We discuss further hurdles that will need to be overcome for C. necator to be widely used for biosynthetic processes.
Collapse
Affiliation(s)
- Shivangi Mishra
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paul M Perkovich
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
15
|
Frei H. Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01061-7. [PMID: 38108928 DOI: 10.1007/s11120-023-01061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
16
|
Tu W, Xu J, Thompson IP, Huang WE. Engineering artificial photosynthesis based on rhodopsin for CO 2 fixation. Nat Commun 2023; 14:8012. [PMID: 38049399 PMCID: PMC10696030 DOI: 10.1038/s41467-023-43524-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Microbial rhodopsin, a significant contributor to sustaining life through light harvesting, holds untapped potential for carbon fixation. Here, we construct an artificial photosynthesis system which combines the proton-pumping ability of rhodopsin with an extracellular electron uptake mechanism, establishing a pathway to drive photoelectrosynthetic CO2 fixation by Ralstonia eutropha (also known as Cupriavidus necator) H16, a facultatively chemolithoautotrophic soil bacterium. R. eutropha is engineered to heterologously express an extracellular electron transfer pathway of Shewanella oneidensis MR-1 and Gloeobacter rhodopsin (GR). Employing GR and the outer-membrane conduit MtrCAB from S. oneidensis, extracellular electrons and GR-driven proton motive force are integrated into R. eutropha's native electron transport chain (ETC). Inspired by natural photosynthesis, the photoelectrochemical system splits water to supply electrons to R. eutropha via the Mtr outer-membrane route. The light-activated proton pump - GR, supported by canthaxanthin as an antenna, powers ATP synthesis and reverses the ETC to regenerate NADH/NADPH, facilitating R. eutropha's biomass synthesis from CO2. Overexpression of a carbonic anhydrase further enhances CO2 fixation. This artificial photosynthesis system has the potential to advance the development of efficient photosynthesis, redefining our understanding of the ecological role of microbial rhodopsins in nature.
Collapse
Affiliation(s)
- Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| |
Collapse
|
17
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
18
|
Ding Y, Bertram JR, Nagpal P. Utilizing Atmospheric Carbon Dioxide and Sunlight in Graphene Quantum Dot-Based Nano-Biohybrid Organisms for Making Carbon-Negative and Carbon-Neutral Products. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53464-53475. [PMID: 37953629 DOI: 10.1021/acsami.3c12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Increasing emissions of greenhouse gases compounded with legacy emissions in the earth's atmosphere poses an existential threat to human survival. One potential solution is creating carbon-negative and carbon-neutral materials, specifically for commodities used heavily throughout the globe, using a low-cost, scalable, and technologically and economically feasible process that can be deployed without the need for extensive infrastructure or skill requirements. Here, we demonstrate that nickel-functionalized graphene quantum dots (GQDs) can effectively couple to nonphotosynthetic bacteria at a cellular, molecular, and optoelectronic level, creating nanobiohybrid organisms (nanorgs) that enable the utilization of sunlight to convert carbon dioxide, air, and water into high-value-added chemicals such as ammonia (NH3), ethylene (C2H4), isopropanol (IPA), 2,3-butanediol (BDO), C11-C15 methyl ketones (MKs), and degradable bioplastics poly hydroxybutyrate (PHB) with high efficiency and selectivity. We demonstrate a high turnover number (TON) of up to 108 (mol of product per mol of cells), ease of application, facile scalability (demonstrated using a 30 L tank in a lab), and sustainable generation of carbon nanomaterials from recovered bacteria for creating nanorgs without the use of any toxic chemicals or materials. These findings can have important implications for the further development of sustainable processes for making carbon-negative materials using nanorgs.
Collapse
Affiliation(s)
- Yuchen Ding
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R Bertram
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | | |
Collapse
|
19
|
Treece TR, Pattanayak S, Matson MM, Cepeda MM, Berben LA, Atsumi S. Electrical-biological hybrid system for carbon efficient isobutanol production. Metab Eng 2023; 80:142-150. [PMID: 37739158 DOI: 10.1016/j.ymben.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
We have developed an electrical-biological hybrid system wherein an engineered microorganism consumes electrocatalytically produced formate from CO2 to supplement the bioproduction of isobutanol, a valuable fuel chemical. Biological CO2 sequestration is notoriously slow compared to electrochemical CO2 reduction, while electrochemical methods struggle to generate carbon-carbon bonds which readily form in biological systems. A hybrid system provides a promising method for combining the benefits of both biology and electrochemistry. Previously, Escherichia coli was engineered to assimilate formate and CO2 in central metabolism using the reductive glycine pathway. In this work, we have shown that chemical production in E. coli can benefit from single carbon substrates when equipped with the RGP. By installing the RGP and the isobutanol biosynthetic pathway into E. coli and by further genetic modifications, we have generated a strain of E. coli that can consume formate and produce isobutanol at a yield of >100% of theoretical maximum from glucose. Our results demonstrate that carbon produced from electrocatalytically reduced CO2 can bolster chemical production in E. coli. This study shows that E. coli can be engineered towards carbon efficient methods of chemical production.
Collapse
Affiliation(s)
- Tanner R Treece
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Santanu Pattanayak
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Morgan M Matson
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Mateo M Cepeda
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
20
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
21
|
Xie Y, Erşan S, Guan X, Wang J, Sha J, Xu S, Wohlschlegel JA, Park JO, Liu C. Unexpected metabolic rewiring of CO 2 fixation in H 2-mediated materials-biology hybrids. Proc Natl Acad Sci U S A 2023; 120:e2308373120. [PMID: 37816063 PMCID: PMC10589654 DOI: 10.1073/pnas.2308373120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
A hybrid approach combining water-splitting electrochemistry and H2-oxidizing, CO2-fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H2-mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H2-oxidizing acetogenic bacterium Sporomusa ovata that challenges such a classic view. We found that the planktonic S. ovata is more efficient in utilizing reducing equivalent for ATP generation in the materials-biology hybrids than cells grown with H2 supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO2 into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials' impact on microbial metabolism in seemingly simply H2-mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials-biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jingyu Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Shuangning Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | | | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
22
|
Sydow A, Becker L, Lombard E, Ulber R, Guillouet SE, Holtmann D. Autotrophic Production of the Sesquiterpene α-Humulene with Cupriavidus necator in a Controlled Bioreactor. Bioengineering (Basel) 2023; 10:1194. [PMID: 37892924 PMCID: PMC10603880 DOI: 10.3390/bioengineering10101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Cupriavidus necator is a facultative chemolithotrophic organism that grows under both heterotrophic and autotrophic conditions. It is becoming increasingly important due to its ability to convert CO2 into industrially valuable chemicals. To translate the potential of C. necator into technical applications, it is necessary to optimize and scale up production processes. A previous proof-of-principle study showed that C. necator can be used for the de novo production of the terpene α-humulene from CO2 up to concentrations of 11 mg L-1 in septum flasks. However, an increase in final product titer and space-time yield will be necessary to establish an economically viable industrial process. To ensure optimized growth and production conditions, the application of an improved process design in a gas bioreactor with the control of pH, dissolved oxygen and temperature including a controlled gas supply was investigated. In the controlled gas bioreactor, the concentration of α-humulene was improved by a factor of 6.6 and the space-time yield was improved by a factor of 13.2. These results represent an important step toward the autotrophic production of high-value chemicals from CO2. In addition, the in situ product removal of α-humulene was investigated and important indications of the critical logP value were obtained, which was in the range of 3.0-4.2.
Collapse
Affiliation(s)
- Anne Sydow
- Industrial Biotechnology, DECHEMA Research Institute, Theodor Heuss Allee 25, 60486 Frankfurt, Germany
| | - Lucas Becker
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Eric Lombard
- TBI, Université de Toulouse, National Institute of Applied Sciences (INSA), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Stephane E. Guillouet
- TBI, Université de Toulouse, National Institute of Applied Sciences (INSA), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Dirk Holtmann
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
24
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
25
|
Collas F, Dronsella BB, Kubis A, Schann K, Binder S, Arto N, Claassens NJ, Kensy F, Orsi E. Engineering the biological conversion of formate into crotonate in Cupriavidus necator. Metab Eng 2023; 79:49-65. [PMID: 37414134 DOI: 10.1016/j.ymben.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse β-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.
Collapse
Affiliation(s)
| | - Beau B Dronsella
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Karin Schann
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | | | - Enrico Orsi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
26
|
Dahlin LR, Meyers AW, Stefani SW, Webb EG, Wachter B, Subramanian V, Guarnieri MT. Heterologous expression of formate dehydrogenase enables photoformatotrophy in the emerging model microalga, Picochlorum renovo. Front Bioeng Biotechnol 2023; 11:1162745. [PMID: 37706077 PMCID: PMC10497104 DOI: 10.3389/fbioe.2023.1162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Rising global greenhouse gas emissions and the impacts of resultant climate change necessitate development and deployment of carbon capture and conversion technologies. Amongst the myriad of bio-based conversion approaches under evaluation, a formate bio-economy has recently been proposed, wherein CO2-derived formate serves as a substrate for concurrent carbon and energy delivery to microbial systems. To date, this approach has been explored in chemolithotrophic and heterotrophic organisms via native or engineered formatotrophy. However, utilization of this concept in phototrophic organisms has yet to be reported. Herein, we have taken the first steps to establish formate utilization in Picochlorum renovo, a recently characterized eukaryotic microalga with facile genetic tools and promising applied biotechnology traits. Plastidial heterologous expression of a formate dehydrogenase (FDH) enabled P. renovo growth on formate as a carbon and energy source. Further, FDH expression enhanced cultivation capacity on ambient CO2, underscoring the potential for bypass of conventional CO2 capture and concentration limitations. This work establishes a photoformatotrophic cultivation regime that leverages light energy-driven formate utilization. The resultant photosynthetic formate platform has widespread implications for applied phototrophic cultivation systems and the bio-economy at large.
Collapse
Affiliation(s)
- Lukas R. Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alex W. Meyers
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Skylar W. Stefani
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Ellsbeth G. Webb
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Benton Wachter
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Michael T. Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, United States
| |
Collapse
|
27
|
Hu W, Yang H, Wang C. Progress in photocatalytic CO 2 reduction based on single-atom catalysts. RSC Adv 2023; 13:20889-20908. [PMID: 37441031 PMCID: PMC10334474 DOI: 10.1039/d3ra03462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Reduced CO2 emissions, conversion, and reuse are critical steps toward carbon peaking and carbon neutrality. Converting CO2 into high-value carbon-containing compounds or fuels may effectively address the energy shortage and environmental issues, which is consistent with the notion of sustainable development. Photocatalytic CO2 reduction processes have become one of the research focuses, where single-atom catalysts have demonstrated significant benefits owing to their excellent percentage of atom utilization. However, among the crucial challenges confronting contemporary research is the production of efficient, low-cost, and durable photocatalysts. In this paper, we offer a comprehensive overview of the study growth on single-atom catalysts for photocatalytic CO2 reduction reactions, describe several techniques for preparing single-atom catalysts, and discuss the advantages and disadvantages of single-atom catalysts and present the study findings of three single-atom photocatalysts with TiO2, g-C3N4 and MOFs materials as carriers based on the interaction between single atoms and carriers, and finally provide an outlook on the innovation of photocatalytic CO2 reduction reactions.
Collapse
Affiliation(s)
- Wanyu Hu
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
| | - Haiyue Yang
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education Northeast Forestry University Harbin 150040 China
| | - Chengyu Wang
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education Northeast Forestry University Harbin 150040 China
| |
Collapse
|
28
|
Chen K, Ma C, Cheng X, Wang Y, Guo K, Wu R, Zhu Z. Construction of Cupriavidus necator displayed with superoxide dismutases for enhanced growth in bioelectrochemical systems. BIORESOUR BIOPROCESS 2023; 10:36. [PMID: 38647886 PMCID: PMC10992759 DOI: 10.1186/s40643-023-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/28/2023] [Indexed: 04/25/2024] Open
Abstract
It is of great significance to utilize CO2 as feedstock to synthesize biobased products, particularly single cell protein (SCP) as the alternative food and feed. Bioelectrochemical system (BES) driven by clean electric energy has been regarded as a promising way for Cupriavidus necator to produce SCP from CO2 directly. At present, the key problem of culturing C. necator in BES is that reactive oxygen species (ROS) generated in cathode chamber are harmful to bacterial growth. Therefore, it is necessary to find a solution to mitigate the negative effect of ROS. In this study, we constructed a number of C. necator strains displayed with superoxide dismutase (SOD), which allowed the decomposition of superoxide anion radical. The effects of promoters and signal peptides on the cell surface displayed SOD were analyzed. The proteins displayed on the surface were further verified by the fluorescence experiment. Finally, the growth of C. necator CMS incorporating a pBAD-SOD-E-tag-IgAβ plasmid could achieve 4.9 ± 1.0 of OD600 by 7 days, equivalent to 1.7 ± 0.3 g/L dry cell weight (DCW), and the production rate was 0.24 ± 0.04 g/L/d DCW, around 2.7-fold increase than the original C. necator CMS (1.8 ± 0.3 of OD600). This study can provide an effective and novel strategy of cultivating strains for the production of CO2-derived SCP or other chemicals in BES.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Chunling Ma
- Haihe Laboratory of Synthetic Biology, 21 Xishiwudao, Tianjin Airport Economic Park, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaolei Cheng
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Yuhua Wang
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Kun Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ranran Wu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Zhiguang Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
29
|
Myers B, Catrambone F, Allen S, Hill PJ, Kovacs K, Rawson FJ. Engineering nanowires in bacteria to elucidate electron transport structural-functional relationships. Sci Rep 2023; 13:8843. [PMID: 37258594 DOI: 10.1038/s41598-023-35553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Bacterial pilin nanowires are protein complexes, suggested to possess electroactive capabilities forming part of the cells' bioenergetic programming. Their role is thought to be linked to facilitating electron transfer between cells and the external environment to permit metabolism and cell-to-cell communication. There is a significant debate, with varying hypotheses as to the nature of the proteins currently lying between type-IV pilin-based nanowires and polymerised cytochrome-based filaments. Importantly, to date, there is a very limited structure-function analysis of these structures within whole bacteria. In this work, we engineered Cupriavidus necator H16, a model autotrophic organism to express differing aromatic modifications of type-IV pilus proteins to establish structure-function relationships on conductivity and the effects this has on pili structure. This was achieved via a combination of high-resolution PeakForce tunnelling atomic force microscopy (PeakForce TUNA™) technology, alongside conventional electrochemical approaches enabling the elucidation of conductive nanowires emanating from whole bacterial cells. This work is the first example of functional type-IV pili protein nanowires produced under aerobic conditions using a Cupriavidus necator chassis. This work has far-reaching consequences in understanding the basis of bio-electrical communication between cells and with their external environment.
Collapse
Affiliation(s)
- Ben Myers
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Francesco Catrambone
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephanie Allen
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Katalin Kovacs
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Frankie J Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
30
|
Zhang W, Zhang F, Liu S, Pang W, Lin Z, Guo Z, Chai L. Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO 2 chemistry. Proc Natl Acad Sci U S A 2023; 120:e2219692120. [PMID: 36996113 PMCID: PMC10083592 DOI: 10.1073/pnas.2219692120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/31/2023] Open
Abstract
Transforming CO2 into valuable chemicals is an inevitable trend in our current society. Among the viable end-uses of CO2, fixing CO2 as carbon or carbonates via Li-CO2 chemistry could be an efficient approach, and promising achievements have been obtained in catalyst design in the past. Even so, the critical role of anions/solvents in the formation of a robust solid electrolyte interphase (SEI) layer on cathodes and the solvation structure have never been investigated. Herein, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in two common solvents with various donor numbers (DN) have been introduced as ideal examples. The results indicate that the cells in dimethyl sulfoxide (DMSO)-based electrolytes with high DN possess a low proportion of solvent-separated ion pairs and contact ion pairs in electrolyte configuration, which are responsible for fast ion diffusion, high ionic conductivity, and small polarization. The 3 M DMSO cell delivered the lowest polarization of 1.3 V compared to all the tetraethylene glycol dimethyl ether (TEGDME)-based cells (about 1.7 V). In addition, the coordination of the O in the TFSI- anion to the central solvated Li+ ion was located at around 2 Å in the concentrated DMSO-based electrolytes, indicating that TFSI- anions could access the primary solvation sheath to form an LiF-rich SEI layer. This deeper understanding of the electrolyte solvent property for SEI formation and buried interface side reactions provides beneficial clues for future Li-CO2 battery development and electrolyte design.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha410083, China
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha410083, China
| | - Fangli Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales2500, Australia
| | - Sailin Liu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australis5005, Australia
| | - Wei Kong Pang
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales2500, Australia
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha410083, China
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha410083, China
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australis5005, Australia
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha410083, China
- Chinese National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha410083, China
| |
Collapse
|
31
|
Lim J, Choi SY, Lee JW, Lee SY, Lee H. Biohybrid CO 2 electrolysis for the direct synthesis of polyesters from CO 2. Proc Natl Acad Sci U S A 2023; 120:e2221438120. [PMID: 36972448 PMCID: PMC10083616 DOI: 10.1073/pnas.2221438120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Converting anthropogenic CO2 to value-added products using renewable energy has received much attention to achieve a sustainable carbon cycle. CO2 electrolysis has been extensively investigated, but the products have been limited to some C1-3 products. Here, we report the integration of CO2 electrolysis with microbial fermentation to directly produce poly-3-hydroxybutyrate (PHB), a microbial polyester, from gaseous CO2 on a gram scale. This biohybrid system comprises electrochemical conversion of CO2 to formate on Sn catalysts deposited on a gas diffusion electrode (GDE) and subsequent conversion of formate to PHB by Cupriavidus necator cells in a fermenter. The electrolyzer and the electrolyte solution were optimized for this biohybrid system. In particular, the electrolyte solution containing formate was continuously circulated through both the CO2 electrolyzer and the fermenter, resulting in the efficient accumulation of PHB in C. necator cells, reaching a PHB content of 83% of dry cell weight and producing 1.38 g PHB using 4 cm2 Sn GDE. This biohybrid system was further modified to enable continuous PHB production operated at a steady state by adding fresh cells and removing PHB. The strategies employed for developing this biohybrid system will be useful for establishing other biohybrid systems producing chemicals and materials directly from gaseous CO2.
Collapse
Affiliation(s)
- Jinkyu Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - So Young Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Jae Won Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, South Korea
| |
Collapse
|
32
|
Yu X, Catanescu CO, Bird RE, Satagopan S, Baum ZJ, Lotti Diaz LM, Zhou QA. Trends in Research and Development for CO 2 Capture and Sequestration. ACS OMEGA 2023; 8:11643-11664. [PMID: 37033841 PMCID: PMC10077574 DOI: 10.1021/acsomega.2c05070] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Technological and medical advances over the past few decades epitomize human capabilities. However, the increased life expectancies and concomitant land-use changes have significantly contributed to the release of ∼830 gigatons of CO2 into the atmosphere over the last three decades, an amount comparable to the prior two and a half centuries of CO2 emissions. The United Nations has adopted a pledge to achieve "net zero", i.e., yearly removing as much CO2 from the atmosphere as the amount emitted due to human activities, by the year 2050. Attaining this goal will require a concerted effort by scientists, policy makers, and industries all around the globe. The development of novel materials on industrial scales to selectively remove CO2 from mixtures of gases makes it possible to mitigate CO2 emissions using a multipronged approach. Broadly, the CO2 present in the atmosphere can be captured using materials and processes for biological, chemical, and geological technologies that can sequester CO2 while also reducing our dependence on fossil-fuel reserves. In this review, we used the curated literature available in the CAS Content Collection to present a systematic analysis of the various approaches taken by scientists and industrialists to restore carbon balance in the environment. Our analysis highlights the latest trends alongside the associated challenges.
Collapse
|
33
|
Al-Mamun A, Ahmed W, Jafary T, Nayak JK, Al-Nuaimi A, Sana A. Recent advances in microbial electrosynthesis system: Metabolic investigation and process optimization. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
34
|
Li J, Han H, Chang Y, Wang B. The material-microorganism interface in microbial hybrid electrocatalysis systems. NANOSCALE 2023; 15:6009-6024. [PMID: 36912348 DOI: 10.1039/d3nr00742a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review presents a comprehensive summary of the material-microorganism interface in microbial hybrid electrocatalysis systems. Microbial hybrid electrocatalysis has been developed to combine the advantages of inorganic electrocatalysis and microbial catalysis. However, electron transfer at the interfaces between microorganisms and materials is a very critical issue that affects the efficiency of the system. Therefore, this review focuses on the electron transfer at the material-microorganism interface and the strategies for building efficient microorganism and material interfaces. We begin with a brief introduction of the electron transfer mechanism in both the bioanode and biocathode of bioelectrochemical systems to understand the material-microorganism interface. Next, we summarise the strategies for constructing efficient material-microorganism interfaces including material design and modification and bacterial engineering. We also discuss emerging studies on the bio-inorganic hybrid electrocatalysis system. Understanding the interface between electrode/active materials and the microorganisms, especially the electron transfer processes, could help to drive the evolution of material-microorganism hybrid electrocatalysis systems towards maturity.
Collapse
Affiliation(s)
- Jiyao Li
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hexing Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
35
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
36
|
Feng X, He S, Sato T, Kondo T, Uema K, Sato K, Kobayashi H. Enrichment of hydrogen-oxidizing bacteria using a hybrid biological-inorganic system. J Biosci Bioeng 2023; 135:250-257. [PMID: 36650080 DOI: 10.1016/j.jbiosc.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Hybrid biological-inorganic (HBI) systems comprising inorganic water-splitting catalysts and aerobic hydrogen-oxidizing bacteria (HOB) have previously been used for CO2 conversion. In order to identify new biocatalysts for CO2 conversion, the present study used an HBI system to enrich HOB directly from environmental samples. Three sediment samples (from a brackish water pond, a beach, and a tide pool) and two activated sludge samples (from two separate sewage plants) were inoculated into HBI systems using a cobalt phosphorus (Co-P) alloy and cobalt phosphate (CoPi) as inorganic catalysts with a fixed voltage of 2.0 V. The gas composition of the reactor headspaces and electric current were monitored. An aliquot of the reactor medium was transferred to a new reactor when significant consumption of H2 and CO2 was detected. This process was repeated twice (with three reactors in operation for each sample) to enrich HOB. Increased biomass concomitant with increased H2 and CO2 consumption was observed in the third reactor, indicating enrichment of HOB. 16S rRNA gene amplicon sequencing demonstrated enrichment of sequences related to HOB (including bacteria from Mycobacterium, Hydrogenophaga, and Xanthobacter genera) over successive sub-cultures. Finally, four different HOB belonging to the Mycobacterium, Hydrogenophaga, Xanthobacter, and Acidovorax genera were isolated from reactor media, representing potential candidates as HBI system biocatalysts.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sijia He
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taiki Sato
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Kondo
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koyo Uema
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kozo Sato
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Frontier Research Center for Energy and Resource (FRCER), Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hajime Kobayashi
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Frontier Research Center for Energy and Resource (FRCER), Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
37
|
Kim GB, Choi SY, Cho IJ, Ahn DH, Lee SY. Metabolic engineering for sustainability and health. Trends Biotechnol 2023; 41:425-451. [PMID: 36635195 DOI: 10.1016/j.tibtech.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Bio-based production of chemicals and materials has attracted much attention due to the urgent need to establish sustainability and enhance human health. Metabolic engineering (ME) allows purposeful modification of cellular metabolic, regulatory, and signaling networks to achieve enhanced production of desired chemicals and degradation of environmentally harmful chemicals. ME has significantly progressed over the past 30 years through further integration of the strategies of synthetic biology, systems biology, evolutionary engineering, and data science aided by artificial intelligence. Here we review the field of ME from its emergence to the current state-of-the-art, highlighting its contribution to sustainable production of chemicals, health, and the environment through representative examples. Future challenges of ME and perspectives are also discussed.
Collapse
Affiliation(s)
- Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Da-Hee Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
38
|
Manchon C, Muniesa-Merino F, Llorente M, Esteve-Núñez A. Microbial photoelectrosynthesis: Feeding purple phototrophic bacteria electricity to produce bacterial biomass. Microb Biotechnol 2023; 16:569-578. [PMID: 36537073 PMCID: PMC9948228 DOI: 10.1111/1751-7915.14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 02/24/2023] Open
Abstract
Purple phototrophic bacteria are one of the main actors in chemolithotrophic carbon fixation and, therefore, fundamental in the biogeochemical cycle. These microbes are capable of using insoluble electron donors such as ferrous minerals or even carbon-based electrodes. Carbon fixation through extracellular electron uptake places purple phototrophic bacteria in the field of microbial electrosynthesis as key carbon capturing microorganisms. In this work we demonstrate biomass production dominated by purple phototrophic bacteria with a cathode (-0.6 V vs. Ag/AgCl) as electron donor. In addition, we compared the growth and microbial population structure with ferrous iron as the electron donor. We detect interaction between the cathode and the consortium showing a midpoint potential of 0.05 V (vs. Ag/AgCl). Microbial community analyses revealed different microbial communities depending on the electron donor, indicating different metabolic interactions. Electrochemical measurements together with population analyses point to Rhodopseudomonas genus as the key genus in the extracellular electron uptake. Furthermore, the genera Azospira and Azospirillum could play a role in the photoelectrotrophic consortium.
Collapse
Affiliation(s)
- Carlos Manchon
- Universidad de Alcalá, Madrid, Spain.,Nanoelectra, Madrid, Spain
| | | | | | - Abraham Esteve-Núñez
- Universidad de Alcalá, Madrid, Spain.,Nanoelectra, Madrid, Spain.,IMDEA Water, Alcalá de Henares, Spain
| |
Collapse
|
39
|
Xu J, Wang J, Ma C, Wei Z, Zhai Y, Tian N, Zhu Z, Xue M, Li D. Embracing a low-carbon future by the production and marketing of C1 gas protein. Biotechnol Adv 2023; 63:108096. [PMID: 36621726 DOI: 10.1016/j.biotechadv.2023.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Food scarcity and environmental deterioration are two major problems that human populations currently face. Fortunately, the disruptive innovation of raw food materials has been stimulated by the rapid evolution of biomanufacturing. Therefore, it is expected that the new trends in technology will not only alter the natural resource-dependent food production systems and the traditional way of life but also reduce and assimilate the greenhouse gases released into the atmosphere. This review article summarizes the metabolic pathways associated with C1 gas conversion and the production of single-cell protein for animal feed. Moreover, the protein function, worldwide authorization, market access, and methods to overcome challenges in C1 gas assimilation microbial cell factory construction are also provided. With widespread attention and increasing policy support, the production of C1 gas protein will bring more opportunities and make tremendous contributions to our sustainable future.
Collapse
Affiliation(s)
- Jian Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Jie Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Haihe Laboratory of Synthetic Biology, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zuoxi Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Na Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Min Xue
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Centre of Technology Innovation for Synthetic Biology, Tianjin, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin, China.
| |
Collapse
|
40
|
Luan L, Ji X, Guo B, Cai J, Dong W, Huang Y, Zhang S. Bioelectrocatalysis for CO 2 reduction: recent advances and challenges to develop a sustainable system for CO 2 utilization. Biotechnol Adv 2023; 63:108098. [PMID: 36649797 DOI: 10.1016/j.biotechadv.2023.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Activation and turning CO2 into value added products is a promising orientation to address environmental issues caused by CO2 emission. Currently, electrocatalysis has a potent well-established role for CO2 reduction with fast electron transfer rate; but it is challenged by the poor selectivity and low faradic efficiency. On the other side, biocatalysis, including enzymes and microbes, has been also employed for CO2 conversion to target Cn products with remarkably high selectivity; however, low solubility of CO2 in the liquid reaction phase seriously affects the catalytic efficiency. Therefore, a new synergistic role in bioelectrocatalysis for CO2 reduction is emerging thanks to its outstanding selectivity, high faradic efficiency, and desirable valuable Cn products under mild condition that are surveyed in this review. Herein, we comprehensively discuss the results already obtained for the integration craft of enzymatic-electrocatalysis and microbial-electrocatalysis technologies. In addition, the intrinsic nature of the combination is highly dependent on the electron transfer. Thus, both direct electron transfer and mediated electron transfer routes are modeled and concluded. We also explore the biocompatibility and synergistic effects of electrode materials, which emerge in combination with tuned enzymes and microbes to improve catalytic performance. The system by integrating solar energy driven photo-electrochemical technics with bio-catalysis is further discussed. We finally highlight the significant findings and perspectives that have provided strong foundations for the remarkable development of green and sustainable bioelectrocatalysis for CO2 reduction, and that offer a blueprint for Cn valuable products originate from CO2 under efficient and mild conditions.
Collapse
Affiliation(s)
- Likun Luan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Boxia Guo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinde Cai
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanrong Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
41
|
Qiu Z, Zhang K, Li XL, Song TS, Xie J. Sn promotes formate production to enhance microbial electrosynthesis of acetate via indirect electron transport. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
42
|
Recent Advances In Microbe-Photocatalyst Hybrid Systems for Production of Bulk Chemicals: A Review. Appl Biochem Biotechnol 2023; 195:1574-1588. [PMID: 36346559 DOI: 10.1007/s12010-022-04169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Solar-driven biocatalysis technologies can combine inorganic photocatalytic materials with biological catalysts to convert CO2, light, and water into chemicals, offering the promise of high energy efficiency and a broader product scope than that of natural photosynthesis. Solar energy is the most abundant renewable energy source on earth, but it cannot be directly utilized by current industrial microorganisms. Therefore, the establishment of a solar-driven bio-catalysis platform, a bridge between solar energy and heterotrophic microorganisms, can dramatically increase carbon flux in biomanufacturing systems and consequently may revolutionize the biorefinery. This review first discusses the main applications of microbe-photocatalyst hybrid (MPH) systems in biorefinery processes. Then, various strategies to improve the electron transfer by microorganisms at the inorganic photocatalytic material interface are discussed, especially biohybrid systems based on autotrophic or heterotrophic bacteria and photocatalytic materials. Finally, we discuss the current challenges and offer potential solutions for the development of MPH systems.
Collapse
|
43
|
Kim S, Giraldo N, Rainaldi V, Machens F, Collas F, Kubis A, Kensy F, Bar-Even A, Lindner SN. Optimizing E. coli as a formatotrophic platform for bioproduction via the reductive glycine pathway. Front Bioeng Biotechnol 2023; 11:1091899. [PMID: 36726742 PMCID: PMC9885119 DOI: 10.3389/fbioe.2023.1091899] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Microbial C1 fixation has a vast potential to support a sustainable circular economy. Hence, several biotechnologically important microorganisms have been recently engineered for fixing C1 substrates. However, reports about C1-based bioproduction with these organisms are scarce. Here, we describe the optimization of a previously engineered formatotrophic Escherichia coli strain. Short-term adaptive laboratory evolution enhanced biomass yield and accelerated growth of formatotrophic E. coli to 3.3 g-CDW/mol-formate and 6 h doubling time, respectively. Genome sequence analysis revealed that manipulation of acetate metabolism is the reason for better growth performance, verified by subsequent reverse engineering of the parental E. coli strain. Moreover, the improved strain is capable of growing to an OD600 of 22 in bioreactor fed-batch experiments, highlighting its potential use for industrial bioprocesses. Finally, demonstrating the strain's potential to support a sustainable, formate-based bioeconomy, lactate production from formate was engineered. The optimized strain generated 1.2 mM lactate -10% of the theoretical maximum- providing the first proof-of-concept application of the reductive glycine pathway for bioproduction.
Collapse
Affiliation(s)
- Seohyoung Kim
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Néstor Giraldo
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Vittorio Rainaldi
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Fabian Machens
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany,Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Steffen N. Lindner,
| |
Collapse
|
44
|
An efficient and reusable N,N-dimethylacetamide/LiCl solvent system for the extraction of high-purity polyhydroxybutyrate from bacterial biomass. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Calvey CH, Sànchez I Nogué V, White AM, Kneucker CM, Woodworth SP, Alt HM, Eckert CA, Johnson CW. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab Eng 2023; 75:78-90. [PMID: 36368470 DOI: 10.1016/j.ymben.2022.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Conversion of CO2 to value-added products presents an opportunity to reduce GHG emissions while generating revenue. Formate, which can be generated by the electrochemical reduction of CO2, has been proposed as a promising intermediate compound for microbial upgrading. Here we present progress towards improving the soil bacterium Cupriavidus necator H16, which is capable of growing on formate as its sole source of carbon and energy using the Calvin-Benson-Bassham (CBB) cycle, as a host for formate utilization. Using adaptive laboratory evolution, we generated several isolates that exhibited faster growth rates on formate. The genomes of these isolates were sequenced, and resulting mutations were systematically reintroduced by metabolic engineering, to identify those that improved growth. The metabolic impact of several mutations was investigated further using RNA-seq transcriptomics. We found that deletion of a transcriptional regulator implicated in quorum sensing, PhcA, reduced expression of several operons and led to improved growth on formate. Growth was also improved by deleting large genomic regions present on the extrachromosomal megaplasmid pHG1, particularly two hydrogenase operons and the megaplasmid CBB operon, one of two copies present in the genome. Based on these findings, we generated a rationally engineered ΔphcA and megaplasmid-deficient strain that exhibited a 24% faster maximum growth rate on formate. Moreover, this strain achieved a 7% growth rate improvement on succinate and a 19% increase on fructose, demonstrating the broad utility of microbial genome reduction. This strain has the potential to serve as an improved microbial chassis for biological conversion of formate to value-added products.
Collapse
Affiliation(s)
- Christopher H Calvey
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Violeta Sànchez I Nogué
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Aleena M White
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Colin M Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Hannah M Alt
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
46
|
Teetz N, Holtmann D, Harnisch F, Stöckl M. Upgrading Kolbe Electrolysis-Highly Efficient Production of Green Fuels and Solvents by Coupling Biosynthesis and Electrosynthesis. Angew Chem Int Ed Engl 2022; 61:e202210596. [PMID: 36179068 PMCID: PMC10098509 DOI: 10.1002/anie.202210596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/10/2022]
Abstract
The chemical industry is transitioning to more sustainable and biobased processes. One key element of this transition is coupling energy fluxes and feedstock utilization for optimizing processes, routes and efficiencies. Here, we show for the first time the coupling of the Kolbe electrolysis at the anode with a subsequent microbial conversion of the cathodically produced co-product hydrogen. Kolbe electrolysis of valeric acid yields the liquid drop-in fuel additive n-octane. Subsequently, the solvent isopropanol is produced by resting Cupriavidus necator cells using gaseous electrolysis products (esp. CO2 and H2 ). The resting microbial cells show carbon efficiencies of up to 41 % and Coulombic/Faradaic efficiencies of 60 % and 80 % for anodic and cathodic reactions, respectively. The implementation of a paired electrolyser resulted in superior process performances with overall efficiencies of up to 64.4 %.
Collapse
Affiliation(s)
- Niklas Teetz
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenWiesenstrasse 1435390GiessenGermany
- Sustainable ElectrochemistryDepartment of Chemical TechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenWiesenstrasse 1435390GiessenGermany
| | - Falk Harnisch
- Department of Environmental MicrobiologyUFZ – Helmholtz-Centre for Environmental Research GmbHPermoserstraße 1504318LeipzigGermany
| | - Markus Stöckl
- Sustainable ElectrochemistryDepartment of Chemical TechnologyDECHEMA Research InstituteTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| |
Collapse
|
47
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
48
|
Bankefa OE, Claassens NJ. Hybrid chem-bio production from electricity and CO2 via two-carbon mediators. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Davison PA, Tu W, Xu J, Della Valle S, Thompson IP, Hunter CN, Huang WE. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO 2 Fixation. ACS Synth Biol 2022; 11:3805-3816. [PMID: 36264158 PMCID: PMC9680020 DOI: 10.1021/acssynbio.2c00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%.
Collapse
Affiliation(s)
- Paul A. Davison
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Weiming Tu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Simona Della Valle
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom,. Tel: +44 1865 283786
| |
Collapse
|
50
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|