1
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
2
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disorder that results in a multi-organ disease with progressive respiratory decline that ultimately leads to premature death. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which codes for the CFTR anion channel. Established CF treatments target downstream manifestations of the primary genetic defect, including pulmonary and nutritional interventions. Areas covered: CFTR modulators are novel therapies that improve the function of CFTR, and have been approved in the past five years to mitigate the effects of several CF-disease causing mutations. This review summarizes currently approved CFTR modulators and discusses emerging modulator therapies in phase II and III clinical trials described on clinical trials.gov as of April, 2017. Results of relevant trials reported in peer-reviewed journals in Pubmed, scientific conference abstracts and sponsor press releases available as of November, 2017 are included. Expert opinion: The current scope of CF therapeutic development is robust and CFTR modulators have demonstrated significant benefit to patients with specific CFTR mutations. We anticipate that in the future healthcare providers will be faced with a different treatment paradigm, initiating CFTR-directed therapies well before the onset of progressive lung disease.
Collapse
Affiliation(s)
- Kristin M Hudock
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , University of Cincinnati , Cincinnati , OH , USA.,b Division of Pulmonary Biology, Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - John Paul Clancy
- c Division of Pulmonary Medicine, Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
3
|
Zhao J, Beyrakhova K, Liu Y, Alvarez CP, Bueler SA, Xu L, Xu C, Boniecki MT, Kanelis V, Luo ZQ, Cygler M, Rubinstein JL. Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathog 2017; 13:e1006394. [PMID: 28570695 PMCID: PMC5469503 DOI: 10.1371/journal.ppat.1006394] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/13/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires’ Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the ‘open’ conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK. V-ATPase-driven acidification of lysosomes in phagocytic cells activates enzymes important for killing of phagocytized pathogens. Successful pathogens can subvert host defenses by secreting effectors that target V-ATPases to inhibit lysosomal acidification or lysosomal fusion with other cell compartments. This study reveals the structure of the V-ATPase:SidK complex, an assembly formed from the interaction of host and pathogen proteins involved in the infection of phagocytic white blood cells by Legionella pneumophila. The structure and activity of the V-ATPase is altered upon SidK binding, providing insight into the infection strategy used by L. pneumophila and possibly other intravacuolar pathogens.
Collapse
Affiliation(s)
- Jianhua Zhao
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ksenia Beyrakhova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Claudia P. Alvarez
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Li Xu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Caishuang Xu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michal T. Boniecki
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (JLR); (MC)
| | - John L. Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (JLR); (MC)
| |
Collapse
|
4
|
de Araujo ED, Kanelis V. Successful development and use of a thermodynamic stability screen for optimizing the yield of nucleotide binding domains. Protein Expr Purif 2014; 103:38-47. [PMID: 25153533 DOI: 10.1016/j.pep.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
ATP sensitive potassium (KATP) channels consist of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B). SUR proteins are members of the ATP-binding cassette superfamily of proteins. Binding of ATP to the Kir6.x subunit mediates channel inhibition, whereas MgATP binding and hydrolysis at the SUR NBDs results in channel opening. Mutations in SUR1 and SUR2A NBDs cause diseases of insulin secretion and cardiac disorders, respectively, underlying the importance of studying the NBDs. Although purification of SUR2A NBD1 in a soluble form is possible, the lack of long-term sample stability of the protein in a concentrated form has precluded detailed studies of the protein aimed at gaining a molecular-level understanding of how SUR mutations cause disease. Here we use a convenient and cost-effective thermodynamic screening method to probe stabilizing conditions for SUR2A NBD1. Results from the screen are used to alter the purification protocol to allow for significantly increased yields of the purified protein. In addition, the screen provides strategies for long-term storage of NBD1 and generating NBD1 samples at high concentrations suitable for NMR studies. NMR spectra of NBD1 with MgAMP-PNP are of higher quality compared to using MgATP, indicating that MgAMP-PNP be used as the ligand in future NMR studies. The screen presented here can be expanded to using different additives and can be employed to enhance purification yields, sample life times, and storage of other low stability nucleotide binding domains, such as GTPases.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
5
|
Chong PA, Kota P, Dokholyan NV, Forman-Kay JD. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 2013; 3:a009522. [PMID: 23457292 DOI: 10.1101/cshperspect.a009522] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) requires dynamic fluctuations between states in its gating cycle for proper channel function, including changes in the interactions between the nucleotide-binding domains (NBDs) and between the intracellular domain (ICD) coupling helices and NBDs. Such motions are also linked with fluctuating phosphorylation-dependent binding of CFTR's disordered regulatory (R) region to the NBDs and partners. Folding of CFTR is highly inefficient, with the marginally stable NBD1 sampling excited states or folding intermediates that are aggregation-prone. The severe CF-causing F508del mutation exacerbates the folding inefficiency of CFTR and leads to impaired channel regulation and function, partly as a result of perturbed NBD1-ICD interactions and enhanced sampling of these NBD1 excited states. Increased knowledge of the dynamics within CFTR will expand our understanding of the regulated channel gating of the protein as well as of the F508del defects in folding and function.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
6
|
Hunt JF, Wang C, Ford RC. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb Perspect Med 2013; 3:a009514. [PMID: 23378596 DOI: 10.1101/cshperspect.a009514] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) are reviewed. Like many membrane proteins, full-length CFTR has proven to be difficult to express and purify, hence much of the structural data available is for the more tractable, independently expressed soluble domains. Therefore, this chapter covers structural data for individual CFTR domains in addition to the sparser data available for the full-length protein. To set the context for these studies, we will start by reviewing structural information on model proteins from the ATP-binding cassette (ABC) transporter superfamily, to which CFTR belongs.
Collapse
Affiliation(s)
- John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
7
|
López-Alonso JP, de Araujo ED, Kanelis V. NMR and fluorescence studies of drug binding to the first nucleotide binding domain of SUR2A. Biochemistry 2012; 51:9211-22. [PMID: 23078514 DOI: 10.1021/bi301019e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ATP sensitive potassium (K(ATP)) channels are composed of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B) that surround the pore. SUR proteins are members of the ATP-binding cassette (ABC) superfamily of proteins. Binding of MgATP at the SUR nucleotide binding domains (NBDs) results in NBD dimerization, and hydrolysis of MgATP at the NBDs leads to channel opening. The SUR proteins also mediate interactions with K(ATP) channel openers (KCOs) that activate the channel, with KCO binding and/or activation involving residues in the transmembrane helices and cytoplasmic loops of the SUR proteins. Because the cytoplasmic loops make extensive interactions with the NBDs, we hypothesized that the NBDs may also be involved in KCO binding. Here, we report nuclear magnetic resonance (NMR) spectroscopy studies that demonstrate a specific interaction of the KCO pinacidil with the first nucleotide binding domain (NBD1) from SUR2A, the regulatory SUR protein in cardiac K(ATP) channels. Intrinsic tryptophan fluorescence titrations also demonstrate binding of pinacidil to SUR2A NBD1, and fluorescent nucleotide binding studies show that pinacidil binding increases the affinity of SUR2A NBD1 for ATP. In contrast, the KCO diazoxide does not interact with SUR2A NBD1 under the same conditions. NMR relaxation experiments and size exclusion chromatography indicate that SUR2A NBD1 is monomeric under the conditions used in drug binding studies. These studies identify additional binding sites for commonly used KCOs and provide a foundation for testing binding of drugs to the SUR NBDs.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
8
|
Scotti C, Olivieri C, Boeri L, Canzonieri C, Ornati F, Buscarini E, Pagella F, Danesino C. Bioinformatic analysis of pathogenic missense mutations of activin receptor like kinase 1 ectodomain. PLoS One 2011; 6:e26431. [PMID: 22028876 PMCID: PMC3196573 DOI: 10.1371/journal.pone.0026431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/27/2011] [Indexed: 01/13/2023] Open
Abstract
Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms.
Collapse
MESH Headings
- Activin Receptors, Type II/chemistry
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Amino Acid Sequence
- Computational Biology
- Conserved Sequence
- DNA Mutational Analysis
- Enzyme Stability
- Growth Differentiation Factor 2
- Growth Differentiation Factors/chemistry
- Growth Differentiation Factors/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutation, Missense
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Static Electricity
- Telangiectasia, Hereditary Hemorrhagic/enzymology
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
Collapse
Affiliation(s)
- Claudia Scotti
- Department of Experimental Medicine, Section of General Pathology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Khushoo A, Yang Z, Johnson AE, Skach WR. Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1. Mol Cell 2011; 41:682-92. [PMID: 21419343 DOI: 10.1016/j.molcel.2011.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/03/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
The mechanism by which protein folding is coupled to biosynthesis is a critical, but poorly understood, aspect of protein conformational diseases. Here we use fluorescence resonance energy transfer (FRET) to characterize tertiary structural transitions of nascent polypeptides and show that the first nucleotide-binding domain (NBD1) of human CFTR, whose folding is defective in cystic fibrosis, folds via a cotranslational multistep pathway as it is synthesized on the ribosome. Folding begins abruptly as NBD1 residues 389-500 emerge from the ribosome exit tunnel, initiating compaction of a small, N-terminal α/β-subdomain. Real-time kinetics of synchronized nascent chains revealed that subdomain folding is rapid, occurs coincident with synthesis, and is facilitated by direct ATP binding to the nascent polypeptide. These findings localize the major CF defect late in the NBD1 folding pathway and establish a paradigm wherein a cellular ligand promotes vectorial domain folding by facilitating an energetically favored local peptide conformation.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
10
|
Harrington MT, Brennan E, Wenger JC, Morris MA. The remarkable reaction of N2O with a binary component lanthanide oxide mixture. Chem Commun (Camb) 2006:3889-90. [PMID: 17268660 DOI: 10.1039/b606713a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of N2O with a Sm2O3-PrO(2-x) mixed oxide proceeds via the unexpected production of a new bulk phase that has been tenatively assigned to a new cis-hyponitrite compound.
Collapse
Affiliation(s)
- M T Harrington
- Dept. of Chemistry, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
11
|
Marín VB, Velandia S, Hunter B, Gattas V, Fielbaum O, Herrera O, Díaz E. Energy expenditure, nutrition status, and body composition in children with cystic fibrosis. Nutrition 2004; 20:181-6. [PMID: 14962683 DOI: 10.1016/j.nut.2003.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Undernutrition is a frequent complication in patients with cystic fibrosis (CF). Elevated energy requirements have been found to be 4% to 33% higher than in controls in some studies. Whether or not this is caused by a primary defect or energy metabolism is still a matter of controversy. To this end, we assessed energy expenditure, nutrition status, and body composition of clinically stable CF outpatients. METHODS Fifteen clinically stable CF patients, ages 2 to 15 y, were paired with 15 healthy control children. Measurements consisted of anthropometry and body composition. Plasma tocopherol, retinol, and hair zinc content were measured. Resting energy expenditure was determined by indirect calorimetry. Physical activity and dietary intake were recorded by recall methods. RESULTS Two children were nutritionally at risk according to the weight/height index, eight were normal, three were overweight, and two were obese. Body composition was similar in both groups. Zinc, tocopherol, and retinol levels were low in three, two, and three patients, respectively. Resting energy expenditures were 4.7 MJ/d (1127 +/- 220 kcal/d) in CF children and 4.63 MJ/d (1108 +/- 191 kcal/d) in control children (P = not significant). Physical activity level was sedentary in 86.6% of CF patients; the rest had a light physical activity pattern. Energy intake represented 141% of the estimated daily energy expenditure. CONCLUSIONS Non-oxygen-dependent CF children, without acute respiratory infection, had resting energy expenditures comparable to those of matched controls. Total energy expenditure was similar to or slightly lower than that in healthy children. Dietary recommendations for CF patients need to be reassessed.
Collapse
Affiliation(s)
- Verónica B Marín
- Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
12
|
Davies PSW, Erskine JM, Hambidge KM, Accurso FJ. Longitudinal investigation of energy expenditure in infants with cystic fibrosis. Eur J Clin Nutr 2002; 56:940-6. [PMID: 12373612 DOI: 10.1038/sj.ejcn.1601441] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Revised: 01/15/2002] [Accepted: 02/12/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine when energy expenditure becomes elevated in infants with cystic fibrosis (CF). DESIGN Longitudinal studies of total energy expenditure (TEE) using doubly labeled water were conducted in infants identified with CF by newborn screening through the first year of life. SETTING Hospital and community based studies in Denver, Colorado, USA and Cambridge, UK. RESULTS Eight of the 12 infants enrolled had begun enzyme therapy but were clinically asymptomatic. Four of the 12 infants were heterozygous for the delta F508 mutation, however no difference was seen in TEE from the remaining homozygous infants. TEE was compared to control cohorts at 2, 6 and 12 months of age. There was no difference from the control groups in TEE/kg fat free mass (FFM)/day at 2 months. However, by 6 months of age TEE/kg FFM/day in infants with CF exceeded that of age-matched controls by 25% (P<0.001). This elevation in TEE continued at 12 months of age exceeding that of controls by 30% (P<0.05). CONCLUSIONS These results indicate that infants with CF have increased energy needs by 6 months of age and that early diagnosis alone does not prevent the development of increased caloric requirements. These findings emphasize the need for close nutritional monitoring to prevent suboptimal growth during infancy in this population. SPONSORSHIP This research was supported by grant number 5 MO1 RR00069, General Clinical Research Centers Program, National Center for Research Resources, NIH.
Collapse
Affiliation(s)
- P S W Davies
- Children's Nutrition Research Centre, Department of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Brisbane, Australia.
| | | | | | | |
Collapse
|
13
|
Gentzsch M, Aleksandrov A, Aleksandrov L, Riordan JR. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Biochem J 2002; 366:541-8. [PMID: 12020354 PMCID: PMC1222794 DOI: 10.1042/bj20020511] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 05/16/2002] [Accepted: 05/20/2002] [Indexed: 12/22/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) contains two nucleotide-binding domains (NBDs) or ATP-binding cassettes (ABCs) that characterize a large family of membrane transporters. Although the three-dimensional structures of these domains from several ABC proteins have been determined, this is not the case for CFTR, and hence the domains are defined simply on the basis of sequence alignment. The functional C-terminal boundary of NBD1 of CFTR was located by analysis of chloride channel function [Chan, Csanady, Seto-Young, Nairn and Gadsby (2000) J. Gen. Physiol. 116, 163-180]. However, the boundary between the C-terminal end of NBD2 and sequences further downstream in the whole protein, that are important for its cellular localization and endocytotic turnover, has not been defined. We have now done this by assaying the influence of progressive C-terminal truncations on photolabelling of NBD2 by 8-azido-ATP, which reflects hydrolysis, as well as binding, at that domain, and on NBD2-dependent channel gating itself. The boundary defined in this way is between residues 1420 and 1424, which corresponds to the final beta-strand in aligned NBDs whose structures have been determined. Utilization of this information should facilitate the generation of monodisperse NBD2 polypeptides for structural analysis, which until now has not been possible. The established boundary includes within NBD2 a hydrophobic patch of four residues (1413-1416) previously shown to be essential for CFTR maturation and stability [Gentzsch and Riordan (2001) J. Biol. Chem. 276, 1291-1298]. This hydrophobic cluster is conserved in most ABC proteins, and on alignment with ones of known structure constitutes the penultimate beta-strand of the domain which is likely to participate in essential structure-stabilizing beta-sheet formation.
Collapse
Affiliation(s)
- Martina Gentzsch
- Mayo Foundation and Mayo Clinic Scottsdale, S. C. Johnson Medical Research Center, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
14
|
Ko YH, Pedersen PL. Cystic fibrosis: a brief look at some highlights of a decade of research focused on elucidating and correcting the molecular basis of the disease. J Bioenerg Biomembr 2001; 33:513-21. [PMID: 11804193 DOI: 10.1023/a:1012831322753] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The disease Cystic Fibrosis (CF) is caused by mutations in the protein called CFTR, cystic fibrosis transmembrane conductance regulator, an ABC-transporter-like protein found in the plasma membrane of animal cells. CFTR is believed to function primarily as a Cl- channel, but evidence is mounting that this protein has other roles as well. Structurally, CFTR consists of a single polypeptide chain (1480 amino acids) that folds into 5 distinct domains. These include 2 transmembrane domains that are involved in channel formation; 2 nucleotide-binding domains (NBF1 and NBF2), the first of which clearly binds and hydrolyzes ATP; and 1 regulatory domain (R) that is phosphorylated in a cAMP-dependent process. Currently, the 3D structure of neither CFTR nor its domains has been elucidated, although both nucleotide domains have been modeled in 3D, and solution structures in 3D have been obtained for peptide segments of NBF1. The most common mutation causing CF is the deletion (delta) of a single phenylalanine (F) in position 508 within a putative helix located in NBF1. CF patients bearing this deltaF508 mutation frequently experience chronic lung infections, particularly by Pseudomonas aeruginosa, and have a life span that rarely exceeds the age of 30. Since the CFTR gene was cloned and sequenced in 1989, there has been over a decade of research focused on understanding the molecular basis of CF caused by the deltaF508 mutation, with the ultimate objective of using the knowledge gained to carry out additional research designed to correct the underlying defect. In general, this pioneering or "ground roots" research has succeeded according to plan. This brief review summarizes some of the highlights with a focus on those studies conducted in the authors' laboratory. For us, this research has been both exciting and rewarding mainly because the results obtained, despite very limited funding, have provided considerable insight, not only into the chemical, molecular, and pathogenic basis of CF, but have made it possible for us and others to now develop novel, chemically rational, and "cost effective" strategies to identify agents that correct the structural defect in the deltaF508 CFTR protein causing most cases of CF.
Collapse
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
15
|
Berger AL, Welsh MJ. Differences between cystic fibrosis transmembrane conductance regulator and HisP in the interaction with the adenine ring of ATP. J Biol Chem 2000; 275:29407-12. [PMID: 10893239 DOI: 10.1074/jbc.m004790200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is a member of the ATP-binding cassette transporter family. The most conserved features of this family are the nucleotide-binding domains. As in other members of this family, these domains bind and hydrolyze ATP; in CFTR this opens and closes the channel pore. The recent crystal structures of related bacterial transporters show that an aromatic residue interacts with the adenine ring of ATP to stabilize nucleotide binding. CFTR contains six aromatic residues that are candidates to coordinate the nucleotide base. We mutated each to cysteine and examined the functional consequences. None of the mutations disrupted channel function or the ability to discriminate between ATP, GTP, and CTP. We also applied [2-(triethylammonium)ethyl] methanethiosulfonate to covalently modify the introduced cysteines. The mutant channels CFTR-F429C, F430C, F433C, and F1232C showed no difference from wild-type CFTR, indicating that either the residues were not accessible to modification, or cysteine modification did not affect function. Although modification inactivated CFTR-Y1219C more rapidly than wild-type CFTR, and inactivation of CFTR-F446C was nucleotide-dependent; failure of these mutations to alter gating suggested that Tyr(1219) and Phe(446) were not important for nucleotide binding. The results suggest that ATP binding may not involve the coordination of the adenine ring by an aromatic residue analogous to that in some bacterial transporters. Taken together with earlier work, this study points to a model in which most of the binding energy for ATP is contributed by the phosphate groups.
Collapse
Affiliation(s)
- A L Berger
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
16
|
Kallis RP, Ewy RG, Portis AR. Alteration of the adenine nucleotide response and increased Rubisco activation activity of Arabidopsis rubisco activase by site-directed mutagenesis. PLANT PHYSIOLOGY 2000; 123:1077-86. [PMID: 10889257 PMCID: PMC59071 DOI: 10.1104/pp.123.3.1077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2000] [Accepted: 04/04/2000] [Indexed: 05/21/2023]
Abstract
Arabidopsis Rubisco was activated in vitro at rates 2- to 3-fold greater by recombinant Arabidopsis 43-kD Rubisco activase with the amino acid replacements Q111E and Q111D in a phosphate-binding loop, G-G-K-G-Q-G-K-S. However, these two mutant enzymes had only slightly greater rates of ATP hydrolysis. Activities of the Q111D enzyme were much less sensitive and those of Q111E were somewhat less sensitive to inhibition by ADP. Both mutant enzymes exhibited higher Rubisco activation activities over the physiological range of ADP to ATP ratios. Enzymes with non-polar, polar, and basic residues substituted at position Gln-111 exhibited rates of Rubisco activation less than the wild-type enzyme. Estimates of the relative affinity of the wild type and the Q111D, Q111E, and Q111S enzymes for adenosine nucleotides by a variety of methods revealed that the nucleotide affinities were the most diminished in the Q111D enzyme. The temperature stability of the Q111D and Q111E enzymes did not differ markedly from that of the 43-kD recombinant wild-type enzyme, which is somewhat thermolabile. The Q111D and Q111E enzymes, expressed in planta, may provide a means to better define the role of the ADP to ATP ratio in the regulation of Rubisco activation and photosynthesis rate.
Collapse
Affiliation(s)
- R P Kallis
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
17
|
Lu NT, Pedersen PL. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Arch Biochem Biophys 2000; 375:7-20. [PMID: 10683244 DOI: 10.1006/abbi.1999.1656] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is known to function as a regulated chloride channel and, when genetically impaired, to cause the disease cystic fibrosis. The novel studies reported here were undertaken to gain greater molecular insight into possible interactions among CFTR's soluble domains, which include two nucleotide binding domains (NBF1 and NBF2) and a regulatory domain (R). The NBF1+R and NBF2 regions of CFTR were highly expressed in Escherichia coli, purified to near homogeneity under denaturing conditions, and refolded. Both refolded proteins bound TNP-ATP and TNP-ADP, which could be readily replaced with ATP. Four different approaches were then used to determine whether the NBF1+R and NBF2 proteins interact. First, the purified NBF2 protein was labeled near its C-terminus with a fluorescent probe, 7-diethyl amino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM). Addition of the unlabeled NBF1+R to the CPM-labeled NBF2 caused a red-shift in lambda(max) of the CPM fluorescence, consistent with a direct interaction between the two proteins. Second, when the NBF1+R protein, the NBF2 protein, and a mixture of the two proteins were folded separately and analyzed by molecular sieve chomatography, the mixture was found to elute prior to either NBF1+R or NBF2. Third, na-tive-PAGE gel studies revealed that the mixture of the NBF1+R and NBF2 domains migrated as a single band with an R(F) value between that of NBF1+R and NBF2. Fourth, trypsin digestion of a mixture of the NBF1+R and NBF2 proteins occurred at a slower rate than that for the individual proteins. Finally, studies were carried out to determine whether an NBF1+R/NBF2 interaction could be demonstrated after expressing one of the two proteins in soluble, native form, thus avoiding the inclusion body, denaturation, and renaturation approach. Specifically, the NBF1+R protein was overexpressed in E. coli in fusion with glutathione-S-transferase near a thrombin cleavage site. Following binding of the GST-(NBF1+R) fusion protein to a GST Sepharose affinity column, added NBF2 was shown to bind and then to coelute with NBF1+R upon addition of glutathione or thrombin. Collectively, these experiments demonstrate that CFTR's NBF1+R region and its NBF2 domain, after folding separately as distinct units, have a strong propensity to interact and that this interaction is stable in the absence of added nucleotides or exogenously induced phosphorylation. These findings, together with the additional observation that the NBF1+R/NBF2 interaction induces a change in the C-terminus of NBF2, which resides within the C-terminal region of CFTR, may have important implications not only for the function of CFTR per se, but its interaction with other proteins.
Collapse
Affiliation(s)
- N T Lu
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland, 21205-2185, USA
| | | |
Collapse
|
18
|
Morris AP. The regulation of epithelial cell cAMP- and calcium-dependent chloride channels. ADVANCES IN PHARMACOLOGY 1999; 46:209-51. [PMID: 10332504 DOI: 10.1016/s1054-3589(08)60472-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
This chapter has focused on two types of chloride conductance found in epithelial cells. The leap from the Ussing chamber to patch-clamp studies has identified yet other conductances present which have also been electrophysiologically characterized. In the case of the swelling activated wholecell chloride current, a physiological function is apparent and a single-channel basis found, but its genetic identity remains unknown (see reviews by Frizzell and Morris, 1994; and Strange et al., 1996). The outwardly rectified chloride channel has been the subject of considerable electrophysiological interest over the past 10 years and is well characterized at the single-channel level, but its physiological function remains controversial (reviewed by Frizzell and Morris, 1994; Devidas and Guggino, 1997). Yet other conductances related to the CLC gene family also appear to be present in epithelial cells of the kidney (reviewed by Jentsch, 1996; Jentsch and Gunter, 1997) where physiological functions for some isoforms are emerging. Clearly, there remain many unknowns. Chief among these is the molecular basis of GCa2+Cl and many of other the conductances. As sequences become available it is expected that the wealth of information gained by investigation into CFTR function will provide a conceptual blueprint for similar studies in these later channel clones.
Collapse
Affiliation(s)
- A P Morris
- Department of Integrative Biology, University of Texas-Houston Health Science Center 77030, USA
| |
Collapse
|
19
|
Mickle JE, Cutting GR. Clinical implications of cystic fibrosis transmembrane conductance regulator mutations. Clin Chest Med 1998; 19:443-58, v. [PMID: 9759548 DOI: 10.1016/s0272-5231(05)70092-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cystic fibrosis (CF) phenotypes are determined by mutations in the CF gene, genetic background, and environment. The nature of the cystic fibrosis transmembrane conductance regulator (CFTR) mutation determines the extent of protein function. CFTR mutations that abolish protein function are associated with severe CF phenotypes. Mutants that retain partial function of CFTR are associated with mild phenotypes. The effect of CFTR dysfunction is variable in different tissues. Atypical phenotypes caused by mutations in the CF gene may be revealed by CFTR mutation analysis and family studies. These phenotypes help to define the spectrum of clinical manifestations caused by CFTR mutations.
Collapse
Affiliation(s)
- J E Mickle
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
20
|
Ko YH, Pedersen PL. Overexpression, purification, and function of first nucleotide-binding fold of cystic fibrosis transmembrane conductance regulator. Methods Enzymol 1998; 292:675-86. [PMID: 9711591 DOI: 10.1016/s0076-6879(98)92052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
21
|
Berger HA, Travis SM, Welsh MJ. Fluoride stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L305-12. [PMID: 9530164 DOI: 10.1152/ajplung.1998.274.3.l305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While studying the regulation of the cystic fibrosis transmembrane conductance regulator (CFTR), we found that addition of F- to the cytosolic surface of excised, inside-out membrane patches reversibly increased Cl- current in a dose-dependent manner. Stimulation required prior phosphorylation and the presence of ATP. F- increased current even in the presence of deferoxamine, which chelates Al3+, suggesting that stimulation was not due to AlF4-. F- also stimulated current in a CFTR variant that lacked a large part of the R domain, suggesting that the effect was not mediated via this domain. Studies of single channels showed that F- increased the open-state probability by slowing channel closure from bursts of activity; the mean closed time between bursts and single-channel conductance was not altered. These results suggested that F- influenced regulation by the cytosolic domains, most likely the nucleotide-binding domains (NBDs). Consistent with this, we found that mutation of a conserved Walker lysine in NBD2 changed the relative stimulatory effect of F- compared with wild-type CFTR, whereas mutation of the Walker lysine in NBD1 had no effect. Based on these and previous data, we speculate that F- interacts with CFTR, possibly via NBD2, and slows the rate of channel closure.
Collapse
Affiliation(s)
- H A Berger
- Department of Internal Medicine, Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
22
|
Seibert FS, Loo TW, Clarke DM, Riordan JR. Cystic fibrosis: channel, catalytic, and folding properties of the CFTR protein. J Bioenerg Biomembr 1997; 29:429-42. [PMID: 9511928 DOI: 10.1023/a:1022478822214] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification and characterization of the CFTR gene and protein have provided not only a major impetus to the dissection of the molecular pathophysiology of cystic fibrosis (CF) but also a new perspective on the structure and function of the large superfamily of membrane transport proteins to which it belongs. While the mechanism of the active vectorial translocation of many hydrophobic substrates by several of these transporters remains nearly as perplexing as it has for several decades, considerable insight has been gained into the control of the bidirectional permeation of chloride ions through a single CFTR channel by the phosphorylation of the R-domain and ATP interactions at the two nucleotide binding domains. However, details of these catalytic and allosteric mechanisms remain to be elucidated and await the replacement of two-dimensional conceptualizations with three dimensional structure information. Secondary and tertiary structure determination is required both for the understanding of the mechanism of action of the molecule and to enable a more complete appreciation of the misfolding and misprocessing of mutant CFTR molecules. This is the primary cause of the disease in the majority of the patients and hence understanding the details of the cotranslational interactions with multiple molecular chaperones, the ubiquitin-proteasome pathway and other components of the quality control machinery at the endoplasmic reticulum could provide a basis for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- F S Seibert
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator, CFTR. Previously we demonstrated that the common delta F508 mutation in the first nucleotide binding domain (NBD1) alters the ability of the domain to fold into a functional three-dimensional structure, providing a molecular explanation for the observation that the mutant CFTR is retained in the endoplasmic reticulum and does not traffic to the apical membrane of affected epithelial cells. Notably, when conditions are altered to promote folding of the mutant protein, it can assume a functional conformation. Correcting the folding defect may have therapeutic benefit for the treatment of cystic fibrosis. Here we summarize these results and discuss the implications in vitro folding studies have for understanding the pathobiology of CF.
Collapse
Affiliation(s)
- B H Qu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 75235-9040, USA
| | | | | |
Collapse
|
24
|
Bear CE, Li C, Galley K, Wang Y, Garami E, Ramjeesingh M. Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR. J Bioenerg Biomembr 1997; 29:465-73. [PMID: 9511931 DOI: 10.1023/a:1022435007193] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel situated on the apical membrane of epithelial cells. Our recent studies of purified, reconstituted CFTR revealed that it also functions as an ATPase and that there may be coupling between ATP hydrolysis and channel gating. Both the ATP turnover rate and channel gating are slow, in the range of 0.2 to 1 s(-1), and both activities are suppressed in a disease-causing mutation situated in a putative nucleotide binding motif. Our future studies using purified protein will be directed toward understanding the structural basis and mechanism for coupling between hydrolysis and channel function.
Collapse
Affiliation(s)
- C E Bear
- Department of Physiology, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Ko YH, Pedersen PL. Frontiers in research on cystic fibrosis: understanding its molecular and chemical basis and relationship to the pathogenesis of the disease. J Bioenerg Biomembr 1997; 29:417-27. [PMID: 9511927 DOI: 10.1023/a:1022402105375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years a new family of transport proteins called ABC transporters has emerged. One member of this novel family, called CFTR (cystic fibrosis transmembrane conductance regulator), has received special attention because of its association with the disease cystic fibrosis (CF). This is an inherited disorder affecting about 1 in 2000 Caucasians by impairing epithelial ion transport, particularly that of chloride. Death may occur in severe cases because of chronic lung infections, especially by Pseudomonas aeruginosa, which cause a slow decline in pulmonary function. The prospects of ameliorating the symptoms of CF and even curing the disease were greatly heightened in 1989 following the cloning of the CFTR gene and the discovery that the mutation (deltaF508), which causes most cases of CF, is localized within a putative ATP binding/ATP hydrolysis domain. The purpose of this introductory review in this minireview series is to summarize what we and others have learned during the past eight years about the structure and function of the first nucleotide binding domain (NBF1 or NBD1) of the CFTR protein and the effect thereon of disease-causing mutations. The relationship of these new findings to the pathogenesis of CF is also discussed.
Collapse
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
26
|
Qu BH, Strickland EH, Thomas PJ. Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J Biol Chem 1997; 272:15739-44. [PMID: 9188468 DOI: 10.1074/jbc.272.25.15739] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A growing body of evidence indicates that the most common cystic fibrosis-causing mutation, DeltaF508, alters the ability of the cystic fibrosis transmembrane conductance regulator (CFTR) protein to fold and transit to the plasma membrane. Here we present evidence that the DeltaF508 mutation affects a step on the folding pathway prior to formation of the ATP binding site in the nucleotide binding domain (NBD). Notably, stabilization of the native state with 4 mM ATP does not alter the temperature-dependent folding yield of the mutant DeltaF508 NBD1 in vitro. In contrast, glycerol, which promotes DeltaF508-CFTR maturation in vivo, increases the folding yield of NBD1DeltaF and reduces the off pathway rate in vitro, although it does not significantly alter the free energy of stability. Likewise a second site mutation, R553M, which corrects the maturation defect in vivo, is a superfolder which counters the effects of DeltaF508 on the temperature-dependent folding yield in vitro, but does not significantly alter the free energy of stability. A disease-causing mutation, G551D, which does not alter the maturation of CFTR in vivo but rather its function as a chloride channel, and the S549R maturation mutation have no discernible effect on the folding of the domain. These results demonstrate that DeltaF508 is a kinetic folding mutation that affects a step early in the process, and that there is a significant energy barrier between the native state and the step affected by the mutation precluding the use of native state ligands to promote folding. The implications for protein folding in general are that the primary sequence may not necessarily simply define the most stable native structure, but rather a stable structure that is kinetically accessible.
Collapse
Affiliation(s)
- B H Qu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9040, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- K W Southern
- Department of Paediatrics, St James's University Hospital, University of Leeds
| |
Collapse
|
28
|
Annereau JP, Stoven V, Bontems F, Barthe J, Lenoir G, Blanquet S, Lallemand JY. Insight into cystic fibrosis by structural modelling of CFTR first nucleotide binding fold (NBF1). COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:113-21. [PMID: 9181119 DOI: 10.1016/s0764-4469(97)85002-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cystic fibrosis is a human monogenic genetic disease caused by mutations in the cystic fibrosis (CF) gene, which encodes a membrane protein which functions as a channel: the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The most frequent mutation, a deletion of phenylalanine F508 (delta F508), is located in the first nucleotide binding domain of CFTR: NBF1. This mutation leads to a folding defect in NBF1, responsible for an incomplete maturation of CFTR. The absence of CFTR at the surface of epithelial cells causes the disease. Determination of the three-dimensional (3D) structure of NBF1 is a key step to understanding the alterations induced by the mutation. In the absence of any experimental data, we have chosen to build a 3D model for NBF1. This model was built by homology modelling starting from F1-ATPase, the only protein of known 3D structure in the ATP binding cassette (ABC) family. This new model defines the central and critical position of F508, predicted in the hydrophobic core of NBF1. F508 indeed could be involved in hydrophobic interactions to ensure a correct folding pathway. Moreover, this model enables the localization of the LSGGQ sequence (a highly conserved sequence in the ABC family) in a loop, at the surface of the protein. This reinforces the hypothesis of its role for mediation of domain-domain interactions of functional significance for the channel regulation. Finally, the model also allows redefinition of the ends of NBF1 within the CFTR sequence. These extremities are defined by the secondary structure elements that are involved in the NBF1 fold. They lead to reconsideration of the C-terminal limit which was initially defined by the end of exon 12.
Collapse
|
29
|
Randak C, Neth P, Auerswald EA, Assfalg-Machleidt I, Roscher AA, Hadorn HB, Machleidt W. A recombinant polypeptide model of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is a GTP-binding protein. FEBS Lett 1996; 398:97-100. [PMID: 8946960 DOI: 10.1016/s0014-5793(96)01217-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Association reactions of a recombinant CFTR-NBF-2 polypeptide fused to glutathione S-transferase with guanine nucleotides were monitored quantitatively by recording the fluorescence enhancement of excited trinitrophenol (TNP)-labelled GTP after binding to NBF-2. Binding of TNP-GTP to the recombinant NBF-2 polypeptide was characterized by a Kd value of 3.9 microM. The corrected Kd values for unlabelled guanine nucleotides were determined to be 33 microM for GTP, 92 microM for GDP and 217 microM for GMP. TNP-ATP bound to NBF-2 was competitively displaced by GTP indicating a common binding site for both nucleotides. The recombinant NBF-2 did not show an intrinsic GTPase activity above a detection limit of 0.007 min(-1). Our findings provide the first experimental evidence that NBF-2 can act as a GTP-binding subunit that would favor the release of GDP after GTP hydrolysis.
Collapse
Affiliation(s)
- C Randak
- Kinderklinik im Dr. von Haunerschen Kinderspital der Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Reddy MM, Quinton PM. Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl- conductance. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C35-42. [PMID: 8760028 DOI: 10.1152/ajpcell.1996.271.1.c35] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previously, we showed in the native sweat duct that, in the presence of 0.1-0.5 mM ATP, nonhydrolyzable ATP analogue adenosine 5'-adenylylimidodiphosphate (AMP-PNP) can activate cystic fibrosis transmembrane conductance regulator Cl- conductance (CFTR GCl) (15). The objective of this study is to determine if 1) nonhydrolytic ATP binding alone can activate CFTR GCl after stable phosphorylation [in the presence of adenosine 5'-O-(3-thiotriphosphate) and phosphatase inhibition cocktail] of CFTR or 2) an ATP hydrolysis (in addition to phosphorylation) is required to support subsequent nonhydrolytic ATP regulation of CFTR GCl. We show that stably phosphorylated CFTR could only be activated by AMP-PNP in the presence of a small background ATP concentration. However, AMP-PNP can sustain previously activated CFTR GCl in the absence of ATP, even though Mg2+ is required for phosphorylation activation of CFTR GCl. However, once stably phosphorylated, ATP activation of CFTR GCl is independent of Mg2+. Our results show that both hydrolytic and nonhydrolytic interactions regulate CFTR GCl in vivo. Nonhydrolytic ATP interaction plays a significant role in both activation and deactivation of CFTR GCl.
Collapse
Affiliation(s)
- M M Reddy
- Division of Biomedical Sciences, University of California, Riverside 92521, USA
| | | |
Collapse
|
31
|
Qu BH, Thomas PJ. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J Biol Chem 1996; 271:7261-4. [PMID: 8631737 DOI: 10.1074/jbc.271.13.7261] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cellular phenotype of the most common cystic fibrosis-causing mutation, deletion of phenylalanine 508 (deltaF508) in the amino-terminal nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR), is the inability of the mutant protein to fold and transit to the apical membrane of affected epithelial cells. Expressed NBD1s were purified and folded in vitro into soluble monomers capable of binding nucleotide. Here we report that the deltaF508 mutation has little effect on the thermodynamic stability of the folded NBD1. The deltaG(0)(D,GdnHCl) is 15.5 kJ/mol for the wild type NBD1 and 14.4 kJ/mol for NBD1deltaF. In contrast, the mutation significantly reduces the folding yield at a variety of temperatures, indicating that Phe-508 makes crucial contacts during the folding process, but plays little role in stabilization of the native state. Under conditions that approximate the efficiency of maturation in vivo, the rate off-pathway is significantly increased by the disease causing mutation. These results establish a molecular mechanism for most cases of cystic fibrosis and provide insight into the complex processes by which primary sequence encodes the three-dimensional structure.
Collapse
Affiliation(s)
- B H Qu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, 75234-9040, USA
| | | |
Collapse
|
32
|
Abstract
Membrane transporter proteins are encoded by numerous genes that can be classified into several superfamilies, on the basis of sequence identity and biological function. Prominent examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ABC (ATP binding cassette) transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins. Deleterious mutations of transporter genes may lead to genetic diseases or loss of cell viability. Transporter structure, function and regulation, genetic factors, and pharmaceutical implications are summarized in this review.
Collapse
Affiliation(s)
- W Sadée
- School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
33
|
Ko YH, Pedersen PL. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol Chem 1995; 270:22093-6. [PMID: 7545672 DOI: 10.1074/jbc.270.38.22093] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis is caused by mutations in the cell membrane protein called CFTR (cystic fibrosis transmembrane conductance regulator) which functions as a regulated Cl- channel. Although it is known that CFTR contains two nucleotide domains, both of which exhibit the capacity to bind ATP, it has not been demonstrated directly whether one or both domains can function as an active ATPase. To address this question, we have studied the first CFTR nucleotide binding fold (NBF1) in fusion with the maltose-binding protein (MBP), which both stabilizes NBF1 and enhances its solubility. Three different ATPase assays conducted on MBP-NBF1 clearly demonstrate its capacity to catalyze the hydrolysis of ATP. Significantly, the mutations K464H and K464L in the Walker A consensus motif of NBF1 markedly impair its catalytic capacity. MBP alone exhibits no ATPase activity and MBP-NBF1 fails to catalyze the release of phosphate from AMP or ADP. The Vmax of ATP hydrolysis (approximately 30 nmol/min/mg of protein) is significant and is markedly inhibited by azide and by the ATP analogs 2'-(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate and adenosine 5'-(beta, gamma-imido)triphosphate. As inherited mutations within NBF1 account for most cases of cystic fibrosis, results reported here are fundamental to our understanding of the molecular basis of the disease.
Collapse
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
34
|
Carson MR, Winter MC, Travis SM, Welsh MJ. Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl- channels. J Biol Chem 1995; 270:20466-72. [PMID: 7544788 DOI: 10.1074/jbc.270.35.20466] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A unique feature of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is regulation by ATP through the two cytoplasmic nucleotide-binding domains (NBDs). To better understand this process, we asked how channel activity is affected by inorganic pyrophosphate (PPi), a compound that binds to NBDs in other proteins. PPi and three nonhydrolyzable PPi analogs reversibly stimulated the activity of phosphorylated channels. Kinetic modeling of single channel data demonstrated that PPi affected two distinct steps in channel regulation. First, PPi increased the rate at which channels opened. Second, once channels were open, PPi delayed their closure. PPi could only stimulate channels when it was applied in the presence of ATP. PPi also increased the photolabeling of CFTR by an ATP analog. These two findings suggest that PPi modifies the activity of ATP-dependent CFTR channel gating. Based on these and previous data, we speculate that the effects of PPi are mediated by binding of PPi to NBD2 where it regulates channel opening by NBD1, and then, because it is not hydrolyzed, it slows the rate of NBD2-mediated channel closing. Because PPi stimulated wild-type channels, we tested its effect on CFTR containing the cystic fibrosis mutations: delta F508, R117H, and G551S. PPi stimulated all three. PPi also stimulated endogenous CFTR in the apical membrane of permeabilized T-84 epithelia. These results suggest that PPi or an analog might be of value in the development of new approaches to the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- M R Carson
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
35
|
Frizzell RA. Functions of the cystic fibrosis transmembrane conductance regulator protein. Am J Respir Crit Care Med 1995; 151:S54-8. [PMID: 7533606 DOI: 10.1164/ajrccm/151.3_pt_2.s54] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cloning of the cystic fibrosis (CF) gene through genetic linkage analysis has led to new discoveries concerning the function of ion channels and disease mechanisms. Current understanding of CF indicates that epithelial cells from CF patients have reduced Cl- permeability, which impairs fluid and electrolyte secretion and results in luminal dehydration. There is also evidence that the cystic fibrosis transmembrane conductance regulator (CFTR) is the cyclic AMP-dependent ion channel whose activation is defective in CF cells. The CFTR is composed of 1480 amino acids that reveal a structural homology to a family of transport proteins termed the transport ATPases. The nucleotide-binding domains of CFTR are the locus of many disease-causing mutations; the common mutation in CFTR is deletion of a phenylalanine at position 508. In addition, CFTR contains a regulatory domain with consensus sites for phosphorylation by protein kinases. Reversible phosphorylation is a regulatory feature of the signal transduction pathway in which the CF defect lies. The phosphorylated channel requires the continuous presence of ATP, whether in the form of ATP binding or hydrolysis, to maintain channel activity. Channel activation requiring ATP can be inhibited by simultaneous presence of ADP, showing that this nucleotide diphosphate competes with ATP for activation. Studies of mutant CFTR expression indicate that at least two basic mechanisms are responsible for the CF phenotype, including CFTR protein dysfunction and inappropriate protein targeting. If mechanisms for bringing this partially functional protein to the plasma membrane can be found, the airway disease of the vast majority of patients with CF could be improved.
Collapse
Affiliation(s)
- R A Frizzell
- Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294-0005
| |
Collapse
|
36
|
Carson MR, Travis SM, Welsh MJ. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem 1995; 270:1711-7. [PMID: 7530246 DOI: 10.1074/jbc.270.4.1711] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel contains two cytoplasmic nucleotide-binding domains (NBDs). After phosphorylation of the R domain, ATP interacts with the NBDs to regulate channel activity. To learn how the NBDs regulate channel function, we used the patch-clamp technique to study CFTR and variants which contained site-directed mutations in the conserved Walker A motif lysine residues in either NBD1 (K464A), NBD2 (K1250A and K1250M), or both NBDs simultaneously (K464A/K1250A). Studies in related proteins suggest that such mutations slow the rate of ATP hydrolysis. These mutations did not alter the conductive properties of the channel or the requirement for phosphorylation and ATP to open the channel. However, all mutations decreased open state probability. Mutations in NBD1 decreased the frequency of bursts of activity, whereas mutations in NBD2 and mutations in both NBDs simultaneously prolonged bursts of activity, as well as decreased the frequency of bursts. These results could not be attributed to altered binding of nucleotide because none of the mutants studied had reduced 8-N3ATP binding. These data suggest that the two NBDs have distinct functions in channel gating; ATP hydrolysis at NBD1 initiates a burst of activity, and hydrolysis at NBD2 terminates a burst.
Collapse
Affiliation(s)
- M R Carson
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
37
|
Bronstein MN, Davies PS, Hambidge KM, Accurso FJ. Normal energy expenditure in the infant with presymptomatic cystic fibrosis. J Pediatr 1995; 126:28-33. [PMID: 7815219 DOI: 10.1016/s0022-3476(95)70495-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate whether a fundamental lesion in energy metabolism is a feature of cystic fibrosis, we measured total energy expenditure using the doubly labeled water technique in 19 infants with presymptomatic cystic fibrosis (0.8 to 6.6 months of age) identified through newborn screening. Total energy expenditure data collected in a cohort of healthy infants by the same method were used for comparison. Energy balance studies were additionally performed in 10 of the infants with cystic fibrosis. Total energy expenditure levels in infants with cystic fibrosis, expressed as either kilocalories per day or kilocalories per kilogram of fat free mass per day, did not differ from control levels. When expressed on the basis of body weight (in kilocalories per kilogram per day), expenditure levels in infants with cystic fibrosis were greater (p < 0.05) than control levels. No differences in expenditure were observed between those infants who were homozygous (n = 10) for the delta F508 mutation and the heterozygous infants (n = 7), regardless of how expenditure was expressed. Assessment of energy balance indicated that infants with cystic fibrosis grow at a normal rate for metabolizable energy intakes similar to those reported for healthy infants. We conclude that there are no differences in energy expenditure between infants with presymptomatic cystic fibrosis and healthy infants, once differences in body composition are taken into account. This finding indicates that the primary cystic fibrosis defect is not an energy-requiring one.
Collapse
Affiliation(s)
- M N Bronstein
- Department of Pediatrics, University of Colorado School of Medicine, Denver
| | | | | | | |
Collapse
|
38
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels appear to be regulated by hydrolysis of ATP and are inhibited by a product of hydrolysis, ADP. We assessed the effect of the other product of hydrolysis, inorganic phosphate (P(i)), on CFTR Cl- channel activity using the excised inside-out configuration of the patch-clamp technique. Millimolar concentrations of P(i) caused a dose-dependent stimulation of CFTR Cl- channel activity. Single-channel analysis demonstrated that the increase in macroscopic current was due to an increase in single-channel open-state probability (po) and not single-channel conductance. Kinetic modeling of the effect of P(i) using a linear three-state model indicated that the effect on po was predominantly the result of an increase in the rate at which the channel passed from the long closed state to the bursting state. P(i) also potentiated activity of channels studied in the presence of 10 mM ATP and stimulated Cl- currents in CFTR mutants lacking much of the R domain. Binding studies with a photoactivatable ATP analog indicated that Pi decreased the amount of bound nucleotide. These results suggest that P(i) increased CFTR Cl- channel activity by stimulating a rate-limiting step in channel opening that may occur by an interaction of P(i) at one or both nucleotide-binding domains.
Collapse
Affiliation(s)
- M R Carson
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | | | |
Collapse
|
39
|
Ward CL, Kopito RR. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47306-1] [Citation(s) in RCA: 353] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
40
|
Baubichon-Cortay H, Baggetto L, Dayan G, Di Pietro A. Overexpression and purification of the carboxyl-terminal nucleotide-binding domain from mouse P-glycoprotein. Strategic location of a tryptophan residue. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31607-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Flörke H, Thinnes FP, Winkelbach H, Stadtmüller U, Paetzold G, Morys-Wortmann C, Hesse D, Sternbach H, Zimmermann B, Kaufmann-Kolle P. Channel active mammalian porin, purified from crude membrane fractions of human B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP). BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:513-20. [PMID: 7529026 DOI: 10.1515/bchm3.1994.375.8.513] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new aspect of mammalian porin (mammalian VDAC = mammalian voltage-dependent anion channel) is presented: channel active VDAC binds adenosine triphosphate (ATP) in the absence of Ca2+. Channel active "Porin 31HL" or "Porin 31BM", enriched from crude membranes of human B lymphocytes or whole cell lysates of bovine skeletal muscle, respectively, was bound to a nine atoms spacer ATP-agarose at pH 7.4 or 5.0 and reeluted from the resin by 10 mM ATP disodium salt. Furthermore, channel active "Porin 31BM" was labelled by [32P]ATP in a 1:1 stoichiometric relation. Binding of ATP to human porin was confirmed by studying the interaction of the synthetic porin fragment Type-1/Ac-35, comprising the putative nucleotide binding site G Y G F G, with trinitrophenyl-ATP (TNT-ATP) by scanning fluorometry. Peptide/TNP-ATP complexes clearly show enhancement of fluorescence intensity and a spectral shift of the fluorescence maximum. In a control experiment, using a porin fragment lacking the putative nucleotide binding site, no change of fluorescence emission was observed. Further confirmation for ATP binding by human VDAC arose from an autoradiographic experimental approach: the porin fragment Type-1/Ac-35 could be labelled by [32P]ATP, while a second porin fragment ending immediately before the putative nucleotide binding site could not; nor could a synthetic non porin peptide.
Collapse
Affiliation(s)
- H Flörke
- Max-Planck-Institut für experimentelle Medizin, Abteilung Immunchemie, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Logan J, Hiestand D, Daram P, Huang Z, Muccio DD, Hartman J, Haley B, Cook WJ, Sorscher EJ. Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest 1994; 94:228-36. [PMID: 7518829 PMCID: PMC296301 DOI: 10.1172/jci117311] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence suggests heterogeneity in the molecular pathogenesis of cystic fibrosis (CF). Mutations such as deletion of phenylalanine at position 508 (delta F508) within the cystic fibrosis transmembrane conductance regulator (CFTR), for example, appear to cause disease by abrogating normal biosynthetic processing, a mechanism which results in retention and degradation of the mutant protein within the endoplasmic reticulum. Other mutations, such as the relatively common glycine-->aspartic acid replacement at CFTR position 551 (G551D) appear to be normally processed, and therefore must cause disease through some other mechanism. Because delta F508 and G551D both occur within a predicted nucleotide binding domain (NBD) of the CFTR, we tested the influence of these mutations on nucleotide binding by the protein. We found that G551D and the corresponding mutation in the CFTR second nucleotide binding domain, G1349D, led to decreased nucleotide binding by CFTR NBDs, while the delta F508 mutation did not alter nucleotide binding. These results implicate defective ATP binding as contributing to the pathogenic mechanism of a relatively common mutation leading to CF, and suggest that structural integrity of a highly conserved region present in over 30 prokaryotic and eukaryotic nucleotide binding domains may be critical for normal nucleotide binding.
Collapse
Affiliation(s)
- J Logan
- Department of Biochemistry University of Kentucky Lexington 40536
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bielefeldt K, Jackson MB. Intramolecular and intermolecular enzymatic modulation of ion channels in excised membrane patches. Biophys J 1994; 66:1904-14. [PMID: 7521226 PMCID: PMC1275916 DOI: 10.1016/s0006-3495(94)80984-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A calcium-activated potassium channel in posterior pituitary nerve terminals was modulated by phosphorylation and dephosphorylation. Nearly every patch of membrane containing this channel also contained both membrane bound protein phosphatase and membrane-bound protein kinase. By examining the statistical and kinetic nature of phosphorylation and dephosphorylation in excised patches, it was possible to evaluate two contrasting models for these enzymatic reactions. One of these models treated catalysis as an intermolecular process in which the enzyme and substrate are separate molecular species that diffuse and encounter one another during collisions. The second model treated catalysis as an intramolecular process in which the enzyme and substrate reside within a stable macromolecular complex. The study began with a Poisson analysis of the distribution of channel number in patches, and of the number of protein phosphatase-free and protein kinase-free patches. Subsequent kinetic analysis of dephosphorylation yielded an estimate of the mean number of protein phosphatase molecules per patch that was similar to the value obtained from Poisson analysis. Because these two estimates were independent predictions based on the intermolecular model, their agreement supported this model. Analysis of channel number in protein phosphatase-free patches and of the rarity of patches showing partial but incomplete rundown provided additional support for the intermolecular model over the intramolecular model. Furthermore, dephosphorylation exhibited monotonic kinetics with a rate well below the diffusion limit. Thus, several different lines of analysis support the intermolecular model for dephosphorylation, in which the protein phosphatase must encounter its substrate to effect catalysis. In contrast to the monotonic kinetics of dephosphorylation, the phosphorylation reaction exhibited sigmoidal kinetics, with a rate that depended on membrane potential. Voltage dependence is an unlikely property for a kinetic step involving encounters resulting from diffusion. Furthermore, the velocity of the phosphorylation reaction exceeded the diffusion limit, and this observation is inconsistent with the intermolecular model. Thus, both intermolecular and intramolecular enzymatic mechanisms operate in the modulation of the calcium-activated potassium channel of the posterior pituitary. These studies provide a functional characterization of the interactions between enzyme and substrate in intact patches of cell membrane.
Collapse
Affiliation(s)
- K Bielefeldt
- Department of Physiology, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
44
|
Winter MC, Sheppard DN, Carson MR, Welsh MJ. Effect of ATP concentration on CFTR Cl- channels: a kinetic analysis of channel regulation. Biophys J 1994; 66:1398-403. [PMID: 7520292 PMCID: PMC1275860 DOI: 10.1016/s0006-3495(94)80930-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphorylated cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels require nucleoside triphosphates, such as ATP, to open. As the concentration of intracellular ATP increases, the probability of the channel being open (Po) increases. To better understand how ATP regulates the channel, we studied excised inside-out membrane patches that contained single, phosphorylated CFTR Cl- channels and examined the kinetics of gating at different concentrations of ATP. As the ATP concentration increased from 0.1 to 3 mM the mean closed time decreased, but mean open time did not change. Analysis of the data using histograms of open- and closed-state durations, the maximum likelihood method, and the log-likelihood ratio test suggested that channel behavior could be described by a model containing one open and two closed states (C1<==>C2<==>O). ATP regulated phosphorylated channels at the transition between the closed states C1 and C2: as the concentration of ATP increased, the rate of transition from C1 to C2 (C1-->C2) increased. In contrast, transitions from C2 to C1 and between C2 and the open state (O) were not significantly altered by ATP. Addition of ADP in the presence of ATP decreased the transition rate from C1 to C2 without affecting other transition rates. These data suggest that ATP regulates CFTR Cl- channels through an interaction that increases the rate of transition from the closed state to a bursting state in which the channel flickers back and forth between an open and a closed state (C2). This transition may reflect ATP binding or perhaps a step subsequent to binding.
Collapse
Affiliation(s)
- M C Winter
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | |
Collapse
|
45
|
Ko Y, Thomas P, Pedersen P. The cystic fibrosis transmembrane conductance regulator. Nucleotide binding to a synthetic peptide segment from the second predicted nucleotide binding fold. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36663-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Müller K, Ebensperger C, Tampé R. Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36751-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Sheppard DN, Ostedgaard LS, Rich DP, Welsh MJ. The amino-terminal portion of CFTR forms a regulated Cl- channel. Cell 1994; 76:1091-8. [PMID: 7511062 DOI: 10.1016/0092-8674(94)90385-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel consists of two motifs (each containing a membrane-spanning domain [MSD] and a nucleotide-binding domain [NBD]) linked by an R domain. We tested the hypothesis that one MSD-NBD motif could form a Cl- channel. The amino-terminal portion of CFTR (D836X, which contains MSD1, NBD1, and the R domain) formed Cl- channels with conductive properties identical to those of CFTR. However, channel regulation differed. Although phosphorylation increased activity, channels opened without phosphorylation. MgATP stimulated D836X more potently than CFTR and may interact at more than one site. These data and migration of D836X on sucrose density gradients suggest that D836X may function as a multimer. Thus, the amino-terminal portion of CFTR contains all of the structures required to build a regulated Cl- channel.
Collapse
Affiliation(s)
- D N Sheppard
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | |
Collapse
|
48
|
Chapter 7 The CFTR Chloride Channel. CURRENT TOPICS IN MEMBRANES 1994. [DOI: 10.1016/s0070-2161(08)60822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
49
|
A Secretory Cl Channel from Epithelial Cells Studied in Heterologous Expression Systems. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-3-642-78261-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
50
|
Ko Y, Thomas P, Delannoy M, Pedersen P. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80530-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|